]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/binfmt_elf.c
Merge tag 'rcu-urgent.2022.12.17a' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67
68 static int load_elf_binary(struct linux_binprm *bprm);
69
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75
76 /*
77 * If we don't support core dumping, then supply a NULL so we
78 * don't even try.
79 */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump NULL
84 #endif
85
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN PAGE_SIZE
90 #endif
91
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
94 #endif
95
96 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 #ifdef CONFIG_COREDUMP
105 .core_dump = elf_core_dump,
106 .min_coredump = ELF_EXEC_PAGESIZE,
107 #endif
108 };
109
110 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
111
112 static int set_brk(unsigned long start, unsigned long end, int prot)
113 {
114 start = ELF_PAGEALIGN(start);
115 end = ELF_PAGEALIGN(end);
116 if (end > start) {
117 /*
118 * Map the last of the bss segment.
119 * If the header is requesting these pages to be
120 * executable, honour that (ppc32 needs this).
121 */
122 int error = vm_brk_flags(start, end - start,
123 prot & PROT_EXEC ? VM_EXEC : 0);
124 if (error)
125 return error;
126 }
127 current->mm->start_brk = current->mm->brk = end;
128 return 0;
129 }
130
131 /* We need to explicitly zero any fractional pages
132 after the data section (i.e. bss). This would
133 contain the junk from the file that should not
134 be in memory
135 */
136 static int padzero(unsigned long elf_bss)
137 {
138 unsigned long nbyte;
139
140 nbyte = ELF_PAGEOFFSET(elf_bss);
141 if (nbyte) {
142 nbyte = ELF_MIN_ALIGN - nbyte;
143 if (clear_user((void __user *) elf_bss, nbyte))
144 return -EFAULT;
145 }
146 return 0;
147 }
148
149 /* Let's use some macros to make this stack manipulation a little clearer */
150 #ifdef CONFIG_STACK_GROWSUP
151 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
152 #define STACK_ROUND(sp, items) \
153 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
154 #define STACK_ALLOC(sp, len) ({ \
155 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
156 old_sp; })
157 #else
158 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
159 #define STACK_ROUND(sp, items) \
160 (((unsigned long) (sp - items)) &~ 15UL)
161 #define STACK_ALLOC(sp, len) (sp -= len)
162 #endif
163
164 #ifndef ELF_BASE_PLATFORM
165 /*
166 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
167 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
168 * will be copied to the user stack in the same manner as AT_PLATFORM.
169 */
170 #define ELF_BASE_PLATFORM NULL
171 #endif
172
173 static int
174 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
175 unsigned long interp_load_addr,
176 unsigned long e_entry, unsigned long phdr_addr)
177 {
178 struct mm_struct *mm = current->mm;
179 unsigned long p = bprm->p;
180 int argc = bprm->argc;
181 int envc = bprm->envc;
182 elf_addr_t __user *sp;
183 elf_addr_t __user *u_platform;
184 elf_addr_t __user *u_base_platform;
185 elf_addr_t __user *u_rand_bytes;
186 const char *k_platform = ELF_PLATFORM;
187 const char *k_base_platform = ELF_BASE_PLATFORM;
188 unsigned char k_rand_bytes[16];
189 int items;
190 elf_addr_t *elf_info;
191 elf_addr_t flags = 0;
192 int ei_index;
193 const struct cred *cred = current_cred();
194 struct vm_area_struct *vma;
195
196 /*
197 * In some cases (e.g. Hyper-Threading), we want to avoid L1
198 * evictions by the processes running on the same package. One
199 * thing we can do is to shuffle the initial stack for them.
200 */
201
202 p = arch_align_stack(p);
203
204 /*
205 * If this architecture has a platform capability string, copy it
206 * to userspace. In some cases (Sparc), this info is impossible
207 * for userspace to get any other way, in others (i386) it is
208 * merely difficult.
209 */
210 u_platform = NULL;
211 if (k_platform) {
212 size_t len = strlen(k_platform) + 1;
213
214 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 if (copy_to_user(u_platform, k_platform, len))
216 return -EFAULT;
217 }
218
219 /*
220 * If this architecture has a "base" platform capability
221 * string, copy it to userspace.
222 */
223 u_base_platform = NULL;
224 if (k_base_platform) {
225 size_t len = strlen(k_base_platform) + 1;
226
227 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
228 if (copy_to_user(u_base_platform, k_base_platform, len))
229 return -EFAULT;
230 }
231
232 /*
233 * Generate 16 random bytes for userspace PRNG seeding.
234 */
235 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
236 u_rand_bytes = (elf_addr_t __user *)
237 STACK_ALLOC(p, sizeof(k_rand_bytes));
238 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
239 return -EFAULT;
240
241 /* Create the ELF interpreter info */
242 elf_info = (elf_addr_t *)mm->saved_auxv;
243 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
244 #define NEW_AUX_ENT(id, val) \
245 do { \
246 *elf_info++ = id; \
247 *elf_info++ = val; \
248 } while (0)
249
250 #ifdef ARCH_DLINFO
251 /*
252 * ARCH_DLINFO must come first so PPC can do its special alignment of
253 * AUXV.
254 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
255 * ARCH_DLINFO changes
256 */
257 ARCH_DLINFO;
258 #endif
259 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
260 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
261 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
262 NEW_AUX_ENT(AT_PHDR, phdr_addr);
263 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
264 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
265 NEW_AUX_ENT(AT_BASE, interp_load_addr);
266 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
267 flags |= AT_FLAGS_PRESERVE_ARGV0;
268 NEW_AUX_ENT(AT_FLAGS, flags);
269 NEW_AUX_ENT(AT_ENTRY, e_entry);
270 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
271 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
272 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
273 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
274 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
275 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
276 #ifdef ELF_HWCAP2
277 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
278 #endif
279 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
280 if (k_platform) {
281 NEW_AUX_ENT(AT_PLATFORM,
282 (elf_addr_t)(unsigned long)u_platform);
283 }
284 if (k_base_platform) {
285 NEW_AUX_ENT(AT_BASE_PLATFORM,
286 (elf_addr_t)(unsigned long)u_base_platform);
287 }
288 if (bprm->have_execfd) {
289 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
290 }
291 #undef NEW_AUX_ENT
292 /* AT_NULL is zero; clear the rest too */
293 memset(elf_info, 0, (char *)mm->saved_auxv +
294 sizeof(mm->saved_auxv) - (char *)elf_info);
295
296 /* And advance past the AT_NULL entry. */
297 elf_info += 2;
298
299 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
300 sp = STACK_ADD(p, ei_index);
301
302 items = (argc + 1) + (envc + 1) + 1;
303 bprm->p = STACK_ROUND(sp, items);
304
305 /* Point sp at the lowest address on the stack */
306 #ifdef CONFIG_STACK_GROWSUP
307 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
308 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
309 #else
310 sp = (elf_addr_t __user *)bprm->p;
311 #endif
312
313
314 /*
315 * Grow the stack manually; some architectures have a limit on how
316 * far ahead a user-space access may be in order to grow the stack.
