]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/binfmt_elf.c
Merge tag 'stable/for-linus-3.8-rc0-bugfix-tag' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <asm/uaccess.h>
37 #include <asm/param.h>
38 #include <asm/page.h>
39
40 #ifndef user_long_t
41 #define user_long_t long
42 #endif
43 #ifndef user_siginfo_t
44 #define user_siginfo_t siginfo_t
45 #endif
46
47 static int load_elf_binary(struct linux_binprm *bprm);
48 static int load_elf_library(struct file *);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 int, int, unsigned long);
51
52 /*
53 * If we don't support core dumping, then supply a NULL so we
54 * don't even try.
55 */
56 #ifdef CONFIG_ELF_CORE
57 static int elf_core_dump(struct coredump_params *cprm);
58 #else
59 #define elf_core_dump NULL
60 #endif
61
62 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
63 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
64 #else
65 #define ELF_MIN_ALIGN PAGE_SIZE
66 #endif
67
68 #ifndef ELF_CORE_EFLAGS
69 #define ELF_CORE_EFLAGS 0
70 #endif
71
72 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
73 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
74 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
75
76 static struct linux_binfmt elf_format = {
77 .module = THIS_MODULE,
78 .load_binary = load_elf_binary,
79 .load_shlib = load_elf_library,
80 .core_dump = elf_core_dump,
81 .min_coredump = ELF_EXEC_PAGESIZE,
82 };
83
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85
86 static int set_brk(unsigned long start, unsigned long end)
87 {
88 start = ELF_PAGEALIGN(start);
89 end = ELF_PAGEALIGN(end);
90 if (end > start) {
91 unsigned long addr;
92 addr = vm_brk(start, end - start);
93 if (BAD_ADDR(addr))
94 return addr;
95 }
96 current->mm->start_brk = current->mm->brk = end;
97 return 0;
98 }
99
100 /* We need to explicitly zero any fractional pages
101 after the data section (i.e. bss). This would
102 contain the junk from the file that should not
103 be in memory
104 */
105 static int padzero(unsigned long elf_bss)
106 {
107 unsigned long nbyte;
108
109 nbyte = ELF_PAGEOFFSET(elf_bss);
110 if (nbyte) {
111 nbyte = ELF_MIN_ALIGN - nbyte;
112 if (clear_user((void __user *) elf_bss, nbyte))
113 return -EFAULT;
114 }
115 return 0;
116 }
117
118 /* Let's use some macros to make this stack manipulation a little clearer */
119 #ifdef CONFIG_STACK_GROWSUP
120 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
121 #define STACK_ROUND(sp, items) \
122 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
123 #define STACK_ALLOC(sp, len) ({ \
124 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
125 old_sp; })
126 #else
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
128 #define STACK_ROUND(sp, items) \
129 (((unsigned long) (sp - items)) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
131 #endif
132
133 #ifndef ELF_BASE_PLATFORM
134 /*
135 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
136 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
137 * will be copied to the user stack in the same manner as AT_PLATFORM.
138 */
139 #define ELF_BASE_PLATFORM NULL
140 #endif
141
142 static int
143 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
144 unsigned long load_addr, unsigned long interp_load_addr)
145 {
146 unsigned long p = bprm->p;
147 int argc = bprm->argc;
148 int envc = bprm->envc;
149 elf_addr_t __user *argv;
150 elf_addr_t __user *envp;
151 elf_addr_t __user *sp;
152 elf_addr_t __user *u_platform;
153 elf_addr_t __user *u_base_platform;
154 elf_addr_t __user *u_rand_bytes;
155 const char *k_platform = ELF_PLATFORM;
156 const char *k_base_platform = ELF_BASE_PLATFORM;
157 unsigned char k_rand_bytes[16];
158 int items;
159 elf_addr_t *elf_info;
160 int ei_index = 0;
161 const struct cred *cred = current_cred();
162 struct vm_area_struct *vma;
163
164 /*
165 * In some cases (e.g. Hyper-Threading), we want to avoid L1
166 * evictions by the processes running on the same package. One
167 * thing we can do is to shuffle the initial stack for them.
168 */
169
170 p = arch_align_stack(p);
171
172 /*
173 * If this architecture has a platform capability string, copy it
174 * to userspace. In some cases (Sparc), this info is impossible
175 * for userspace to get any other way, in others (i386) it is
176 * merely difficult.
177 */
178 u_platform = NULL;
179 if (k_platform) {
180 size_t len = strlen(k_platform) + 1;
181
182 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
183 if (__copy_to_user(u_platform, k_platform, len))
184 return -EFAULT;
185 }
186
187 /*
188 * If this architecture has a "base" platform capability
189 * string, copy it to userspace.
190 */
191 u_base_platform = NULL;
192 if (k_base_platform) {
193 size_t len = strlen(k_base_platform) + 1;
194
195 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
196 if (__copy_to_user(u_base_platform, k_base_platform, len))
197 return -EFAULT;
198 }
199
200 /*
201 * Generate 16 random bytes for userspace PRNG seeding.
202 */
203 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
204 u_rand_bytes = (elf_addr_t __user *)
205 STACK_ALLOC(p, sizeof(k_rand_bytes));
206 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
207 return -EFAULT;
208
209 /* Create the ELF interpreter info */
210 elf_info = (elf_addr_t *)current->mm->saved_auxv;
211 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
212 #define NEW_AUX_ENT(id, val) \
213 do { \
214 elf_info[ei_index++] = id; \
215 elf_info[ei_index++] = val; \
216 } while (0)
217
218 #ifdef ARCH_DLINFO
219 /*
220 * ARCH_DLINFO must come first so PPC can do its special alignment of
221 * AUXV.
222 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
223 * ARCH_DLINFO changes
224 */
225 ARCH_DLINFO;
226 #endif
227 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
228 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
229 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
230 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
231 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
232 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
233 NEW_AUX_ENT(AT_BASE, interp_load_addr);
234 NEW_AUX_ENT(AT_FLAGS, 0);
235 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
236 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
237 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
238 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
239 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
240 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
241 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
242 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
243 if (k_platform) {
244 NEW_AUX_ENT(AT_PLATFORM,
245 (elf_addr_t)(unsigned long)u_platform);
246 }
247 if (k_base_platform) {
248 NEW_AUX_ENT(AT_BASE_PLATFORM,
249 (elf_addr_t)(unsigned long)u_base_platform);
250 }
251 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
252 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
253 }
254 #undef NEW_AUX_ENT
255 /* AT_NULL is zero; clear the rest too */
256 memset(&elf_info[ei_index], 0,
257 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
258
259 /* And advance past the AT_NULL entry. */
260 ei_index += 2;
261
262 sp = STACK_ADD(p, ei_index);
263
264 items = (argc + 1) + (envc + 1) + 1;
265 bprm->p = STACK_ROUND(sp, items);
266
267 /* Point sp at the lowest address on the stack */
268 #ifdef CONFIG_STACK_GROWSUP
269 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
270 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
271 #else
272 sp = (elf_addr_t __user *)bprm->p;
273 #endif
274
275
276 /*
277 * Grow the stack manually; some architectures have a limit on how
278 * far ahead a user-space access may be in order to grow the stack.
279 */
280 vma = find_extend_vma(current->mm, bprm->p);
281 if (!vma)
282 return -EFAULT;
283
284 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
285 if (__put_user(argc, sp++))
286 return -EFAULT;
287 argv = sp;
288 envp = argv + argc + 1;
289
290 /* Populate argv and envp */
291 p = current->mm->arg_end = current->mm->arg_start;
292 while (argc-- > 0) {
293 size_t len;
294 if (__put_user((elf_addr_t)p, argv++))
295 return -EFAULT;
296 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
297 if (!len || len > MAX_ARG_STRLEN)
298 return -EINVAL;
299 p += len;
300 }
301 if (__put_user(0, argv))
302 return -EFAULT;
303 current->mm->arg_end = current->mm->env_start = p;
304 while (envc-- > 0) {
305 size_t len;
306 if (__put_user((elf_addr_t)p, envp++))
307 return -EFAULT;
308 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
309 if (!len || len > MAX_ARG_STRLEN)
310 return -EINVAL;
311 p += len;
312 }
313 if (__put_user(0, envp))
314 return -EFAULT;
315 current->mm->env_end = p;
316
317 /* Put the elf_info on the stack in the right place. */
318 sp = (elf_addr_t __user *)envp + 1;
319 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
320 return -EFAULT;
321 return 0;
322 }
323
324 static unsigned long elf_map(struct file *filep, unsigned long addr,
325 struct elf_phdr *eppnt, int prot, int type,
326 unsigned long total_size)
327 {
328 unsigned long map_addr;
329 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
330 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
331 addr = ELF_PAGESTART(addr);
332 size = ELF_PAGEALIGN(size);
333
334 /* mmap() will return -EINVAL if given a zero size, but a
335 * segment with zero filesize is perfectly valid */
336 if (!size)
337 return addr;
338
339 /*
340 * total_size is the size of the ELF (interpreter) image.
