]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/binfmt_elf.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-hirsute-kernel.git] / fs / binfmt_elf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59
60 static int load_elf_binary(struct linux_binprm *bprm);
61
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67
68 /*
69 * If we don't support core dumping, then supply a NULL so we
70 * don't even try.
71 */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump NULL
76 #endif
77
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN PAGE_SIZE
82 #endif
83
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
86 #endif
87
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91
92 static struct linux_binfmt elf_format = {
93 .module = THIS_MODULE,
94 .load_binary = load_elf_binary,
95 .load_shlib = load_elf_library,
96 .core_dump = elf_core_dump,
97 .min_coredump = ELF_EXEC_PAGESIZE,
98 };
99
100 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
101
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 start = ELF_PAGEALIGN(start);
105 end = ELF_PAGEALIGN(end);
106 if (end > start) {
107 /*
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
111 */
112 int error = vm_brk_flags(start, end - start,
113 prot & PROT_EXEC ? VM_EXEC : 0);
114 if (error)
115 return error;
116 }
117 current->mm->start_brk = current->mm->brk = end;
118 return 0;
119 }
120
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
124 be in memory
125 */
126 static int padzero(unsigned long elf_bss)
127 {
128 unsigned long nbyte;
129
130 nbyte = ELF_PAGEOFFSET(elf_bss);
131 if (nbyte) {
132 nbyte = ELF_MIN_ALIGN - nbyte;
133 if (clear_user((void __user *) elf_bss, nbyte))
134 return -EFAULT;
135 }
136 return 0;
137 }
138
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153
154 #ifndef ELF_BASE_PLATFORM
155 /*
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
159 */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162
163 static int
164 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
165 unsigned long load_addr, unsigned long interp_load_addr,
166 unsigned long e_entry)
167 {
168 struct mm_struct *mm = current->mm;
169 unsigned long p = bprm->p;
170 int argc = bprm->argc;
171 int envc = bprm->envc;
172 elf_addr_t __user *sp;
173 elf_addr_t __user *u_platform;
174 elf_addr_t __user *u_base_platform;
175 elf_addr_t __user *u_rand_bytes;
176 const char *k_platform = ELF_PLATFORM;
177 const char *k_base_platform = ELF_BASE_PLATFORM;
178 unsigned char k_rand_bytes[16];
179 int items;
180 elf_addr_t *elf_info;
181 int ei_index;
182 const struct cred *cred = current_cred();
183 struct vm_area_struct *vma;
184
185 /*
186 * In some cases (e.g. Hyper-Threading), we want to avoid L1
187 * evictions by the processes running on the same package. One
188 * thing we can do is to shuffle the initial stack for them.
189 */
190
191 p = arch_align_stack(p);
192
193 /*
194 * If this architecture has a platform capability string, copy it
195 * to userspace. In some cases (Sparc), this info is impossible
196 * for userspace to get any other way, in others (i386) it is
197 * merely difficult.
198 */
199 u_platform = NULL;
200 if (k_platform) {
201 size_t len = strlen(k_platform) + 1;
202
203 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
204 if (__copy_to_user(u_platform, k_platform, len))
205 return -EFAULT;
206 }
207
208 /*
209 * If this architecture has a "base" platform capability
210 * string, copy it to userspace.
211 */
212 u_base_platform = NULL;
213 if (k_base_platform) {
214 size_t len = strlen(k_base_platform) + 1;
215
216 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
217 if (__copy_to_user(u_base_platform, k_base_platform, len))
218 return -EFAULT;
219 }
220
221 /*
222 * Generate 16 random bytes for userspace PRNG seeding.
223 */
224 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
225 u_rand_bytes = (elf_addr_t __user *)
226 STACK_ALLOC(p, sizeof(k_rand_bytes));
227 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
228 return -EFAULT;
229
230 /* Create the ELF interpreter info */
231 elf_info = (elf_addr_t *)mm->saved_auxv;
232 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
233 #define NEW_AUX_ENT(id, val) \
234 do { \
235 *elf_info++ = id; \
236 *elf_info++ = val; \
237 } while (0)
238
239 #ifdef ARCH_DLINFO
240 /*
241 * ARCH_DLINFO must come first so PPC can do its special alignment of
242 * AUXV.
243 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
244 * ARCH_DLINFO changes
245 */
246 ARCH_DLINFO;
247 #endif
248 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
249 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
250 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
251 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
252 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
253 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
254 NEW_AUX_ENT(AT_BASE, interp_load_addr);
255 NEW_AUX_ENT(AT_FLAGS, 0);
256 NEW_AUX_ENT(AT_ENTRY, e_entry);
257 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
258 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
259 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
260 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
261 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
262 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
263 #ifdef ELF_HWCAP2
264 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
265 #endif
266 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
267 if (k_platform) {
268 NEW_AUX_ENT(AT_PLATFORM,
269 (elf_addr_t)(unsigned long)u_platform);
270 }
271 if (k_base_platform) {
272 NEW_AUX_ENT(AT_BASE_PLATFORM,
273 (elf_addr_t)(unsigned long)u_base_platform);
274 }
275 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
276 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
277 }
278 #undef NEW_AUX_ENT
279 /* AT_NULL is zero; clear the rest too */
280 memset(elf_info, 0, (char *)mm->saved_auxv +
281 sizeof(mm->saved_auxv) - (char *)elf_info);
282
283 /* And advance past the AT_NULL entry. */
284 elf_info += 2;
285
286 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
287 sp = STACK_ADD(p, ei_index);
288
289 items = (argc + 1) + (envc + 1) + 1;
290 bprm->p = STACK_ROUND(sp, items);
291
292 /* Point sp at the lowest address on the stack */
293 #ifdef CONFIG_STACK_GROWSUP
294 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
295 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
296 #else
297 sp = (elf_addr_t __user *)bprm->p;
298 #endif
299
300
301 /*
302 * Grow the stack manually; some architectures have a limit on how
303 * far ahead a user-space access may be in order to grow the stack.
304 */
305 vma = find_extend_vma(mm, bprm->p);
306 if (!vma)
307 return -EFAULT;
308
309 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
310 if (__put_user(argc, sp++))
311 return -EFAULT;
312
313 /* Populate list of argv pointers back to argv strings. */
314 p = mm->arg_end = mm->arg_start;
315 while (argc-- > 0) {
316 size_t len;
317 if (__put_user((elf_addr_t)p, sp++))
318 return -EFAULT;
319 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
320 if (!len || len > MAX_ARG_STRLEN)
321 return -EINVAL;
322 p += len;
323 }
324 if (__put_user(0, sp++))
325 return -EFAULT;
326 mm->arg_end = p;
327
328 /* Populate list of envp pointers back to envp strings. */
329 mm->env_end = mm->env_start = p;
330 while (envc-- > 0) {
331 size_t len;
332 if (__put_user((elf_addr_t)p, sp++))
333 return -EFAULT;
334 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
335 if (!len || len > MAX_ARG_STRLEN)
336 return -EINVAL;
337 p += len;
338 }
339 if (__put_user(0, sp++))
340 return -EFAULT;
341 mm->env_end = p;
342
343 /* Put the elf_info on the stack in the right place. */
344 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
345 return -EFAULT;
346 return 0;
347 }
348
349 #ifndef elf_map
350
351 static unsigned long elf_map(struct file *filep, unsigned long addr,
352 const struct elf_phdr *eppnt, int prot, int type,
353 unsigned long total_size)
354 {
355 unsigned long map_addr;
356 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
357 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
358 addr = ELF_PAGESTART(addr);
359 size = ELF_PAGEALIGN(size);
360
361 /* mmap() will return -EINVAL if given a zero size, but a
362 * segment with zero filesize is perfectly valid */
363 if (!size)
364 return addr;
365
366 /*
367 * total_size is the size of the ELF (interpreter) image.
368 * The _first_ mmap needs to know the full size, otherwise
369 * randomization might put this image into an overlapping
370 * position with the ELF binary image. (since size < total_size)
371 * So we first map the 'big' image - and unmap the remainder at
372 * the end. (which unmap is needed for ELF images with holes.)