317 */
318 if (mmap_read_lock_killable(mm))
319 return -EINTR;
320 vma = find_extend_vma(mm, bprm->p);
321 mmap_read_unlock(mm);
322 if (!vma)
323 return -EFAULT;
324
325 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
326 if (put_user(argc, sp++))
327 return -EFAULT;
328
329 /* Populate list of argv pointers back to argv strings. */
330 p = mm->arg_end = mm->arg_start;
331 while (argc-- > 0) {
332 size_t len;
333 if (put_user((elf_addr_t)p, sp++))
334 return -EFAULT;
335 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
336 if (!len || len > MAX_ARG_STRLEN)
337 return -EINVAL;
338 p += len;
339 }
340 if (put_user(0, sp++))
341 return -EFAULT;
342 mm->arg_end = p;
343
344 /* Populate list of envp pointers back to envp strings. */
345 mm->env_end = mm->env_start = p;
346 while (envc-- > 0) {
347 size_t len;
348 if (put_user((elf_addr_t)p, sp++))
349 return -EFAULT;
350 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
351 if (!len || len > MAX_ARG_STRLEN)
352 return -EINVAL;
353 p += len;
354 }
355 if (put_user(0, sp++))
356 return -EFAULT;
357 mm->env_end = p;
358
359 /* Put the elf_info on the stack in the right place. */
360 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
361 return -EFAULT;
362 return 0;
363 }
364
365 static unsigned long elf_map(struct file *filep, unsigned long addr,
366 const struct elf_phdr *eppnt, int prot, int type,
367 unsigned long total_size)
368 {
369 unsigned long map_addr;
370 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
371 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
372 addr = ELF_PAGESTART(addr);
373 size = ELF_PAGEALIGN(size);
374
375 /* mmap() will return -EINVAL if given a zero size, but a
376 * segment with zero filesize is perfectly valid */
377 if (!size)
378 return addr;
379
380 /*
381 * total_size is the size of the ELF (interpreter) image.
382 * The _first_ mmap needs to know the full size, otherwise
383 * randomization might put this image into an overlapping
384 * position with the ELF binary image. (since size < total_size)
385 * So we first map the 'big' image - and unmap the remainder at
386 * the end. (which unmap is needed for ELF images with holes.)
387 */
388 if (total_size) {
389 total_size = ELF_PAGEALIGN(total_size);
390 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
391 if (!BAD_ADDR(map_addr))
392 vm_munmap(map_addr+size, total_size-size);
393 } else
394 map_addr = vm_mmap(filep, addr, size, prot, type, off);
395
396 if ((type & MAP_FIXED_NOREPLACE) &&
397 PTR_ERR((void *)map_addr) == -EEXIST)
398 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
399 task_pid_nr(current), current->comm, (void *)addr);
400
401 return(map_addr);
402 }
403
404 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
405 {
406 elf_addr_t min_addr = -1;
407 elf_addr_t max_addr = 0;
408 bool pt_load = false;
409 int i;
410
411 for (i = 0; i < nr; i++) {
412 if (phdr[i].p_type == PT_LOAD) {
413 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
414 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
415 pt_load = true;
416 }
417 }
418 return pt_load ? (max_addr - min_addr) : 0;
419 }
420
421 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
422 {
423 ssize_t rv;
424
425 rv = kernel_read(file, buf, len, &pos);
426 if (unlikely(rv != len)) {
427 return (rv < 0) ? rv : -EIO;
428 }
429 return 0;
430 }
431
432 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
433 {
434 unsigned long alignment = 0;
435 int i;
436
437 for (i = 0; i < nr; i++) {
438 if (cmds[i].p_type == PT_LOAD) {
439 unsigned long p_align = cmds[i].p_align;
440
441 /* skip non-power of two alignments as invalid */
442 if (!is_power_of_2(p_align))
443 continue;
444 alignment = max(alignment, p_align);
445 }
446 }
447
448 /* ensure we align to at least one page */
449 return ELF_PAGEALIGN(alignment);
450 }
451
452 /**
453 * load_elf_phdrs() - load ELF program headers
454 * @elf_ex: ELF header of the binary whose program headers should be loaded
455 * @elf_file: the opened ELF binary file
456 *
457 * Loads ELF program headers from the binary file elf_file, which has the ELF
458 * header pointed to by elf_ex, into a newly allocated array. The caller is
459 * responsible for freeing the allocated data. Returns NULL upon failure.
460 */
461 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
462 struct file *elf_file)
463 {
464 struct elf_phdr *elf_phdata = NULL;
465 int retval = -1;
466 unsigned int size;
467
468 /*
469 * If the size of this structure has changed, then punt, since
470 * we will be doing the wrong thing.
471 */
472 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
473 goto out;
474
475 /* Sanity check the number of program headers... */
476 /* ...and their total size. */
477 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
478 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
479 goto out;
480
481 elf_phdata = kmalloc(size, GFP_KERNEL);
482 if (!elf_phdata)
483 goto out;
484
485 /* Read in the program headers */
486 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
487
488 out:
489 if (retval) {
490 kfree(elf_phdata);
491 elf_phdata = NULL;
492 }
493 return elf_phdata;
494 }
495
496 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
497
498 /**
499 * struct arch_elf_state - arch-specific ELF loading state
500 *
501 * This structure is used to preserve architecture specific data during
502 * the loading of an ELF file, throughout the checking of architecture
503 * specific ELF headers & through to the point where the ELF load is
504 * known to be proceeding (ie. SET_PERSONALITY).
505 *
506 * This implementation is a dummy for architectures which require no
507 * specific state.
508 */
509 struct arch_elf_state {
510 };
511
512 #define INIT_ARCH_ELF_STATE {}
513
514 /**
515 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
516 * @ehdr: The main ELF header
517 * @phdr: The program header to check
518 * @elf: The open ELF file
519 * @is_interp: True if the phdr is from the interpreter of the ELF being
520 * loaded, else false.
521 * @state: Architecture-specific state preserved throughout the process
522 * of loading the ELF.
523 *
524 * Inspects the program header phdr to validate its correctness and/or
525 * suitability for the system. Called once per ELF program header in the
526 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
527 * interpreter.
528 *
529 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
530 * with that return code.
531 */
532 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
533 struct elf_phdr *phdr,
534 struct file *elf, bool is_interp,
535 struct arch_elf_state *state)
536 {
537 /* Dummy implementation, always proceed */
538 return 0;
539 }
540
541 /**
542 * arch_check_elf() - check an ELF executable
543 * @ehdr: The main ELF header
544 * @has_interp: True if the ELF has an interpreter, else false.
545 * @interp_ehdr: The interpreter's ELF header
546 * @state: Architecture-specific state preserved throughout the process
547 * of loading the ELF.
548 *
549 * Provides a final opportunity for architecture code to reject the loading
550 * of the ELF & cause an exec syscall to return an error. This is called after
551 * all program headers to be checked by arch_elf_pt_proc have been.
552 *
553 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
554 * with that return code.
555 */
556 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
557 struct elfhdr *interp_ehdr,
558 struct arch_elf_state *state)
559 {
560 /* Dummy implementation, always proceed */
561 return 0;
562 }
563
564 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
565
566 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
567 bool has_interp, bool is_interp)
568 {
569 int prot = 0;
570
571 if (p_flags & PF_R)
572 prot |= PROT_READ;
573 if (p_flags & PF_W)
574 prot |= PROT_WRITE;
575 if (p_flags & PF_X)
576 prot |= PROT_EXEC;
577
578 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
579 }
580
581 /* This is much more generalized than the library routine read function,
582 so we keep this separate. Technically the library read function
583 is only provided so that we can read a.out libraries that have
584 an ELF header */
585
586 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
587 struct file *interpreter,
588 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
589 struct arch_elf_state *arch_state)
590 {
591 struct elf_phdr *eppnt;
592 unsigned long load_addr = 0;
593 int load_addr_set = 0;
594 unsigned long last_bss = 0, elf_bss = 0;
595 int bss_prot = 0;
596 unsigned long error = ~0UL;
597 unsigned long total_size;
598 int i;
599
600 /* First of all, some simple consistency checks */
601 if (interp_elf_ex->e_type != ET_EXEC &&
602 interp_elf_ex->e_type != ET_DYN)
603 goto out;
604 if (!elf_check_arch(interp_elf_ex) ||
605 elf_check_fdpic(interp_elf_ex))
606 goto out;
607 if (!interpreter->f_op->mmap)
608 goto out;
609
610 total_size = total_mapping_size(interp_elf_phdata,
611 interp_elf_ex->e_phnum);
612 if (!total_size) {
613 error = -EINVAL;
614 goto out;
615 }
616
617 eppnt = interp_elf_phdata;
618 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
619 if (eppnt->p_type == PT_LOAD) {
620 int elf_type = MAP_PRIVATE;
621 int elf_prot = make_prot(eppnt->p_flags, arch_state,
622 true, true);
623 unsigned long vaddr = 0;
624 unsigned long k, map_addr;
625
626 vaddr = eppnt->p_vaddr;
627 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
628 elf_type |= MAP_FIXED;
629 else if (no_base && interp_elf_ex->e_type == ET_DYN)
630 load_addr = -vaddr;
631
632 map_addr = elf_map(interpreter, load_addr + vaddr,
633 eppnt, elf_prot, elf_type, total_size);
634 total_size = 0;
635 error = map_addr;
636 if (BAD_ADDR(map_addr))
637 goto out;
638
639 if (!load_addr_set &&
640 interp_elf_ex->e_type == ET_DYN) {
641 load_addr = map_addr - ELF_PAGESTART(vaddr);
642 load_addr_set = 1;
643 }
644
645 /*
646 * Check to see if the section's size will overflow the
647 * allowed task size. Note that p_filesz must always be
648 * <= p_memsize so it's only necessary to check p_memsz.