341 * The _first_ mmap needs to know the full size, otherwise
342 * randomization might put this image into an overlapping
343 * position with the ELF binary image. (since size < total_size)
344 * So we first map the 'big' image - and unmap the remainder at
345 * the end. (which unmap is needed for ELF images with holes.)
346 */
347 if (total_size) {
348 total_size = ELF_PAGEALIGN(total_size);
349 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
350 if (!BAD_ADDR(map_addr))
351 vm_munmap(map_addr+size, total_size-size);
352 } else
353 map_addr = vm_mmap(filep, addr, size, prot, type, off);
354
355 return(map_addr);
356 }
357
358 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
359 {
360 int i, first_idx = -1, last_idx = -1;
361
362 for (i = 0; i < nr; i++) {
363 if (cmds[i].p_type == PT_LOAD) {
364 last_idx = i;
365 if (first_idx == -1)
366 first_idx = i;
367 }
368 }
369 if (first_idx == -1)
370 return 0;
371
372 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
373 ELF_PAGESTART(cmds[first_idx].p_vaddr);
374 }
375
376
377 /* This is much more generalized than the library routine read function,
378 so we keep this separate. Technically the library read function
379 is only provided so that we can read a.out libraries that have
380 an ELF header */
381
382 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
383 struct file *interpreter, unsigned long *interp_map_addr,
384 unsigned long no_base)
385 {
386 struct elf_phdr *elf_phdata;
387 struct elf_phdr *eppnt;
388 unsigned long load_addr = 0;
389 int load_addr_set = 0;
390 unsigned long last_bss = 0, elf_bss = 0;
391 unsigned long error = ~0UL;
392 unsigned long total_size;
393 int retval, i, size;
394
395 /* First of all, some simple consistency checks */
396 if (interp_elf_ex->e_type != ET_EXEC &&
397 interp_elf_ex->e_type != ET_DYN)
398 goto out;
399 if (!elf_check_arch(interp_elf_ex))
400 goto out;
401 if (!interpreter->f_op || !interpreter->f_op->mmap)
402 goto out;
403
404 /*
405 * If the size of this structure has changed, then punt, since
406 * we will be doing the wrong thing.
407 */
408 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
409 goto out;
410 if (interp_elf_ex->e_phnum < 1 ||
411 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
412 goto out;
413
414 /* Now read in all of the header information */
415 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
416 if (size > ELF_MIN_ALIGN)
417 goto out;
418 elf_phdata = kmalloc(size, GFP_KERNEL);
419 if (!elf_phdata)
420 goto out;
421
422 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
423 (char *)elf_phdata, size);
424 error = -EIO;
425 if (retval != size) {
426 if (retval < 0)
427 error = retval;
428 goto out_close;
429 }
430
431 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
432 if (!total_size) {
433 error = -EINVAL;
434 goto out_close;
435 }
436
437 eppnt = elf_phdata;
438 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
439 if (eppnt->p_type == PT_LOAD) {
440 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
441 int elf_prot = 0;
442 unsigned long vaddr = 0;
443 unsigned long k, map_addr;
444
445 if (eppnt->p_flags & PF_R)
446 elf_prot = PROT_READ;
447 if (eppnt->p_flags & PF_W)
448 elf_prot |= PROT_WRITE;
449 if (eppnt->p_flags & PF_X)
450 elf_prot |= PROT_EXEC;
451 vaddr = eppnt->p_vaddr;
452 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
453 elf_type |= MAP_FIXED;
454 else if (no_base && interp_elf_ex->e_type == ET_DYN)
455 load_addr = -vaddr;
456
457 map_addr = elf_map(interpreter, load_addr + vaddr,
458 eppnt, elf_prot, elf_type, total_size);
459 total_size = 0;
460 if (!*interp_map_addr)
461 *interp_map_addr = map_addr;
462 error = map_addr;
463 if (BAD_ADDR(map_addr))
464 goto out_close;
465
466 if (!load_addr_set &&
467 interp_elf_ex->e_type == ET_DYN) {
468 load_addr = map_addr - ELF_PAGESTART(vaddr);
469 load_addr_set = 1;
470 }
471
472 /*
473 * Check to see if the section's size will overflow the
474 * allowed task size. Note that p_filesz must always be
475 * <= p_memsize so it's only necessary to check p_memsz.
476 */
477 k = load_addr + eppnt->p_vaddr;
478 if (BAD_ADDR(k) ||
479 eppnt->p_filesz > eppnt->p_memsz ||
480 eppnt->p_memsz > TASK_SIZE ||
481 TASK_SIZE - eppnt->p_memsz < k) {
482 error = -ENOMEM;
483 goto out_close;
484 }
485
486 /*
487 * Find the end of the file mapping for this phdr, and
488 * keep track of the largest address we see for this.
489 */
490 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
491 if (k > elf_bss)
492 elf_bss = k;
493
494 /*
495 * Do the same thing for the memory mapping - between
496 * elf_bss and last_bss is the bss section.
497 */
498 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
499 if (k > last_bss)
500 last_bss = k;
501 }
502 }
503
504 if (last_bss > elf_bss) {
505 /*
506 * Now fill out the bss section. First pad the last page up
507 * to the page boundary, and then perform a mmap to make sure
508 * that there are zero-mapped pages up to and including the
509 * last bss page.
510 */
511 if (padzero(elf_bss)) {
512 error = -EFAULT;
513 goto out_close;
514 }
515
516 /* What we have mapped so far */
517 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
518
519 /* Map the last of the bss segment */
520 error = vm_brk(elf_bss, last_bss - elf_bss);
521 if (BAD_ADDR(error))
522 goto out_close;
523 }
524
525 error = load_addr;
526
527 out_close:
528 kfree(elf_phdata);
529 out:
530 return error;
531 }
532
533 /*
534 * These are the functions used to load ELF style executables and shared
535 * libraries. There is no binary dependent code anywhere else.