373 */
374 if (total_size) {
375 total_size = ELF_PAGEALIGN(total_size);
376 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
377 if (!BAD_ADDR(map_addr))
378 vm_munmap(map_addr+size, total_size-size);
379 } else
380 map_addr = vm_mmap(filep, addr, size, prot, type, off);
381
382 if ((type & MAP_FIXED_NOREPLACE) &&
383 PTR_ERR((void *)map_addr) == -EEXIST)
384 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
385 task_pid_nr(current), current->comm, (void *)addr);
386
387 return(map_addr);
388 }
389
390 #endif /* !elf_map */
391
392 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
393 {
394 int i, first_idx = -1, last_idx = -1;
395
396 for (i = 0; i < nr; i++) {
397 if (cmds[i].p_type == PT_LOAD) {
398 last_idx = i;
399 if (first_idx == -1)
400 first_idx = i;
401 }
402 }
403 if (first_idx == -1)
404 return 0;
405
406 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
407 ELF_PAGESTART(cmds[first_idx].p_vaddr);
408 }
409
410 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
411 {
412 ssize_t rv;
413
414 rv = kernel_read(file, buf, len, &pos);
415 if (unlikely(rv != len)) {
416 return (rv < 0) ? rv : -EIO;
417 }
418 return 0;
419 }
420
421 /**
422 * load_elf_phdrs() - load ELF program headers
423 * @elf_ex: ELF header of the binary whose program headers should be loaded
424 * @elf_file: the opened ELF binary file
425 *
426 * Loads ELF program headers from the binary file elf_file, which has the ELF
427 * header pointed to by elf_ex, into a newly allocated array. The caller is
428 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
429 */
430 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
431 struct file *elf_file)
432 {
433 struct elf_phdr *elf_phdata = NULL;
434 int retval, err = -1;
435 unsigned int size;
436
437 /*
438 * If the size of this structure has changed, then punt, since
439 * we will be doing the wrong thing.
440 */
441 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
442 goto out;
443
444 /* Sanity check the number of program headers... */
445 /* ...and their total size. */
446 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
447 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
448 goto out;
449
450 elf_phdata = kmalloc(size, GFP_KERNEL);
451 if (!elf_phdata)
452 goto out;
453
454 /* Read in the program headers */
455 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
456 if (retval < 0) {
457 err = retval;
458 goto out;
459 }
460
461 /* Success! */
462 err = 0;
463 out:
464 if (err) {
465 kfree(elf_phdata);
466 elf_phdata = NULL;
467 }
468 return elf_phdata;
469 }
470
471 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
472
473 /**
474 * struct arch_elf_state - arch-specific ELF loading state
475 *
476 * This structure is used to preserve architecture specific data during
477 * the loading of an ELF file, throughout the checking of architecture
478 * specific ELF headers & through to the point where the ELF load is
479 * known to be proceeding (ie. SET_PERSONALITY).
480 *
481 * This implementation is a dummy for architectures which require no
482 * specific state.
483 */
484 struct arch_elf_state {
485 };
486
487 #define INIT_ARCH_ELF_STATE {}
488
489 /**
490 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
491 * @ehdr: The main ELF header
492 * @phdr: The program header to check
493 * @elf: The open ELF file
494 * @is_interp: True if the phdr is from the interpreter of the ELF being
495 * loaded, else false.
496 * @state: Architecture-specific state preserved throughout the process
497 * of loading the ELF.
498 *
499 * Inspects the program header phdr to validate its correctness and/or
500 * suitability for the system. Called once per ELF program header in the
501 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
502 * interpreter.
503 *
504 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
505 * with that return code.
506 */
507 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
508 struct elf_phdr *phdr,
509 struct file *elf, bool is_interp,
510 struct arch_elf_state *state)
511 {
512 /* Dummy implementation, always proceed */
513 return 0;
514 }
515
516 /**
517 * arch_check_elf() - check an ELF executable
518 * @ehdr: The main ELF header
519 * @has_interp: True if the ELF has an interpreter, else false.
520 * @interp_ehdr: The interpreter's ELF header
521 * @state: Architecture-specific state preserved throughout the process
522 * of loading the ELF.
523 *
524 * Provides a final opportunity for architecture code to reject the loading
525 * of the ELF & cause an exec syscall to return an error. This is called after
526 * all program headers to be checked by arch_elf_pt_proc have been.
527 *
528 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
529 * with that return code.
530 */
531 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
532 struct elfhdr *interp_ehdr,
533 struct arch_elf_state *state)
534 {
535 /* Dummy implementation, always proceed */
536 return 0;
537 }
538
539 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
540
541 static inline int make_prot(u32 p_flags)
542 {
543 int prot = 0;
544
545 if (p_flags & PF_R)
546 prot |= PROT_READ;
547 if (p_flags & PF_W)
548 prot |= PROT_WRITE;
549 if (p_flags & PF_X)
550 prot |= PROT_EXEC;
551 return prot;
552 }
553
554 /* This is much more generalized than the library routine read function,
555 so we keep this separate. Technically the library read function
556 is only provided so that we can read a.out libraries that have
557 an ELF header */
558
559 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
560 struct file *interpreter,
561 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
562 {
563 struct elf_phdr *eppnt;
564 unsigned long load_addr = 0;
565 int load_addr_set = 0;
566 unsigned long last_bss = 0, elf_bss = 0;
567 int bss_prot = 0;
568 unsigned long error = ~0UL;
569 unsigned long total_size;
570 int i;
571
572 /* First of all, some simple consistency checks */
573 if (interp_elf_ex->e_type != ET_EXEC &&
574 interp_elf_ex->e_type != ET_DYN)
575 goto out;
576 if (!elf_check_arch(interp_elf_ex) ||
577 elf_check_fdpic(interp_elf_ex))
578 goto out;
579 if (!interpreter->f_op->mmap)
580 goto out;
581
582 total_size = total_mapping_size(interp_elf_phdata,
583 interp_elf_ex->e_phnum);
584 if (!total_size) {
585 error = -EINVAL;
586 goto out;
587 }
588
589 eppnt = interp_elf_phdata;
590 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
591 if (eppnt->p_type == PT_LOAD) {
592 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
593 int elf_prot = make_prot(eppnt->p_flags);
594 unsigned long vaddr = 0;
595 unsigned long k, map_addr;
596
597 vaddr = eppnt->p_vaddr;
598 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
599 elf_type |= MAP_FIXED_NOREPLACE;
600 else if (no_base && interp_elf_ex->e_type == ET_DYN)
601 load_addr = -vaddr;
602
603 map_addr = elf_map(interpreter, load_addr + vaddr,
604 eppnt, elf_prot, elf_type, total_size);
605 total_size = 0;
606 error = map_addr;
607 if (BAD_ADDR(map_addr))
608 goto out;
609
610 if (!load_addr_set &&
611 interp_elf_ex->e_type == ET_DYN) {
612 load_addr = map_addr - ELF_PAGESTART(vaddr);
613 load_addr_set = 1;
614 }
615
616 /*
617 * Check to see if the section's size will overflow the
618 * allowed task size. Note that p_filesz must always be
619 * <= p_memsize so it's only necessary to check p_memsz.
620 */
621 k = load_addr + eppnt->p_vaddr;
622 if (BAD_ADDR(k) ||
623 eppnt->p_filesz > eppnt->p_memsz ||
624 eppnt->p_memsz > TASK_SIZE ||
625 TASK_SIZE - eppnt->p_memsz < k) {
626 error = -ENOMEM;
627 goto out;
628 }
629
630 /*
631 * Find the end of the file mapping for this phdr, and
632 * keep track of the largest address we see for this.
633 */
634 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
635 if (k > elf_bss)
636 elf_bss = k;
637
638 /*
639 * Do the same thing for the memory mapping - between
640 * elf_bss and last_bss is the bss section.
641 */
642 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
643 if (k > last_bss) {
644 last_bss = k;
645 bss_prot = elf_prot;
646 }
647 }
648 }
649
650 /*
651 * Now fill out the bss section: first pad the last page from
652 * the file up to the page boundary, and zero it from elf_bss
653 * up to the end of the page.
654 */
655 if (padzero(elf_bss)) {
656 error = -EFAULT;
657 goto out;
658 }
659 /*
660 * Next, align both the file and mem bss up to the page size,
661 * since this is where elf_bss was just zeroed up to, and where
662 * last_bss will end after the vm_brk_flags() below.
663 */
664 elf_bss = ELF_PAGEALIGN(elf_bss);
665 last_bss = ELF_PAGEALIGN(last_bss);
666 /* Finally, if there is still more bss to allocate, do it. */
667 if (last_bss > elf_bss) {
668 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
669 bss_prot & PROT_EXEC ? VM_EXEC : 0);
670 if (error)
671 goto out;
672 }
673
674 error = load_addr;
675 out:
676 return error;
677 }
678
679 /*
680 * These are the functions used to load ELF style executables and shared
681 * libraries. There is no binary dependent code anywhere else.
