]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/binfmt_elf.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
42
43 #ifndef user_long_t
44 #define user_long_t long
45 #endif
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
48 #endif
49
50 static int load_elf_binary(struct linux_binprm *bprm);
51 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
53
54 #ifdef CONFIG_USELIB
55 static int load_elf_library(struct file *);
56 #else
57 #define load_elf_library NULL
58 #endif
59
60 /*
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
63 */
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params *cprm);
66 #else
67 #define elf_core_dump NULL
68 #endif
69
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72 #else
73 #define ELF_MIN_ALIGN PAGE_SIZE
74 #endif
75
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
78 #endif
79
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
83
84 static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
90 };
91
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
93
94 static int set_brk(unsigned long start, unsigned long end)
95 {
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 unsigned long addr;
100 addr = vm_brk(start, end - start);
101 if (BAD_ADDR(addr))
102 return addr;
103 }
104 current->mm->start_brk = current->mm->brk = end;
105 return 0;
106 }
107
108 /* We need to explicitly zero any fractional pages
109 after the data section (i.e. bss). This would
110 contain the junk from the file that should not
111 be in memory
112 */
113 static int padzero(unsigned long elf_bss)
114 {
115 unsigned long nbyte;
116
117 nbyte = ELF_PAGEOFFSET(elf_bss);
118 if (nbyte) {
119 nbyte = ELF_MIN_ALIGN - nbyte;
120 if (clear_user((void __user *) elf_bss, nbyte))
121 return -EFAULT;
122 }
123 return 0;
124 }
125
126 /* Let's use some macros to make this stack manipulation a little clearer */
127 #ifdef CONFIG_STACK_GROWSUP
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
129 #define STACK_ROUND(sp, items) \
130 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ \
132 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 old_sp; })
134 #else
135 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
136 #define STACK_ROUND(sp, items) \
137 (((unsigned long) (sp - items)) &~ 15UL)
138 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #endif
140
141 #ifndef ELF_BASE_PLATFORM
142 /*
143 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
144 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
145 * will be copied to the user stack in the same manner as AT_PLATFORM.
146 */
147 #define ELF_BASE_PLATFORM NULL
148 #endif
149
150 static int
151 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
152 unsigned long load_addr, unsigned long interp_load_addr)
153 {
154 unsigned long p = bprm->p;
155 int argc = bprm->argc;
156 int envc = bprm->envc;
157 elf_addr_t __user *argv;
158 elf_addr_t __user *envp;
159 elf_addr_t __user *sp;
160 elf_addr_t __user *u_platform;
161 elf_addr_t __user *u_base_platform;
162 elf_addr_t __user *u_rand_bytes;
163 const char *k_platform = ELF_PLATFORM;
164 const char *k_base_platform = ELF_BASE_PLATFORM;
165 unsigned char k_rand_bytes[16];
166 int items;
167 elf_addr_t *elf_info;
168 int ei_index = 0;
169 const struct cred *cred = current_cred();
170 struct vm_area_struct *vma;
171
172 /*
173 * In some cases (e.g. Hyper-Threading), we want to avoid L1
174 * evictions by the processes running on the same package. One
175 * thing we can do is to shuffle the initial stack for them.
176 */
177
178 p = arch_align_stack(p);
179
180 /*
181 * If this architecture has a platform capability string, copy it
182 * to userspace. In some cases (Sparc), this info is impossible
183 * for userspace to get any other way, in others (i386) it is
184 * merely difficult.
185 */
186 u_platform = NULL;
187 if (k_platform) {
188 size_t len = strlen(k_platform) + 1;
189
190 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
191 if (__copy_to_user(u_platform, k_platform, len))
192 return -EFAULT;
193 }
194
195 /*
196 * If this architecture has a "base" platform capability
197 * string, copy it to userspace.
198 */
199 u_base_platform = NULL;
200 if (k_base_platform) {
201 size_t len = strlen(k_base_platform) + 1;
202
203 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
204 if (__copy_to_user(u_base_platform, k_base_platform, len))
205 return -EFAULT;
206 }
207
208 /*
209 * Generate 16 random bytes for userspace PRNG seeding.
210 */
211 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
212 u_rand_bytes = (elf_addr_t __user *)
213 STACK_ALLOC(p, sizeof(k_rand_bytes));
214 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
215 return -EFAULT;
216
217 /* Create the ELF interpreter info */
218 elf_info = (elf_addr_t *)current->mm->saved_auxv;
219 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
220 #define NEW_AUX_ENT(id, val) \
221 do { \
222 elf_info[ei_index++] = id; \
223 elf_info[ei_index++] = val; \
224 } while (0)
225
226 #ifdef ARCH_DLINFO
227 /*
228 * ARCH_DLINFO must come first so PPC can do its special alignment of
229 * AUXV.
230 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
231 * ARCH_DLINFO changes
232 */
233 ARCH_DLINFO;
234 #endif
235 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
236 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
237 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
238 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
239 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
240 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
241 NEW_AUX_ENT(AT_BASE, interp_load_addr);
242 NEW_AUX_ENT(AT_FLAGS, 0);
243 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
244 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
245 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
246 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
247 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
248 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
249 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
250 #ifdef ELF_HWCAP2
251 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
252 #endif
253 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
254 if (k_platform) {
255 NEW_AUX_ENT(AT_PLATFORM,
256 (elf_addr_t)(unsigned long)u_platform);
257 }
258 if (k_base_platform) {
259 NEW_AUX_ENT(AT_BASE_PLATFORM,
260 (elf_addr_t)(unsigned long)u_base_platform);
261 }
262 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
263 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
264 }
265 #undef NEW_AUX_ENT
266 /* AT_NULL is zero; clear the rest too */
267 memset(&elf_info[ei_index], 0,
268 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
269
270 /* And advance past the AT_NULL entry. */
271 ei_index += 2;
272
273 sp = STACK_ADD(p, ei_index);
274
275 items = (argc + 1) + (envc + 1) + 1;
276 bprm->p = STACK_ROUND(sp, items);
277
278 /* Point sp at the lowest address on the stack */
279 #ifdef CONFIG_STACK_GROWSUP
280 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
281 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
282 #else
283 sp = (elf_addr_t __user *)bprm->p;
284 #endif
285
286
287 /*
288 * Grow the stack manually; some architectures have a limit on how
289 * far ahead a user-space access may be in order to grow the stack.
290 */
291 vma = find_extend_vma(current->mm, bprm->p);
292 if (!vma)
293 return -EFAULT;
294
295 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
296 if (__put_user(argc, sp++))
297 return -EFAULT;
298 argv = sp;
299 envp = argv + argc + 1;
300
301 /* Populate argv and envp */
302 p = current->mm->arg_end = current->mm->arg_start;
303 while (argc-- > 0) {
304 size_t len;
305 if (__put_user((elf_addr_t)p, argv++))
306 return -EFAULT;
307 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
308 if (!len || len > MAX_ARG_STRLEN)
309 return -EINVAL;
310 p += len;
311 }
312 if (__put_user(0, argv))
313 return -EFAULT;
314 current->mm->arg_end = current->mm->env_start = p;
315 while (envc-- > 0) {
316 size_t len;
317 if (__put_user((elf_addr_t)p, envp++))
318 return -EFAULT;
319 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
320 if (!len || len > MAX_ARG_STRLEN)
321 return -EINVAL;
322 p += len;
323 }
324 if (__put_user(0, envp))
325 return -EFAULT;
326 current->mm->env_end = p;
327
328 /* Put the elf_info on the stack in the right place. */
329 sp = (elf_addr_t __user *)envp + 1;
330 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
331 return -EFAULT;
332 return 0;
333 }
334
335 #ifndef elf_map
336
337 static unsigned long elf_map(struct file *filep, unsigned long addr,
338 struct elf_phdr *eppnt, int prot, int type,
339 unsigned long total_size)
340 {
341 unsigned long map_addr;
342 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
343 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
344 addr = ELF_PAGESTART(addr);
345 size = ELF_PAGEALIGN(size);
346
347 /* mmap() will return -EINVAL if given a zero size, but a
348 * segment with zero filesize is perfectly valid */
349 if (!size)
350 return addr;
351
352 /*
353 * total_size is the size of the ELF (interpreter) image.
354 * The _first_ mmap needs to know the full size, otherwise
355 * randomization might put this image into an overlapping
356 * position with the ELF binary image. (since size < total_size)
357 * So we first map the 'big' image - and unmap the remainder at
358 * the end. (which unmap is needed for ELF images with holes.)