536 */
537
538 #define INTERPRETER_NONE 0
539 #define INTERPRETER_ELF 2
540
541 #ifndef STACK_RND_MASK
542 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
543 #endif
544
545 static unsigned long randomize_stack_top(unsigned long stack_top)
546 {
547 unsigned int random_variable = 0;
548
549 if ((current->flags & PF_RANDOMIZE) &&
550 !(current->personality & ADDR_NO_RANDOMIZE)) {
551 random_variable = get_random_int() & STACK_RND_MASK;
552 random_variable <<= PAGE_SHIFT;
553 }
554 #ifdef CONFIG_STACK_GROWSUP
555 return PAGE_ALIGN(stack_top) + random_variable;
556 #else
557 return PAGE_ALIGN(stack_top) - random_variable;
558 #endif
559 }
560
561 static int load_elf_binary(struct linux_binprm *bprm)
562 {
563 struct file *interpreter = NULL; /* to shut gcc up */
564 unsigned long load_addr = 0, load_bias = 0;
565 int load_addr_set = 0;
566 char * elf_interpreter = NULL;
567 unsigned long error;
568 struct elf_phdr *elf_ppnt, *elf_phdata;
569 unsigned long elf_bss, elf_brk;
570 int retval, i;
571 unsigned int size;
572 unsigned long elf_entry;
573 unsigned long interp_load_addr = 0;
574 unsigned long start_code, end_code, start_data, end_data;
575 unsigned long reloc_func_desc __maybe_unused = 0;
576 int executable_stack = EXSTACK_DEFAULT;
577 unsigned long def_flags = 0;
578 struct pt_regs *regs = current_pt_regs();
579 struct {
580 struct elfhdr elf_ex;
581 struct elfhdr interp_elf_ex;
582 } *loc;
583
584 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
585 if (!loc) {
586 retval = -ENOMEM;
587 goto out_ret;
588 }
589
590 /* Get the exec-header */
591 loc->elf_ex = *((struct elfhdr *)bprm->buf);
592
593 retval = -ENOEXEC;
594 /* First of all, some simple consistency checks */
595 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
596 goto out;
597
598 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
599 goto out;
600 if (!elf_check_arch(&loc->elf_ex))
601 goto out;
602 if (!bprm->file->f_op || !bprm->file->f_op->mmap)
603 goto out;
604
605 /* Now read in all of the header information */
606 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
607 goto out;
608 if (loc->elf_ex.e_phnum < 1 ||
609 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
610 goto out;
611 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
612 retval = -ENOMEM;
613 elf_phdata = kmalloc(size, GFP_KERNEL);
614 if (!elf_phdata)
615 goto out;
616
617 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
618 (char *)elf_phdata, size);
619 if (retval != size) {
620 if (retval >= 0)
621 retval = -EIO;
622 goto out_free_ph;
623 }
624
625 elf_ppnt = elf_phdata;
626 elf_bss = 0;
627 elf_brk = 0;
628
629 start_code = ~0UL;
630 end_code = 0;
631 start_data = 0;
632 end_data = 0;
633
634 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
635 if (elf_ppnt->p_type == PT_INTERP) {
636 /* This is the program interpreter used for
637 * shared libraries - for now assume that this
638 * is an a.out format binary
639 */
640 retval = -ENOEXEC;
641 if (elf_ppnt->p_filesz > PATH_MAX ||
642 elf_ppnt->p_filesz < 2)
643 goto out_free_ph;
644
645 retval = -ENOMEM;
646 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
647 GFP_KERNEL);
648 if (!elf_interpreter)
649 goto out_free_ph;
650
651 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
652 elf_interpreter,
653 elf_ppnt->p_filesz);
654 if (retval != elf_ppnt->p_filesz) {
655 if (retval >= 0)
656 retval = -EIO;
657 goto out_free_interp;
658 }
659 /* make sure path is NULL terminated */
660 retval = -ENOEXEC;
661 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
662 goto out_free_interp;
663
664 interpreter = open_exec(elf_interpreter);
665 retval = PTR_ERR(interpreter);
666 if (IS_ERR(interpreter))
667 goto out_free_interp;
668
669 /*
670 * If the binary is not readable then enforce
671 * mm->dumpable = 0 regardless of the interpreter's
672 * permissions.
673 */
674 would_dump(bprm, interpreter);
675
676 retval = kernel_read(interpreter, 0, bprm->buf,
677 BINPRM_BUF_SIZE);
678 if (retval != BINPRM_BUF_SIZE) {
679 if (retval >= 0)
680 retval = -EIO;
681 goto out_free_dentry;
682 }
683
684 /* Get the exec headers */
685 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
686 break;
687 }
688 elf_ppnt++;
689 }
690
691 elf_ppnt = elf_phdata;
692 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
693 if (elf_ppnt->p_type == PT_GNU_STACK) {
694 if (elf_ppnt->p_flags & PF_X)
695 executable_stack = EXSTACK_ENABLE_X;
696 else
697 executable_stack = EXSTACK_DISABLE_X;
698 break;
699 }
700
701 /* Some simple consistency checks for the interpreter */
702 if (elf_interpreter) {
703 retval = -ELIBBAD;
704 /* Not an ELF interpreter */
705 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
706 goto out_free_dentry;
707 /* Verify the interpreter has a valid arch */
708 if (!elf_check_arch(&loc->interp_elf_ex))
709 goto out_free_dentry;
710 }
711
712 /* Flush all traces of the currently running executable */
713 retval = flush_old_exec(bprm);
714 if (retval)
715 goto out_free_dentry;
716
717 /* OK, This is the point of no return */
718 current->mm->def_flags = def_flags;
719
720 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
721 may depend on the personality. */
722 SET_PERSONALITY(loc->elf_ex);
723 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
724 current->personality |= READ_IMPLIES_EXEC;
725
726 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
727 current->flags |= PF_RANDOMIZE;
728
729 setup_new_exec(bprm);
730
731 /* Do this so that we can load the interpreter, if need be. We will
732 change some of these later */
733 current->mm->free_area_cache = current->mm->mmap_base;
734 current->mm->cached_hole_size = 0;
735 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
736 executable_stack);
737 if (retval < 0) {
738 send_sig(SIGKILL, current, 0);
739 goto out_free_dentry;
740 }
741
742 current->mm->start_stack = bprm->p;
743
744 /* Now we do a little grungy work by mmapping the ELF image into
745 the correct location in memory. */
746 for(i = 0, elf_ppnt = elf_phdata;
747 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
748 int elf_prot = 0, elf_flags;
749 unsigned long k, vaddr;
750
751 if (elf_ppnt->p_type != PT_LOAD)
752 continue;
753
754 if (unlikely (elf_brk > elf_bss)) {
755 unsigned long nbyte;
756
757 /* There was a PT_LOAD segment with p_memsz > p_filesz
758 before this one. Map anonymous pages, if needed,
759 and clear the area. */
760 retval = set_brk(elf_bss + load_bias,
761 elf_brk + load_bias);
762 if (retval) {
763 send_sig(SIGKILL, current, 0);
764 goto out_free_dentry;
765 }
766 nbyte = ELF_PAGEOFFSET(elf_bss);
767 if (nbyte) {
768 nbyte = ELF_MIN_ALIGN - nbyte;
769 if (nbyte > elf_brk - elf_bss)
770 nbyte = elf_brk - elf_bss;
771 if (clear_user((void __user *)elf_bss +
772 load_bias, nbyte)) {
773 /*
774 * This bss-zeroing can fail if the ELF
775 * file specifies odd protections. So
776 * we don't check the return value
777 */
778 }
779 }
780 }
781
782 if (elf_ppnt->p_flags & PF_R)
783 elf_prot |= PROT_READ;
784 if (elf_ppnt->p_flags & PF_W)
785 elf_prot |= PROT_WRITE;
786 if (elf_ppnt->p_flags & PF_X)
787 elf_prot |= PROT_EXEC;
788
789 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
790
791 vaddr = elf_ppnt->p_vaddr;
792 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
793 elf_flags |= MAP_FIXED;
794 } else if (loc->elf_ex.e_type == ET_DYN) {
795 /* Try and get dynamic programs out of the way of the
796 * default mmap base, as well as whatever program they
797 * might try to exec. This is because the brk will
798 * follow the loader, and is not movable. */
799 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
800 /* Memory randomization might have been switched off
801 * in runtime via sysctl.
802 * If that is the case, retain the original non-zero
803 * load_bias value in order to establish proper
804 * non-randomized mappings.
805 */
806 if (current->flags & PF_RANDOMIZE)
807 load_bias = 0;
808 else
809 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
810 #else
811 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
812 #endif
813 }
814
815 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
816 elf_prot, elf_flags, 0);
817 if (BAD_ADDR(error)) {
818 send_sig(SIGKILL, current, 0);
819 retval = IS_ERR((void *)error) ?
820 PTR_ERR((void*)error) : -EINVAL;
821 goto out_free_dentry;
822 }
823
824 if (!load_addr_set) {
825 load_addr_set = 1;
826 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
827 if (loc->elf_ex.e_type == ET_DYN) {
828 load_bias += error -
829 ELF_PAGESTART(load_bias + vaddr);
830 load_addr += load_bias;
831 reloc_func_desc = load_bias;
832 }
833 }
834 k = elf_ppnt->p_vaddr;
835 if (k < start_code)
836 start_code = k;
837 if (start_data < k)
838 start_data = k;
839
840 /*
841 * Check to see if the section's size will overflow the
842 * allowed task size. Note that p_filesz must always be
843 * <= p_memsz so it is only necessary to check p_memsz.
