]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/binfmt_elf.c
Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[mirror_ubuntu-artful-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <linux/uaccess.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
42
43 #ifndef user_long_t
44 #define user_long_t long
45 #endif
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
48 #endif
49
50 static int load_elf_binary(struct linux_binprm *bprm);
51 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
53
54 #ifdef CONFIG_USELIB
55 static int load_elf_library(struct file *);
56 #else
57 #define load_elf_library NULL
58 #endif
59
60 /*
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
63 */
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params *cprm);
66 #else
67 #define elf_core_dump NULL
68 #endif
69
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72 #else
73 #define ELF_MIN_ALIGN PAGE_SIZE
74 #endif
75
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
78 #endif
79
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
83
84 static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
90 };
91
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
93
94 static int set_brk(unsigned long start, unsigned long end)
95 {
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 int error = vm_brk(start, end - start);
100 if (error)
101 return error;
102 }
103 current->mm->start_brk = current->mm->brk = end;
104 return 0;
105 }
106
107 /* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
110 be in memory
111 */
112 static int padzero(unsigned long elf_bss)
113 {
114 unsigned long nbyte;
115
116 nbyte = ELF_PAGEOFFSET(elf_bss);
117 if (nbyte) {
118 nbyte = ELF_MIN_ALIGN - nbyte;
119 if (clear_user((void __user *) elf_bss, nbyte))
120 return -EFAULT;
121 }
122 return 0;
123 }
124
125 /* Let's use some macros to make this stack manipulation a little clearer */
126 #ifdef CONFIG_STACK_GROWSUP
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128 #define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 old_sp; })
133 #else
134 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135 #define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138 #endif
139
140 #ifndef ELF_BASE_PLATFORM
141 /*
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 */
146 #define ELF_BASE_PLATFORM NULL
147 #endif
148
149 static int
150 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
151 unsigned long load_addr, unsigned long interp_load_addr)
152 {
153 unsigned long p = bprm->p;
154 int argc = bprm->argc;
155 int envc = bprm->envc;
156 elf_addr_t __user *argv;
157 elf_addr_t __user *envp;
158 elf_addr_t __user *sp;
159 elf_addr_t __user *u_platform;
160 elf_addr_t __user *u_base_platform;
161 elf_addr_t __user *u_rand_bytes;
162 const char *k_platform = ELF_PLATFORM;
163 const char *k_base_platform = ELF_BASE_PLATFORM;
164 unsigned char k_rand_bytes[16];
165 int items;
166 elf_addr_t *elf_info;
167 int ei_index = 0;
168 const struct cred *cred = current_cred();
169 struct vm_area_struct *vma;
170
171 /*
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
175 */
176
177 p = arch_align_stack(p);
178
179 /*
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
183 * merely difficult.
184 */
185 u_platform = NULL;
186 if (k_platform) {
187 size_t len = strlen(k_platform) + 1;
188
189 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_platform, k_platform, len))
191 return -EFAULT;
192 }
193
194 /*
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
197 */
198 u_base_platform = NULL;
199 if (k_base_platform) {
200 size_t len = strlen(k_base_platform) + 1;
201
202 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_base_platform, k_base_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * Generate 16 random bytes for userspace PRNG seeding.
209 */
210 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 u_rand_bytes = (elf_addr_t __user *)
212 STACK_ALLOC(p, sizeof(k_rand_bytes));
213 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 return -EFAULT;
215
216 /* Create the ELF interpreter info */
217 elf_info = (elf_addr_t *)current->mm->saved_auxv;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219 #define NEW_AUX_ENT(id, val) \
220 do { \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
223 } while (0)
224
225 #ifdef ARCH_DLINFO
226 /*
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * AUXV.