682 */
683
684 static int load_elf_binary(struct linux_binprm *bprm)
685 {
686 struct file *interpreter = NULL; /* to shut gcc up */
687 unsigned long load_addr = 0, load_bias = 0;
688 int load_addr_set = 0;
689 unsigned long error;
690 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
691 unsigned long elf_bss, elf_brk;
692 int bss_prot = 0;
693 int retval, i;
694 unsigned long elf_entry;
695 unsigned long e_entry;
696 unsigned long interp_load_addr = 0;
697 unsigned long start_code, end_code, start_data, end_data;
698 unsigned long reloc_func_desc __maybe_unused = 0;
699 int executable_stack = EXSTACK_DEFAULT;
700 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
701 struct {
702 struct elfhdr interp_elf_ex;
703 } *loc;
704 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
705 struct mm_struct *mm;
706 struct pt_regs *regs;
707
708 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
709 if (!loc) {
710 retval = -ENOMEM;
711 goto out_ret;
712 }
713
714 retval = -ENOEXEC;
715 /* First of all, some simple consistency checks */
716 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
717 goto out;
718
719 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
720 goto out;
721 if (!elf_check_arch(elf_ex))
722 goto out;
723 if (elf_check_fdpic(elf_ex))
724 goto out;
725 if (!bprm->file->f_op->mmap)
726 goto out;
727
728 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
729 if (!elf_phdata)
730 goto out;
731
732 elf_ppnt = elf_phdata;
733 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
734 char *elf_interpreter;
735
736 if (elf_ppnt->p_type != PT_INTERP)
737 continue;
738
739 /*
740 * This is the program interpreter used for shared libraries -
741 * for now assume that this is an a.out format binary.
742 */
743 retval = -ENOEXEC;
744 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
745 goto out_free_ph;
746
747 retval = -ENOMEM;
748 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
749 if (!elf_interpreter)
750 goto out_free_ph;
751
752 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
753 elf_ppnt->p_offset);
754 if (retval < 0)
755 goto out_free_interp;
756 /* make sure path is NULL terminated */
757 retval = -ENOEXEC;
758 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
759 goto out_free_interp;
760
761 interpreter = open_exec(elf_interpreter);
762 kfree(elf_interpreter);
763 retval = PTR_ERR(interpreter);
764 if (IS_ERR(interpreter))
765 goto out_free_ph;
766
767 /*
768 * If the binary is not readable then enforce mm->dumpable = 0
769 * regardless of the interpreter's permissions.
770 */
771 would_dump(bprm, interpreter);
772
773 /* Get the exec headers */
774 retval = elf_read(interpreter, &loc->interp_elf_ex,
775 sizeof(loc->interp_elf_ex), 0);
776 if (retval < 0)
777 goto out_free_dentry;
778
779 break;
780
781 out_free_interp:
782 kfree(elf_interpreter);
783 goto out_free_ph;
784 }
785
786 elf_ppnt = elf_phdata;
787 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
788 switch (elf_ppnt->p_type) {
789 case PT_GNU_STACK:
790 if (elf_ppnt->p_flags & PF_X)
791 executable_stack = EXSTACK_ENABLE_X;
792 else
793 executable_stack = EXSTACK_DISABLE_X;
794 break;
795
796 case PT_LOPROC ... PT_HIPROC:
797 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
798 bprm->file, false,
799 &arch_state);
800 if (retval)
801 goto out_free_dentry;
802 break;
803 }
804
805 /* Some simple consistency checks for the interpreter */
806 if (interpreter) {
807 retval = -ELIBBAD;
808 /* Not an ELF interpreter */
809 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
810 goto out_free_dentry;
811 /* Verify the interpreter has a valid arch */
812 if (!elf_check_arch(&loc->interp_elf_ex) ||
813 elf_check_fdpic(&loc->interp_elf_ex))
814 goto out_free_dentry;
815
816 /* Load the interpreter program headers */
817 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
818 interpreter);
819 if (!interp_elf_phdata)
820 goto out_free_dentry;
821
822 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
823 elf_ppnt = interp_elf_phdata;
824 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
825 switch (elf_ppnt->p_type) {
826 case PT_LOPROC ... PT_HIPROC:
827 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
828 elf_ppnt, interpreter,
829 true, &arch_state);
830 if (retval)
831 goto out_free_dentry;
832 break;
833 }
834 }
835
836 /*
837 * Allow arch code to reject the ELF at this point, whilst it's
838 * still possible to return an error to the code that invoked
839 * the exec syscall.
840 */
841 retval = arch_check_elf(elf_ex,
842 !!interpreter, &loc->interp_elf_ex,
843 &arch_state);
844 if (retval)
845 goto out_free_dentry;
846
847 /* Flush all traces of the currently running executable */
848 retval = flush_old_exec(bprm);
849 if (retval)
850 goto out_free_dentry;
851
852 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
853 may depend on the personality. */
854 SET_PERSONALITY2(*elf_ex, &arch_state);
855 if (elf_read_implies_exec(*elf_ex, executable_stack))
856 current->personality |= READ_IMPLIES_EXEC;
857
858 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
859 current->flags |= PF_RANDOMIZE;
860
861 setup_new_exec(bprm);
862 install_exec_creds(bprm);
863
864 /* Do this so that we can load the interpreter, if need be. We will
865 change some of these later */
866 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
867 executable_stack);
868 if (retval < 0)
869 goto out_free_dentry;
870
871 elf_bss = 0;
872 elf_brk = 0;
873
874 start_code = ~0UL;
875 end_code = 0;
876 start_data = 0;
877 end_data = 0;
878
879 /* Now we do a little grungy work by mmapping the ELF image into
880 the correct location in memory. */
881 for(i = 0, elf_ppnt = elf_phdata;
882 i < elf_ex->e_phnum; i++, elf_ppnt++) {
883 int elf_prot, elf_flags;
884 unsigned long k, vaddr;
885 unsigned long total_size = 0;
886
887 if (elf_ppnt->p_type != PT_LOAD)
888 continue;
889
890 if (unlikely (elf_brk > elf_bss)) {
891 unsigned long nbyte;
892
893 /* There was a PT_LOAD segment with p_memsz > p_filesz
894 before this one. Map anonymous pages, if needed,
895 and clear the area. */
896 retval = set_brk(elf_bss + load_bias,
897 elf_brk + load_bias,
898 bss_prot);
899 if (retval)
900 goto out_free_dentry;
901 nbyte = ELF_PAGEOFFSET(elf_bss);
902 if (nbyte) {
903 nbyte = ELF_MIN_ALIGN - nbyte;
904 if (nbyte > elf_brk - elf_bss)
905 nbyte = elf_brk - elf_bss;
906 if (clear_user((void __user *)elf_bss +
907 load_bias, nbyte)) {
908 /*
909 * This bss-zeroing can fail if the ELF
910 * file specifies odd protections. So
911 * we don't check the return value
912 */
913 }
914 }
915 }
916
917 elf_prot = make_prot(elf_ppnt->p_flags);
918
919 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
920
921 vaddr = elf_ppnt->p_vaddr;
922 /*
923 * If we are loading ET_EXEC or we have already performed
924 * the ET_DYN load_addr calculations, proceed normally.
925 */
926 if (elf_ex->e_type == ET_EXEC || load_addr_set) {
927 elf_flags |= MAP_FIXED;
928 } else if (elf_ex->e_type == ET_DYN) {
929 /*
930 * This logic is run once for the first LOAD Program
931 * Header for ET_DYN binaries to calculate the
932 * randomization (load_bias) for all the LOAD
933 * Program Headers, and to calculate the entire
934 * size of the ELF mapping (total_size). (Note that
935 * load_addr_set is set to true later once the
936 * initial mapping is performed.)
937 *
938 * There are effectively two types of ET_DYN
939 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
940 * and loaders (ET_DYN without INTERP, since they
941 * _are_ the ELF interpreter). The loaders must
942 * be loaded away from programs since the program
943 * may otherwise collide with the loader (especially
944 * for ET_EXEC which does not have a randomized
945 * position). For example to handle invocations of
946 * "./ld.so someprog" to test out a new version of
947 * the loader, the subsequent program that the
948 * loader loads must avoid the loader itself, so
949 * they cannot share the same load range. Sufficient
950 * room for the brk must be allocated with the
951 * loader as well, since brk must be available with
952 * the loader.
953 *
954 * Therefore, programs are loaded offset from
955 * ELF_ET_DYN_BASE and loaders are loaded into the
956 * independently randomized mmap region (0 load_bias
957 * without MAP_FIXED).