844 */
845 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
846 elf_ppnt->p_memsz > TASK_SIZE ||
847 TASK_SIZE - elf_ppnt->p_memsz < k) {
848 /* set_brk can never work. Avoid overflows. */
849 send_sig(SIGKILL, current, 0);
850 retval = -EINVAL;
851 goto out_free_dentry;
852 }
853
854 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
855
856 if (k > elf_bss)
857 elf_bss = k;
858 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
859 end_code = k;
860 if (end_data < k)
861 end_data = k;
862 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
863 if (k > elf_brk)
864 elf_brk = k;
865 }
866
867 loc->elf_ex.e_entry += load_bias;
868 elf_bss += load_bias;
869 elf_brk += load_bias;
870 start_code += load_bias;
871 end_code += load_bias;
872 start_data += load_bias;
873 end_data += load_bias;
874
875 /* Calling set_brk effectively mmaps the pages that we need
876 * for the bss and break sections. We must do this before
877 * mapping in the interpreter, to make sure it doesn't wind
878 * up getting placed where the bss needs to go.
879 */
880 retval = set_brk(elf_bss, elf_brk);
881 if (retval) {
882 send_sig(SIGKILL, current, 0);
883 goto out_free_dentry;
884 }
885 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
886 send_sig(SIGSEGV, current, 0);
887 retval = -EFAULT; /* Nobody gets to see this, but.. */
888 goto out_free_dentry;
889 }
890
891 if (elf_interpreter) {
892 unsigned long interp_map_addr = 0;
893
894 elf_entry = load_elf_interp(&loc->interp_elf_ex,
895 interpreter,
896 &interp_map_addr,
897 load_bias);
898 if (!IS_ERR((void *)elf_entry)) {
899 /*
900 * load_elf_interp() returns relocation
901 * adjustment
902 */
903 interp_load_addr = elf_entry;
904 elf_entry += loc->interp_elf_ex.e_entry;
905 }
906 if (BAD_ADDR(elf_entry)) {
907 force_sig(SIGSEGV, current);
908 retval = IS_ERR((void *)elf_entry) ?
909 (int)elf_entry : -EINVAL;
910 goto out_free_dentry;
911 }
912 reloc_func_desc = interp_load_addr;
913
914 allow_write_access(interpreter);
915 fput(interpreter);
916 kfree(elf_interpreter);
917 } else {
918 elf_entry = loc->elf_ex.e_entry;
919 if (BAD_ADDR(elf_entry)) {
920 force_sig(SIGSEGV, current);
921 retval = -EINVAL;
922 goto out_free_dentry;
923 }
924 }
925
926 kfree(elf_phdata);
927
928 set_binfmt(&elf_format);
929
930 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
931 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
932 if (retval < 0) {
933 send_sig(SIGKILL, current, 0);
934 goto out;
935 }
936 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
937
938 install_exec_creds(bprm);
939 retval = create_elf_tables(bprm, &loc->elf_ex,
940 load_addr, interp_load_addr);
941 if (retval < 0) {
942 send_sig(SIGKILL, current, 0);
943 goto out;
944 }
945 /* N.B. passed_fileno might not be initialized? */
946 current->mm->end_code = end_code;
947 current->mm->start_code = start_code;
948 current->mm->start_data = start_data;
949 current->mm->end_data = end_data;
950 current->mm->start_stack = bprm->p;
951
952 #ifdef arch_randomize_brk
953 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
954 current->mm->brk = current->mm->start_brk =
955 arch_randomize_brk(current->mm);
956 #ifdef CONFIG_COMPAT_BRK
957 current->brk_randomized = 1;
958 #endif
959 }
960 #endif
961
962 if (current->personality & MMAP_PAGE_ZERO) {
963 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
964 and some applications "depend" upon this behavior.
965 Since we do not have the power to recompile these, we
966 emulate the SVr4 behavior. Sigh. */
967 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
968 MAP_FIXED | MAP_PRIVATE, 0);
969 }
970
971 #ifdef ELF_PLAT_INIT
972 /*
973 * The ABI may specify that certain registers be set up in special
974 * ways (on i386 %edx is the address of a DT_FINI function, for
975 * example. In addition, it may also specify (eg, PowerPC64 ELF)
976 * that the e_entry field is the address of the function descriptor
977 * for the startup routine, rather than the address of the startup
978 * routine itself. This macro performs whatever initialization to
979 * the regs structure is required as well as any relocations to the
980 * function descriptor entries when executing dynamically links apps.
981 */
982 ELF_PLAT_INIT(regs, reloc_func_desc);
983 #endif
984
985 start_thread(regs, elf_entry, bprm->p);
986 retval = 0;
987 out:
988 kfree(loc);
989 out_ret:
990 return retval;
991
992 /* error cleanup */
993 out_free_dentry:
994 allow_write_access(interpreter);
995 if (interpreter)
996 fput(interpreter);
997 out_free_interp:
998 kfree(elf_interpreter);
999 out_free_ph:
1000 kfree(elf_phdata);
1001 goto out;
1002 }
1003
1004 /* This is really simpleminded and specialized - we are loading an
1005 a.out library that is given an ELF header. */
1006 static int load_elf_library(struct file *file)
1007 {
1008 struct elf_phdr *elf_phdata;
1009 struct elf_phdr *eppnt;
1010 unsigned long elf_bss, bss, len;
1011 int retval, error, i, j;
1012 struct elfhdr elf_ex;
1013
1014 error = -ENOEXEC;
1015 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1016 if (retval != sizeof(elf_ex))
1017 goto out;
1018
1019 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1020 goto out;
1021
1022 /* First of all, some simple consistency checks */
1023 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1024 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1025 goto out;
1026
1027 /* Now read in all of the header information */
1028
1029 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1030 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1031
1032 error = -ENOMEM;
1033 elf_phdata = kmalloc(j, GFP_KERNEL);
1034 if (!elf_phdata)
1035 goto out;
1036
1037 eppnt = elf_phdata;
1038 error = -ENOEXEC;
1039 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1040 if (retval != j)
1041 goto out_free_ph;
1042
1043 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1044 if ((eppnt + i)->p_type == PT_LOAD)
1045 j++;
1046 if (j != 1)
1047 goto out_free_ph;
1048
1049 while (eppnt->p_type != PT_LOAD)
1050 eppnt++;
1051
1052 /* Now use mmap to map the library into memory. */
1053 error = vm_mmap(file,
1054 ELF_PAGESTART(eppnt->p_vaddr),
1055 (eppnt->p_filesz +
1056 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1057 PROT_READ | PROT_WRITE | PROT_EXEC,
1058 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1059 (eppnt->p_offset -
1060 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1061 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1062 goto out_free_ph;
1063
1064 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1065 if (padzero(elf_bss)) {
1066 error = -EFAULT;
1067 goto out_free_ph;
1068 }
1069
1070 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1071 ELF_MIN_ALIGN - 1);
1072 bss = eppnt->p_memsz + eppnt->p_vaddr;
1073 if (bss > len)
1074 vm_brk(len, bss - len);
1075 error = 0;
1076
1077 out_free_ph:
1078 kfree(elf_phdata);
1079 out:
1080 return error;
1081 }
1082
1083 #ifdef CONFIG_ELF_CORE
1084 /*
1085 * ELF core dumper
1086 *
1087 * Modelled on fs/exec.c:aout_core_dump()
1088 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1089 */
1090
1091 /*
1092 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1093 * that are useful for post-mortem analysis are included in every core dump.
1094 * In that way we ensure that the core dump is fully interpretable later
1095 * without matching up the same kernel and hardware config to see what PC values
1096 * meant. These special mappings include - vDSO, vsyscall, and other
1097 * architecture specific mappings
1098 */
1099 static bool always_dump_vma(struct vm_area_struct *vma)
1100 {
1101 /* Any vsyscall mappings? */
1102 if (vma == get_gate_vma(vma->vm_mm))
1103 return true;
1104 /*
1105 * arch_vma_name() returns non-NULL for special architecture mappings,
1106 * such as vDSO sections.
1107 */
1108 if (arch_vma_name(vma))
1109 return true;
1110
1111 return false;
1112 }
1113
1114 /*
1115 * Decide what to dump of a segment, part, all or none.