359 */
360 if (total_size) {
361 total_size = ELF_PAGEALIGN(total_size);
362 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
363 if (!BAD_ADDR(map_addr))
364 vm_munmap(map_addr+size, total_size-size);
365 } else
366 map_addr = vm_mmap(filep, addr, size, prot, type, off);
367
368 return(map_addr);
369 }
370
371 #endif /* !elf_map */
372
373 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
374 {
375 int i, first_idx = -1, last_idx = -1;
376
377 for (i = 0; i < nr; i++) {
378 if (cmds[i].p_type == PT_LOAD) {
379 last_idx = i;
380 if (first_idx == -1)
381 first_idx = i;
382 }
383 }
384 if (first_idx == -1)
385 return 0;
386
387 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
388 ELF_PAGESTART(cmds[first_idx].p_vaddr);
389 }
390
391 /**
392 * load_elf_phdrs() - load ELF program headers
393 * @elf_ex: ELF header of the binary whose program headers should be loaded
394 * @elf_file: the opened ELF binary file
395 *
396 * Loads ELF program headers from the binary file elf_file, which has the ELF
397 * header pointed to by elf_ex, into a newly allocated array. The caller is
398 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
399 */
400 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
401 struct file *elf_file)
402 {
403 struct elf_phdr *elf_phdata = NULL;
404 int retval, size, err = -1;
405
406 /*
407 * If the size of this structure has changed, then punt, since
408 * we will be doing the wrong thing.
409 */
410 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
411 goto out;
412
413 /* Sanity check the number of program headers... */
414 if (elf_ex->e_phnum < 1 ||
415 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
416 goto out;
417
418 /* ...and their total size. */
419 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
420 if (size > ELF_MIN_ALIGN)
421 goto out;
422
423 elf_phdata = kmalloc(size, GFP_KERNEL);
424 if (!elf_phdata)
425 goto out;
426
427 /* Read in the program headers */
428 retval = kernel_read(elf_file, elf_ex->e_phoff,
429 (char *)elf_phdata, size);
430 if (retval != size) {
431 err = (retval < 0) ? retval : -EIO;
432 goto out;
433 }
434
435 /* Success! */
436 err = 0;
437 out:
438 if (err) {
439 kfree(elf_phdata);
440 elf_phdata = NULL;
441 }
442 return elf_phdata;
443 }
444
445 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
446
447 /**
448 * struct arch_elf_state - arch-specific ELF loading state
449 *
450 * This structure is used to preserve architecture specific data during
451 * the loading of an ELF file, throughout the checking of architecture
452 * specific ELF headers & through to the point where the ELF load is
453 * known to be proceeding (ie. SET_PERSONALITY).
454 *
455 * This implementation is a dummy for architectures which require no
456 * specific state.
457 */
458 struct arch_elf_state {
459 };
460
461 #define INIT_ARCH_ELF_STATE {}
462
463 /**
464 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
465 * @ehdr: The main ELF header
466 * @phdr: The program header to check
467 * @elf: The open ELF file
468 * @is_interp: True if the phdr is from the interpreter of the ELF being
469 * loaded, else false.
470 * @state: Architecture-specific state preserved throughout the process
471 * of loading the ELF.
472 *
473 * Inspects the program header phdr to validate its correctness and/or
474 * suitability for the system. Called once per ELF program header in the
475 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
476 * interpreter.
477 *
478 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
479 * with that return code.
480 */
481 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
482 struct elf_phdr *phdr,
483 struct file *elf, bool is_interp,
484 struct arch_elf_state *state)
485 {
486 /* Dummy implementation, always proceed */
487 return 0;
488 }
489
490 /**
491 * arch_check_elf() - check an ELF executable
492 * @ehdr: The main ELF header
493 * @has_interp: True if the ELF has an interpreter, else false.
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
496 *
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
500 *
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
503 */
504 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct arch_elf_state *state)
506 {
507 /* Dummy implementation, always proceed */
508 return 0;
509 }
510
511 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
512
513 /* This is much more generalized than the library routine read function,
514 so we keep this separate. Technically the library read function
515 is only provided so that we can read a.out libraries that have
516 an ELF header */
517
518 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
519 struct file *interpreter, unsigned long *interp_map_addr,
520 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
521 {
522 struct elf_phdr *eppnt;
523 unsigned long load_addr = 0;
524 int load_addr_set = 0;
525 unsigned long last_bss = 0, elf_bss = 0;
526 unsigned long error = ~0UL;
527 unsigned long total_size;
528 int i;
529
530 /* First of all, some simple consistency checks */
531 if (interp_elf_ex->e_type != ET_EXEC &&
532 interp_elf_ex->e_type != ET_DYN)
533 goto out;
534 if (!elf_check_arch(interp_elf_ex))
535 goto out;
536 if (!interpreter->f_op->mmap)
537 goto out;
538
539 total_size = total_mapping_size(interp_elf_phdata,
540 interp_elf_ex->e_phnum);
541 if (!total_size) {
542 error = -EINVAL;
543 goto out;
544 }
545
546 eppnt = interp_elf_phdata;
547 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
548 if (eppnt->p_type == PT_LOAD) {
549 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
550 int elf_prot = 0;
551 unsigned long vaddr = 0;
552 unsigned long k, map_addr;
553
554 if (eppnt->p_flags & PF_R)
555 elf_prot = PROT_READ;
556 if (eppnt->p_flags & PF_W)
557 elf_prot |= PROT_WRITE;
558 if (eppnt->p_flags & PF_X)
559 elf_prot |= PROT_EXEC;
560 vaddr = eppnt->p_vaddr;
561 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
562 elf_type |= MAP_FIXED;
563 else if (no_base && interp_elf_ex->e_type == ET_DYN)
564 load_addr = -vaddr;
565
566 map_addr = elf_map(interpreter, load_addr + vaddr,
567 eppnt, elf_prot, elf_type, total_size);
568 total_size = 0;
569 if (!*interp_map_addr)
570 *interp_map_addr = map_addr;
571 error = map_addr;
572 if (BAD_ADDR(map_addr))
573 goto out;
574
575 if (!load_addr_set &&
576 interp_elf_ex->e_type == ET_DYN) {
577 load_addr = map_addr - ELF_PAGESTART(vaddr);
578 load_addr_set = 1;
579 }
580
581 /*
582 * Check to see if the section's size will overflow the
583 * allowed task size. Note that p_filesz must always be
584 * <= p_memsize so it's only necessary to check p_memsz.
585 */
586 k = load_addr + eppnt->p_vaddr;
587 if (BAD_ADDR(k) ||
588 eppnt->p_filesz > eppnt->p_memsz ||
589 eppnt->p_memsz > TASK_SIZE ||
590 TASK_SIZE - eppnt->p_memsz < k) {
591 error = -ENOMEM;
592 goto out;
593 }
594
595 /*
596 * Find the end of the file mapping for this phdr, and
597 * keep track of the largest address we see for this.
598 */
599 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
600 if (k > elf_bss)
601 elf_bss = k;
602
603 /*
604 * Do the same thing for the memory mapping - between
605 * elf_bss and last_bss is the bss section.
606 */
607 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
608 if (k > last_bss)
609 last_bss = k;
610 }
611 }
612
613 if (last_bss > elf_bss) {
614 /*
615 * Now fill out the bss section. First pad the last page up
616 * to the page boundary, and then perform a mmap to make sure
617 * that there are zero-mapped pages up to and including the
618 * last bss page.
619 */
620 if (padzero(elf_bss)) {
621 error = -EFAULT;
622 goto out;
623 }
624
625 /* What we have mapped so far */
626 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
627
628 /* Map the last of the bss segment */
629 error = vm_brk(elf_bss, last_bss - elf_bss);
630 if (BAD_ADDR(error))
631 goto out;
632 }
633
634 error = load_addr;
635 out:
636 return error;
637 }
638
639 /*
640 * These are the functions used to load ELF style executables and shared
641 * libraries. There is no binary dependent code anywhere else.