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
231 */
232 ARCH_DLINFO;
233 #endif
234 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
238 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
239 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 NEW_AUX_ENT(AT_FLAGS, 0);
242 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
243 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
247 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
248 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
249 #ifdef ELF_HWCAP2
250 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251 #endif
252 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
253 if (k_platform) {
254 NEW_AUX_ENT(AT_PLATFORM,
255 (elf_addr_t)(unsigned long)u_platform);
256 }
257 if (k_base_platform) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM,
259 (elf_addr_t)(unsigned long)u_base_platform);
260 }
261 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
262 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
263 }
264 #undef NEW_AUX_ENT
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info[ei_index], 0,
267 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268
269 /* And advance past the AT_NULL entry. */
270 ei_index += 2;
271
272 sp = STACK_ADD(p, ei_index);
273
274 items = (argc + 1) + (envc + 1) + 1;
275 bprm->p = STACK_ROUND(sp, items);
276
277 /* Point sp at the lowest address on the stack */
278 #ifdef CONFIG_STACK_GROWSUP
279 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
280 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
281 #else
282 sp = (elf_addr_t __user *)bprm->p;
283 #endif
284
285
286 /*
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
289 */
290 vma = find_extend_vma(current->mm, bprm->p);
291 if (!vma)
292 return -EFAULT;
293
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc, sp++))
296 return -EFAULT;
297 argv = sp;
298 envp = argv + argc + 1;
299
300 /* Populate argv and envp */
301 p = current->mm->arg_end = current->mm->arg_start;
302 while (argc-- > 0) {
303 size_t len;
304 if (__put_user((elf_addr_t)p, argv++))
305 return -EFAULT;
306 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 if (!len || len > MAX_ARG_STRLEN)
308 return -EINVAL;
309 p += len;
310 }
311 if (__put_user(0, argv))
312 return -EFAULT;
313 current->mm->arg_end = current->mm->env_start = p;
314 while (envc-- > 0) {
315 size_t len;
316 if (__put_user((elf_addr_t)p, envp++))
317 return -EFAULT;
318 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 if (!len || len > MAX_ARG_STRLEN)
320 return -EINVAL;
321 p += len;
322 }
323 if (__put_user(0, envp))
324 return -EFAULT;
325 current->mm->env_end = p;
326
327 /* Put the elf_info on the stack in the right place. */
328 sp = (elf_addr_t __user *)envp + 1;
329 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 return -EFAULT;
331 return 0;
332 }
333
334 #ifndef elf_map
335
336 static unsigned long elf_map(struct file *filep, unsigned long addr,
337 struct elf_phdr *eppnt, int prot, int type,
338 unsigned long total_size)
339 {
340 unsigned long map_addr;
341 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 addr = ELF_PAGESTART(addr);
344 size = ELF_PAGEALIGN(size);
345
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
348 if (!size)
349 return addr;
350
351 /*
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
358 */
359 if (total_size) {
360 total_size = ELF_PAGEALIGN(total_size);
361 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
362 if (!BAD_ADDR(map_addr))
363 vm_munmap(map_addr+size, total_size-size);
364 } else
365 map_addr = vm_mmap(filep, addr, size, prot, type, off);
366
367 return(map_addr);
368 }
369
370 #endif /* !elf_map */
371
372 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373 {
374 int i, first_idx = -1, last_idx = -1;
375
376 for (i = 0; i < nr; i++) {
377 if (cmds[i].p_type == PT_LOAD) {
378 last_idx = i;
379 if (first_idx == -1)
380 first_idx = i;
381 }
382 }
383 if (first_idx == -1)
384 return 0;
385
386 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 ELF_PAGESTART(cmds[first_idx].p_vaddr);
388 }
389
390 /**
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
394 *
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
398 */
399 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 struct file *elf_file)
401 {
402 struct elf_phdr *elf_phdata = NULL;
403 int retval, size, err = -1;
404
405 /*
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
408 */
409 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
411
412 /* Sanity check the number of program headers... */
413 if (elf_ex->e_phnum < 1 ||
414 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 goto out;
416
417 /* ...and their total size. */
418 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 if (size > ELF_MIN_ALIGN)
420 goto out;
421
422 elf_phdata = kmalloc(size, GFP_KERNEL);
423 if (!elf_phdata)
424 goto out;
425
426 /* Read in the program headers */
427 retval = kernel_read(elf_file, elf_ex->e_phoff,
428 (char *)elf_phdata, size);
429 if (retval != size) {
430 err = (retval < 0) ? retval : -EIO;
431 goto out;
432 }
433
434 /* Success! */
435 err = 0;
436 out:
437 if (err) {
438 kfree(elf_phdata);
439 elf_phdata = NULL;
440 }
441 return elf_phdata;
442 }
443
444 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
445
446 /**
447 * struct arch_elf_state - arch-specific ELF loading state
448 *
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
453 *
454 * This implementation is a dummy for architectures which require no
455 * specific state.