1116 */
1117 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1118 unsigned long mm_flags)
1119 {
1120 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1121
1122 /* always dump the vdso and vsyscall sections */
1123 if (always_dump_vma(vma))
1124 goto whole;
1125
1126 if (vma->vm_flags & VM_DONTDUMP)
1127 return 0;
1128
1129 /* Hugetlb memory check */
1130 if (vma->vm_flags & VM_HUGETLB) {
1131 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1132 goto whole;
1133 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1134 goto whole;
1135 }
1136
1137 /* Do not dump I/O mapped devices or special mappings */
1138 if (vma->vm_flags & VM_IO)
1139 return 0;
1140
1141 /* By default, dump shared memory if mapped from an anonymous file. */
1142 if (vma->vm_flags & VM_SHARED) {
1143 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1144 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1145 goto whole;
1146 return 0;
1147 }
1148
1149 /* Dump segments that have been written to. */
1150 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1151 goto whole;
1152 if (vma->vm_file == NULL)
1153 return 0;
1154
1155 if (FILTER(MAPPED_PRIVATE))
1156 goto whole;
1157
1158 /*
1159 * If this looks like the beginning of a DSO or executable mapping,
1160 * check for an ELF header. If we find one, dump the first page to
1161 * aid in determining what was mapped here.
1162 */
1163 if (FILTER(ELF_HEADERS) &&
1164 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1165 u32 __user *header = (u32 __user *) vma->vm_start;
1166 u32 word;
1167 mm_segment_t fs = get_fs();
1168 /*
1169 * Doing it this way gets the constant folded by GCC.
1170 */
1171 union {
1172 u32 cmp;
1173 char elfmag[SELFMAG];
1174 } magic;
1175 BUILD_BUG_ON(SELFMAG != sizeof word);
1176 magic.elfmag[EI_MAG0] = ELFMAG0;
1177 magic.elfmag[EI_MAG1] = ELFMAG1;
1178 magic.elfmag[EI_MAG2] = ELFMAG2;
1179 magic.elfmag[EI_MAG3] = ELFMAG3;
1180 /*
1181 * Switch to the user "segment" for get_user(),
1182 * then put back what elf_core_dump() had in place.
1183 */
1184 set_fs(USER_DS);
1185 if (unlikely(get_user(word, header)))
1186 word = 0;
1187 set_fs(fs);
1188 if (word == magic.cmp)
1189 return PAGE_SIZE;
1190 }
1191
1192 #undef FILTER
1193
1194 return 0;
1195
1196 whole:
1197 return vma->vm_end - vma->vm_start;
1198 }
1199
1200 /* An ELF note in memory */
1201 struct memelfnote
1202 {
1203 const char *name;
1204 int type;
1205 unsigned int datasz;
1206 void *data;
1207 };
1208
1209 static int notesize(struct memelfnote *en)
1210 {
1211 int sz;
1212
1213 sz = sizeof(struct elf_note);
1214 sz += roundup(strlen(en->name) + 1, 4);
1215 sz += roundup(en->datasz, 4);
1216
1217 return sz;
1218 }
1219
1220 #define DUMP_WRITE(addr, nr, foffset) \
1221 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1222
1223 static int alignfile(struct file *file, loff_t *foffset)
1224 {
1225 static const char buf[4] = { 0, };
1226 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1227 return 1;
1228 }
1229
1230 static int writenote(struct memelfnote *men, struct file *file,
1231 loff_t *foffset)
1232 {
1233 struct elf_note en;
1234 en.n_namesz = strlen(men->name) + 1;
1235 en.n_descsz = men->datasz;
1236 en.n_type = men->type;
1237
1238 DUMP_WRITE(&en, sizeof(en), foffset);
1239 DUMP_WRITE(men->name, en.n_namesz, foffset);
1240 if (!alignfile(file, foffset))
1241 return 0;
1242 DUMP_WRITE(men->data, men->datasz, foffset);
1243 if (!alignfile(file, foffset))
1244 return 0;
1245
1246 return 1;
1247 }
1248 #undef DUMP_WRITE
1249
1250 static void fill_elf_header(struct elfhdr *elf, int segs,
1251 u16 machine, u32 flags, u8 osabi)
1252 {
1253 memset(elf, 0, sizeof(*elf));
1254
1255 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1256 elf->e_ident[EI_CLASS] = ELF_CLASS;
1257 elf->e_ident[EI_DATA] = ELF_DATA;
1258 elf->e_ident[EI_VERSION] = EV_CURRENT;
1259 elf->e_ident[EI_OSABI] = ELF_OSABI;
1260
1261 elf->e_type = ET_CORE;
1262 elf->e_machine = machine;
1263 elf->e_version = EV_CURRENT;
1264 elf->e_phoff = sizeof(struct elfhdr);
1265 elf->e_flags = flags;
1266 elf->e_ehsize = sizeof(struct elfhdr);
1267 elf->e_phentsize = sizeof(struct elf_phdr);
1268 elf->e_phnum = segs;
1269
1270 return;
1271 }
1272
1273 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1274 {
1275 phdr->p_type = PT_NOTE;
1276 phdr->p_offset = offset;
1277 phdr->p_vaddr = 0;
1278 phdr->p_paddr = 0;
1279 phdr->p_filesz = sz;
1280 phdr->p_memsz = 0;
1281 phdr->p_flags = 0;
1282 phdr->p_align = 0;
1283 return;
1284 }
1285
1286 static void fill_note(struct memelfnote *note, const char *name, int type,
1287 unsigned int sz, void *data)
1288 {
1289 note->name = name;
1290 note->type = type;
1291 note->datasz = sz;
1292 note->data = data;
1293 return;
1294 }
1295
1296 /*
1297 * fill up all the fields in prstatus from the given task struct, except
1298 * registers which need to be filled up separately.
1299 */
1300 static void fill_prstatus(struct elf_prstatus *prstatus,
1301 struct task_struct *p, long signr)
1302 {
1303 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1304 prstatus->pr_sigpend = p->pending.signal.sig[0];
1305 prstatus->pr_sighold = p->blocked.sig[0];
1306 rcu_read_lock();
1307 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1308 rcu_read_unlock();
1309 prstatus->pr_pid = task_pid_vnr(p);
1310 prstatus->pr_pgrp = task_pgrp_vnr(p);
1311 prstatus->pr_sid = task_session_vnr(p);
1312 if (thread_group_leader(p)) {
1313 struct task_cputime cputime;
1314
1315 /*
1316 * This is the record for the group leader. It shows the
1317 * group-wide total, not its individual thread total.
1318 */
1319 thread_group_cputime(p, &cputime);
1320 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1321 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1322 } else {
1323 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1324 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1325 }
1326 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1327 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1328 }
1329
1330 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1331 struct mm_struct *mm)
1332 {
1333 const struct cred *cred;
1334 unsigned int i, len;
1335
1336 /* first copy the parameters from user space */
1337 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1338
1339 len = mm->arg_end - mm->arg_start;
1340 if (len >= ELF_PRARGSZ)
1341 len = ELF_PRARGSZ-1;
1342 if (copy_from_user(&psinfo->pr_psargs,
1343 (const char __user *)mm->arg_start, len))
1344 return -EFAULT;
1345 for(i = 0; i < len; i++)
1346 if (psinfo->pr_psargs[i] == 0)
1347 psinfo->pr_psargs[i] = ' ';
1348 psinfo->pr_psargs[len] = 0;
1349
1350 rcu_read_lock();
1351 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1352 rcu_read_unlock();
1353 psinfo->pr_pid = task_pid_vnr(p);
1354 psinfo->pr_pgrp = task_pgrp_vnr(p);
1355 psinfo->pr_sid = task_session_vnr(p);
1356
1357 i = p->state ? ffz(~p->state) + 1 : 0;
1358 psinfo->pr_state = i;
1359 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1360 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1361 psinfo->pr_nice = task_nice(p);
1362 psinfo->pr_flag = p->flags;
1363 rcu_read_lock();
1364 cred = __task_cred(p);
1365 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1366 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1367 rcu_read_unlock();
1368 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1369
1370 return 0;
1371 }
1372
1373 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1374 {
1375 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1376 int i = 0;
1377 do
1378 i += 2;
1379 while (auxv[i - 2] != AT_NULL);
1380 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1381 }
1382
1383 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1384 siginfo_t *siginfo)
1385 {
1386 mm_segment_t old_fs = get_fs();
1387 set_fs(KERNEL_DS);
1388 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1389 set_fs(old_fs);
1390 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1391 }
1392
1393 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1394 /*
1395 * Format of NT_FILE note:
1396 *
1397 * long count -- how many files are mapped
1398 * long page_size -- units for file_ofs
1399 * array of [COUNT] elements of
1400 * long start
1401 * long end
1402 * long file_ofs
1403 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1404 */
1405 static void fill_files_note(struct memelfnote *note)
1406 {
1407 struct vm_area_struct *vma;
1408 unsigned count, size, names_ofs, remaining, n;
1409 user_long_t *data;
1410 user_long_t *start_end_ofs;
1411 char *name_base, *name_curpos;
1412
1413 /* *Estimated* file count and total data size needed */
1414 count = current->mm->map_count;
1415 size = count * 64;
1416
1417 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1418 alloc:
1419 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1420 goto err;
1421 size = round_up(size, PAGE_SIZE);
1422 data = vmalloc(size);
1423 if (!data)
1424 goto err;
1425
1426 start_end_ofs = data + 2;
1427 name_base = name_curpos = ((char *)data) + names_ofs;
1428 remaining = size - names_ofs;
1429 count = 0;
1430 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1431 struct file *file;
1432 const char *filename;
1433
1434 file = vma->vm_file;
1435 if (!file)
1436 continue;
1437 filename = d_path(&file->f_path, name_curpos, remaining);
1438 if (IS_ERR(filename)) {
1439 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1440 vfree(data);
1441 size = size * 5 / 4;
1442 goto alloc;
1443 }
1444 continue;
1445 }
1446
1447 /* d_path() fills at the end, move name down */
1448 /* n = strlen(filename) + 1: */
1449 n = (name_curpos + remaining) - filename;
1450 remaining = filename - name_curpos;
1451 memmove(name_curpos, filename, n);
1452 name_curpos += n;
1453
1454 *start_end_ofs++ = vma->vm_start;
1455 *start_end_ofs++ = vma->vm_end;
1456 *start_end_ofs++ = vma->vm_pgoff;
1457 count++;
1458 }
1459
1460 /* Now we know exact count of files, can store it */
1461 data[0] = count;
1462 data[1] = PAGE_SIZE;
1463 /*
1464 * Count usually is less than current->mm->map_count,
1465 * we need to move filenames down.