642 */
643
644 #ifndef STACK_RND_MASK
645 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
646 #endif
647
648 static unsigned long randomize_stack_top(unsigned long stack_top)
649 {
650 unsigned long random_variable = 0;
651
652 if ((current->flags & PF_RANDOMIZE) &&
653 !(current->personality & ADDR_NO_RANDOMIZE)) {
654 random_variable = (unsigned long) get_random_int();
655 random_variable &= STACK_RND_MASK;
656 random_variable <<= PAGE_SHIFT;
657 }
658 #ifdef CONFIG_STACK_GROWSUP
659 return PAGE_ALIGN(stack_top) + random_variable;
660 #else
661 return PAGE_ALIGN(stack_top) - random_variable;
662 #endif
663 }
664
665 static int load_elf_binary(struct linux_binprm *bprm)
666 {
667 struct file *interpreter = NULL; /* to shut gcc up */
668 unsigned long load_addr = 0, load_bias = 0;
669 int load_addr_set = 0;
670 char * elf_interpreter = NULL;
671 unsigned long error;
672 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
673 unsigned long elf_bss, elf_brk;
674 int retval, i;
675 unsigned long elf_entry;
676 unsigned long interp_load_addr = 0;
677 unsigned long start_code, end_code, start_data, end_data;
678 unsigned long reloc_func_desc __maybe_unused = 0;
679 int executable_stack = EXSTACK_DEFAULT;
680 struct pt_regs *regs = current_pt_regs();
681 struct {
682 struct elfhdr elf_ex;
683 struct elfhdr interp_elf_ex;
684 } *loc;
685 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
686
687 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
688 if (!loc) {
689 retval = -ENOMEM;
690 goto out_ret;
691 }
692
693 /* Get the exec-header */
694 loc->elf_ex = *((struct elfhdr *)bprm->buf);
695
696 retval = -ENOEXEC;
697 /* First of all, some simple consistency checks */
698 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
699 goto out;
700
701 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
702 goto out;
703 if (!elf_check_arch(&loc->elf_ex))
704 goto out;
705 if (!bprm->file->f_op->mmap)
706 goto out;
707
708 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
709 if (!elf_phdata)
710 goto out;
711
712 elf_ppnt = elf_phdata;
713 elf_bss = 0;
714 elf_brk = 0;
715
716 start_code = ~0UL;
717 end_code = 0;
718 start_data = 0;
719 end_data = 0;
720
721 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
722 if (elf_ppnt->p_type == PT_INTERP) {
723 /* This is the program interpreter used for
724 * shared libraries - for now assume that this
725 * is an a.out format binary
726 */
727 retval = -ENOEXEC;
728 if (elf_ppnt->p_filesz > PATH_MAX ||
729 elf_ppnt->p_filesz < 2)
730 goto out_free_ph;
731
732 retval = -ENOMEM;
733 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
734 GFP_KERNEL);
735 if (!elf_interpreter)
736 goto out_free_ph;
737
738 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
739 elf_interpreter,
740 elf_ppnt->p_filesz);
741 if (retval != elf_ppnt->p_filesz) {
742 if (retval >= 0)
743 retval = -EIO;
744 goto out_free_interp;
745 }
746 /* make sure path is NULL terminated */
747 retval = -ENOEXEC;
748 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
749 goto out_free_interp;
750
751 interpreter = open_exec(elf_interpreter);
752 retval = PTR_ERR(interpreter);
753 if (IS_ERR(interpreter))
754 goto out_free_interp;
755
756 /*
757 * If the binary is not readable then enforce
758 * mm->dumpable = 0 regardless of the interpreter's
759 * permissions.
760 */
761 would_dump(bprm, interpreter);
762
763 /* Get the exec headers */
764 retval = kernel_read(interpreter, 0,
765 (void *)&loc->interp_elf_ex,
766 sizeof(loc->interp_elf_ex));
767 if (retval != sizeof(loc->interp_elf_ex)) {
768 if (retval >= 0)
769 retval = -EIO;
770 goto out_free_dentry;
771 }
772
773 break;
774 }
775 elf_ppnt++;
776 }
777
778 elf_ppnt = elf_phdata;
779 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
780 switch (elf_ppnt->p_type) {
781 case PT_GNU_STACK:
782 if (elf_ppnt->p_flags & PF_X)
783 executable_stack = EXSTACK_ENABLE_X;
784 else
785 executable_stack = EXSTACK_DISABLE_X;
786 break;
787
788 case PT_LOPROC ... PT_HIPROC:
789 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
790 bprm->file, false,
791 &arch_state);
792 if (retval)
793 goto out_free_dentry;
794 break;
795 }
796
797 /* Some simple consistency checks for the interpreter */
798 if (elf_interpreter) {
799 retval = -ELIBBAD;
800 /* Not an ELF interpreter */
801 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
802 goto out_free_dentry;
803 /* Verify the interpreter has a valid arch */
804 if (!elf_check_arch(&loc->interp_elf_ex))
805 goto out_free_dentry;
806
807 /* Load the interpreter program headers */
808 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
809 interpreter);
810 if (!interp_elf_phdata)
811 goto out_free_dentry;
812
813 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
814 elf_ppnt = interp_elf_phdata;
815 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
816 switch (elf_ppnt->p_type) {
817 case PT_LOPROC ... PT_HIPROC:
818 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
819 elf_ppnt, interpreter,
820 true, &arch_state);
821 if (retval)
822 goto out_free_dentry;
823 break;
824 }
825 }
826
827 /*
828 * Allow arch code to reject the ELF at this point, whilst it's
829 * still possible to return an error to the code that invoked
830 * the exec syscall.
831 */
832 retval = arch_check_elf(&loc->elf_ex, !!interpreter, &arch_state);
833 if (retval)
834 goto out_free_dentry;
835
836 /* Flush all traces of the currently running executable */
837 retval = flush_old_exec(bprm);
838 if (retval)
839 goto out_free_dentry;
840
841 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
842 may depend on the personality. */
843 SET_PERSONALITY2(loc->elf_ex, &arch_state);
844 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
845 current->personality |= READ_IMPLIES_EXEC;
846
847 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
848 current->flags |= PF_RANDOMIZE;
849
850 setup_new_exec(bprm);
851
852 /* Do this so that we can load the interpreter, if need be. We will
853 change some of these later */
854 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
855 executable_stack);
856 if (retval < 0)
857 goto out_free_dentry;
858
859 current->mm->start_stack = bprm->p;
860
861 /* Now we do a little grungy work by mmapping the ELF image into
862 the correct location in memory. */
863 for(i = 0, elf_ppnt = elf_phdata;
864 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
865 int elf_prot = 0, elf_flags;
866 unsigned long k, vaddr;
867 unsigned long total_size = 0;
868
869 if (elf_ppnt->p_type != PT_LOAD)
870 continue;
871
872 if (unlikely (elf_brk > elf_bss)) {
873 unsigned long nbyte;
874
875 /* There was a PT_LOAD segment with p_memsz > p_filesz
876 before this one. Map anonymous pages, if needed,
877 and clear the area. */
878 retval = set_brk(elf_bss + load_bias,
879 elf_brk + load_bias);
880 if (retval)
881 goto out_free_dentry;
882 nbyte = ELF_PAGEOFFSET(elf_bss);
883 if (nbyte) {
884 nbyte = ELF_MIN_ALIGN - nbyte;
885 if (nbyte > elf_brk - elf_bss)
886 nbyte = elf_brk - elf_bss;
887 if (clear_user((void __user *)elf_bss +
888 load_bias, nbyte)) {
889 /*
890 * This bss-zeroing can fail if the ELF
891 * file specifies odd protections. So
892 * we don't check the return value
893 */
894 }
895 }
896 }
897
898 if (elf_ppnt->p_flags & PF_R)
899 elf_prot |= PROT_READ;
900 if (elf_ppnt->p_flags & PF_W)
901 elf_prot |= PROT_WRITE;
902 if (elf_ppnt->p_flags & PF_X)
903 elf_prot |= PROT_EXEC;
904
905 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
906
907 vaddr = elf_ppnt->p_vaddr;
908 /*
909 * If we are loading ET_EXEC or we have already performed
910 * the ET_DYN load_addr calculations, proceed normally.
911 */
912 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
913 elf_flags |= MAP_FIXED;
914 } else if (loc->elf_ex.e_type == ET_DYN) {
915 /*
916 * This logic is run once for the first LOAD Program
917 * Header for ET_DYN binaries to calculate the
918 * randomization (load_bias) for all the LOAD
919 * Program Headers, and to calculate the entire
920 * size of the ELF mapping (total_size). (Note that
921 * load_addr_set is set to true later once the
922 * initial mapping is performed.)
923 *
924 * There are effectively two types of ET_DYN
925 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
926 * and loaders (ET_DYN without INTERP, since they
927 * _are_ the ELF interpreter). The loaders must
928 * be loaded away from programs since the program
929 * may otherwise collide with the loader (especially
930 * for ET_EXEC which does not have a randomized
931 * position). For example to handle invocations of
932 * "./ld.so someprog" to test out a new version of
933 * the loader, the subsequent program that the
934 * loader loads must avoid the loader itself, so
935 * they cannot share the same load range. Sufficient
936 * room for the brk must be allocated with the
937 * loader as well, since brk must be available with
938 * the loader.
939 *
940 * Therefore, programs are loaded offset from
941 * ELF_ET_DYN_BASE and loaders are loaded into the
942 * independently randomized mmap region (0 load_bias
943 * without MAP_FIXED).