456 */
457 struct arch_elf_state {
458 };
459
460 #define INIT_ARCH_ELF_STATE {}
461
462 /**
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
471 *
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475 * interpreter.
476 *
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
479 */
480 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 struct elf_phdr *phdr,
482 struct file *elf, bool is_interp,
483 struct arch_elf_state *state)
484 {
485 /* Dummy implementation, always proceed */
486 return 0;
487 }
488
489 /**
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
496 *
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
500 *
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
503 */
504 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct elfhdr *interp_ehdr,
506 struct arch_elf_state *state)
507 {
508 /* Dummy implementation, always proceed */
509 return 0;
510 }
511
512 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513
514 /* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
517 an ELF header */
518
519 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
520 struct file *interpreter, unsigned long *interp_map_addr,
521 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
522 {
523 struct elf_phdr *eppnt;
524 unsigned long load_addr = 0;
525 int load_addr_set = 0;
526 unsigned long last_bss = 0, elf_bss = 0;
527 unsigned long error = ~0UL;
528 unsigned long total_size;
529 int i;
530
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex->e_type != ET_EXEC &&
533 interp_elf_ex->e_type != ET_DYN)
534 goto out;
535 if (!elf_check_arch(interp_elf_ex))
536 goto out;
537 if (!interpreter->f_op->mmap)
538 goto out;
539
540 total_size = total_mapping_size(interp_elf_phdata,
541 interp_elf_ex->e_phnum);
542 if (!total_size) {
543 error = -EINVAL;
544 goto out;
545 }
546
547 eppnt = interp_elf_phdata;
548 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
549 if (eppnt->p_type == PT_LOAD) {
550 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
551 int elf_prot = 0;
552 unsigned long vaddr = 0;
553 unsigned long k, map_addr;
554
555 if (eppnt->p_flags & PF_R)
556 elf_prot = PROT_READ;
557 if (eppnt->p_flags & PF_W)
558 elf_prot |= PROT_WRITE;
559 if (eppnt->p_flags & PF_X)
560 elf_prot |= PROT_EXEC;
561 vaddr = eppnt->p_vaddr;
562 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
563 elf_type |= MAP_FIXED;
564 else if (no_base && interp_elf_ex->e_type == ET_DYN)
565 load_addr = -vaddr;
566
567 map_addr = elf_map(interpreter, load_addr + vaddr,
568 eppnt, elf_prot, elf_type, total_size);
569 total_size = 0;
570 if (!*interp_map_addr)
571 *interp_map_addr = map_addr;
572 error = map_addr;
573 if (BAD_ADDR(map_addr))
574 goto out;
575
576 if (!load_addr_set &&
577 interp_elf_ex->e_type == ET_DYN) {
578 load_addr = map_addr - ELF_PAGESTART(vaddr);
579 load_addr_set = 1;
580 }
581
582 /*
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
586 */
587 k = load_addr + eppnt->p_vaddr;
588 if (BAD_ADDR(k) ||
589 eppnt->p_filesz > eppnt->p_memsz ||
590 eppnt->p_memsz > TASK_SIZE ||
591 TASK_SIZE - eppnt->p_memsz < k) {
592 error = -ENOMEM;
593 goto out;
594 }
595
596 /*
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
599 */
600 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
601 if (k > elf_bss)
602 elf_bss = k;
603
604 /*
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
607 */
608 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
609 if (k > last_bss)
610 last_bss = k;
611 }
612 }
613
614 /*
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
618 */
619 if (padzero(elf_bss)) {
620 error = -EFAULT;
621 goto out;
622 }
623 /*
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
627 */
628 elf_bss = ELF_PAGEALIGN(elf_bss);
629 last_bss = ELF_PAGEALIGN(last_bss);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss > elf_bss) {
632 error = vm_brk(elf_bss, last_bss - elf_bss);
633 if (error)
634 goto out;
635 }
636
637 error = load_addr;
638 out:
639 return error;
640 }
641
642 /*
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
645 */
646
647 #ifndef STACK_RND_MASK
648 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
649 #endif
650
651 static unsigned long randomize_stack_top(unsigned long stack_top)
652 {
653 unsigned long random_variable = 0;
654
655 if ((current->flags & PF_RANDOMIZE) &&
656 !(current->personality & ADDR_NO_RANDOMIZE)) {
657 random_variable = get_random_long();
658 random_variable &= STACK_RND_MASK;