649 */
650 k = load_addr + eppnt->p_vaddr;
651 if (BAD_ADDR(k) ||
652 eppnt->p_filesz > eppnt->p_memsz ||
653 eppnt->p_memsz > TASK_SIZE ||
654 TASK_SIZE - eppnt->p_memsz < k) {
655 error = -ENOMEM;
656 goto out;
657 }
658
659 /*
660 * Find the end of the file mapping for this phdr, and
661 * keep track of the largest address we see for this.
662 */
663 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
664 if (k > elf_bss)
665 elf_bss = k;
666
667 /*
668 * Do the same thing for the memory mapping - between
669 * elf_bss and last_bss is the bss section.
670 */
671 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
672 if (k > last_bss) {
673 last_bss = k;
674 bss_prot = elf_prot;
675 }
676 }
677 }
678
679 /*
680 * Now fill out the bss section: first pad the last page from
681 * the file up to the page boundary, and zero it from elf_bss
682 * up to the end of the page.
683 */
684 if (padzero(elf_bss)) {
685 error = -EFAULT;
686 goto out;
687 }
688 /*
689 * Next, align both the file and mem bss up to the page size,
690 * since this is where elf_bss was just zeroed up to, and where
691 * last_bss will end after the vm_brk_flags() below.
692 */
693 elf_bss = ELF_PAGEALIGN(elf_bss);
694 last_bss = ELF_PAGEALIGN(last_bss);
695 /* Finally, if there is still more bss to allocate, do it. */
696 if (last_bss > elf_bss) {
697 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
698 bss_prot & PROT_EXEC ? VM_EXEC : 0);
699 if (error)
700 goto out;
701 }
702
703 error = load_addr;
704 out:
705 return error;
706 }
707
708 /*
709 * These are the functions used to load ELF style executables and shared
710 * libraries. There is no binary dependent code anywhere else.
711 */
712
713 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
714 struct arch_elf_state *arch,
715 bool have_prev_type, u32 *prev_type)
716 {
717 size_t o, step;
718 const struct gnu_property *pr;
719 int ret;
720
721 if (*off == datasz)
722 return -ENOENT;
723
724 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
725 return -EIO;
726 o = *off;
727 datasz -= *off;
728
729 if (datasz < sizeof(*pr))
730 return -ENOEXEC;
731 pr = (const struct gnu_property *)(data + o);
732 o += sizeof(*pr);
733 datasz -= sizeof(*pr);
734
735 if (pr->pr_datasz > datasz)
736 return -ENOEXEC;
737
738 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
739 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
740 if (step > datasz)
741 return -ENOEXEC;
742
743 /* Properties are supposed to be unique and sorted on pr_type: */
744 if (have_prev_type && pr->pr_type <= *prev_type)
745 return -ENOEXEC;
746 *prev_type = pr->pr_type;
747
748 ret = arch_parse_elf_property(pr->pr_type, data + o,
749 pr->pr_datasz, ELF_COMPAT, arch);
750 if (ret)
751 return ret;
752
753 *off = o + step;
754 return 0;
755 }
756
757 #define NOTE_DATA_SZ SZ_1K
758 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
759 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
760
761 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
762 struct arch_elf_state *arch)
763 {
764 union {
765 struct elf_note nhdr;
766 char data[NOTE_DATA_SZ];
767 } note;
768 loff_t pos;
769 ssize_t n;
770 size_t off, datasz;
771 int ret;
772 bool have_prev_type;
773 u32 prev_type;
774
775 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
776 return 0;
777
778 /* load_elf_binary() shouldn't call us unless this is true... */
779 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
780 return -ENOEXEC;
781
782 /* If the properties are crazy large, that's too bad (for now): */
783 if (phdr->p_filesz > sizeof(note))
784 return -ENOEXEC;
785
786 pos = phdr->p_offset;
787 n = kernel_read(f, &note, phdr->p_filesz, &pos);
788
789 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
790 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
791 return -EIO;
792
793 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
794 note.nhdr.n_namesz != NOTE_NAME_SZ ||
795 strncmp(note.data + sizeof(note.nhdr),
796 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
797 return -ENOEXEC;
798
799 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
800 ELF_GNU_PROPERTY_ALIGN);
801 if (off > n)
802 return -ENOEXEC;
803
804 if (note.nhdr.n_descsz > n - off)
805 return -ENOEXEC;
806 datasz = off + note.nhdr.n_descsz;
807
808 have_prev_type = false;
809 do {
810 ret = parse_elf_property(note.data, &off, datasz, arch,
811 have_prev_type, &prev_type);
812 have_prev_type = true;
813 } while (!ret);
814
815 return ret == -ENOENT ? 0 : ret;
816 }
817
818 static int load_elf_binary(struct linux_binprm *bprm)
819 {
820 struct file *interpreter = NULL; /* to shut gcc up */
821 unsigned long load_bias = 0, phdr_addr = 0;
822 int first_pt_load = 1;
823 unsigned long error;
824 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
825 struct elf_phdr *elf_property_phdata = NULL;
826 unsigned long elf_bss, elf_brk;
827 int bss_prot = 0;
828 int retval, i;
829 unsigned long elf_entry;
830 unsigned long e_entry;
831 unsigned long interp_load_addr = 0;
832 unsigned long start_code, end_code, start_data, end_data;
833 unsigned long reloc_func_desc __maybe_unused = 0;
834 int executable_stack = EXSTACK_DEFAULT;
835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 struct elfhdr *interp_elf_ex = NULL;
837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 struct mm_struct *mm;
839 struct pt_regs *regs;
840
841 retval = -ENOEXEC;
842 /* First of all, some simple consistency checks */
843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844 goto out;
845
846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847 goto out;
848 if (!elf_check_arch(elf_ex))
849 goto out;
850 if (elf_check_fdpic(elf_ex))
851 goto out;
852 if (!bprm->file->f_op->mmap)
853 goto out;
854
855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
856 if (!elf_phdata)
857 goto out;
858
859 elf_ppnt = elf_phdata;
860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 char *elf_interpreter;
862
863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 elf_property_phdata = elf_ppnt;
865 continue;
866 }
867
868 if (elf_ppnt->p_type != PT_INTERP)
869 continue;
870
871 /*
872 * This is the program interpreter used for shared libraries -
873 * for now assume that this is an a.out format binary.
874 */
875 retval = -ENOEXEC;
876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877 goto out_free_ph;
878
879 retval = -ENOMEM;
880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
881 if (!elf_interpreter)
882 goto out_free_ph;
883
884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
885 elf_ppnt->p_offset);
886 if (retval < 0)
887 goto out_free_interp;
888 /* make sure path is NULL terminated */
889 retval = -ENOEXEC;
890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 goto out_free_interp;
892
893 interpreter = open_exec(elf_interpreter);
894 kfree(elf_interpreter);
895 retval = PTR_ERR(interpreter);
896 if (IS_ERR(interpreter))
897 goto out_free_ph;
898
899 /*
900 * If the binary is not readable then enforce mm->dumpable = 0
901 * regardless of the interpreter's permissions.