944 */
945 if (elf_interpreter) {
946 load_bias = ELF_ET_DYN_BASE;
947 if (current->flags & PF_RANDOMIZE)
948 load_bias += arch_mmap_rnd();
949 elf_flags |= MAP_FIXED;
950 } else
951 load_bias = 0;
952
953 /*
954 * Since load_bias is used for all subsequent loading
955 * calculations, we must lower it by the first vaddr
956 * so that the remaining calculations based on the
957 * ELF vaddrs will be correctly offset. The result
958 * is then page aligned.
959 */
960 load_bias = ELF_PAGESTART(load_bias - vaddr);
961
962 total_size = total_mapping_size(elf_phdata,
963 loc->elf_ex.e_phnum);
964 if (!total_size) {
965 retval = -EINVAL;
966 goto out_free_dentry;
967 }
968 }
969
970 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
971 elf_prot, elf_flags, total_size);
972 if (BAD_ADDR(error)) {
973 retval = IS_ERR((void *)error) ?
974 PTR_ERR((void*)error) : -EINVAL;
975 goto out_free_dentry;
976 }
977
978 if (!load_addr_set) {
979 load_addr_set = 1;
980 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
981 if (loc->elf_ex.e_type == ET_DYN) {
982 load_bias += error -
983 ELF_PAGESTART(load_bias + vaddr);
984 load_addr += load_bias;
985 reloc_func_desc = load_bias;
986 }
987 }
988 k = elf_ppnt->p_vaddr;
989 if (k < start_code)
990 start_code = k;
991 if (start_data < k)
992 start_data = k;
993
994 /*
995 * Check to see if the section's size will overflow the
996 * allowed task size. Note that p_filesz must always be
997 * <= p_memsz so it is only necessary to check p_memsz.
998 */
999 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1000 elf_ppnt->p_memsz > TASK_SIZE ||
1001 TASK_SIZE - elf_ppnt->p_memsz < k) {
1002 /* set_brk can never work. Avoid overflows. */
1003 retval = -EINVAL;
1004 goto out_free_dentry;
1005 }
1006
1007 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1008
1009 if (k > elf_bss)
1010 elf_bss = k;
1011 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1012 end_code = k;
1013 if (end_data < k)
1014 end_data = k;
1015 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1016 if (k > elf_brk)
1017 elf_brk = k;
1018 }
1019
1020 loc->elf_ex.e_entry += load_bias;
1021 elf_bss += load_bias;
1022 elf_brk += load_bias;
1023 start_code += load_bias;
1024 end_code += load_bias;
1025 start_data += load_bias;
1026 end_data += load_bias;
1027
1028 /* Calling set_brk effectively mmaps the pages that we need
1029 * for the bss and break sections. We must do this before
1030 * mapping in the interpreter, to make sure it doesn't wind
1031 * up getting placed where the bss needs to go.
1032 */
1033 retval = set_brk(elf_bss, elf_brk);
1034 if (retval)
1035 goto out_free_dentry;
1036 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1037 retval = -EFAULT; /* Nobody gets to see this, but.. */
1038 goto out_free_dentry;
1039 }
1040
1041 if (elf_interpreter) {
1042 unsigned long interp_map_addr = 0;
1043
1044 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1045 interpreter,
1046 &interp_map_addr,
1047 load_bias, interp_elf_phdata);
1048 if (!IS_ERR((void *)elf_entry)) {
1049 /*
1050 * load_elf_interp() returns relocation
1051 * adjustment
1052 */
1053 interp_load_addr = elf_entry;
1054 elf_entry += loc->interp_elf_ex.e_entry;
1055 }
1056 if (BAD_ADDR(elf_entry)) {
1057 retval = IS_ERR((void *)elf_entry) ?
1058 (int)elf_entry : -EINVAL;
1059 goto out_free_dentry;
1060 }
1061 reloc_func_desc = interp_load_addr;
1062
1063 allow_write_access(interpreter);
1064 fput(interpreter);
1065 kfree(elf_interpreter);
1066 } else {
1067 elf_entry = loc->elf_ex.e_entry;
1068 if (BAD_ADDR(elf_entry)) {
1069 retval = -EINVAL;
1070 goto out_free_dentry;
1071 }
1072 }
1073
1074 kfree(interp_elf_phdata);
1075 kfree(elf_phdata);
1076
1077 set_binfmt(&elf_format);
1078
1079 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1080 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1081 if (retval < 0)
1082 goto out;
1083 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1084
1085 install_exec_creds(bprm);
1086 retval = create_elf_tables(bprm, &loc->elf_ex,
1087 load_addr, interp_load_addr);
1088 if (retval < 0)
1089 goto out;
1090 /* N.B. passed_fileno might not be initialized? */
1091 current->mm->end_code = end_code;
1092 current->mm->start_code = start_code;
1093 current->mm->start_data = start_data;
1094 current->mm->end_data = end_data;
1095 current->mm->start_stack = bprm->p;
1096
1097 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1098 current->mm->brk = current->mm->start_brk =
1099 arch_randomize_brk(current->mm);
1100 #ifdef compat_brk_randomized
1101 current->brk_randomized = 1;
1102 #endif
1103 }
1104
1105 if (current->personality & MMAP_PAGE_ZERO) {
1106 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1107 and some applications "depend" upon this behavior.
1108 Since we do not have the power to recompile these, we
1109 emulate the SVr4 behavior. Sigh. */
1110 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1111 MAP_FIXED | MAP_PRIVATE, 0);
1112 }
1113
1114 #ifdef ELF_PLAT_INIT
1115 /*
1116 * The ABI may specify that certain registers be set up in special
1117 * ways (on i386 %edx is the address of a DT_FINI function, for
1118 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1119 * that the e_entry field is the address of the function descriptor
1120 * for the startup routine, rather than the address of the startup
1121 * routine itself. This macro performs whatever initialization to
1122 * the regs structure is required as well as any relocations to the
1123 * function descriptor entries when executing dynamically links apps.
1124 */
1125 ELF_PLAT_INIT(regs, reloc_func_desc);
1126 #endif
1127
1128 start_thread(regs, elf_entry, bprm->p);
1129 retval = 0;
1130 out:
1131 kfree(loc);
1132 out_ret:
1133 return retval;
1134
1135 /* error cleanup */
1136 out_free_dentry:
1137 kfree(interp_elf_phdata);
1138 allow_write_access(interpreter);
1139 if (interpreter)
1140 fput(interpreter);
1141 out_free_interp:
1142 kfree(elf_interpreter);
1143 out_free_ph:
1144 kfree(elf_phdata);
1145 goto out;
1146 }
1147
1148 #ifdef CONFIG_USELIB
1149 /* This is really simpleminded and specialized - we are loading an
1150 a.out library that is given an ELF header. */
1151 static int load_elf_library(struct file *file)
1152 {
1153 struct elf_phdr *elf_phdata;
1154 struct elf_phdr *eppnt;
1155 unsigned long elf_bss, bss, len;
1156 int retval, error, i, j;
1157 struct elfhdr elf_ex;
1158
1159 error = -ENOEXEC;
1160 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1161 if (retval != sizeof(elf_ex))
1162 goto out;
1163
1164 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1165 goto out;
1166
1167 /* First of all, some simple consistency checks */
1168 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1169 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1170 goto out;
1171
1172 /* Now read in all of the header information */
1173
1174 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1175 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1176
1177 error = -ENOMEM;
1178 elf_phdata = kmalloc(j, GFP_KERNEL);
1179 if (!elf_phdata)
1180 goto out;
1181
1182 eppnt = elf_phdata;
1183 error = -ENOEXEC;
1184 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1185 if (retval != j)
1186 goto out_free_ph;
1187
1188 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1189 if ((eppnt + i)->p_type == PT_LOAD)
1190 j++;
1191 if (j != 1)
1192 goto out_free_ph;
1193
1194 while (eppnt->p_type != PT_LOAD)
1195 eppnt++;
1196
1197 /* Now use mmap to map the library into memory. */
1198 error = vm_mmap(file,
1199 ELF_PAGESTART(eppnt->p_vaddr),
1200 (eppnt->p_filesz +
1201 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1202 PROT_READ | PROT_WRITE | PROT_EXEC,
1203 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1204 (eppnt->p_offset -
1205 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1206 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1207 goto out_free_ph;
1208
1209 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1210 if (padzero(elf_bss)) {
1211 error = -EFAULT;
1212 goto out_free_ph;
1213 }
1214
1215 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1216 ELF_MIN_ALIGN - 1);
1217 bss = eppnt->p_memsz + eppnt->p_vaddr;
1218 if (bss > len)
1219 vm_brk(len, bss - len);
1220 error = 0;
1221
1222 out_free_ph:
1223 kfree(elf_phdata);
1224 out:
1225 return error;
1226 }
1227 #endif /* #ifdef CONFIG_USELIB */
1228
1229 #ifdef CONFIG_ELF_CORE
1230 /*
1231 * ELF core dumper
1232 *
1233 * Modelled on fs/exec.c:aout_core_dump()
1234 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1235 */
1236
1237 /*
1238 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1239 * that are useful for post-mortem analysis are included in every core dump.