659 random_variable <<= PAGE_SHIFT;
660 }
661 #ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top) + random_variable;
663 #else
664 return PAGE_ALIGN(stack_top) - random_variable;
665 #endif
666 }
667
668 static int load_elf_binary(struct linux_binprm *bprm)
669 {
670 struct file *interpreter = NULL; /* to shut gcc up */
671 unsigned long load_addr = 0, load_bias = 0;
672 int load_addr_set = 0;
673 char * elf_interpreter = NULL;
674 unsigned long error;
675 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
676 unsigned long elf_bss, elf_brk;
677 int retval, i;
678 unsigned long elf_entry;
679 unsigned long interp_load_addr = 0;
680 unsigned long start_code, end_code, start_data, end_data;
681 unsigned long reloc_func_desc __maybe_unused = 0;
682 int executable_stack = EXSTACK_DEFAULT;
683 struct pt_regs *regs = current_pt_regs();
684 struct {
685 struct elfhdr elf_ex;
686 struct elfhdr interp_elf_ex;
687 } *loc;
688 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
689
690 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
691 if (!loc) {
692 retval = -ENOMEM;
693 goto out_ret;
694 }
695
696 /* Get the exec-header */
697 loc->elf_ex = *((struct elfhdr *)bprm->buf);
698
699 retval = -ENOEXEC;
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 goto out;
703
704 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
705 goto out;
706 if (!elf_check_arch(&loc->elf_ex))
707 goto out;
708 if (!bprm->file->f_op->mmap)
709 goto out;
710
711 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
712 if (!elf_phdata)
713 goto out;
714
715 elf_ppnt = elf_phdata;
716 elf_bss = 0;
717 elf_brk = 0;
718
719 start_code = ~0UL;
720 end_code = 0;
721 start_data = 0;
722 end_data = 0;
723
724 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
725 if (elf_ppnt->p_type == PT_INTERP) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
729 */
730 retval = -ENOEXEC;
731 if (elf_ppnt->p_filesz > PATH_MAX ||
732 elf_ppnt->p_filesz < 2)
733 goto out_free_ph;
734
735 retval = -ENOMEM;
736 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
737 GFP_KERNEL);
738 if (!elf_interpreter)
739 goto out_free_ph;
740
741 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
742 elf_interpreter,
743 elf_ppnt->p_filesz);
744 if (retval != elf_ppnt->p_filesz) {
745 if (retval >= 0)
746 retval = -EIO;
747 goto out_free_interp;
748 }
749 /* make sure path is NULL terminated */
750 retval = -ENOEXEC;
751 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
752 goto out_free_interp;
753
754 interpreter = open_exec(elf_interpreter);
755 retval = PTR_ERR(interpreter);
756 if (IS_ERR(interpreter))
757 goto out_free_interp;
758
759 /*
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
762 * permissions.
763 */
764 would_dump(bprm, interpreter);
765
766 /* Get the exec headers */
767 retval = kernel_read(interpreter, 0,
768 (void *)&loc->interp_elf_ex,
769 sizeof(loc->interp_elf_ex));
770 if (retval != sizeof(loc->interp_elf_ex)) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_dentry;
774 }
775
776 break;
777 }
778 elf_ppnt++;
779 }
780
781 elf_ppnt = elf_phdata;
782 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
783 switch (elf_ppnt->p_type) {
784 case PT_GNU_STACK:
785 if (elf_ppnt->p_flags & PF_X)
786 executable_stack = EXSTACK_ENABLE_X;
787 else
788 executable_stack = EXSTACK_DISABLE_X;
789 break;
790
791 case PT_LOPROC ... PT_HIPROC:
792 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
793 bprm->file, false,
794 &arch_state);
795 if (retval)
796 goto out_free_dentry;
797 break;
798 }
799
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter) {
802 retval = -ELIBBAD;
803 /* Not an ELF interpreter */
804 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 goto out_free_dentry;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc->interp_elf_ex))
808 goto out_free_dentry;
809
810 /* Load the interpreter program headers */
811 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
812 interpreter);
813 if (!interp_elf_phdata)
814 goto out_free_dentry;
815
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt = interp_elf_phdata;
818 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
819 switch (elf_ppnt->p_type) {
820 case PT_LOPROC ... PT_HIPROC:
821 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
822 elf_ppnt, interpreter,
823 true, &arch_state);
824 if (retval)
825 goto out_free_dentry;
826 break;
827 }
828 }
829
830 /*
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
833 * the exec syscall.