902 */
903 would_dump(bprm, interpreter);
904
905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
906 if (!interp_elf_ex) {
907 retval = -ENOMEM;
908 goto out_free_file;
909 }
910
911 /* Get the exec headers */
912 retval = elf_read(interpreter, interp_elf_ex,
913 sizeof(*interp_elf_ex), 0);
914 if (retval < 0)
915 goto out_free_dentry;
916
917 break;
918
919 out_free_interp:
920 kfree(elf_interpreter);
921 goto out_free_ph;
922 }
923
924 elf_ppnt = elf_phdata;
925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 switch (elf_ppnt->p_type) {
927 case PT_GNU_STACK:
928 if (elf_ppnt->p_flags & PF_X)
929 executable_stack = EXSTACK_ENABLE_X;
930 else
931 executable_stack = EXSTACK_DISABLE_X;
932 break;
933
934 case PT_LOPROC ... PT_HIPROC:
935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
936 bprm->file, false,
937 &arch_state);
938 if (retval)
939 goto out_free_dentry;
940 break;
941 }
942
943 /* Some simple consistency checks for the interpreter */
944 if (interpreter) {
945 retval = -ELIBBAD;
946 /* Not an ELF interpreter */
947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 goto out_free_dentry;
949 /* Verify the interpreter has a valid arch */
950 if (!elf_check_arch(interp_elf_ex) ||
951 elf_check_fdpic(interp_elf_ex))
952 goto out_free_dentry;
953
954 /* Load the interpreter program headers */
955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
956 interpreter);
957 if (!interp_elf_phdata)
958 goto out_free_dentry;
959
960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 elf_property_phdata = NULL;
962 elf_ppnt = interp_elf_phdata;
963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 switch (elf_ppnt->p_type) {
965 case PT_GNU_PROPERTY:
966 elf_property_phdata = elf_ppnt;
967 break;
968
969 case PT_LOPROC ... PT_HIPROC:
970 retval = arch_elf_pt_proc(interp_elf_ex,
971 elf_ppnt, interpreter,
972 true, &arch_state);
973 if (retval)
974 goto out_free_dentry;
975 break;
976 }
977 }
978
979 retval = parse_elf_properties(interpreter ?: bprm->file,
980 elf_property_phdata, &arch_state);
981 if (retval)
982 goto out_free_dentry;
983
984 /*
985 * Allow arch code to reject the ELF at this point, whilst it's
986 * still possible to return an error to the code that invoked
987 * the exec syscall.
988 */
989 retval = arch_check_elf(elf_ex,
990 !!interpreter, interp_elf_ex,
991 &arch_state);
992 if (retval)
993 goto out_free_dentry;
994
995 /* Flush all traces of the currently running executable */
996 retval = begin_new_exec(bprm);
997 if (retval)
998 goto out_free_dentry;
999
1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 may depend on the personality. */
1002 SET_PERSONALITY2(*elf_ex, &arch_state);
1003 if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 current->personality |= READ_IMPLIES_EXEC;
1005
1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 current->flags |= PF_RANDOMIZE;
1008
1009 setup_new_exec(bprm);
1010
1011 /* Do this so that we can load the interpreter, if need be. We will
1012 change some of these later */
1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1014 executable_stack);
1015 if (retval < 0)
1016 goto out_free_dentry;
1017
1018 elf_bss = 0;
1019 elf_brk = 0;
1020
1021 start_code = ~0UL;
1022 end_code = 0;
1023 start_data = 0;
1024 end_data = 0;
1025
1026 /* Now we do a little grungy work by mmapping the ELF image into
1027 the correct location in memory. */
1028 for(i = 0, elf_ppnt = elf_phdata;
1029 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1030 int elf_prot, elf_flags;
1031 unsigned long k, vaddr;
1032 unsigned long total_size = 0;
1033 unsigned long alignment;
1034
1035 if (elf_ppnt->p_type != PT_LOAD)
1036 continue;
1037
1038 if (unlikely (elf_brk > elf_bss)) {
1039 unsigned long nbyte;
1040
1041 /* There was a PT_LOAD segment with p_memsz > p_filesz
1042 before this one. Map anonymous pages, if needed,
1043 and clear the area. */
1044 retval = set_brk(elf_bss + load_bias,
1045 elf_brk + load_bias,
1046 bss_prot);
1047 if (retval)
1048 goto out_free_dentry;
1049 nbyte = ELF_PAGEOFFSET(elf_bss);
1050 if (nbyte) {
1051 nbyte = ELF_MIN_ALIGN - nbyte;
1052 if (nbyte > elf_brk - elf_bss)
1053 nbyte = elf_brk - elf_bss;
1054 if (clear_user((void __user *)elf_bss +
1055 load_bias, nbyte)) {
1056 /*
1057 * This bss-zeroing can fail if the ELF
1058 * file specifies odd protections. So
1059 * we don't check the return value
1060 */
1061 }
1062 }
1063 }
1064
1065 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1066 !!interpreter, false);
1067
1068 elf_flags = MAP_PRIVATE;
1069
1070 vaddr = elf_ppnt->p_vaddr;
1071 /*
1072 * The first time through the loop, first_pt_load is true:
1073 * layout will be calculated. Once set, use MAP_FIXED since
1074 * we know we've already safely mapped the entire region with
1075 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1076 */
1077 if (!first_pt_load) {
1078 elf_flags |= MAP_FIXED;
1079 } else if (elf_ex->e_type == ET_EXEC) {
1080 /*
1081 * This logic is run once for the first LOAD Program
1082 * Header for ET_EXEC binaries. No special handling
1083 * is needed.
1084 */
1085 elf_flags |= MAP_FIXED_NOREPLACE;
1086 } else if (elf_ex->e_type == ET_DYN) {
1087 /*
1088 * This logic is run once for the first LOAD Program
1089 * Header for ET_DYN binaries to calculate the
1090 * randomization (load_bias) for all the LOAD
1091 * Program Headers.
1092 *
1093 * There are effectively two types of ET_DYN
1094 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1095 * and loaders (ET_DYN without INTERP, since they
1096 * _are_ the ELF interpreter). The loaders must
1097 * be loaded away from programs since the program
1098 * may otherwise collide with the loader (especially
1099 * for ET_EXEC which does not have a randomized
1100 * position). For example to handle invocations of
1101 * "./ld.so someprog" to test out a new version of
1102 * the loader, the subsequent program that the
1103 * loader loads must avoid the loader itself, so
1104 * they cannot share the same load range. Sufficient
1105 * room for the brk must be allocated with the
1106 * loader as well, since brk must be available with
1107 * the loader.
1108 *
1109 * Therefore, programs are loaded offset from
1110 * ELF_ET_DYN_BASE and loaders are loaded into the
1111 * independently randomized mmap region (0 load_bias
1112 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1113 */
1114 if (interpreter) {
1115 load_bias = ELF_ET_DYN_BASE;
1116 if (current->flags & PF_RANDOMIZE)
1117 load_bias += arch_mmap_rnd();
1118 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1119 if (alignment)
1120 load_bias &= ~(alignment - 1);
1121 elf_flags |= MAP_FIXED_NOREPLACE;
1122 } else
1123 load_bias = 0;
1124
1125 /*
1126 * Since load_bias is used for all subsequent loading
1127 * calculations, we must lower it by the first vaddr
1128 * so that the remaining calculations based on the
1129 * ELF vaddrs will be correctly offset. The result
1130 * is then page aligned.