1240 * In that way we ensure that the core dump is fully interpretable later
1241 * without matching up the same kernel and hardware config to see what PC values
1242 * meant. These special mappings include - vDSO, vsyscall, and other
1243 * architecture specific mappings
1244 */
1245 static bool always_dump_vma(struct vm_area_struct *vma)
1246 {
1247 /* Any vsyscall mappings? */
1248 if (vma == get_gate_vma(vma->vm_mm))
1249 return true;
1250
1251 /*
1252 * Assume that all vmas with a .name op should always be dumped.
1253 * If this changes, a new vm_ops field can easily be added.
1254 */
1255 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1256 return true;
1257
1258 /*
1259 * arch_vma_name() returns non-NULL for special architecture mappings,
1260 * such as vDSO sections.
1261 */
1262 if (arch_vma_name(vma))
1263 return true;
1264
1265 return false;
1266 }
1267
1268 /*
1269 * Decide what to dump of a segment, part, all or none.
1270 */
1271 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1272 unsigned long mm_flags)
1273 {
1274 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1275
1276 /* always dump the vdso and vsyscall sections */
1277 if (always_dump_vma(vma))
1278 goto whole;
1279
1280 if (vma->vm_flags & VM_DONTDUMP)
1281 return 0;
1282
1283 /* support for DAX */
1284 if (vma_is_dax(vma)) {
1285 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1286 goto whole;
1287 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1288 goto whole;
1289 return 0;
1290 }
1291
1292 /* Hugetlb memory check */
1293 if (vma->vm_flags & VM_HUGETLB) {
1294 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1295 goto whole;
1296 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1297 goto whole;
1298 return 0;
1299 }
1300
1301 /* Do not dump I/O mapped devices or special mappings */
1302 if (vma->vm_flags & VM_IO)
1303 return 0;
1304
1305 /* By default, dump shared memory if mapped from an anonymous file. */
1306 if (vma->vm_flags & VM_SHARED) {
1307 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1308 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1309 goto whole;
1310 return 0;
1311 }
1312
1313 /* Dump segments that have been written to. */
1314 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1315 goto whole;
1316 if (vma->vm_file == NULL)
1317 return 0;
1318
1319 if (FILTER(MAPPED_PRIVATE))
1320 goto whole;
1321
1322 /*
1323 * If this looks like the beginning of a DSO or executable mapping,
1324 * check for an ELF header. If we find one, dump the first page to
1325 * aid in determining what was mapped here.
1326 */
1327 if (FILTER(ELF_HEADERS) &&
1328 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1329 u32 __user *header = (u32 __user *) vma->vm_start;
1330 u32 word;
1331 mm_segment_t fs = get_fs();
1332 /*
1333 * Doing it this way gets the constant folded by GCC.
1334 */
1335 union {
1336 u32 cmp;
1337 char elfmag[SELFMAG];
1338 } magic;
1339 BUILD_BUG_ON(SELFMAG != sizeof word);
1340 magic.elfmag[EI_MAG0] = ELFMAG0;
1341 magic.elfmag[EI_MAG1] = ELFMAG1;
1342 magic.elfmag[EI_MAG2] = ELFMAG2;
1343 magic.elfmag[EI_MAG3] = ELFMAG3;
1344 /*
1345 * Switch to the user "segment" for get_user(),
1346 * then put back what elf_core_dump() had in place.
1347 */
1348 set_fs(USER_DS);
1349 if (unlikely(get_user(word, header)))
1350 word = 0;
1351 set_fs(fs);
1352 if (word == magic.cmp)
1353 return PAGE_SIZE;
1354 }
1355
1356 #undef FILTER
1357
1358 return 0;
1359
1360 whole:
1361 return vma->vm_end - vma->vm_start;
1362 }
1363
1364 /* An ELF note in memory */
1365 struct memelfnote
1366 {
1367 const char *name;
1368 int type;
1369 unsigned int datasz;
1370 void *data;
1371 };
1372
1373 static int notesize(struct memelfnote *en)
1374 {
1375 int sz;
1376
1377 sz = sizeof(struct elf_note);
1378 sz += roundup(strlen(en->name) + 1, 4);
1379 sz += roundup(en->datasz, 4);
1380
1381 return sz;
1382 }
1383
1384 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1385 {
1386 struct elf_note en;
1387 en.n_namesz = strlen(men->name) + 1;
1388 en.n_descsz = men->datasz;
1389 en.n_type = men->type;
1390
1391 return dump_emit(cprm, &en, sizeof(en)) &&
1392 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1393 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1394 }
1395
1396 static void fill_elf_header(struct elfhdr *elf, int segs,
1397 u16 machine, u32 flags)
1398 {
1399 memset(elf, 0, sizeof(*elf));
1400
1401 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1402 elf->e_ident[EI_CLASS] = ELF_CLASS;
1403 elf->e_ident[EI_DATA] = ELF_DATA;
1404 elf->e_ident[EI_VERSION] = EV_CURRENT;
1405 elf->e_ident[EI_OSABI] = ELF_OSABI;
1406
1407 elf->e_type = ET_CORE;
1408 elf->e_machine = machine;
1409 elf->e_version = EV_CURRENT;
1410 elf->e_phoff = sizeof(struct elfhdr);
1411 elf->e_flags = flags;
1412 elf->e_ehsize = sizeof(struct elfhdr);
1413 elf->e_phentsize = sizeof(struct elf_phdr);
1414 elf->e_phnum = segs;
1415
1416 return;
1417 }
1418
1419 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1420 {
1421 phdr->p_type = PT_NOTE;
1422 phdr->p_offset = offset;
1423 phdr->p_vaddr = 0;
1424 phdr->p_paddr = 0;
1425 phdr->p_filesz = sz;
1426 phdr->p_memsz = 0;
1427 phdr->p_flags = 0;
1428 phdr->p_align = 0;
1429 return;
1430 }
1431
1432 static void fill_note(struct memelfnote *note, const char *name, int type,
1433 unsigned int sz, void *data)
1434 {
1435 note->name = name;
1436 note->type = type;
1437 note->datasz = sz;
1438 note->data = data;
1439 return;
1440 }
1441
1442 /*
1443 * fill up all the fields in prstatus from the given task struct, except
1444 * registers which need to be filled up separately.
1445 */
1446 static void fill_prstatus(struct elf_prstatus *prstatus,
1447 struct task_struct *p, long signr)
1448 {
1449 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1450 prstatus->pr_sigpend = p->pending.signal.sig[0];
1451 prstatus->pr_sighold = p->blocked.sig[0];
1452 rcu_read_lock();
1453 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1454 rcu_read_unlock();
1455 prstatus->pr_pid = task_pid_vnr(p);
1456 prstatus->pr_pgrp = task_pgrp_vnr(p);
1457 prstatus->pr_sid = task_session_vnr(p);
1458 if (thread_group_leader(p)) {
1459 struct task_cputime cputime;
1460
1461 /*
1462 * This is the record for the group leader. It shows the
1463 * group-wide total, not its individual thread total.