834 */
835 retval = arch_check_elf(&loc->elf_ex,
836 !!interpreter, &loc->interp_elf_ex,
837 &arch_state);
838 if (retval)
839 goto out_free_dentry;
840
841 /* Flush all traces of the currently running executable */
842 retval = flush_old_exec(bprm);
843 if (retval)
844 goto out_free_dentry;
845
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc->elf_ex, &arch_state);
849 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
850 current->personality |= READ_IMPLIES_EXEC;
851
852 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
853 current->flags |= PF_RANDOMIZE;
854
855 setup_new_exec(bprm);
856 install_exec_creds(bprm);
857
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
861 executable_stack);
862 if (retval < 0)
863 goto out_free_dentry;
864
865 current->mm->start_stack = bprm->p;
866
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i = 0, elf_ppnt = elf_phdata;
870 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
871 int elf_prot = 0, elf_flags;
872 unsigned long k, vaddr;
873 unsigned long total_size = 0;
874
875 if (elf_ppnt->p_type != PT_LOAD)
876 continue;
877
878 if (unlikely (elf_brk > elf_bss)) {
879 unsigned long nbyte;
880
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval = set_brk(elf_bss + load_bias,
885 elf_brk + load_bias);
886 if (retval)
887 goto out_free_dentry;
888 nbyte = ELF_PAGEOFFSET(elf_bss);
889 if (nbyte) {
890 nbyte = ELF_MIN_ALIGN - nbyte;
891 if (nbyte > elf_brk - elf_bss)
892 nbyte = elf_brk - elf_bss;
893 if (clear_user((void __user *)elf_bss +
894 load_bias, nbyte)) {
895 /*
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
899 */
900 }
901 }
902 }
903
904 if (elf_ppnt->p_flags & PF_R)
905 elf_prot |= PROT_READ;
906 if (elf_ppnt->p_flags & PF_W)
907 elf_prot |= PROT_WRITE;
908 if (elf_ppnt->p_flags & PF_X)
909 elf_prot |= PROT_EXEC;
910
911 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
912
913 vaddr = elf_ppnt->p_vaddr;
914 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
915 elf_flags |= MAP_FIXED;
916 } else if (loc->elf_ex.e_type == ET_DYN) {
917 /* Try and get dynamic programs out of the way of the
918 * default mmap base, as well as whatever program they
919 * might try to exec. This is because the brk will
920 * follow the loader, and is not movable. */
921 load_bias = ELF_ET_DYN_BASE - vaddr;
922 if (current->flags & PF_RANDOMIZE)
923 load_bias += arch_mmap_rnd();
924 load_bias = ELF_PAGESTART(load_bias);
925 total_size = total_mapping_size(elf_phdata,
926 loc->elf_ex.e_phnum);
927 if (!total_size) {
928 retval = -EINVAL;
929 goto out_free_dentry;
930 }
931 }
932
933 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
934 elf_prot, elf_flags, total_size);
935 if (BAD_ADDR(error)) {
936 retval = IS_ERR((void *)error) ?