1131 */
1132 load_bias = ELF_PAGESTART(load_bias - vaddr);
1133
1134 /*
1135 * Calculate the entire size of the ELF mapping
1136 * (total_size), used for the initial mapping,
1137 * due to load_addr_set which is set to true later
1138 * once the initial mapping is performed.
1139 *
1140 * Note that this is only sensible when the LOAD
1141 * segments are contiguous (or overlapping). If
1142 * used for LOADs that are far apart, this would
1143 * cause the holes between LOADs to be mapped,
1144 * running the risk of having the mapping fail,
1145 * as it would be larger than the ELF file itself.
1146 *
1147 * As a result, only ET_DYN does this, since
1148 * some ET_EXEC (e.g. ia64) may have large virtual
1149 * memory holes between LOADs.
1150 *
1151 */
1152 total_size = total_mapping_size(elf_phdata,
1153 elf_ex->e_phnum);
1154 if (!total_size) {
1155 retval = -EINVAL;
1156 goto out_free_dentry;
1157 }
1158 }
1159
1160 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1161 elf_prot, elf_flags, total_size);
1162 if (BAD_ADDR(error)) {
1163 retval = IS_ERR_VALUE(error) ?
1164 PTR_ERR((void*)error) : -EINVAL;
1165 goto out_free_dentry;
1166 }
1167
1168 if (first_pt_load) {
1169 first_pt_load = 0;
1170 if (elf_ex->e_type == ET_DYN) {
1171 load_bias += error -
1172 ELF_PAGESTART(load_bias + vaddr);
1173 reloc_func_desc = load_bias;
1174 }
1175 }
1176
1177 /*
1178 * Figure out which segment in the file contains the Program
1179 * Header table, and map to the associated memory address.
1180 */
1181 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1182 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1183 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1184 elf_ppnt->p_vaddr;
1185 }
1186
1187 k = elf_ppnt->p_vaddr;
1188 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1189 start_code = k;
1190 if (start_data < k)
1191 start_data = k;
1192
1193 /*
1194 * Check to see if the section's size will overflow the
1195 * allowed task size. Note that p_filesz must always be
1196 * <= p_memsz so it is only necessary to check p_memsz.
1197 */
1198 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1199 elf_ppnt->p_memsz > TASK_SIZE ||
1200 TASK_SIZE - elf_ppnt->p_memsz < k) {
1201 /* set_brk can never work. Avoid overflows. */
1202 retval = -EINVAL;
1203 goto out_free_dentry;
1204 }
1205
1206 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1207
1208 if (k > elf_bss)
1209 elf_bss = k;
1210 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1211 end_code = k;
1212 if (end_data < k)
1213 end_data = k;
1214 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1215 if (k > elf_brk) {
1216 bss_prot = elf_prot;
1217 elf_brk = k;
1218 }
1219 }
1220
1221 e_entry = elf_ex->e_entry + load_bias;
1222 phdr_addr += load_bias;
1223 elf_bss += load_bias;
1224 elf_brk += load_bias;
1225 start_code += load_bias;
1226 end_code += load_bias;
1227 start_data += load_bias;
1228 end_data += load_bias;
1229
1230 /* Calling set_brk effectively mmaps the pages that we need
1231 * for the bss and break sections. We must do this before
1232 * mapping in the interpreter, to make sure it doesn't wind
1233 * up getting placed where the bss needs to go.
1234 */
1235 retval = set_brk(elf_bss, elf_brk, bss_prot);
1236 if (retval)
1237 goto out_free_dentry;
1238 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1239 retval = -EFAULT; /* Nobody gets to see this, but.. */
1240 goto out_free_dentry;
1241 }
1242
1243 if (interpreter) {
1244 elf_entry = load_elf_interp(interp_elf_ex,
1245 interpreter,
1246 load_bias, interp_elf_phdata,
1247 &arch_state);
1248 if (!IS_ERR_VALUE(elf_entry)) {
1249 /*
1250 * load_elf_interp() returns relocation
1251 * adjustment
1252 */
1253 interp_load_addr = elf_entry;
1254 elf_entry += interp_elf_ex->e_entry;
1255 }
1256 if (BAD_ADDR(elf_entry)) {
1257 retval = IS_ERR_VALUE(elf_entry) ?
1258 (int)elf_entry : -EINVAL;
1259 goto out_free_dentry;
1260 }
1261 reloc_func_desc = interp_load_addr;
1262
1263 allow_write_access(interpreter);
1264 fput(interpreter);
1265
1266 kfree(interp_elf_ex);
1267 kfree(interp_elf_phdata);
1268 } else {
1269 elf_entry = e_entry;
1270 if (BAD_ADDR(elf_entry)) {
1271 retval = -EINVAL;
1272 goto out_free_dentry;
1273 }
1274 }
1275
1276 kfree(elf_phdata);
1277
1278 set_binfmt(&elf_format);
1279
1280 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1281 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1282 if (retval < 0)
1283 goto out;
1284 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1285
1286 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1287 e_entry, phdr_addr);
1288 if (retval < 0)
1289 goto out;
1290
1291 mm = current->mm;
1292 mm->end_code = end_code;
1293 mm->start_code = start_code;
1294 mm->start_data = start_data;
1295 mm->end_data = end_data;
1296 mm->start_stack = bprm->p;
1297
1298 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1299 /*
1300 * For architectures with ELF randomization, when executing
1301 * a loader directly (i.e. no interpreter listed in ELF
1302 * headers), move the brk area out of the mmap region
1303 * (since it grows up, and may collide early with the stack
1304 * growing down), and into the unused ELF_ET_DYN_BASE region.
1305 */
1306 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1307 elf_ex->e_type == ET_DYN && !interpreter) {
1308 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1309 }
1310
1311 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1312 #ifdef compat_brk_randomized
1313 current->brk_randomized = 1;
1314 #endif
1315 }
1316
1317 if (current->personality & MMAP_PAGE_ZERO) {
1318 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1319 and some applications "depend" upon this behavior.
1320 Since we do not have the power to recompile these, we
1321 emulate the SVr4 behavior. Sigh. */
1322 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1323 MAP_FIXED | MAP_PRIVATE, 0);
1324 }
1325
1326 regs = current_pt_regs();
1327 #ifdef ELF_PLAT_INIT
1328 /*
1329 * The ABI may specify that certain registers be set up in special
1330 * ways (on i386 %edx is the address of a DT_FINI function, for
1331 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1332 * that the e_entry field is the address of the function descriptor
1333 * for the startup routine, rather than the address of the startup
1334 * routine itself. This macro performs whatever initialization to
1335 * the regs structure is required as well as any relocations to the
1336 * function descriptor entries when executing dynamically links apps.