1464 */
1465 thread_group_cputime(p, &cputime);
1466 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1467 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1468 } else {
1469 cputime_t utime, stime;
1470
1471 task_cputime(p, &utime, &stime);
1472 cputime_to_timeval(utime, &prstatus->pr_utime);
1473 cputime_to_timeval(stime, &prstatus->pr_stime);
1474 }
1475 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1476 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1477 }
1478
1479 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1480 struct mm_struct *mm)
1481 {
1482 const struct cred *cred;
1483 unsigned int i, len;
1484
1485 /* first copy the parameters from user space */
1486 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1487
1488 len = mm->arg_end - mm->arg_start;
1489 if (len >= ELF_PRARGSZ)
1490 len = ELF_PRARGSZ-1;
1491 if (copy_from_user(&psinfo->pr_psargs,
1492 (const char __user *)mm->arg_start, len))
1493 return -EFAULT;
1494 for(i = 0; i < len; i++)
1495 if (psinfo->pr_psargs[i] == 0)
1496 psinfo->pr_psargs[i] = ' ';
1497 psinfo->pr_psargs[len] = 0;
1498
1499 rcu_read_lock();
1500 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1501 rcu_read_unlock();
1502 psinfo->pr_pid = task_pid_vnr(p);
1503 psinfo->pr_pgrp = task_pgrp_vnr(p);
1504 psinfo->pr_sid = task_session_vnr(p);
1505
1506 i = p->state ? ffz(~p->state) + 1 : 0;
1507 psinfo->pr_state = i;
1508 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1509 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1510 psinfo->pr_nice = task_nice(p);
1511 psinfo->pr_flag = p->flags;
1512 rcu_read_lock();
1513 cred = __task_cred(p);
1514 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1515 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1516 rcu_read_unlock();
1517 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1518
1519 return 0;
1520 }
1521
1522 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1523 {
1524 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1525 int i = 0;
1526 do
1527 i += 2;
1528 while (auxv[i - 2] != AT_NULL);
1529 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1530 }
1531
1532 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1533 const siginfo_t *siginfo)
1534 {
1535 mm_segment_t old_fs = get_fs();
1536 set_fs(KERNEL_DS);
1537 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1538 set_fs(old_fs);
1539 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1540 }
1541
1542 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1543 /*
1544 * Format of NT_FILE note:
1545 *
1546 * long count -- how many files are mapped
1547 * long page_size -- units for file_ofs
1548 * array of [COUNT] elements of
1549 * long start
1550 * long end
1551 * long file_ofs
1552 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1553 */
1554 static int fill_files_note(struct memelfnote *note)
1555 {
1556 struct vm_area_struct *vma;
1557 unsigned count, size, names_ofs, remaining, n;
1558 user_long_t *data;
1559 user_long_t *start_end_ofs;
1560 char *name_base, *name_curpos;
1561
1562 /* *Estimated* file count and total data size needed */
1563 count = current->mm->map_count;
1564 size = count * 64;
1565
1566 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1567 alloc:
1568 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1569 return -EINVAL;
1570 size = round_up(size, PAGE_SIZE);
1571 data = vmalloc(size);
1572 if (!data)
1573 return -ENOMEM;
1574
1575 start_end_ofs = data + 2;
1576 name_base = name_curpos = ((char *)data) + names_ofs;
1577 remaining = size - names_ofs;
1578 count = 0;
1579 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1580 struct file *file;
1581 const char *filename;
1582
1583 file = vma->vm_file;
1584 if (!file)
1585 continue;
1586 filename = file_path(file, name_curpos, remaining);
1587 if (IS_ERR(filename)) {
1588 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1589 vfree(data);
1590 size = size * 5 / 4;
1591 goto alloc;
1592 }
1593 continue;
1594 }
1595
1596 /* file_path() fills at the end, move name down */
1597 /* n = strlen(filename) + 1: */
1598 n = (name_curpos + remaining) - filename;
1599 remaining = filename - name_curpos;
1600 memmove(name_curpos, filename, n);
1601 name_curpos += n;
1602
1603 *start_end_ofs++ = vma->vm_start;
1604 *start_end_ofs++ = vma->vm_end;
1605 *start_end_ofs++ = vma->vm_pgoff;
1606 count++;
1607 }
1608
1609 /* Now we know exact count of files, can store it */
1610 data[0] = count;
1611 data[1] = PAGE_SIZE;
1612 /*
1613 * Count usually is less than current->mm->map_count,
1614 * we need to move filenames down.
1615 */
1616 n = current->mm->map_count - count;
1617 if (n != 0) {
1618 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1619 memmove(name_base - shift_bytes, name_base,
1620 name_curpos - name_base);
1621 name_curpos -= shift_bytes;
1622 }
1623
1624 size = name_curpos - (char *)data;
1625 fill_note(note, "CORE", NT_FILE, size, data);
1626 return 0;
1627 }
1628
1629 #ifdef CORE_DUMP_USE_REGSET
1630 #include <linux/regset.h>
1631
1632 struct elf_thread_core_info {
1633 struct elf_thread_core_info *next;
1634 struct task_struct *task;
1635 struct elf_prstatus prstatus;
1636 struct memelfnote notes[0];
1637 };
1638
1639 struct elf_note_info {
1640 struct elf_thread_core_info *thread;
1641 struct memelfnote psinfo;
1642 struct memelfnote signote;
1643 struct memelfnote auxv;
1644 struct memelfnote files;
1645 user_siginfo_t csigdata;
1646 size_t size;
1647 int thread_notes;
1648 };
1649
1650 /*
1651 * When a regset has a writeback hook, we call it on each thread before
1652 * dumping user memory. On register window machines, this makes sure the
1653 * user memory backing the register data is up to date before we read it.
1654 */
1655 static void do_thread_regset_writeback(struct task_struct *task,
1656 const struct user_regset *regset)
1657 {
1658 if (regset->writeback)
1659 regset->writeback(task, regset, 1);
1660 }
1661
1662 #ifndef PR_REG_SIZE
1663 #define PR_REG_SIZE(S) sizeof(S)
1664 #endif
1665
1666 #ifndef PRSTATUS_SIZE
1667 #define PRSTATUS_SIZE(S) sizeof(S)
1668 #endif
1669
1670 #ifndef PR_REG_PTR
1671 #define PR_REG_PTR(S) (&((S)->pr_reg))
1672 #endif
1673
1674 #ifndef SET_PR_FPVALID
1675 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1676 #endif
1677
1678 static int fill_thread_core_info(struct elf_thread_core_info *t,
1679 const struct user_regset_view *view,
1680 long signr, size_t *total)
1681 {
1682 unsigned int i;
1683
1684 /*
1685 * NT_PRSTATUS is the one special case, because the regset data
1686 * goes into the pr_reg field inside the note contents, rather
1687 * than being the whole note contents. We fill the reset in here.
1688 * We assume that regset 0 is NT_PRSTATUS.
1689 */
1690 fill_prstatus(&t->prstatus, t->task, signr);
1691 (void) view->regsets[0].get(t->task, &view->regsets[0],
1692 0, PR_REG_SIZE(t->prstatus.pr_reg),
1693 PR_REG_PTR(&t->prstatus), NULL);
1694
1695 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1696 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1697 *total += notesize(&t->notes[0]);
1698
1699 do_thread_regset_writeback(t->task, &view->regsets[0]);
1700
1701 /*
1702 * Each other regset might generate a note too. For each regset
1703 * that has no core_note_type or is inactive, we leave t->notes[i]
1704 * all zero and we'll know to skip writing it later.
1705 */
1706 for (i = 1; i < view->n; ++i) {
1707 const struct user_regset *regset = &view->regsets[i];
1708 do_thread_regset_writeback(t->task, regset);
1709 if (regset->core_note_type && regset->get &&
1710 (!regset->active || regset->active(t->task, regset))) {
1711 int ret;
1712 size_t size = regset->n * regset->size;
1713 void *data = kmalloc(size, GFP_KERNEL);
1714 if (unlikely(!data))
1715 return 0;
1716 ret = regset->get(t->task, regset,
1717 0, size, data, NULL);
1718 if (unlikely(ret))
1719 kfree(data);
1720 else {
1721 if (regset->core_note_type != NT_PRFPREG)
1722 fill_note(&t->notes[i], "LINUX",
1723 regset->core_note_type,
1724 size, data);
1725 else {
1726 SET_PR_FPVALID(&t->prstatus, 1);
1727 fill_note(&t->notes[i], "CORE",
1728 NT_PRFPREG, size, data);
1729 }
1730 *total += notesize(&t->notes[i]);
1731 }
1732 }
1733 }
1734
1735 return 1;
1736 }
1737
1738 static int fill_note_info(struct elfhdr *elf, int phdrs,
1739 struct elf_note_info *info,
1740 const siginfo_t *siginfo, struct pt_regs *regs)
1741 {
1742 struct task_struct *dump_task = current;
1743 const struct user_regset_view *view = task_user_regset_view(dump_task);
1744 struct elf_thread_core_info *t;
1745 struct elf_prpsinfo *psinfo;
1746 struct core_thread *ct;
1747 unsigned int i;
1748
1749 info->size = 0;
1750 info->thread = NULL;
1751
1752 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1753 if (psinfo == NULL) {
1754 info->psinfo.data = NULL; /* So we don't free this wrongly */
1755 return 0;
1756 }
1757
1758 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1759
1760 /*
1761 * Figure out how many notes we're going to need for each thread.
1762 */
1763 info->thread_notes = 0;
1764 for (i = 0; i < view->n; ++i)
1765 if (view->regsets[i].core_note_type != 0)
1766 ++info->thread_notes;
1767
1768 /*
1769 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1770 * since it is our one special case.
1771 */
1772 if (unlikely(info->thread_notes == 0) ||
1773 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1774 WARN_ON(1);
1775 return 0;
1776 }
1777
1778 /*
1779 * Initialize the ELF file header.
1780 */
1781 fill_elf_header(elf, phdrs,
1782 view->e_machine, view->e_flags);
1783
1784 /*
1785 * Allocate a structure for each thread.