958 */
959 if (interpreter) {
960 load_bias = ELF_ET_DYN_BASE;
961 if (current->flags & PF_RANDOMIZE)
962 load_bias += arch_mmap_rnd();
963 elf_flags |= MAP_FIXED;
964 } else
965 load_bias = 0;
966
967 /*
968 * Since load_bias is used for all subsequent loading
969 * calculations, we must lower it by the first vaddr
970 * so that the remaining calculations based on the
971 * ELF vaddrs will be correctly offset. The result
972 * is then page aligned.
973 */
974 load_bias = ELF_PAGESTART(load_bias - vaddr);
975
976 total_size = total_mapping_size(elf_phdata,
977 elf_ex->e_phnum);
978 if (!total_size) {
979 retval = -EINVAL;
980 goto out_free_dentry;
981 }
982 }
983
984 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
985 elf_prot, elf_flags, total_size);
986 if (BAD_ADDR(error)) {
987 retval = IS_ERR((void *)error) ?
988 PTR_ERR((void*)error) : -EINVAL;
989 goto out_free_dentry;
990 }
991
992 if (!load_addr_set) {
993 load_addr_set = 1;
994 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
995 if (elf_ex->e_type == ET_DYN) {
996 load_bias += error -
997 ELF_PAGESTART(load_bias + vaddr);
998 load_addr += load_bias;
999 reloc_func_desc = load_bias;
1000 }
1001 }
1002 k = elf_ppnt->p_vaddr;
1003 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1004 start_code = k;
1005 if (start_data < k)
1006 start_data = k;
1007
1008 /*
1009 * Check to see if the section's size will overflow the
1010 * allowed task size. Note that p_filesz must always be
1011 * <= p_memsz so it is only necessary to check p_memsz.
1012 */
1013 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1014 elf_ppnt->p_memsz > TASK_SIZE ||
1015 TASK_SIZE - elf_ppnt->p_memsz < k) {
1016 /* set_brk can never work. Avoid overflows. */
1017 retval = -EINVAL;
1018 goto out_free_dentry;
1019 }
1020
1021 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1022
1023 if (k > elf_bss)
1024 elf_bss = k;
1025 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1026 end_code = k;
1027 if (end_data < k)
1028 end_data = k;
1029 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1030 if (k > elf_brk) {
1031 bss_prot = elf_prot;
1032 elf_brk = k;
1033 }
1034 }
1035
1036 e_entry = elf_ex->e_entry + load_bias;
1037 elf_bss += load_bias;
1038 elf_brk += load_bias;
1039 start_code += load_bias;
1040 end_code += load_bias;
1041 start_data += load_bias;
1042 end_data += load_bias;
1043
1044 /* Calling set_brk effectively mmaps the pages that we need
1045 * for the bss and break sections. We must do this before
1046 * mapping in the interpreter, to make sure it doesn't wind
1047 * up getting placed where the bss needs to go.
1048 */
1049 retval = set_brk(elf_bss, elf_brk, bss_prot);
1050 if (retval)
1051 goto out_free_dentry;
1052 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1053 retval = -EFAULT; /* Nobody gets to see this, but.. */
1054 goto out_free_dentry;
1055 }
1056
1057 if (interpreter) {
1058 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1059 interpreter,
1060 load_bias, interp_elf_phdata);
1061 if (!IS_ERR((void *)elf_entry)) {
1062 /*
1063 * load_elf_interp() returns relocation
1064 * adjustment
1065 */
1066 interp_load_addr = elf_entry;
1067 elf_entry += loc->interp_elf_ex.e_entry;
1068 }
1069 if (BAD_ADDR(elf_entry)) {
1070 retval = IS_ERR((void *)elf_entry) ?
1071 (int)elf_entry : -EINVAL;
1072 goto out_free_dentry;
1073 }
1074 reloc_func_desc = interp_load_addr;
1075
1076 allow_write_access(interpreter);
1077 fput(interpreter);
1078 } else {
1079 elf_entry = e_entry;
1080 if (BAD_ADDR(elf_entry)) {
1081 retval = -EINVAL;
1082 goto out_free_dentry;
1083 }
1084 }
1085
1086 kfree(interp_elf_phdata);
1087 kfree(elf_phdata);
1088
1089 set_binfmt(&elf_format);
1090
1091 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1092 retval = arch_setup_additional_pages(bprm, !!interpreter);
1093 if (retval < 0)
1094 goto out;
1095 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1096
1097 retval = create_elf_tables(bprm, elf_ex,
1098 load_addr, interp_load_addr, e_entry);
1099 if (retval < 0)
1100 goto out;
1101
1102 mm = current->mm;
1103 mm->end_code = end_code;
1104 mm->start_code = start_code;
1105 mm->start_data = start_data;
1106 mm->end_data = end_data;
1107 mm->start_stack = bprm->p;
1108
1109 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1110 /*
1111 * For architectures with ELF randomization, when executing
1112 * a loader directly (i.e. no interpreter listed in ELF
1113 * headers), move the brk area out of the mmap region
1114 * (since it grows up, and may collide early with the stack
1115 * growing down), and into the unused ELF_ET_DYN_BASE region.
1116 */
1117 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1118 elf_ex->e_type == ET_DYN && !interpreter) {
1119 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1120 }
1121
1122 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1123 #ifdef compat_brk_randomized
1124 current->brk_randomized = 1;
1125 #endif
1126 }
1127
1128 if (current->personality & MMAP_PAGE_ZERO) {
1129 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1130 and some applications "depend" upon this behavior.
1131 Since we do not have the power to recompile these, we
1132 emulate the SVr4 behavior. Sigh. */
1133 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1134 MAP_FIXED | MAP_PRIVATE, 0);
1135 }
1136
1137 regs = current_pt_regs();
1138 #ifdef ELF_PLAT_INIT
1139 /*
1140 * The ABI may specify that certain registers be set up in special
1141 * ways (on i386 %edx is the address of a DT_FINI function, for
1142 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1143 * that the e_entry field is the address of the function descriptor
1144 * for the startup routine, rather than the address of the startup
1145 * routine itself. This macro performs whatever initialization to
1146 * the regs structure is required as well as any relocations to the
1147 * function descriptor entries when executing dynamically links apps.
1148 */
1149 ELF_PLAT_INIT(regs, reloc_func_desc);
1150 #endif
1151
1152 finalize_exec(bprm);
1153 start_thread(regs, elf_entry, bprm->p);
1154 retval = 0;
1155 out:
1156 kfree(loc);
1157 out_ret:
1158 return retval;
1159
1160 /* error cleanup */
1161 out_free_dentry:
1162 kfree(interp_elf_phdata);
1163 allow_write_access(interpreter);
1164 if (interpreter)
1165 fput(interpreter);
1166 out_free_ph:
1167 kfree(elf_phdata);
1168 goto out;
1169 }
1170
1171 #ifdef CONFIG_USELIB
1172 /* This is really simpleminded and specialized - we are loading an
1173 a.out library that is given an ELF header. */
1174 static int load_elf_library(struct file *file)
1175 {
1176 struct elf_phdr *elf_phdata;
1177 struct elf_phdr *eppnt;
1178 unsigned long elf_bss, bss, len;
1179 int retval, error, i, j;
1180 struct elfhdr elf_ex;
1181
1182 error = -ENOEXEC;
1183 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1184 if (retval < 0)
1185 goto out;
1186
1187 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1188 goto out;
1189
1190 /* First of all, some simple consistency checks */
1191 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1192 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1193 goto out;
1194 if (elf_check_fdpic(&elf_ex))
1195 goto out;
1196
1197 /* Now read in all of the header information */
1198
1199 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1200 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1201
1202 error = -ENOMEM;
1203 elf_phdata = kmalloc(j, GFP_KERNEL);
1204 if (!elf_phdata)
1205 goto out;
1206
1207 eppnt = elf_phdata;
1208 error = -ENOEXEC;
1209 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1210 if (retval < 0)
1211 goto out_free_ph;
1212
1213 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1214 if ((eppnt + i)->p_type == PT_LOAD)
1215 j++;
1216 if (j != 1)
1217 goto out_free_ph;
1218
1219 while (eppnt->p_type != PT_LOAD)
1220 eppnt++;
1221
1222 /* Now use mmap to map the library into memory. */
1223 error = vm_mmap(file,
1224 ELF_PAGESTART(eppnt->p_vaddr),
1225 (eppnt->p_filesz +
1226 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1227 PROT_READ | PROT_WRITE | PROT_EXEC,
1228 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1229 (eppnt->p_offset -
1230 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1231 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1232 goto out_free_ph;
1233
1234 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1235 if (padzero(elf_bss)) {
1236 error = -EFAULT;
1237 goto out_free_ph;
1238 }
1239
1240 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1241 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1242 if (bss > len) {
1243 error = vm_brk(len, bss - len);
1244 if (error)
1245 goto out_free_ph;
1246 }
1247 error = 0;
1248
1249 out_free_ph:
1250 kfree(elf_phdata);
1251 out:
1252 return error;
1253 }
1254 #endif /* #ifdef CONFIG_USELIB */
1255
1256 #ifdef CONFIG_ELF_CORE
1257 /*
1258 * ELF core dumper
1259 *
1260 * Modelled on fs/exec.c:aout_core_dump()
1261 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1262 */
1263
1264 /*
1265 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1266 * that are useful for post-mortem analysis are included in every core dump.