1337 */
1338 ELF_PLAT_INIT(regs, reloc_func_desc);
1339 #endif
1340
1341 finalize_exec(bprm);
1342 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1343 retval = 0;
1344 out:
1345 return retval;
1346
1347 /* error cleanup */
1348 out_free_dentry:
1349 kfree(interp_elf_ex);
1350 kfree(interp_elf_phdata);
1351 out_free_file:
1352 allow_write_access(interpreter);
1353 if (interpreter)
1354 fput(interpreter);
1355 out_free_ph:
1356 kfree(elf_phdata);
1357 goto out;
1358 }
1359
1360 #ifdef CONFIG_USELIB
1361 /* This is really simpleminded and specialized - we are loading an
1362 a.out library that is given an ELF header. */
1363 static int load_elf_library(struct file *file)
1364 {
1365 struct elf_phdr *elf_phdata;
1366 struct elf_phdr *eppnt;
1367 unsigned long elf_bss, bss, len;
1368 int retval, error, i, j;
1369 struct elfhdr elf_ex;
1370
1371 error = -ENOEXEC;
1372 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1373 if (retval < 0)
1374 goto out;
1375
1376 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1377 goto out;
1378
1379 /* First of all, some simple consistency checks */
1380 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1381 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1382 goto out;
1383 if (elf_check_fdpic(&elf_ex))
1384 goto out;
1385
1386 /* Now read in all of the header information */
1387
1388 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1389 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1390
1391 error = -ENOMEM;
1392 elf_phdata = kmalloc(j, GFP_KERNEL);
1393 if (!elf_phdata)
1394 goto out;
1395
1396 eppnt = elf_phdata;
1397 error = -ENOEXEC;
1398 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1399 if (retval < 0)
1400 goto out_free_ph;
1401
1402 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1403 if ((eppnt + i)->p_type == PT_LOAD)
1404 j++;
1405 if (j != 1)
1406 goto out_free_ph;
1407
1408 while (eppnt->p_type != PT_LOAD)
1409 eppnt++;
1410
1411 /* Now use mmap to map the library into memory. */
1412 error = vm_mmap(file,
1413 ELF_PAGESTART(eppnt->p_vaddr),
1414 (eppnt->p_filesz +
1415 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1416 PROT_READ | PROT_WRITE | PROT_EXEC,
1417 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1418 (eppnt->p_offset -
1419 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1420 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1421 goto out_free_ph;
1422
1423 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1424 if (padzero(elf_bss)) {
1425 error = -EFAULT;
1426 goto out_free_ph;
1427 }
1428
1429 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1430 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1431 if (bss > len) {
1432 error = vm_brk(len, bss - len);
1433 if (error)
1434 goto out_free_ph;
1435 }
1436 error = 0;
1437
1438 out_free_ph:
1439 kfree(elf_phdata);
1440 out:
1441 return error;
1442 }
1443 #endif /* #ifdef CONFIG_USELIB */
1444
1445 #ifdef CONFIG_ELF_CORE
1446 /*
1447 * ELF core dumper
1448 *
1449 * Modelled on fs/exec.c:aout_core_dump()
1450 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1451 */
1452
1453 /* An ELF note in memory */
1454 struct memelfnote
1455 {
1456 const char *name;
1457 int type;
1458 unsigned int datasz;
1459 void *data;
1460 };
1461
1462 static int notesize(struct memelfnote *en)
1463 {
1464 int sz;
1465
1466 sz = sizeof(struct elf_note);
1467 sz += roundup(strlen(en->name) + 1, 4);
1468 sz += roundup(en->datasz, 4);
1469
1470 return sz;
1471 }
1472
1473 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1474 {
1475 struct elf_note en;
1476 en.n_namesz = strlen(men->name) + 1;
1477 en.n_descsz = men->datasz;
1478 en.n_type = men->type;
1479
1480 return dump_emit(cprm, &en, sizeof(en)) &&
1481 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1482 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1483 }
1484
1485 static void fill_elf_header(struct elfhdr *elf, int segs,
1486 u16 machine, u32 flags)
1487 {
1488 memset(elf, 0, sizeof(*elf));
1489
1490 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1491 elf->e_ident[EI_CLASS] = ELF_CLASS;
1492 elf->e_ident[EI_DATA] = ELF_DATA;
1493 elf->e_ident[EI_VERSION] = EV_CURRENT;
1494 elf->e_ident[EI_OSABI] = ELF_OSABI;
1495
1496 elf->e_type = ET_CORE;
1497 elf->e_machine = machine;
1498 elf->e_version = EV_CURRENT;
1499 elf->e_phoff = sizeof(struct elfhdr);
1500 elf->e_flags = flags;
1501 elf->e_ehsize = sizeof(struct elfhdr);
1502 elf->e_phentsize = sizeof(struct elf_phdr);
1503 elf->e_phnum = segs;
1504 }
1505
1506 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1507 {
1508 phdr->p_type = PT_NOTE;
1509 phdr->p_offset = offset;
1510 phdr->p_vaddr = 0;
1511 phdr->p_paddr = 0;
1512 phdr->p_filesz = sz;
1513 phdr->p_memsz = 0;
1514 phdr->p_flags = 0;
1515 phdr->p_align = 0;
1516 }
1517
1518 static void fill_note(struct memelfnote *note, const char *name, int type,
1519 unsigned int sz, void *data)
1520 {
1521 note->name = name;
1522 note->type = type;
1523 note->datasz = sz;
1524 note->data = data;
1525 }
1526
1527 /*
1528 * fill up all the fields in prstatus from the given task struct, except
1529 * registers which need to be filled up separately.
1530 */
1531 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1532 struct task_struct *p, long signr)
1533 {
1534 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1535 prstatus->pr_sigpend = p->pending.signal.sig[0];
1536 prstatus->pr_sighold = p->blocked.sig[0];
1537 rcu_read_lock();
1538 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539 rcu_read_unlock();
1540 prstatus->pr_pid = task_pid_vnr(p);
1541 prstatus->pr_pgrp = task_pgrp_vnr(p);
1542 prstatus->pr_sid = task_session_vnr(p);
1543 if (thread_group_leader(p)) {
1544 struct task_cputime cputime;
1545
1546 /*
1547 * This is the record for the group leader. It shows the
1548 * group-wide total, not its individual thread total.
1549 */
1550 thread_group_cputime(p, &cputime);
1551 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1552 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1553 } else {
1554 u64 utime, stime;
1555
1556 task_cputime(p, &utime, &stime);
1557 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1558 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1559 }
1560
1561 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1562 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1563 }
1564
1565 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1566 struct mm_struct *mm)
1567 {
1568 const struct cred *cred;
1569 unsigned int i, len;
1570 unsigned int state;
1571
1572 /* first copy the parameters from user space */
1573 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1574
1575 len = mm->arg_end - mm->arg_start;
1576 if (len >= ELF_PRARGSZ)
1577 len = ELF_PRARGSZ-1;
1578 if (copy_from_user(&psinfo->pr_psargs,
1579 (const char __user *)mm->arg_start, len))
1580 return -EFAULT;
1581 for(i = 0; i < len; i++)
1582 if (psinfo->pr_psargs[i] == 0)
1583 psinfo->pr_psargs[i] = ' ';
1584 psinfo->pr_psargs[len] = 0;
1585
1586 rcu_read_lock();
1587 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1588 rcu_read_unlock();
1589 psinfo->pr_pid = task_pid_vnr(p);
1590 psinfo->pr_pgrp = task_pgrp_vnr(p);
1591 psinfo->pr_sid = task_session_vnr(p);
1592
1593 state = READ_ONCE(p->__state);
1594 i = state ? ffz(~state) + 1 : 0;
1595 psinfo->pr_state = i;
1596 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1597 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1598 psinfo->pr_nice = task_nice(p);
1599 psinfo->pr_flag = p->flags;
1600 rcu_read_lock();
1601 cred = __task_cred(p);
1602 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1603 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1604 rcu_read_unlock();
1605 get_task_comm(psinfo->pr_fname, p);
1606
1607 return 0;
1608 }
1609
1610 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1611 {
1612 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1613 int i = 0;
1614 do
1615 i += 2;
1616 while (auxv[i - 2] != AT_NULL);
1617 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1618 }
1619
1620 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1621 const kernel_siginfo_t *siginfo)
1622 {
1623 copy_siginfo_to_external(csigdata, siginfo);
1624 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1625 }
1626
1627 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1628 /*
1629 * Format of NT_FILE note:
1630 *
1631 * long count -- how many files are mapped
1632 * long page_size -- units for file_ofs
1633 * array of [COUNT] elements of
1634 * long start
1635 * long end
1636 * long file_ofs
1637 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1638 */
1639 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1640 {
1641 unsigned count, size, names_ofs, remaining, n;
1642 user_long_t *data;
1643 user_long_t *start_end_ofs;
1644 char *name_base, *name_curpos;
1645 int i;
1646
1647 /* *Estimated* file count and total data size needed */
1648 count = cprm->vma_count;
1649 if (count > UINT_MAX / 64)
1650 return -EINVAL;
1651 size = count * 64;
1652
1653 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1654 alloc:
1655 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1656 return -EINVAL;
1657 size = round_up(size, PAGE_SIZE);
1658 /*
1659 * "size" can be 0 here legitimately.