1786 */
1787 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1788 t = kzalloc(offsetof(struct elf_thread_core_info,
1789 notes[info->thread_notes]),
1790 GFP_KERNEL);
1791 if (unlikely(!t))
1792 return 0;
1793
1794 t->task = ct->task;
1795 if (ct->task == dump_task || !info->thread) {
1796 t->next = info->thread;
1797 info->thread = t;
1798 } else {
1799 /*
1800 * Make sure to keep the original task at
1801 * the head of the list.
1802 */
1803 t->next = info->thread->next;
1804 info->thread->next = t;
1805 }
1806 }
1807
1808 /*
1809 * Now fill in each thread's information.
1810 */
1811 for (t = info->thread; t != NULL; t = t->next)
1812 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1813 return 0;
1814
1815 /*
1816 * Fill in the two process-wide notes.
1817 */
1818 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1819 info->size += notesize(&info->psinfo);
1820
1821 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1822 info->size += notesize(&info->signote);
1823
1824 fill_auxv_note(&info->auxv, current->mm);
1825 info->size += notesize(&info->auxv);
1826
1827 if (fill_files_note(&info->files) == 0)
1828 info->size += notesize(&info->files);
1829
1830 return 1;
1831 }
1832
1833 static size_t get_note_info_size(struct elf_note_info *info)
1834 {
1835 return info->size;
1836 }
1837
1838 /*
1839 * Write all the notes for each thread. When writing the first thread, the
1840 * process-wide notes are interleaved after the first thread-specific note.
1841 */
1842 static int write_note_info(struct elf_note_info *info,
1843 struct coredump_params *cprm)
1844 {
1845 bool first = true;
1846 struct elf_thread_core_info *t = info->thread;
1847
1848 do {
1849 int i;
1850
1851 if (!writenote(&t->notes[0], cprm))
1852 return 0;
1853
1854 if (first && !writenote(&info->psinfo, cprm))
1855 return 0;
1856 if (first && !writenote(&info->signote, cprm))
1857 return 0;
1858 if (first && !writenote(&info->auxv, cprm))
1859 return 0;
1860 if (first && info->files.data &&
1861 !writenote(&info->files, cprm))
1862 return 0;
1863
1864 for (i = 1; i < info->thread_notes; ++i)
1865 if (t->notes[i].data &&
1866 !writenote(&t->notes[i], cprm))
1867 return 0;
1868
1869 first = false;
1870 t = t->next;
1871 } while (t);
1872
1873 return 1;
1874 }
1875
1876 static void free_note_info(struct elf_note_info *info)
1877 {
1878 struct elf_thread_core_info *threads = info->thread;
1879 while (threads) {
1880 unsigned int i;
1881 struct elf_thread_core_info *t = threads;
1882 threads = t->next;
1883 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1884 for (i = 1; i < info->thread_notes; ++i)
1885 kfree(t->notes[i].data);
1886 kfree(t);
1887 }
1888 kfree(info->psinfo.data);
1889 vfree(info->files.data);
1890 }
1891
1892 #else
1893
1894 /* Here is the structure in which status of each thread is captured. */
1895 struct elf_thread_status
1896 {
1897 struct list_head list;
1898 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1899 elf_fpregset_t fpu; /* NT_PRFPREG */
1900 struct task_struct *thread;
1901 #ifdef ELF_CORE_COPY_XFPREGS
1902 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1903 #endif
1904 struct memelfnote notes[3];
1905 int num_notes;
1906 };
1907
1908 /*
1909 * In order to add the specific thread information for the elf file format,
1910 * we need to keep a linked list of every threads pr_status and then create
1911 * a single section for them in the final core file.
1912 */
1913 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1914 {
1915 int sz = 0;
1916 struct task_struct *p = t->thread;
1917 t->num_notes = 0;
1918
1919 fill_prstatus(&t->prstatus, p, signr);
1920 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1921
1922 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1923 &(t->prstatus));
1924 t->num_notes++;
1925 sz += notesize(&t->notes[0]);
1926
1927 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1928 &t->fpu))) {
1929 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1930 &(t->fpu));
1931 t->num_notes++;
1932 sz += notesize(&t->notes[1]);
1933 }
1934
1935 #ifdef ELF_CORE_COPY_XFPREGS
1936 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1937 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1938 sizeof(t->xfpu), &t->xfpu);
1939 t->num_notes++;
1940 sz += notesize(&t->notes[2]);
1941 }
1942 #endif
1943 return sz;
1944 }
1945
1946 struct elf_note_info {
1947 struct memelfnote *notes;
1948 struct memelfnote *notes_files;
1949 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1950 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1951 struct list_head thread_list;
1952 elf_fpregset_t *fpu;
1953 #ifdef ELF_CORE_COPY_XFPREGS
1954 elf_fpxregset_t *xfpu;
1955 #endif
1956 user_siginfo_t csigdata;
1957 int thread_status_size;
1958 int numnote;
1959 };
1960
1961 static int elf_note_info_init(struct elf_note_info *info)
1962 {
1963 memset(info, 0, sizeof(*info));
1964 INIT_LIST_HEAD(&info->thread_list);
1965
1966 /* Allocate space for ELF notes */
1967 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1968 if (!info->notes)
1969 return 0;
1970 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1971 if (!info->psinfo)
1972 return 0;
1973 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1974 if (!info->prstatus)
1975 return 0;
1976 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1977 if (!info->fpu)
1978 return 0;
1979 #ifdef ELF_CORE_COPY_XFPREGS
1980 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1981 if (!info->xfpu)
1982 return 0;
1983 #endif
1984 return 1;
1985 }
1986
1987 static int fill_note_info(struct elfhdr *elf, int phdrs,
1988 struct elf_note_info *info,
1989 const siginfo_t *siginfo, struct pt_regs *regs)
1990 {
1991 struct list_head *t;
1992 struct core_thread *ct;
1993 struct elf_thread_status *ets;
1994
1995 if (!elf_note_info_init(info))
1996 return 0;
1997
1998 for (ct = current->mm->core_state->dumper.next;
1999 ct; ct = ct->next) {
2000 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2001 if (!ets)
2002 return 0;
2003
2004 ets->thread = ct->task;
2005 list_add(&ets->list, &info->thread_list);
2006 }
2007
2008 list_for_each(t, &info->thread_list) {
2009 int sz;
2010
2011 ets = list_entry(t, struct elf_thread_status, list);
2012 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2013 info->thread_status_size += sz;
2014 }
2015 /* now collect the dump for the current */
2016 memset(info->prstatus, 0, sizeof(*info->prstatus));
2017 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2018 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2019
2020 /* Set up header */
2021 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2022
2023 /*
2024 * Set up the notes in similar form to SVR4 core dumps made
2025 * with info from their /proc.
2026 */
2027
2028 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2029 sizeof(*info->prstatus), info->prstatus);
2030 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2031 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2032 sizeof(*info->psinfo), info->psinfo);
2033
2034 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2035 fill_auxv_note(info->notes + 3, current->mm);
2036 info->numnote = 4;
2037
2038 if (fill_files_note(info->notes + info->numnote) == 0) {
2039 info->notes_files = info->notes + info->numnote;
2040 info->numnote++;
2041 }
2042
2043 /* Try to dump the FPU. */
2044 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2045 info->fpu);
2046 if (info->prstatus->pr_fpvalid)
2047 fill_note(info->notes + info->numnote++,
2048 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2049 #ifdef ELF_CORE_COPY_XFPREGS
2050 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2051 fill_note(info->notes + info->numnote++,
2052 "LINUX", ELF_CORE_XFPREG_TYPE,
2053 sizeof(*info->xfpu), info->xfpu);
2054 #endif
2055
2056 return 1;
2057 }
2058
2059 static size_t get_note_info_size(struct elf_note_info *info)
2060 {
2061 int sz = 0;
2062 int i;
2063
2064 for (i = 0; i < info->numnote; i++)
2065 sz += notesize(info->notes + i);
2066
2067 sz += info->thread_status_size;
2068
2069 return sz;
2070 }
2071
2072 static int write_note_info(struct elf_note_info *info,
2073 struct coredump_params *cprm)
2074 {
2075 int i;
2076 struct list_head *t;
2077
2078 for (i = 0; i < info->numnote; i++)
2079 if (!writenote(info->notes + i, cprm))
2080 return 0;
2081
2082 /* write out the thread status notes section */
2083 list_for_each(t, &info->thread_list) {
2084 struct elf_thread_status *tmp =
2085 list_entry(t, struct elf_thread_status, list);
2086
2087 for (i = 0; i < tmp->num_notes; i++)
2088 if (!writenote(&tmp->notes[i], cprm))
2089 return 0;
2090 }
2091
2092 return 1;
2093 }
2094
2095 static void free_note_info(struct elf_note_info *info)
2096 {
2097 while (!list_empty(&info->thread_list)) {
2098 struct list_head *tmp = info->thread_list.next;
2099 list_del(tmp);
2100 kfree(list_entry(tmp, struct elf_thread_status, list));
2101 }
2102
2103 /* Free data possibly allocated by fill_files_note(): */
2104 if (info->notes_files)
2105 vfree(info->notes_files->data);
2106
2107 kfree(info->prstatus);
2108 kfree(info->psinfo);
2109 kfree(info->notes);
2110 kfree(info->fpu);
2111 #ifdef ELF_CORE_COPY_XFPREGS
2112 kfree(info->xfpu);
2113 #endif
2114 }
2115
2116 #endif
2117
2118 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2119 struct vm_area_struct *gate_vma)
2120 {
2121 struct vm_area_struct *ret = tsk->mm->mmap;
2122
2123 if (ret)
2124 return ret;
2125 return gate_vma;
2126 }
2127 /*
2128 * Helper function for iterating across a vma list. It ensures that the caller
2129 * will visit `gate_vma' prior to terminating the search.