1267 * In that way we ensure that the core dump is fully interpretable later
1268 * without matching up the same kernel and hardware config to see what PC values
1269 * meant. These special mappings include - vDSO, vsyscall, and other
1270 * architecture specific mappings
1271 */
1272 static bool always_dump_vma(struct vm_area_struct *vma)
1273 {
1274 /* Any vsyscall mappings? */
1275 if (vma == get_gate_vma(vma->vm_mm))
1276 return true;
1277
1278 /*
1279 * Assume that all vmas with a .name op should always be dumped.
1280 * If this changes, a new vm_ops field can easily be added.
1281 */
1282 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1283 return true;
1284
1285 /*
1286 * arch_vma_name() returns non-NULL for special architecture mappings,
1287 * such as vDSO sections.
1288 */
1289 if (arch_vma_name(vma))
1290 return true;
1291
1292 return false;
1293 }
1294
1295 /*
1296 * Decide what to dump of a segment, part, all or none.
1297 */
1298 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1299 unsigned long mm_flags)
1300 {
1301 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1302
1303 /* always dump the vdso and vsyscall sections */
1304 if (always_dump_vma(vma))
1305 goto whole;
1306
1307 if (vma->vm_flags & VM_DONTDUMP)
1308 return 0;
1309
1310 /* support for DAX */
1311 if (vma_is_dax(vma)) {
1312 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1313 goto whole;
1314 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1315 goto whole;
1316 return 0;
1317 }
1318
1319 /* Hugetlb memory check */
1320 if (vma->vm_flags & VM_HUGETLB) {
1321 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1322 goto whole;
1323 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1324 goto whole;
1325 return 0;
1326 }
1327
1328 /* Do not dump I/O mapped devices or special mappings */
1329 if (vma->vm_flags & VM_IO)
1330 return 0;
1331
1332 /* By default, dump shared memory if mapped from an anonymous file. */
1333 if (vma->vm_flags & VM_SHARED) {
1334 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1335 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1336 goto whole;
1337 return 0;
1338 }
1339
1340 /* Dump segments that have been written to. */
1341 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1342 goto whole;
1343 if (vma->vm_file == NULL)
1344 return 0;
1345
1346 if (FILTER(MAPPED_PRIVATE))
1347 goto whole;
1348
1349 /*
1350 * If this looks like the beginning of a DSO or executable mapping,
1351 * check for an ELF header. If we find one, dump the first page to
1352 * aid in determining what was mapped here.
1353 */
1354 if (FILTER(ELF_HEADERS) &&
1355 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1356 u32 __user *header = (u32 __user *) vma->vm_start;
1357 u32 word;
1358 mm_segment_t fs = get_fs();
1359 /*
1360 * Doing it this way gets the constant folded by GCC.
1361 */
1362 union {
1363 u32 cmp;
1364 char elfmag[SELFMAG];
1365 } magic;
1366 BUILD_BUG_ON(SELFMAG != sizeof word);
1367 magic.elfmag[EI_MAG0] = ELFMAG0;
1368 magic.elfmag[EI_MAG1] = ELFMAG1;
1369 magic.elfmag[EI_MAG2] = ELFMAG2;
1370 magic.elfmag[EI_MAG3] = ELFMAG3;
1371 /*
1372 * Switch to the user "segment" for get_user(),
1373 * then put back what elf_core_dump() had in place.
1374 */
1375 set_fs(USER_DS);
1376 if (unlikely(get_user(word, header)))
1377 word = 0;
1378 set_fs(fs);
1379 if (word == magic.cmp)
1380 return PAGE_SIZE;
1381 }
1382
1383 #undef FILTER
1384
1385 return 0;
1386
1387 whole:
1388 return vma->vm_end - vma->vm_start;
1389 }
1390
1391 /* An ELF note in memory */
1392 struct memelfnote
1393 {
1394 const char *name;
1395 int type;
1396 unsigned int datasz;
1397 void *data;
1398 };
1399
1400 static int notesize(struct memelfnote *en)
1401 {
1402 int sz;
1403
1404 sz = sizeof(struct elf_note);
1405 sz += roundup(strlen(en->name) + 1, 4);
1406 sz += roundup(en->datasz, 4);
1407
1408 return sz;
1409 }
1410
1411 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1412 {
1413 struct elf_note en;
1414 en.n_namesz = strlen(men->name) + 1;
1415 en.n_descsz = men->datasz;
1416 en.n_type = men->type;
1417
1418 return dump_emit(cprm, &en, sizeof(en)) &&
1419 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1420 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1421 }
1422
1423 static void fill_elf_header(struct elfhdr *elf, int segs,
1424 u16 machine, u32 flags)
1425 {
1426 memset(elf, 0, sizeof(*elf));
1427
1428 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1429 elf->e_ident[EI_CLASS] = ELF_CLASS;
1430 elf->e_ident[EI_DATA] = ELF_DATA;
1431 elf->e_ident[EI_VERSION] = EV_CURRENT;
1432 elf->e_ident[EI_OSABI] = ELF_OSABI;
1433
1434 elf->e_type = ET_CORE;
1435 elf->e_machine = machine;
1436 elf->e_version = EV_CURRENT;
1437 elf->e_phoff = sizeof(struct elfhdr);
1438 elf->e_flags = flags;
1439 elf->e_ehsize = sizeof(struct elfhdr);
1440 elf->e_phentsize = sizeof(struct elf_phdr);
1441 elf->e_phnum = segs;
1442 }
1443
1444 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1445 {
1446 phdr->p_type = PT_NOTE;
1447 phdr->p_offset = offset;
1448 phdr->p_vaddr = 0;
1449 phdr->p_paddr = 0;
1450 phdr->p_filesz = sz;
1451 phdr->p_memsz = 0;
1452 phdr->p_flags = 0;
1453 phdr->p_align = 0;
1454 }
1455
1456 static void fill_note(struct memelfnote *note, const char *name, int type,
1457 unsigned int sz, void *data)
1458 {
1459 note->name = name;
1460 note->type = type;
1461 note->datasz = sz;
1462 note->data = data;
1463 }
1464
1465 /*
1466 * fill up all the fields in prstatus from the given task struct, except
1467 * registers which need to be filled up separately.
1468 */
1469 static void fill_prstatus(struct elf_prstatus *prstatus,
1470 struct task_struct *p, long signr)
1471 {
1472 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1473 prstatus->pr_sigpend = p->pending.signal.sig[0];
1474 prstatus->pr_sighold = p->blocked.sig[0];
1475 rcu_read_lock();
1476 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1477 rcu_read_unlock();
1478 prstatus->pr_pid = task_pid_vnr(p);
1479 prstatus->pr_pgrp = task_pgrp_vnr(p);
1480 prstatus->pr_sid = task_session_vnr(p);
1481 if (thread_group_leader(p)) {
1482 struct task_cputime cputime;
1483
1484 /*
1485 * This is the record for the group leader. It shows the
1486 * group-wide total, not its individual thread total.