937 PTR_ERR((void*)error) : -EINVAL;
938 goto out_free_dentry;
939 }
940
941 if (!load_addr_set) {
942 load_addr_set = 1;
943 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
944 if (loc->elf_ex.e_type == ET_DYN) {
945 load_bias += error -
946 ELF_PAGESTART(load_bias + vaddr);
947 load_addr += load_bias;
948 reloc_func_desc = load_bias;
949 }
950 }
951 k = elf_ppnt->p_vaddr;
952 if (k < start_code)
953 start_code = k;
954 if (start_data < k)
955 start_data = k;
956
957 /*
958 * Check to see if the section's size will overflow the
959 * allowed task size. Note that p_filesz must always be
960 * <= p_memsz so it is only necessary to check p_memsz.
961 */
962 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
963 elf_ppnt->p_memsz > TASK_SIZE ||
964 TASK_SIZE - elf_ppnt->p_memsz < k) {
965 /* set_brk can never work. Avoid overflows. */
966 retval = -EINVAL;
967 goto out_free_dentry;
968 }
969
970 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
971
972 if (k > elf_bss)
973 elf_bss = k;
974 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
975 end_code = k;
976 if (end_data < k)
977 end_data = k;
978 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
979 if (k > elf_brk)
980 elf_brk = k;
981 }
982
983 loc->elf_ex.e_entry += load_bias;
984 elf_bss += load_bias;
985 elf_brk += load_bias;
986 start_code += load_bias;
987 end_code += load_bias;
988 start_data += load_bias;
989 end_data += load_bias;
990
991 /* Calling set_brk effectively mmaps the pages that we need
992 * for the bss and break sections. We must do this before
993 * mapping in the interpreter, to make sure it doesn't wind
994 * up getting placed where the bss needs to go.
995 */
996 retval = set_brk(elf_bss, elf_brk);
997 if (retval)
998 goto out_free_dentry;
999 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000 retval = -EFAULT; /* Nobody gets to see this, but.. */
1001 goto out_free_dentry;
1002 }
1003
1004 if (elf_interpreter) {
1005 unsigned long interp_map_addr = 0;
1006
1007 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008 interpreter,
1009 &interp_map_addr,
1010 load_bias, interp_elf_phdata);
1011 if (!IS_ERR((void *)elf_entry)) {
1012 /*
1013 * load_elf_interp() returns relocation
1014 * adjustment
1015 */
1016 interp_load_addr = elf_entry;
1017 elf_entry += loc->interp_elf_ex.e_entry;
1018 }
1019 if (BAD_ADDR(elf_entry)) {
1020 retval = IS_ERR((void *)elf_entry) ?
1021 (int)elf_entry : -EINVAL;
1022 goto out_free_dentry;
1023 }
1024 reloc_func_desc = interp_load_addr;
1025
1026 allow_write_access(interpreter);
1027 fput(interpreter);
1028 kfree(elf_interpreter);
1029 } else {
1030 elf_entry = loc->elf_ex.e_entry;
1031 if (BAD_ADDR(elf_entry)) {
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035 }
1036
1037 kfree(interp_elf_phdata);
1038 kfree(elf_phdata);
1039
1040 set_binfmt(&elf_format);
1041
1042 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044 if (retval < 0)
1045 goto out;
1046 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048 retval = create_elf_tables(bprm, &loc->elf_ex,
1049 load_addr, interp_load_addr);
1050 if (retval < 0)
1051 goto out;
1052 /* N.B. passed_fileno might not be initialized? */
1053 current->mm->end_code = end_code;
1054 current->mm->start_code = start_code;
1055 current->mm->start_data = start_data;
1056 current->mm->end_data = end_data;
1057 current->mm->start_stack = bprm->p;
1058
1059 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060 current->mm->brk = current->mm->start_brk =
1061 arch_randomize_brk(current->mm);
1062 #ifdef compat_brk_randomized
1063 current->brk_randomized = 1;
1064 #endif
1065 }
1066
1067 if (current->personality & MMAP_PAGE_ZERO) {
1068 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1069 and some applications "depend" upon this behavior.
1070 Since we do not have the power to recompile these, we
1071 emulate the SVr4 behavior. Sigh. */
1072 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073 MAP_FIXED | MAP_PRIVATE, 0);
1074 }
1075
1076 #ifdef ELF_PLAT_INIT
1077 /*
1078 * The ABI may specify that certain registers be set up in special
1079 * ways (on i386 %edx is the address of a DT_FINI function, for
1080 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1081 * that the e_entry field is the address of the function descriptor
1082 * for the startup routine, rather than the address of the startup
1083 * routine itself. This macro performs whatever initialization to
1084 * the regs structure is required as well as any relocations to the
1085 * function descriptor entries when executing dynamically links apps.