2130 */
2131 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2132 struct vm_area_struct *gate_vma)
2133 {
2134 struct vm_area_struct *ret;
2135
2136 ret = this_vma->vm_next;
2137 if (ret)
2138 return ret;
2139 if (this_vma == gate_vma)
2140 return NULL;
2141 return gate_vma;
2142 }
2143
2144 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2145 elf_addr_t e_shoff, int segs)
2146 {
2147 elf->e_shoff = e_shoff;
2148 elf->e_shentsize = sizeof(*shdr4extnum);
2149 elf->e_shnum = 1;
2150 elf->e_shstrndx = SHN_UNDEF;
2151
2152 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2153
2154 shdr4extnum->sh_type = SHT_NULL;
2155 shdr4extnum->sh_size = elf->e_shnum;
2156 shdr4extnum->sh_link = elf->e_shstrndx;
2157 shdr4extnum->sh_info = segs;
2158 }
2159
2160 /*
2161 * Actual dumper
2162 *
2163 * This is a two-pass process; first we find the offsets of the bits,
2164 * and then they are actually written out. If we run out of core limit
2165 * we just truncate.
2166 */
2167 static int elf_core_dump(struct coredump_params *cprm)
2168 {
2169 int has_dumped = 0;
2170 mm_segment_t fs;
2171 int segs, i;
2172 size_t vma_data_size = 0;
2173 struct vm_area_struct *vma, *gate_vma;
2174 struct elfhdr *elf = NULL;
2175 loff_t offset = 0, dataoff;
2176 struct elf_note_info info = { };
2177 struct elf_phdr *phdr4note = NULL;
2178 struct elf_shdr *shdr4extnum = NULL;
2179 Elf_Half e_phnum;
2180 elf_addr_t e_shoff;
2181 elf_addr_t *vma_filesz = NULL;
2182
2183 /*
2184 * We no longer stop all VM operations.
2185 *
2186 * This is because those proceses that could possibly change map_count
2187 * or the mmap / vma pages are now blocked in do_exit on current
2188 * finishing this core dump.
2189 *
2190 * Only ptrace can touch these memory addresses, but it doesn't change
2191 * the map_count or the pages allocated. So no possibility of crashing
2192 * exists while dumping the mm->vm_next areas to the core file.
2193 */
2194
2195 /* alloc memory for large data structures: too large to be on stack */
2196 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2197 if (!elf)
2198 goto out;
2199 /*
2200 * The number of segs are recored into ELF header as 16bit value.
2201 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2202 */
2203 segs = current->mm->map_count;
2204 segs += elf_core_extra_phdrs();
2205
2206 gate_vma = get_gate_vma(current->mm);
2207 if (gate_vma != NULL)
2208 segs++;
2209
2210 /* for notes section */
2211 segs++;
2212
2213 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2214 * this, kernel supports extended numbering. Have a look at
2215 * include/linux/elf.h for further information. */
2216 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2217
2218 /*
2219 * Collect all the non-memory information about the process for the
2220 * notes. This also sets up the file header.
2221 */
2222 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2223 goto cleanup;
2224
2225 has_dumped = 1;
2226
2227 fs = get_fs();
2228 set_fs(KERNEL_DS);
2229
2230 offset += sizeof(*elf); /* Elf header */
2231 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2232
2233 /* Write notes phdr entry */
2234 {
2235 size_t sz = get_note_info_size(&info);
2236
2237 sz += elf_coredump_extra_notes_size();
2238
2239 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2240 if (!phdr4note)
2241 goto end_coredump;
2242
2243 fill_elf_note_phdr(phdr4note, sz, offset);
2244 offset += sz;
2245 }
2246
2247 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2248
2249 vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2250 if (!vma_filesz)
2251 goto end_coredump;
2252
2253 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2254 vma = next_vma(vma, gate_vma)) {
2255 unsigned long dump_size;
2256
2257 dump_size = vma_dump_size(vma, cprm->mm_flags);
2258 vma_filesz[i++] = dump_size;
2259 vma_data_size += dump_size;
2260 }
2261
2262 offset += vma_data_size;
2263 offset += elf_core_extra_data_size();
2264 e_shoff = offset;
2265
2266 if (e_phnum == PN_XNUM) {
2267 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2268 if (!shdr4extnum)
2269 goto end_coredump;
2270 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2271 }
2272
2273 offset = dataoff;
2274
2275 if (!dump_emit(cprm, elf, sizeof(*elf)))
2276 goto end_coredump;
2277
2278 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2279 goto end_coredump;
2280
2281 /* Write program headers for segments dump */
2282 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2283 vma = next_vma(vma, gate_vma)) {
2284 struct elf_phdr phdr;
2285
2286 phdr.p_type = PT_LOAD;
2287 phdr.p_offset = offset;
2288 phdr.p_vaddr = vma->vm_start;
2289 phdr.p_paddr = 0;
2290 phdr.p_filesz = vma_filesz[i++];
2291 phdr.p_memsz = vma->vm_end - vma->vm_start;
2292 offset += phdr.p_filesz;
2293 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2294 if (vma->vm_flags & VM_WRITE)
2295 phdr.p_flags |= PF_W;
2296 if (vma->vm_flags & VM_EXEC)
2297 phdr.p_flags |= PF_X;
2298 phdr.p_align = ELF_EXEC_PAGESIZE;
2299
2300 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2301 goto end_coredump;
2302 }
2303
2304 if (!elf_core_write_extra_phdrs(cprm, offset))
2305 goto end_coredump;
2306
2307 /* write out the notes section */
2308 if (!write_note_info(&info, cprm))
2309 goto end_coredump;
2310
2311 if (elf_coredump_extra_notes_write(cprm))
2312 goto end_coredump;
2313
2314 /* Align to page */
2315 if (!dump_skip(cprm, dataoff - cprm->written))
2316 goto end_coredump;
2317
2318 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2319 vma = next_vma(vma, gate_vma)) {
2320 unsigned long addr;
2321 unsigned long end;
2322
2323 end = vma->vm_start + vma_filesz[i++];
2324
2325 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2326 struct page *page;
2327 int stop;
2328
2329 page = get_dump_page(addr);
2330 if (page) {
2331 void *kaddr = kmap(page);
2332 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2333 kunmap(page);
2334 page_cache_release(page);
2335 } else
2336 stop = !dump_skip(cprm, PAGE_SIZE);
2337 if (stop)
2338 goto end_coredump;
2339 }
2340 }
2341 dump_truncate(cprm);
2342
2343 if (!elf_core_write_extra_data(cprm))
2344 goto end_coredump;
2345
2346 if (e_phnum == PN_XNUM) {
2347 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2348 goto end_coredump;
2349 }
2350
2351 end_coredump:
2352 set_fs(fs);
2353
2354 cleanup:
2355 free_note_info(&info);
2356 kfree(shdr4extnum);
2357 kfree(vma_filesz);
2358 kfree(phdr4note);
2359 kfree(elf);
2360 out:
2361 return has_dumped;
2362 }
2363
2364 #endif /* CONFIG_ELF_CORE */
2365
2366 static int __init init_elf_binfmt(void)
2367 {
2368 register_binfmt(&elf_format);
2369 return 0;
2370 }
2371
2372 static void __exit exit_elf_binfmt(void)
2373 {
2374 /* Remove the COFF and ELF loaders. */
2375 unregister_binfmt(&elf_format);
2376 }
2377
2378 core_initcall(init_elf_binfmt);
2379 module_exit(exit_elf_binfmt);
2380 MODULE_LICENSE("GPL");