1487 */
1488 thread_group_cputime(p, &cputime);
1489 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1490 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1491 } else {
1492 u64 utime, stime;
1493
1494 task_cputime(p, &utime, &stime);
1495 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1496 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1497 }
1498
1499 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1500 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1501 }
1502
1503 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1504 struct mm_struct *mm)
1505 {
1506 const struct cred *cred;
1507 unsigned int i, len;
1508
1509 /* first copy the parameters from user space */
1510 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1511
1512 len = mm->arg_end - mm->arg_start;
1513 if (len >= ELF_PRARGSZ)
1514 len = ELF_PRARGSZ-1;
1515 if (copy_from_user(&psinfo->pr_psargs,
1516 (const char __user *)mm->arg_start, len))
1517 return -EFAULT;
1518 for(i = 0; i < len; i++)
1519 if (psinfo->pr_psargs[i] == 0)
1520 psinfo->pr_psargs[i] = ' ';
1521 psinfo->pr_psargs[len] = 0;
1522
1523 rcu_read_lock();
1524 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1525 rcu_read_unlock();
1526 psinfo->pr_pid = task_pid_vnr(p);
1527 psinfo->pr_pgrp = task_pgrp_vnr(p);
1528 psinfo->pr_sid = task_session_vnr(p);
1529
1530 i = p->state ? ffz(~p->state) + 1 : 0;
1531 psinfo->pr_state = i;
1532 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1533 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1534 psinfo->pr_nice = task_nice(p);
1535 psinfo->pr_flag = p->flags;
1536 rcu_read_lock();
1537 cred = __task_cred(p);
1538 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1539 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1540 rcu_read_unlock();
1541 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1542
1543 return 0;
1544 }
1545
1546 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1547 {
1548 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1549 int i = 0;
1550 do
1551 i += 2;
1552 while (auxv[i - 2] != AT_NULL);
1553 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1554 }
1555
1556 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1557 const kernel_siginfo_t *siginfo)
1558 {
1559 mm_segment_t old_fs = get_fs();
1560 set_fs(KERNEL_DS);
1561 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1562 set_fs(old_fs);
1563 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1564 }
1565
1566 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1567 /*
1568 * Format of NT_FILE note:
1569 *
1570 * long count -- how many files are mapped
1571 * long page_size -- units for file_ofs
1572 * array of [COUNT] elements of
1573 * long start
1574 * long end
1575 * long file_ofs
1576 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1577 */
1578 static int fill_files_note(struct memelfnote *note)
1579 {
1580 struct mm_struct *mm = current->mm;
1581 struct vm_area_struct *vma;
1582 unsigned count, size, names_ofs, remaining, n;
1583 user_long_t *data;
1584 user_long_t *start_end_ofs;
1585 char *name_base, *name_curpos;
1586
1587 /* *Estimated* file count and total data size needed */
1588 count = mm->map_count;
1589 if (count > UINT_MAX / 64)
1590 return -EINVAL;
1591 size = count * 64;
1592
1593 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1594 alloc:
1595 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1596 return -EINVAL;
1597 size = round_up(size, PAGE_SIZE);
1598 /*
1599 * "size" can be 0 here legitimately.
1600 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1601 */
1602 data = kvmalloc(size, GFP_KERNEL);
1603 if (ZERO_OR_NULL_PTR(data))
1604 return -ENOMEM;
1605
1606 start_end_ofs = data + 2;
1607 name_base = name_curpos = ((char *)data) + names_ofs;
1608 remaining = size - names_ofs;
1609 count = 0;
1610 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1611 struct file *file;
1612 const char *filename;
1613
1614 file = vma->vm_file;
1615 if (!file)
1616 continue;
1617 filename = file_path(file, name_curpos, remaining);
1618 if (IS_ERR(filename)) {
1619 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1620 kvfree(data);
1621 size = size * 5 / 4;
1622 goto alloc;
1623 }
1624 continue;
1625 }
1626
1627 /* file_path() fills at the end, move name down */
1628 /* n = strlen(filename) + 1: */
1629 n = (name_curpos + remaining) - filename;
1630 remaining = filename - name_curpos;
1631 memmove(name_curpos, filename, n);
1632 name_curpos += n;
1633
1634 *start_end_ofs++ = vma->vm_start;
1635 *start_end_ofs++ = vma->vm_end;
1636 *start_end_ofs++ = vma->vm_pgoff;
1637 count++;
1638 }
1639
1640 /* Now we know exact count of files, can store it */
1641 data[0] = count;
1642 data[1] = PAGE_SIZE;
1643 /*
1644 * Count usually is less than mm->map_count,
1645 * we need to move filenames down.
1646 */
1647 n = mm->map_count - count;
1648 if (n != 0) {
1649 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1650 memmove(name_base - shift_bytes, name_base,
1651 name_curpos - name_base);
1652 name_curpos -= shift_bytes;
1653 }
1654
1655 size = name_curpos - (char *)data;
1656 fill_note(note, "CORE", NT_FILE, size, data);
1657 return 0;
1658 }
1659
1660 #ifdef CORE_DUMP_USE_REGSET
1661 #include <linux/regset.h>
1662
1663 struct elf_thread_core_info {
1664 struct elf_thread_core_info *next;
1665 struct task_struct *task;
1666 struct elf_prstatus prstatus;
1667 struct memelfnote notes[0];
1668 };
1669
1670 struct elf_note_info {
1671 struct elf_thread_core_info *thread;
1672 struct memelfnote psinfo;
1673 struct memelfnote signote;
1674 struct memelfnote auxv;
1675 struct memelfnote files;
1676 user_siginfo_t csigdata;
1677 size_t size;
1678 int thread_notes;
1679 };
1680
1681 /*
1682 * When a regset has a writeback hook, we call it on each thread before
1683 * dumping user memory. On register window machines, this makes sure the
1684 * user memory backing the register data is up to date before we read it.
1685 */
1686 static void do_thread_regset_writeback(struct task_struct *task,
1687 const struct user_regset *regset)
1688 {
1689 if (regset->writeback)
1690 regset->writeback(task, regset, 1);
1691 }
1692
1693 #ifndef PRSTATUS_SIZE
1694 #define PRSTATUS_SIZE(S, R) sizeof(S)
1695 #endif
1696
1697 #ifndef SET_PR_FPVALID
1698 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1699 #endif
1700
1701 static int fill_thread_core_info(struct elf_thread_core_info *t,
1702 const struct user_regset_view *view,
1703 long signr, size_t *total)
1704 {
1705 unsigned int i;
1706 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1707
1708 /*
1709 * NT_PRSTATUS is the one special case, because the regset data
1710 * goes into the pr_reg field inside the note contents, rather
1711 * than being the whole note contents. We fill the reset in here.
1712 * We assume that regset 0 is NT_PRSTATUS.
1713 */
1714 fill_prstatus(&t->prstatus, t->task, signr);
1715 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1716 &t->prstatus.pr_reg, NULL);
1717
1718 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1719 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1720 *total += notesize(&t->notes[0]);
1721
1722 do_thread_regset_writeback(t->task, &view->regsets[0]);
1723
1724 /*
1725 * Each other regset might generate a note too. For each regset
1726 * that has no core_note_type or is inactive, we leave t->notes[i]
1727 * all zero and we'll know to skip writing it later.
1728 */
1729 for (i = 1; i < view->n; ++i) {
1730 const struct user_regset *regset = &view->regsets[i];
1731 do_thread_regset_writeback(t->task, regset);
1732 if (regset->core_note_type && regset->get &&
1733 (!regset->active || regset->active(t->task, regset) > 0)) {
1734 int ret;
1735 size_t size = regset_size(t->task, regset);
1736 void *data = kmalloc(size, GFP_KERNEL);
1737 if (unlikely(!data))
1738 return 0;
1739 ret = regset->get(t->task, regset,
1740 0, size, data, NULL);
1741 if (unlikely(ret))
1742 kfree(data);
1743 else {
1744 if (regset->core_note_type != NT_PRFPREG)
1745 fill_note(&t->notes[i], "LINUX",
1746 regset->core_note_type,
1747 size, data);
1748 else {
1749 SET_PR_FPVALID(&t->prstatus,
1750 1, regset0_size);
1751 fill_note(&t->notes[i], "CORE",
1752 NT_PRFPREG, size, data);
1753 }
1754 *total += notesize(&t->notes[i]);
1755 }
1756 }
1757 }
1758
1759 return 1;
1760 }
1761
1762 static int fill_note_info(struct elfhdr *elf, int phdrs,
1763 struct elf_note_info *info,
1764 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1765 {
1766 struct task_struct *dump_task = current;
1767 const struct user_regset_view *view = task_user_regset_view(dump_task);
1768 struct elf_thread_core_info *t;
1769 struct elf_prpsinfo *psinfo;
1770 struct core_thread *ct;
1771 unsigned int i;
1772
1773 info->size = 0;
1774 info->thread = NULL;
1775
1776 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1777 if (psinfo == NULL) {
1778 info->psinfo.data = NULL; /* So we don't free this wrongly */
1779 return 0;
1780 }
1781
1782 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1783
1784 /*
1785 * Figure out how many notes we're going to need for each thread.
1786 */
1787 info->thread_notes = 0;
1788 for (i = 0; i < view->n; ++i)
1789 if (view->regsets[i].core_note_type != 0)
1790 ++info->thread_notes;
1791
1792 /*
1793 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1794 * since it is our one special case.
1795 */
1796 if (unlikely(info->thread_notes == 0) ||
1797 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1798 WARN_ON(1);
1799 return 0;
1800 }
1801
1802 /*
1803 * Initialize the ELF file header.
1804 */
1805 fill_elf_header(elf, phdrs,
1806 view->e_machine, view->e_flags);
1807
1808 /*
1809 * Allocate a structure for each thread.