1086 */
1087 ELF_PLAT_INIT(regs, reloc_func_desc);
1088 #endif
1089
1090 start_thread(regs, elf_entry, bprm->p);
1091 retval = 0;
1092 out:
1093 kfree(loc);
1094 out_ret:
1095 return retval;
1096
1097 /* error cleanup */
1098 out_free_dentry:
1099 kfree(interp_elf_phdata);
1100 allow_write_access(interpreter);
1101 if (interpreter)
1102 fput(interpreter);
1103 out_free_interp:
1104 kfree(elf_interpreter);
1105 out_free_ph:
1106 kfree(elf_phdata);
1107 goto out;
1108 }
1109
1110 #ifdef CONFIG_USELIB
1111 /* This is really simpleminded and specialized - we are loading an
1112 a.out library that is given an ELF header. */
1113 static int load_elf_library(struct file *file)
1114 {
1115 struct elf_phdr *elf_phdata;
1116 struct elf_phdr *eppnt;
1117 unsigned long elf_bss, bss, len;
1118 int retval, error, i, j;
1119 struct elfhdr elf_ex;
1120
1121 error = -ENOEXEC;
1122 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123 if (retval != sizeof(elf_ex))
1124 goto out;
1125
1126 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127 goto out;
1128
1129 /* First of all, some simple consistency checks */
1130 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132 goto out;
1133
1134 /* Now read in all of the header information */
1135
1136 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139 error = -ENOMEM;
1140 elf_phdata = kmalloc(j, GFP_KERNEL);
1141 if (!elf_phdata)
1142 goto out;
1143
1144 eppnt = elf_phdata;
1145 error = -ENOEXEC;
1146 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147 if (retval != j)
1148 goto out_free_ph;
1149
1150 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151 if ((eppnt + i)->p_type == PT_LOAD)
1152 j++;
1153 if (j != 1)
1154 goto out_free_ph;
1155
1156 while (eppnt->p_type != PT_LOAD)
1157 eppnt++;
1158
1159 /* Now use mmap to map the library into memory. */
1160 error = vm_mmap(file,
1161 ELF_PAGESTART(eppnt->p_vaddr),
1162 (eppnt->p_filesz +
1163 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164 PROT_READ | PROT_WRITE | PROT_EXEC,
1165 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166 (eppnt->p_offset -
1167 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169 goto out_free_ph;
1170
1171 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172 if (padzero(elf_bss)) {
1173 error = -EFAULT;
1174 goto out_free_ph;
1175 }
1176
1177 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178 ELF_MIN_ALIGN - 1);
1179 bss = eppnt->p_memsz + eppnt->p_vaddr;
1180 if (bss > len) {
1181 error = vm_brk(len, bss - len);
1182 if (error)
1183 goto out_free_ph;
1184 }
1185 error = 0;
1186
1187 out_free_ph:
1188 kfree(elf_phdata);
1189 out:
1190 return error;
1191 }
1192 #endif /* #ifdef CONFIG_USELIB */
1193
1194 #ifdef CONFIG_ELF_CORE
1195 /*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202 /*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210 static bool always_dump_vma(struct vm_area_struct *vma)
1211 {
1212 /* Any vsyscall mappings? */
1213 if (vma == get_gate_vma(vma->vm_mm))
1214 return true;
1215
1216 /*
1217 * Assume that all vmas with a .name op should always be dumped.
1218 * If this changes, a new vm_ops field can easily be added.
1219 */
1220 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221 return true;
1222
1223 /*
1224 * arch_vma_name() returns non-NULL for special architecture mappings,
1225 * such as vDSO sections.