1660 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1661 */
1662 data = kvmalloc(size, GFP_KERNEL);
1663 if (ZERO_OR_NULL_PTR(data))
1664 return -ENOMEM;
1665
1666 start_end_ofs = data + 2;
1667 name_base = name_curpos = ((char *)data) + names_ofs;
1668 remaining = size - names_ofs;
1669 count = 0;
1670 for (i = 0; i < cprm->vma_count; i++) {
1671 struct core_vma_metadata *m = &cprm->vma_meta[i];
1672 struct file *file;
1673 const char *filename;
1674
1675 file = m->file;
1676 if (!file)
1677 continue;
1678 filename = file_path(file, name_curpos, remaining);
1679 if (IS_ERR(filename)) {
1680 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1681 kvfree(data);
1682 size = size * 5 / 4;
1683 goto alloc;
1684 }
1685 continue;
1686 }
1687
1688 /* file_path() fills at the end, move name down */
1689 /* n = strlen(filename) + 1: */
1690 n = (name_curpos + remaining) - filename;
1691 remaining = filename - name_curpos;
1692 memmove(name_curpos, filename, n);
1693 name_curpos += n;
1694
1695 *start_end_ofs++ = m->start;
1696 *start_end_ofs++ = m->end;
1697 *start_end_ofs++ = m->pgoff;
1698 count++;
1699 }
1700
1701 /* Now we know exact count of files, can store it */
1702 data[0] = count;
1703 data[1] = PAGE_SIZE;
1704 /*
1705 * Count usually is less than mm->map_count,
1706 * we need to move filenames down.
1707 */
1708 n = cprm->vma_count - count;
1709 if (n != 0) {
1710 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1711 memmove(name_base - shift_bytes, name_base,
1712 name_curpos - name_base);
1713 name_curpos -= shift_bytes;
1714 }
1715
1716 size = name_curpos - (char *)data;
1717 fill_note(note, "CORE", NT_FILE, size, data);
1718 return 0;
1719 }
1720
1721 #include <linux/regset.h>
1722
1723 struct elf_thread_core_info {
1724 struct elf_thread_core_info *next;
1725 struct task_struct *task;
1726 struct elf_prstatus prstatus;
1727 struct memelfnote notes[];
1728 };
1729
1730 struct elf_note_info {
1731 struct elf_thread_core_info *thread;
1732 struct memelfnote psinfo;
1733 struct memelfnote signote;
1734 struct memelfnote auxv;
1735 struct memelfnote files;
1736 user_siginfo_t csigdata;
1737 size_t size;
1738 int thread_notes;
1739 };
1740
1741 #ifdef CORE_DUMP_USE_REGSET
1742 /*
1743 * When a regset has a writeback hook, we call it on each thread before
1744 * dumping user memory. On register window machines, this makes sure the
1745 * user memory backing the register data is up to date before we read it.
1746 */
1747 static void do_thread_regset_writeback(struct task_struct *task,
1748 const struct user_regset *regset)
1749 {
1750 if (regset->writeback)
1751 regset->writeback(task, regset, 1);
1752 }
1753
1754 #ifndef PRSTATUS_SIZE
1755 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1756 #endif
1757
1758 #ifndef SET_PR_FPVALID
1759 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1760 #endif
1761
1762 static int fill_thread_core_info(struct elf_thread_core_info *t,
1763 const struct user_regset_view *view,
1764 long signr, struct elf_note_info *info)
1765 {
1766 unsigned int note_iter, view_iter;
1767
1768 /*
1769 * NT_PRSTATUS is the one special case, because the regset data
1770 * goes into the pr_reg field inside the note contents, rather
1771 * than being the whole note contents. We fill the reset in here.
1772 * We assume that regset 0 is NT_PRSTATUS.
1773 */
1774 fill_prstatus(&t->prstatus.common, t->task, signr);
1775 regset_get(t->task, &view->regsets[0],
1776 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1777
1778 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1779 PRSTATUS_SIZE, &t->prstatus);
1780 info->size += notesize(&t->notes[0]);
1781
1782 do_thread_regset_writeback(t->task, &view->regsets[0]);
1783
1784 /*
1785 * Each other regset might generate a note too. For each regset
1786 * that has no core_note_type or is inactive, skip it.
1787 */
1788 note_iter = 1;
1789 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1790 const struct user_regset *regset = &view->regsets[view_iter];
1791 int note_type = regset->core_note_type;
1792 bool is_fpreg = note_type == NT_PRFPREG;
1793 void *data;
1794 int ret;
1795
1796 do_thread_regset_writeback(t->task, regset);
1797 if (!note_type) // not for coredumps
1798 continue;
1799 if (regset->active && regset->active(t->task, regset) <= 0)
1800 continue;
1801
1802 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1803 if (ret < 0)
1804 continue;
1805
1806 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1807 break;
1808
1809 if (is_fpreg)
1810 SET_PR_FPVALID(&t->prstatus);
1811
1812 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1813 note_type, ret, data);
1814
1815 info->size += notesize(&t->notes[note_iter]);
1816 note_iter++;
1817 }
1818
1819 return 1;
1820 }
1821 #else
1822 static int fill_thread_core_info(struct elf_thread_core_info *t,
1823 const struct user_regset_view *view,
1824 long signr, struct elf_note_info *info)
1825 {
1826 struct task_struct *p = t->task;
1827 elf_fpregset_t *fpu;
1828
1829 fill_prstatus(&t->prstatus.common, p, signr);
1830 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1831
1832 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1833 &(t->prstatus));
1834 info->size += notesize(&t->notes[0]);
1835
1836 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1837 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1838 kfree(fpu);
1839 return 1;
1840 }
1841
1842 t->prstatus.pr_fpvalid = 1;
1843 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1844 info->size += notesize(&t->notes[1]);
1845
1846 return 1;
1847 }
1848 #endif
1849
1850 static int fill_note_info(struct elfhdr *elf, int phdrs,
1851 struct elf_note_info *info,
1852 struct coredump_params *cprm)
1853 {
1854 struct task_struct *dump_task = current;
1855 const struct user_regset_view *view;
1856 struct elf_thread_core_info *t;
1857 struct elf_prpsinfo *psinfo;
1858 struct core_thread *ct;
1859
1860 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1861 if (!psinfo)
1862 return 0;
1863 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1864
1865 #ifdef CORE_DUMP_USE_REGSET
1866 view = task_user_regset_view(dump_task);
1867
1868 /*
1869 * Figure out how many notes we're going to need for each thread.
1870 */
1871 info->thread_notes = 0;
1872 for (int i = 0; i < view->n; ++i)
1873 if (view->regsets[i].core_note_type != 0)
1874 ++info->thread_notes;
1875
1876 /*
1877 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1878 * since it is our one special case.
1879 */
1880 if (unlikely(info->thread_notes == 0) ||
1881 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1882 WARN_ON(1);
1883 return 0;
1884 }
1885
1886 /*
1887 * Initialize the ELF file header.
1888 */
1889 fill_elf_header(elf, phdrs,
1890 view->e_machine, view->e_flags);
1891 #else
1892 view = NULL;
1893 info->thread_notes = 2;
1894 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1895 #endif
1896
1897 /*
1898 * Allocate a structure for each thread.
1899 */
1900 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1901 notes[info->thread_notes]),
1902 GFP_KERNEL);
1903 if (unlikely(!info->thread))
1904 return 0;
1905
1906 info->thread->task = dump_task;
1907 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1908 t = kzalloc(offsetof(struct elf_thread_core_info,
1909 notes[info->thread_notes]),
1910 GFP_KERNEL);
1911 if (unlikely(!t))
1912 return 0;
1913
1914 t->task = ct->task;
1915 t->next = info->thread->next;
1916 info->thread->next = t;
1917 }
1918
1919 /*
1920 * Now fill in each thread's information.