1810 */
1811 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1812 t = kzalloc(offsetof(struct elf_thread_core_info,
1813 notes[info->thread_notes]),
1814 GFP_KERNEL);
1815 if (unlikely(!t))
1816 return 0;
1817
1818 t->task = ct->task;
1819 if (ct->task == dump_task || !info->thread) {
1820 t->next = info->thread;
1821 info->thread = t;
1822 } else {
1823 /*
1824 * Make sure to keep the original task at
1825 * the head of the list.
1826 */
1827 t->next = info->thread->next;
1828 info->thread->next = t;
1829 }
1830 }
1831
1832 /*
1833 * Now fill in each thread's information.
1834 */
1835 for (t = info->thread; t != NULL; t = t->next)
1836 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1837 return 0;
1838
1839 /*
1840 * Fill in the two process-wide notes.
1841 */
1842 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1843 info->size += notesize(&info->psinfo);
1844
1845 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1846 info->size += notesize(&info->signote);
1847
1848 fill_auxv_note(&info->auxv, current->mm);
1849 info->size += notesize(&info->auxv);
1850
1851 if (fill_files_note(&info->files) == 0)
1852 info->size += notesize(&info->files);
1853
1854 return 1;
1855 }
1856
1857 static size_t get_note_info_size(struct elf_note_info *info)
1858 {
1859 return info->size;
1860 }
1861
1862 /*
1863 * Write all the notes for each thread. When writing the first thread, the
1864 * process-wide notes are interleaved after the first thread-specific note.
1865 */
1866 static int write_note_info(struct elf_note_info *info,
1867 struct coredump_params *cprm)
1868 {
1869 bool first = true;
1870 struct elf_thread_core_info *t = info->thread;
1871
1872 do {
1873 int i;
1874
1875 if (!writenote(&t->notes[0], cprm))
1876 return 0;
1877
1878 if (first && !writenote(&info->psinfo, cprm))
1879 return 0;
1880 if (first && !writenote(&info->signote, cprm))
1881 return 0;
1882 if (first && !writenote(&info->auxv, cprm))
1883 return 0;
1884 if (first && info->files.data &&
1885 !writenote(&info->files, cprm))
1886 return 0;
1887
1888 for (i = 1; i < info->thread_notes; ++i)
1889 if (t->notes[i].data &&
1890 !writenote(&t->notes[i], cprm))
1891 return 0;
1892
1893 first = false;
1894 t = t->next;
1895 } while (t);
1896
1897 return 1;
1898 }
1899
1900 static void free_note_info(struct elf_note_info *info)
1901 {
1902 struct elf_thread_core_info *threads = info->thread;
1903 while (threads) {
1904 unsigned int i;
1905 struct elf_thread_core_info *t = threads;
1906 threads = t->next;
1907 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1908 for (i = 1; i < info->thread_notes; ++i)
1909 kfree(t->notes[i].data);
1910 kfree(t);
1911 }
1912 kfree(info->psinfo.data);
1913 kvfree(info->files.data);
1914 }
1915
1916 #else
1917
1918 /* Here is the structure in which status of each thread is captured. */
1919 struct elf_thread_status
1920 {
1921 struct list_head list;
1922 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1923 elf_fpregset_t fpu; /* NT_PRFPREG */
1924 struct task_struct *thread;
1925 #ifdef ELF_CORE_COPY_XFPREGS
1926 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1927 #endif
1928 struct memelfnote notes[3];
1929 int num_notes;
1930 };
1931
1932 /*
1933 * In order to add the specific thread information for the elf file format,
1934 * we need to keep a linked list of every threads pr_status and then create
1935 * a single section for them in the final core file.
1936 */
1937 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1938 {
1939 int sz = 0;
1940 struct task_struct *p = t->thread;
1941 t->num_notes = 0;
1942
1943 fill_prstatus(&t->prstatus, p, signr);
1944 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1945
1946 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1947 &(t->prstatus));
1948 t->num_notes++;
1949 sz += notesize(&t->notes[0]);
1950
1951 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1952 &t->fpu))) {
1953 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1954 &(t->fpu));
1955 t->num_notes++;
1956 sz += notesize(&t->notes[1]);
1957 }
1958
1959 #ifdef ELF_CORE_COPY_XFPREGS
1960 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1961 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1962 sizeof(t->xfpu), &t->xfpu);
1963 t->num_notes++;
1964 sz += notesize(&t->notes[2]);
1965 }
1966 #endif
1967 return sz;
1968 }
1969
1970 struct elf_note_info {
1971 struct memelfnote *notes;
1972 struct memelfnote *notes_files;
1973 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1974 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1975 struct list_head thread_list;
1976 elf_fpregset_t *fpu;
1977 #ifdef ELF_CORE_COPY_XFPREGS
1978 elf_fpxregset_t *xfpu;
1979 #endif
1980 user_siginfo_t csigdata;
1981 int thread_status_size;
1982 int numnote;
1983 };
1984
1985 static int elf_note_info_init(struct elf_note_info *info)
1986 {
1987 memset(info, 0, sizeof(*info));
1988 INIT_LIST_HEAD(&info->thread_list);
1989
1990 /* Allocate space for ELF notes */
1991 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1992 if (!info->notes)
1993 return 0;
1994 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1995 if (!info->psinfo)
1996 return 0;
1997 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1998 if (!info->prstatus)
1999 return 0;
2000 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2001 if (!info->fpu)
2002 return 0;
2003 #ifdef ELF_CORE_COPY_XFPREGS
2004 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2005 if (!info->xfpu)
2006 return 0;
2007 #endif
2008 return 1;
2009 }
2010
2011 static int fill_note_info(struct elfhdr *elf, int phdrs,
2012 struct elf_note_info *info,
2013 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2014 {
2015 struct core_thread *ct;
2016 struct elf_thread_status *ets;
2017
2018 if (!elf_note_info_init(info))
2019 return 0;
2020
2021 for (ct = current->mm->core_state->dumper.next;
2022 ct; ct = ct->next) {
2023 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2024 if (!ets)
2025 return 0;
2026
2027 ets->thread = ct->task;
2028 list_add(&ets->list, &info->thread_list);
2029 }
2030
2031 list_for_each_entry(ets, &info->thread_list, list) {
2032 int sz;
2033
2034 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2035 info->thread_status_size += sz;
2036 }
2037 /* now collect the dump for the current */
2038 memset(info->prstatus, 0, sizeof(*info->prstatus));
2039 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2040 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2041
2042 /* Set up header */
2043 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2044
2045 /*
2046 * Set up the notes in similar form to SVR4 core dumps made
2047 * with info from their /proc.
2048 */
2049
2050 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2051 sizeof(*info->prstatus), info->prstatus);
2052 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2053 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2054 sizeof(*info->psinfo), info->psinfo);
2055
2056 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2057 fill_auxv_note(info->notes + 3, current->mm);
2058 info->numnote = 4;
2059
2060 if (fill_files_note(info->notes + info->numnote) == 0) {
2061 info->notes_files = info->notes + info->numnote;
2062 info->numnote++;
2063 }
2064
2065 /* Try to dump the FPU. */
2066 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2067 info->fpu);
2068 if (info->prstatus->pr_fpvalid)
2069 fill_note(info->notes + info->numnote++,
2070 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2071 #ifdef ELF_CORE_COPY_XFPREGS
2072 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2073 fill_note(info->notes + info->numnote++,
2074 "LINUX", ELF_CORE_XFPREG_TYPE,
2075 sizeof(*info->xfpu), info->xfpu);
2076 #endif
2077
2078 return 1;
2079 }
2080
2081 static size_t get_note_info_size(struct elf_note_info *info)
2082 {
2083 int sz = 0;
2084 int i;
2085
2086 for (i = 0; i < info->numnote; i++)
2087 sz += notesize(info->notes + i);
2088
2089 sz += info->thread_status_size;
2090
2091 return sz;
2092 }
2093
2094 static int write_note_info(struct elf_note_info *info,
2095 struct coredump_params *cprm)
2096 {
2097 struct elf_thread_status *ets;
2098 int i;
2099
2100 for (i = 0; i < info->numnote; i++)
2101 if (!writenote(info->notes + i, cprm))
2102 return 0;
2103
2104 /* write out the thread status notes section */
2105 list_for_each_entry(ets, &info->thread_list, list) {
2106 for (i = 0; i < ets->num_notes; i++)
2107 if (!writenote(&ets->notes[i], cprm))
2108 return 0;
2109 }
2110
2111 return 1;
2112 }
2113
2114 static void free_note_info(struct elf_note_info *info)
2115 {
2116 while (!list_empty(&info->thread_list)) {
2117 struct list_head *tmp = info->thread_list.next;
2118 list_del(tmp);
2119 kfree(list_entry(tmp, struct elf_thread_status, list));
2120 }
2121
2122 /* Free data possibly allocated by fill_files_note(): */
2123 if (info->notes_files)
2124 kvfree(info->notes_files->data);
2125
2126 kfree(info->prstatus);
2127 kfree(info->psinfo);
2128 kfree(info->notes);
2129 kfree(info->fpu);
2130 #ifdef ELF_CORE_COPY_XFPREGS
2131 kfree(info->xfpu);
2132 #endif
2133 }
2134
2135 #endif
2136
2137 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2138 struct vm_area_struct *gate_vma)
2139 {
2140 struct vm_area_struct *ret = tsk->mm->mmap;
2141
2142 if (ret)
2143 return ret;
2144 return gate_vma;
2145 }
2146 /*
2147 * Helper function for iterating across a vma list. It ensures that the caller
2148 * will visit `gate_vma' prior to terminating the search.