1466 */
1467 n = current->mm->map_count - count;
1468 if (n != 0) {
1469 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1470 memmove(name_base - shift_bytes, name_base,
1471 name_curpos - name_base);
1472 name_curpos -= shift_bytes;
1473 }
1474
1475 size = name_curpos - (char *)data;
1476 fill_note(note, "CORE", NT_FILE, size, data);
1477 err: ;
1478 }
1479
1480 #ifdef CORE_DUMP_USE_REGSET
1481 #include <linux/regset.h>
1482
1483 struct elf_thread_core_info {
1484 struct elf_thread_core_info *next;
1485 struct task_struct *task;
1486 struct elf_prstatus prstatus;
1487 struct memelfnote notes[0];
1488 };
1489
1490 struct elf_note_info {
1491 struct elf_thread_core_info *thread;
1492 struct memelfnote psinfo;
1493 struct memelfnote signote;
1494 struct memelfnote auxv;
1495 struct memelfnote files;
1496 user_siginfo_t csigdata;
1497 size_t size;
1498 int thread_notes;
1499 };
1500
1501 /*
1502 * When a regset has a writeback hook, we call it on each thread before
1503 * dumping user memory. On register window machines, this makes sure the
1504 * user memory backing the register data is up to date before we read it.
1505 */
1506 static void do_thread_regset_writeback(struct task_struct *task,
1507 const struct user_regset *regset)
1508 {
1509 if (regset->writeback)
1510 regset->writeback(task, regset, 1);
1511 }
1512
1513 #ifndef PR_REG_SIZE
1514 #define PR_REG_SIZE(S) sizeof(S)
1515 #endif
1516
1517 #ifndef PRSTATUS_SIZE
1518 #define PRSTATUS_SIZE(S) sizeof(S)
1519 #endif
1520
1521 #ifndef PR_REG_PTR
1522 #define PR_REG_PTR(S) (&((S)->pr_reg))
1523 #endif
1524
1525 #ifndef SET_PR_FPVALID
1526 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1527 #endif
1528
1529 static int fill_thread_core_info(struct elf_thread_core_info *t,
1530 const struct user_regset_view *view,
1531 long signr, size_t *total)
1532 {
1533 unsigned int i;
1534
1535 /*
1536 * NT_PRSTATUS is the one special case, because the regset data
1537 * goes into the pr_reg field inside the note contents, rather
1538 * than being the whole note contents. We fill the reset in here.
1539 * We assume that regset 0 is NT_PRSTATUS.
1540 */
1541 fill_prstatus(&t->prstatus, t->task, signr);
1542 (void) view->regsets[0].get(t->task, &view->regsets[0],
1543 0, PR_REG_SIZE(t->prstatus.pr_reg),
1544 PR_REG_PTR(&t->prstatus), NULL);
1545
1546 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1547 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1548 *total += notesize(&t->notes[0]);
1549
1550 do_thread_regset_writeback(t->task, &view->regsets[0]);
1551
1552 /*
1553 * Each other regset might generate a note too. For each regset
1554 * that has no core_note_type or is inactive, we leave t->notes[i]
1555 * all zero and we'll know to skip writing it later.
1556 */
1557 for (i = 1; i < view->n; ++i) {
1558 const struct user_regset *regset = &view->regsets[i];
1559 do_thread_regset_writeback(t->task, regset);
1560 if (regset->core_note_type && regset->get &&
1561 (!regset->active || regset->active(t->task, regset))) {
1562 int ret;
1563 size_t size = regset->n * regset->size;
1564 void *data = kmalloc(size, GFP_KERNEL);
1565 if (unlikely(!data))
1566 return 0;
1567 ret = regset->get(t->task, regset,
1568 0, size, data, NULL);
1569 if (unlikely(ret))
1570 kfree(data);
1571 else {
1572 if (regset->core_note_type != NT_PRFPREG)
1573 fill_note(&t->notes[i], "LINUX",
1574 regset->core_note_type,
1575 size, data);
1576 else {
1577 SET_PR_FPVALID(&t->prstatus, 1);
1578 fill_note(&t->notes[i], "CORE",
1579 NT_PRFPREG, size, data);
1580 }
1581 *total += notesize(&t->notes[i]);
1582 }
1583 }
1584 }
1585
1586 return 1;
1587 }
1588
1589 static int fill_note_info(struct elfhdr *elf, int phdrs,
1590 struct elf_note_info *info,
1591 siginfo_t *siginfo, struct pt_regs *regs)
1592 {
1593 struct task_struct *dump_task = current;
1594 const struct user_regset_view *view = task_user_regset_view(dump_task);
1595 struct elf_thread_core_info *t;
1596 struct elf_prpsinfo *psinfo;
1597 struct core_thread *ct;
1598 unsigned int i;
1599
1600 info->size = 0;
1601 info->thread = NULL;
1602
1603 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1604 if (psinfo == NULL) {
1605 info->psinfo.data = NULL; /* So we don't free this wrongly */
1606 return 0;
1607 }
1608
1609 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1610
1611 /*
1612 * Figure out how many notes we're going to need for each thread.
1613 */
1614 info->thread_notes = 0;
1615 for (i = 0; i < view->n; ++i)
1616 if (view->regsets[i].core_note_type != 0)
1617 ++info->thread_notes;
1618
1619 /*
1620 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1621 * since it is our one special case.
1622 */
1623 if (unlikely(info->thread_notes == 0) ||
1624 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1625 WARN_ON(1);
1626 return 0;
1627 }
1628
1629 /*
1630 * Initialize the ELF file header.
1631 */
1632 fill_elf_header(elf, phdrs,
1633 view->e_machine, view->e_flags, view->ei_osabi);
1634
1635 /*
1636 * Allocate a structure for each thread.
1637 */
1638 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1639 t = kzalloc(offsetof(struct elf_thread_core_info,
1640 notes[info->thread_notes]),
1641 GFP_KERNEL);
1642 if (unlikely(!t))
1643 return 0;
1644
1645 t->task = ct->task;
1646 if (ct->task == dump_task || !info->thread) {
1647 t->next = info->thread;
1648 info->thread = t;
1649 } else {
1650 /*
1651 * Make sure to keep the original task at
1652 * the head of the list.
1653 */
1654 t->next = info->thread->next;
1655 info->thread->next = t;
1656 }
1657 }
1658
1659 /*
1660 * Now fill in each thread's information.
1661 */
1662 for (t = info->thread; t != NULL; t = t->next)
1663 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1664 return 0;
1665
1666 /*
1667 * Fill in the two process-wide notes.