1921 */
1922 for (t = info->thread; t != NULL; t = t->next)
1923 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1924 return 0;
1925
1926 /*
1927 * Fill in the two process-wide notes.
1928 */
1929 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1930 info->size += notesize(&info->psinfo);
1931
1932 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1933 info->size += notesize(&info->signote);
1934
1935 fill_auxv_note(&info->auxv, current->mm);
1936 info->size += notesize(&info->auxv);
1937
1938 if (fill_files_note(&info->files, cprm) == 0)
1939 info->size += notesize(&info->files);
1940
1941 return 1;
1942 }
1943
1944 /*
1945 * Write all the notes for each thread. When writing the first thread, the
1946 * process-wide notes are interleaved after the first thread-specific note.
1947 */
1948 static int write_note_info(struct elf_note_info *info,
1949 struct coredump_params *cprm)
1950 {
1951 bool first = true;
1952 struct elf_thread_core_info *t = info->thread;
1953
1954 do {
1955 int i;
1956
1957 if (!writenote(&t->notes[0], cprm))
1958 return 0;
1959
1960 if (first && !writenote(&info->psinfo, cprm))
1961 return 0;
1962 if (first && !writenote(&info->signote, cprm))
1963 return 0;
1964 if (first && !writenote(&info->auxv, cprm))
1965 return 0;
1966 if (first && info->files.data &&
1967 !writenote(&info->files, cprm))
1968 return 0;
1969
1970 for (i = 1; i < info->thread_notes; ++i)
1971 if (t->notes[i].data &&
1972 !writenote(&t->notes[i], cprm))
1973 return 0;
1974
1975 first = false;
1976 t = t->next;
1977 } while (t);
1978
1979 return 1;
1980 }
1981
1982 static void free_note_info(struct elf_note_info *info)
1983 {
1984 struct elf_thread_core_info *threads = info->thread;
1985 while (threads) {
1986 unsigned int i;
1987 struct elf_thread_core_info *t = threads;
1988 threads = t->next;
1989 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1990 for (i = 1; i < info->thread_notes; ++i)
1991 kfree(t->notes[i].data);
1992 kfree(t);
1993 }
1994 kfree(info->psinfo.data);
1995 kvfree(info->files.data);
1996 }
1997
1998 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1999 elf_addr_t e_shoff, int segs)
2000 {
2001 elf->e_shoff = e_shoff;
2002 elf->e_shentsize = sizeof(*shdr4extnum);
2003 elf->e_shnum = 1;
2004 elf->e_shstrndx = SHN_UNDEF;
2005
2006 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2007
2008 shdr4extnum->sh_type = SHT_NULL;
2009 shdr4extnum->sh_size = elf->e_shnum;
2010 shdr4extnum->sh_link = elf->e_shstrndx;
2011 shdr4extnum->sh_info = segs;
2012 }
2013
2014 /*
2015 * Actual dumper
2016 *
2017 * This is a two-pass process; first we find the offsets of the bits,
2018 * and then they are actually written out. If we run out of core limit
2019 * we just truncate.
2020 */
2021 static int elf_core_dump(struct coredump_params *cprm)
2022 {
2023 int has_dumped = 0;
2024 int segs, i;
2025 struct elfhdr elf;
2026 loff_t offset = 0, dataoff;
2027 struct elf_note_info info = { };
2028 struct elf_phdr *phdr4note = NULL;
2029 struct elf_shdr *shdr4extnum = NULL;
2030 Elf_Half e_phnum;
2031 elf_addr_t e_shoff;
2032
2033 /*
2034 * The number of segs are recored into ELF header as 16bit value.
2035 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2036 */
2037 segs = cprm->vma_count + elf_core_extra_phdrs();
2038
2039 /* for notes section */
2040 segs++;
2041
2042 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2043 * this, kernel supports extended numbering. Have a look at
2044 * include/linux/elf.h for further information. */
2045 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2046
2047 /*
2048 * Collect all the non-memory information about the process for the
2049 * notes. This also sets up the file header.
2050 */
2051 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2052 goto end_coredump;
2053
2054 has_dumped = 1;
2055
2056 offset += sizeof(elf); /* Elf header */
2057 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2058
2059 /* Write notes phdr entry */
2060 {
2061 size_t sz = info.size;
2062
2063 /* For cell spufs */
2064 sz += elf_coredump_extra_notes_size();
2065
2066 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2067 if (!phdr4note)
2068 goto end_coredump;
2069
2070 fill_elf_note_phdr(phdr4note, sz, offset);
2071 offset += sz;
2072 }
2073
2074 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2075
2076 offset += cprm->vma_data_size;
2077 offset += elf_core_extra_data_size();
2078 e_shoff = offset;
2079
2080 if (e_phnum == PN_XNUM) {
2081 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2082 if (!shdr4extnum)
2083 goto end_coredump;
2084 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2085 }
2086
2087 offset = dataoff;
2088
2089 if (!dump_emit(cprm, &elf, sizeof(elf)))
2090 goto end_coredump;
2091
2092 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2093 goto end_coredump;
2094
2095 /* Write program headers for segments dump */
2096 for (i = 0; i < cprm->vma_count; i++) {
2097 struct core_vma_metadata *meta = cprm->vma_meta + i;
2098 struct elf_phdr phdr;
2099
2100 phdr.p_type = PT_LOAD;
2101 phdr.p_offset = offset;
2102 phdr.p_vaddr = meta->start;
2103 phdr.p_paddr = 0;
2104 phdr.p_filesz = meta->dump_size;
2105 phdr.p_memsz = meta->end - meta->start;
2106 offset += phdr.p_filesz;
2107 phdr.p_flags = 0;
2108 if (meta->flags & VM_READ)
2109 phdr.p_flags |= PF_R;
2110 if (meta->flags & VM_WRITE)
2111 phdr.p_flags |= PF_W;
2112 if (meta->flags & VM_EXEC)
2113 phdr.p_flags |= PF_X;
2114 phdr.p_align = ELF_EXEC_PAGESIZE;
2115
2116 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2117 goto end_coredump;
2118 }
2119
2120 if (!elf_core_write_extra_phdrs(cprm, offset))
2121 goto end_coredump;
2122
2123 /* write out the notes section */
2124 if (!write_note_info(&info, cprm))
2125 goto end_coredump;
2126
2127 /* For cell spufs */
2128 if (elf_coredump_extra_notes_write(cprm))
2129 goto end_coredump;
2130
2131 /* Align to page */
2132 dump_skip_to(cprm, dataoff);
2133
2134 for (i = 0; i < cprm->vma_count; i++) {
2135 struct core_vma_metadata *meta = cprm->vma_meta + i;
2136
2137 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2138 goto end_coredump;
2139 }
2140
2141 if (!elf_core_write_extra_data(cprm))
2142 goto end_coredump;
2143
2144 if (e_phnum == PN_XNUM) {
2145 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2146 goto end_coredump;
2147 }
2148
2149 end_coredump:
2150 free_note_info(&info);
2151 kfree(shdr4extnum);
2152 kfree(phdr4note);
2153 return has_dumped;
2154 }
2155
2156 #endif /* CONFIG_ELF_CORE */
2157
2158 static int __init init_elf_binfmt(void)
2159 {
2160 register_binfmt(&elf_format);
2161 return 0;
2162 }
2163
2164 static void __exit exit_elf_binfmt(void)
2165 {
2166 /* Remove the COFF and ELF loaders. */
2167 unregister_binfmt(&elf_format);
2168 }
2169
2170 core_initcall(init_elf_binfmt);
2171 module_exit(exit_elf_binfmt);
2172 MODULE_LICENSE("GPL");
2173
2174 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2175 #include "binfmt_elf_test.c"
2176 #endif