2149 */
2150 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2151 struct vm_area_struct *gate_vma)
2152 {
2153 struct vm_area_struct *ret;
2154
2155 ret = this_vma->vm_next;
2156 if (ret)
2157 return ret;
2158 if (this_vma == gate_vma)
2159 return NULL;
2160 return gate_vma;
2161 }
2162
2163 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2164 elf_addr_t e_shoff, int segs)
2165 {
2166 elf->e_shoff = e_shoff;
2167 elf->e_shentsize = sizeof(*shdr4extnum);
2168 elf->e_shnum = 1;
2169 elf->e_shstrndx = SHN_UNDEF;
2170
2171 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2172
2173 shdr4extnum->sh_type = SHT_NULL;
2174 shdr4extnum->sh_size = elf->e_shnum;
2175 shdr4extnum->sh_link = elf->e_shstrndx;
2176 shdr4extnum->sh_info = segs;
2177 }
2178
2179 /*
2180 * Actual dumper
2181 *
2182 * This is a two-pass process; first we find the offsets of the bits,
2183 * and then they are actually written out. If we run out of core limit
2184 * we just truncate.
2185 */
2186 static int elf_core_dump(struct coredump_params *cprm)
2187 {
2188 int has_dumped = 0;
2189 mm_segment_t fs;
2190 int segs, i;
2191 size_t vma_data_size = 0;
2192 struct vm_area_struct *vma, *gate_vma;
2193 struct elfhdr elf;
2194 loff_t offset = 0, dataoff;
2195 struct elf_note_info info = { };
2196 struct elf_phdr *phdr4note = NULL;
2197 struct elf_shdr *shdr4extnum = NULL;
2198 Elf_Half e_phnum;
2199 elf_addr_t e_shoff;
2200 elf_addr_t *vma_filesz = NULL;
2201
2202 /*
2203 * We no longer stop all VM operations.
2204 *
2205 * This is because those proceses that could possibly change map_count
2206 * or the mmap / vma pages are now blocked in do_exit on current
2207 * finishing this core dump.
2208 *
2209 * Only ptrace can touch these memory addresses, but it doesn't change
2210 * the map_count or the pages allocated. So no possibility of crashing
2211 * exists while dumping the mm->vm_next areas to the core file.
2212 */
2213
2214 /*
2215 * The number of segs are recored into ELF header as 16bit value.
2216 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2217 */
2218 segs = current->mm->map_count;
2219 segs += elf_core_extra_phdrs();
2220
2221 gate_vma = get_gate_vma(current->mm);
2222 if (gate_vma != NULL)
2223 segs++;
2224
2225 /* for notes section */
2226 segs++;
2227
2228 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2229 * this, kernel supports extended numbering. Have a look at
2230 * include/linux/elf.h for further information. */
2231 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2232
2233 /*
2234 * Collect all the non-memory information about the process for the
2235 * notes. This also sets up the file header.
2236 */
2237 if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2238 goto cleanup;
2239
2240 has_dumped = 1;
2241
2242 fs = get_fs();
2243 set_fs(KERNEL_DS);
2244
2245 offset += sizeof(elf); /* Elf header */
2246 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2247
2248 /* Write notes phdr entry */
2249 {
2250 size_t sz = get_note_info_size(&info);
2251
2252 sz += elf_coredump_extra_notes_size();
2253
2254 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2255 if (!phdr4note)
2256 goto end_coredump;
2257
2258 fill_elf_note_phdr(phdr4note, sz, offset);
2259 offset += sz;
2260 }
2261
2262 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2263
2264 /*
2265 * Zero vma process will get ZERO_SIZE_PTR here.
2266 * Let coredump continue for register state at least.
2267 */
2268 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2269 GFP_KERNEL);
2270 if (!vma_filesz)
2271 goto end_coredump;
2272
2273 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2274 vma = next_vma(vma, gate_vma)) {
2275 unsigned long dump_size;
2276
2277 dump_size = vma_dump_size(vma, cprm->mm_flags);
2278 vma_filesz[i++] = dump_size;
2279 vma_data_size += dump_size;
2280 }
2281
2282 offset += vma_data_size;
2283 offset += elf_core_extra_data_size();
2284 e_shoff = offset;
2285
2286 if (e_phnum == PN_XNUM) {
2287 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2288 if (!shdr4extnum)
2289 goto end_coredump;
2290 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2291 }
2292
2293 offset = dataoff;
2294
2295 if (!dump_emit(cprm, &elf, sizeof(elf)))
2296 goto end_coredump;
2297
2298 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2299 goto end_coredump;
2300
2301 /* Write program headers for segments dump */
2302 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2303 vma = next_vma(vma, gate_vma)) {
2304 struct elf_phdr phdr;
2305
2306 phdr.p_type = PT_LOAD;
2307 phdr.p_offset = offset;
2308 phdr.p_vaddr = vma->vm_start;
2309 phdr.p_paddr = 0;
2310 phdr.p_filesz = vma_filesz[i++];
2311 phdr.p_memsz = vma->vm_end - vma->vm_start;
2312 offset += phdr.p_filesz;
2313 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2314 if (vma->vm_flags & VM_WRITE)
2315 phdr.p_flags |= PF_W;
2316 if (vma->vm_flags & VM_EXEC)
2317 phdr.p_flags |= PF_X;
2318 phdr.p_align = ELF_EXEC_PAGESIZE;
2319
2320 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2321 goto end_coredump;
2322 }
2323
2324 if (!elf_core_write_extra_phdrs(cprm, offset))
2325 goto end_coredump;
2326
2327 /* write out the notes section */
2328 if (!write_note_info(&info, cprm))
2329 goto end_coredump;
2330
2331 if (elf_coredump_extra_notes_write(cprm))
2332 goto end_coredump;
2333
2334 /* Align to page */
2335 if (!dump_skip(cprm, dataoff - cprm->pos))
2336 goto end_coredump;
2337
2338 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2339 vma = next_vma(vma, gate_vma)) {
2340 unsigned long addr;
2341 unsigned long end;
2342
2343 end = vma->vm_start + vma_filesz[i++];
2344
2345 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2346 struct page *page;
2347 int stop;
2348
2349 page = get_dump_page(addr);
2350 if (page) {
2351 void *kaddr = kmap(page);
2352 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2353 kunmap(page);
2354 put_page(page);
2355 } else
2356 stop = !dump_skip(cprm, PAGE_SIZE);
2357 if (stop)
2358 goto end_coredump;
2359 }
2360 }
2361 dump_truncate(cprm);
2362
2363 if (!elf_core_write_extra_data(cprm))
2364 goto end_coredump;
2365
2366 if (e_phnum == PN_XNUM) {
2367 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2368 goto end_coredump;
2369 }
2370
2371 end_coredump:
2372 set_fs(fs);
2373
2374 cleanup:
2375 free_note_info(&info);
2376 kfree(shdr4extnum);
2377 kvfree(vma_filesz);
2378 kfree(phdr4note);
2379 return has_dumped;
2380 }
2381
2382 #endif /* CONFIG_ELF_CORE */
2383
2384 static int __init init_elf_binfmt(void)
2385 {
2386 register_binfmt(&elf_format);
2387 return 0;
2388 }
2389
2390 static void __exit exit_elf_binfmt(void)
2391 {
2392 /* Remove the COFF and ELF loaders. */
2393 unregister_binfmt(&elf_format);
2394 }
2395
2396 core_initcall(init_elf_binfmt);
2397 module_exit(exit_elf_binfmt);
2398 MODULE_LICENSE("GPL");