1668 */
1669 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1670 info->size += notesize(&info->psinfo);
1671
1672 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1673 info->size += notesize(&info->signote);
1674
1675 fill_auxv_note(&info->auxv, current->mm);
1676 info->size += notesize(&info->auxv);
1677
1678 fill_files_note(&info->files);
1679 info->size += notesize(&info->files);
1680
1681 return 1;
1682 }
1683
1684 static size_t get_note_info_size(struct elf_note_info *info)
1685 {
1686 return info->size;
1687 }
1688
1689 /*
1690 * Write all the notes for each thread. When writing the first thread, the
1691 * process-wide notes are interleaved after the first thread-specific note.
1692 */
1693 static int write_note_info(struct elf_note_info *info,
1694 struct file *file, loff_t *foffset)
1695 {
1696 bool first = 1;
1697 struct elf_thread_core_info *t = info->thread;
1698
1699 do {
1700 int i;
1701
1702 if (!writenote(&t->notes[0], file, foffset))
1703 return 0;
1704
1705 if (first && !writenote(&info->psinfo, file, foffset))
1706 return 0;
1707 if (first && !writenote(&info->signote, file, foffset))
1708 return 0;
1709 if (first && !writenote(&info->auxv, file, foffset))
1710 return 0;
1711 if (first && !writenote(&info->files, file, foffset))
1712 return 0;
1713
1714 for (i = 1; i < info->thread_notes; ++i)
1715 if (t->notes[i].data &&
1716 !writenote(&t->notes[i], file, foffset))
1717 return 0;
1718
1719 first = 0;
1720 t = t->next;
1721 } while (t);
1722
1723 return 1;
1724 }
1725
1726 static void free_note_info(struct elf_note_info *info)
1727 {
1728 struct elf_thread_core_info *threads = info->thread;
1729 while (threads) {
1730 unsigned int i;
1731 struct elf_thread_core_info *t = threads;
1732 threads = t->next;
1733 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1734 for (i = 1; i < info->thread_notes; ++i)
1735 kfree(t->notes[i].data);
1736 kfree(t);
1737 }
1738 kfree(info->psinfo.data);
1739 vfree(info->files.data);
1740 }
1741
1742 #else
1743
1744 /* Here is the structure in which status of each thread is captured. */
1745 struct elf_thread_status
1746 {
1747 struct list_head list;
1748 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1749 elf_fpregset_t fpu; /* NT_PRFPREG */
1750 struct task_struct *thread;
1751 #ifdef ELF_CORE_COPY_XFPREGS
1752 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1753 #endif
1754 struct memelfnote notes[3];
1755 int num_notes;
1756 };
1757
1758 /*
1759 * In order to add the specific thread information for the elf file format,
1760 * we need to keep a linked list of every threads pr_status and then create
1761 * a single section for them in the final core file.
1762 */
1763 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1764 {
1765 int sz = 0;
1766 struct task_struct *p = t->thread;
1767 t->num_notes = 0;
1768
1769 fill_prstatus(&t->prstatus, p, signr);
1770 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1771
1772 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1773 &(t->prstatus));
1774 t->num_notes++;
1775 sz += notesize(&t->notes[0]);
1776
1777 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1778 &t->fpu))) {
1779 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1780 &(t->fpu));
1781 t->num_notes++;
1782 sz += notesize(&t->notes[1]);
1783 }
1784
1785 #ifdef ELF_CORE_COPY_XFPREGS
1786 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1787 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1788 sizeof(t->xfpu), &t->xfpu);
1789 t->num_notes++;
1790 sz += notesize(&t->notes[2]);
1791 }
1792 #endif
1793 return sz;
1794 }
1795
1796 struct elf_note_info {
1797 struct memelfnote *notes;
1798 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1799 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1800 struct list_head thread_list;
1801 elf_fpregset_t *fpu;
1802 #ifdef ELF_CORE_COPY_XFPREGS
1803 elf_fpxregset_t *xfpu;
1804 #endif
1805 user_siginfo_t csigdata;
1806 int thread_status_size;
1807 int numnote;
1808 };
1809
1810 static int elf_note_info_init(struct elf_note_info *info)
1811 {
1812 memset(info, 0, sizeof(*info));
1813 INIT_LIST_HEAD(&info->thread_list);
1814
1815 /* Allocate space for ELF notes */
1816 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1817 if (!info->notes)
1818 return 0;
1819 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1820 if (!info->psinfo)
1821 return 0;
1822 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1823 if (!info->prstatus)
1824 return 0;
1825 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1826 if (!info->fpu)
1827 return 0;
1828 #ifdef ELF_CORE_COPY_XFPREGS
1829 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1830 if (!info->xfpu)
1831 return 0;
1832 #endif
1833 return 1;
1834 }
1835
1836 static int fill_note_info(struct elfhdr *elf, int phdrs,
1837 struct elf_note_info *info,
1838 siginfo_t *siginfo, struct pt_regs *regs)
1839 {
1840 struct list_head *t;
1841
1842 if (!elf_note_info_init(info))
1843 return 0;
1844
1845 if (siginfo->si_signo) {
1846 struct core_thread *ct;
1847 struct elf_thread_status *ets;
1848
1849 for (ct = current->mm->core_state->dumper.next;
1850 ct; ct = ct->next) {
1851 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1852 if (!ets)
1853 return 0;
1854
1855 ets->thread = ct->task;
1856 list_add(&ets->list, &info->thread_list);
1857 }
1858
1859 list_for_each(t, &info->thread_list) {
1860 int sz;
1861
1862 ets = list_entry(t, struct elf_thread_status, list);
1863 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1864 info->thread_status_size += sz;
1865 }
1866 }
1867 /* now collect the dump for the current */
1868 memset(info->prstatus, 0, sizeof(*info->prstatus));
1869 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1870 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1871
1872 /* Set up header */
1873 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1874
1875 /*
1876 * Set up the notes in similar form to SVR4 core dumps made
1877 * with info from their /proc.
1878 */
1879
1880 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1881 sizeof(*info->prstatus), info->prstatus);
1882 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1883 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1884 sizeof(*info->psinfo), info->psinfo);
1885
1886 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1887 fill_auxv_note(info->notes + 3, current->mm);
1888 fill_files_note(info->notes + 4);
1889
1890 info->numnote = 5;
1891
1892 /* Try to dump the FPU. */
1893 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1894 info->fpu);
1895 if (info->prstatus->pr_fpvalid)
1896 fill_note(info->notes + info->numnote++,
1897 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1898 #ifdef ELF_CORE_COPY_XFPREGS
1899 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1900 fill_note(info->notes + info->numnote++,
1901 "LINUX", ELF_CORE_XFPREG_TYPE,
1902 sizeof(*info->xfpu), info->xfpu);
1903 #endif
1904
1905 return 1;
1906 }
1907
1908 static size_t get_note_info_size(struct elf_note_info *info)
1909 {
1910 int sz = 0;
1911 int i;
1912
1913 for (i = 0; i < info->numnote; i++)
1914 sz += notesize(info->notes + i);
1915
1916 sz += info->thread_status_size;
1917
1918 return sz;
1919 }
1920
1921 static int write_note_info(struct elf_note_info *info,
1922 struct file *file, loff_t *foffset)
1923 {
1924 int i;
1925 struct list_head *t;
1926
1927 for (i = 0; i < info->numnote; i++)
1928 if (!writenote(info->notes + i, file, foffset))
1929 return 0;
1930
1931 /* write out the thread status notes section */
1932 list_for_each(t, &info->thread_list) {
1933 struct elf_thread_status *tmp =
1934 list_entry(t, struct elf_thread_status, list);
1935
1936 for (i = 0; i < tmp->num_notes; i++)
1937 if (!writenote(&tmp->notes[i], file, foffset))
1938 return 0;
1939 }
1940
1941 return 1;
1942 }
1943
1944 static void free_note_info(struct elf_note_info *info)
1945 {
1946 while (!list_empty(&info->thread_list)) {
1947 struct list_head *tmp = info->thread_list.next;
1948 list_del(tmp);
1949 kfree(list_entry(tmp, struct elf_thread_status, list));
1950 }
1951
1952 /* Free data allocated by fill_files_note(): */
1953 vfree(info->notes[4].data);
1954
1955 kfree(info->prstatus);
1956 kfree(info->psinfo);
1957 kfree(info->notes);
1958 kfree(info->fpu);
1959 #ifdef ELF_CORE_COPY_XFPREGS
1960 kfree(info->xfpu);
1961 #endif
1962 }
1963
1964 #endif
1965
1966 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1967 struct vm_area_struct *gate_vma)
1968 {
1969 struct vm_area_struct *ret = tsk->mm->mmap;
1970
1971 if (ret)
1972 return ret;
1973 return gate_vma;
1974 }
1975 /*
1976 * Helper function for iterating across a vma list. It ensures that the caller
1977 * will visit `gate_vma' prior to terminating the search.
1978 */
1979 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1980 struct vm_area_struct *gate_vma)
1981 {
1982 struct vm_area_struct *ret;
1983
1984 ret = this_vma->vm_next;
1985 if (ret)
1986 return ret;
1987 if (this_vma == gate_vma)
1988 return NULL;
1989 return gate_vma;
1990 }
1991
1992 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1993 elf_addr_t e_shoff, int segs)
1994 {
1995 elf->e_shoff = e_shoff;
1996 elf->e_shentsize = sizeof(*shdr4extnum);
1997 elf->e_shnum = 1;
1998 elf->e_shstrndx = SHN_UNDEF;
1999
2000 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2001
2002 shdr4extnum->sh_type = SHT_NULL;
2003 shdr4extnum->sh_size = elf->e_shnum;
2004 shdr4extnum->sh_link = elf->e_shstrndx;
2005 shdr4extnum->sh_info = segs;
2006 }
2007
2008 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2009 unsigned long mm_flags)
2010 {
2011 struct vm_area_struct *vma;
2012 size_t size = 0;
2013
2014 for (vma = first_vma(current, gate_vma); vma != NULL;
2015 vma = next_vma(vma, gate_vma))
2016 size += vma_dump_size(vma, mm_flags);
2017 return size;
2018 }
2019
2020 /*
2021 * Actual dumper
2022 *
2023 * This is a two-pass process; first we find the offsets of the bits,
2024 * and then they are actually written out. If we run out of core limit
2025 * we just truncate.
2026 */
2027 static int elf_core_dump(struct coredump_params *cprm)
2028 {
2029 int has_dumped = 0;
2030 mm_segment_t fs;
2031 int segs;
2032 size_t size = 0;
2033 struct vm_area_struct *vma, *gate_vma;
2034 struct elfhdr *elf = NULL;
2035 loff_t offset = 0, dataoff, foffset;
2036 struct elf_note_info info;
2037 struct elf_phdr *phdr4note = NULL;
2038 struct elf_shdr *shdr4extnum = NULL;
2039 Elf_Half e_phnum;
2040 elf_addr_t e_shoff;
2041
2042 /*
2043 * We no longer stop all VM operations.
2044 *
2045 * This is because those proceses that could possibly change map_count
2046 * or the mmap / vma pages are now blocked in do_exit on current
2047 * finishing this core dump.
2048 *
2049 * Only ptrace can touch these memory addresses, but it doesn't change
2050 * the map_count or the pages allocated. So no possibility of crashing
2051 * exists while dumping the mm->vm_next areas to the core file.
2052 */
2053
2054 /* alloc memory for large data structures: too large to be on stack */
2055 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2056 if (!elf)
2057 goto out;
2058 /*
2059 * The number of segs are recored into ELF header as 16bit value.
2060 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2061 */
2062 segs = current->mm->map_count;
2063 segs += elf_core_extra_phdrs();
2064
2065 gate_vma = get_gate_vma(current->mm);
2066 if (gate_vma != NULL)
2067 segs++;
2068
2069 /* for notes section */
2070 segs++;
2071
2072 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2073 * this, kernel supports extended numbering. Have a look at
2074 * include/linux/elf.h for further information. */
2075 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2076
2077 /*
2078 * Collect all the non-memory information about the process for the
2079 * notes. This also sets up the file header.
2080 */
2081 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2082 goto cleanup;
2083
2084 has_dumped = 1;
2085 current->flags |= PF_DUMPCORE;
2086
2087 fs = get_fs();
2088 set_fs(KERNEL_DS);
2089
2090 offset += sizeof(*elf); /* Elf header */
2091 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2092 foffset = offset;
2093
2094 /* Write notes phdr entry */
2095 {
2096 size_t sz = get_note_info_size(&info);
2097
2098 sz += elf_coredump_extra_notes_size();
2099
2100 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2101 if (!phdr4note)
2102 goto end_coredump;
2103
2104 fill_elf_note_phdr(phdr4note, sz, offset);
2105 offset += sz;
2106 }
2107
2108 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2109
2110 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2111 offset += elf_core_extra_data_size();
2112 e_shoff = offset;
2113
2114 if (e_phnum == PN_XNUM) {
2115 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2116 if (!shdr4extnum)
2117 goto end_coredump;
2118 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2119 }
2120
2121 offset = dataoff;
2122
2123 size += sizeof(*elf);
2124 if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
2125 goto end_coredump;
2126
2127 size += sizeof(*phdr4note);
2128 if (size > cprm->limit
2129 || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
2130 goto end_coredump;
2131
2132 /* Write program headers for segments dump */
2133 for (vma = first_vma(current, gate_vma); vma != NULL;
2134 vma = next_vma(vma, gate_vma)) {
2135 struct elf_phdr phdr;
2136
2137 phdr.p_type = PT_LOAD;
2138 phdr.p_offset = offset;
2139 phdr.p_vaddr = vma->vm_start;
2140 phdr.p_paddr = 0;
2141 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2142 phdr.p_memsz = vma->vm_end - vma->vm_start;
2143 offset += phdr.p_filesz;
2144 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2145 if (vma->vm_flags & VM_WRITE)
2146 phdr.p_flags |= PF_W;
2147 if (vma->vm_flags & VM_EXEC)
2148 phdr.p_flags |= PF_X;
2149 phdr.p_align = ELF_EXEC_PAGESIZE;
2150
2151 size += sizeof(phdr);
2152 if (size > cprm->limit
2153 || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2154 goto end_coredump;
2155 }
2156
2157 if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2158 goto end_coredump;
2159
2160 /* write out the notes section */
2161 if (!write_note_info(&info, cprm->file, &foffset))
2162 goto end_coredump;
2163
2164 if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2165 goto end_coredump;
2166
2167 /* Align to page */
2168 if (!dump_seek(cprm->file, dataoff - foffset))
2169 goto end_coredump;
2170
2171 for (vma = first_vma(current, gate_vma); vma != NULL;
2172 vma = next_vma(vma, gate_vma)) {
2173 unsigned long addr;
2174 unsigned long end;
2175
2176 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2177
2178 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2179 struct page *page;
2180 int stop;
2181
2182 page = get_dump_page(addr);
2183 if (page) {
2184 void *kaddr = kmap(page);
2185 stop = ((size += PAGE_SIZE) > cprm->limit) ||
2186 !dump_write(cprm->file, kaddr,
2187 PAGE_SIZE);
2188 kunmap(page);
2189 page_cache_release(page);
2190 } else
2191 stop = !dump_seek(cprm->file, PAGE_SIZE);
2192 if (stop)
2193 goto end_coredump;
2194 }
2195 }
2196
2197 if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2198 goto end_coredump;
2199
2200 if (e_phnum == PN_XNUM) {
2201 size += sizeof(*shdr4extnum);
2202 if (size > cprm->limit
2203 || !dump_write(cprm->file, shdr4extnum,
2204 sizeof(*shdr4extnum)))
2205 goto end_coredump;
2206 }
2207
2208 end_coredump:
2209 set_fs(fs);
2210
2211 cleanup:
2212 free_note_info(&info);
2213 kfree(shdr4extnum);
2214 kfree(phdr4note);
2215 kfree(elf);
2216 out:
2217 return has_dumped;
2218 }
2219
2220 #endif /* CONFIG_ELF_CORE */
2221
2222 static int __init init_elf_binfmt(void)
2223 {
2224 register_binfmt(&elf_format);
2225 return 0;
2226 }
2227
2228 static void __exit exit_elf_binfmt(void)
2229 {
2230 /* Remove the COFF and ELF loaders. */
2231 unregister_binfmt(&elf_format);
2232 }
2233
2234 core_initcall(init_elf_binfmt);
2235 module_exit(exit_elf_binfmt);
2236 MODULE_LICENSE("GPL");