1226 */
1227 if (arch_vma_name(vma))
1228 return true;
1229
1230 return false;
1231 }
1232
1233 /*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237 unsigned long mm_flags)
1238 {
1239 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1240
1241 /* always dump the vdso and vsyscall sections */
1242 if (always_dump_vma(vma))
1243 goto whole;
1244
1245 if (vma->vm_flags & VM_DONTDUMP)
1246 return 0;
1247
1248 /* support for DAX */
1249 if (vma_is_dax(vma)) {
1250 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251 goto whole;
1252 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253 goto whole;
1254 return 0;
1255 }
1256
1257 /* Hugetlb memory check */
1258 if (vma->vm_flags & VM_HUGETLB) {
1259 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260 goto whole;
1261 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262 goto whole;
1263 return 0;
1264 }
1265
1266 /* Do not dump I/O mapped devices or special mappings */
1267 if (vma->vm_flags & VM_IO)
1268 return 0;
1269
1270 /* By default, dump shared memory if mapped from an anonymous file. */
1271 if (vma->vm_flags & VM_SHARED) {
1272 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274 goto whole;
1275 return 0;
1276 }
1277
1278 /* Dump segments that have been written to. */
1279 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280 goto whole;
1281 if (vma->vm_file == NULL)
1282 return 0;
1283
1284 if (FILTER(MAPPED_PRIVATE))
1285 goto whole;
1286
1287 /*
1288 * If this looks like the beginning of a DSO or executable mapping,
1289 * check for an ELF header. If we find one, dump the first page to
1290 * aid in determining what was mapped here.
1291 */
1292 if (FILTER(ELF_HEADERS) &&
1293 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294 u32 __user *header = (u32 __user *) vma->vm_start;
1295 u32 word;
1296 mm_segment_t fs = get_fs();
1297 /*
1298 * Doing it this way gets the constant folded by GCC.
1299 */
1300 union {
1301 u32 cmp;
1302 char elfmag[SELFMAG];
1303 } magic;
1304 BUILD_BUG_ON(SELFMAG != sizeof word);
1305 magic.elfmag[EI_MAG0] = ELFMAG0;
1306 magic.elfmag[EI_MAG1] = ELFMAG1;
1307 magic.elfmag[EI_MAG2] = ELFMAG2;
1308 magic.elfmag[EI_MAG3] = ELFMAG3;
1309 /*
1310 * Switch to the user "segment" for get_user(),
1311 * then put back what elf_core_dump() had in place.
1312 */
1313 set_fs(USER_DS);
1314 if (unlikely(get_user(word, header)))
1315 word = 0;
1316 set_fs(fs);
1317 if (word == magic.cmp)
1318 return PAGE_SIZE;
1319 }
1320
1321 #undef FILTER
1322
1323 return 0;
1324
1325 whole:
1326 return vma->vm_end - vma->vm_start;
1327 }
1328
1329 /* An ELF note in memory */
1330 struct memelfnote
1331 {
1332 const char *name;
1333 int type;
1334 unsigned int datasz;
1335 void *data;
1336 };
1337
1338 static int notesize(struct memelfnote *en)
1339 {
1340 int sz;
1341
1342 sz = sizeof(struct elf_note);
1343 sz += roundup(strlen(en->name) + 1, 4);
1344 sz += roundup(en->datasz, 4);
1345
1346 return sz;
1347 }
1348
1349 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350 {
1351 struct elf_note en;
1352 en.n_namesz = strlen(men->name) + 1;
1353 en.n_descsz = men->datasz;
1354 en.n_type = men->type;
1355
1356 return dump_emit(cprm, &en, sizeof(en)) &&
1357 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359 }
1360
1361 static void fill_elf_header(struct elfhdr *elf, int segs,
1362 u16 machine, u32 flags)
1363 {
1364 memset(elf, 0, sizeof(*elf));
1365
1366 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367 elf->e_ident[EI_CLASS] = ELF_CLASS;
1368 elf->e_ident[EI_DATA] = ELF_DATA;
1369 elf->e_ident[EI_VERSION] = EV_CURRENT;
1370 elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372 elf->e_type = ET_CORE;
1373 elf->e_machine = machine;
1374 elf->e_version = EV_CURRENT;
1375 elf->e_phoff = sizeof(struct elfhdr);
1376 elf->e_flags = flags;
1377 elf->e_ehsize = sizeof(struct elfhdr);
1378 elf->e_phentsize = sizeof(struct elf_phdr);
1379 elf->e_phnum = segs;
1380
1381 return;
1382 }
1383
1384 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385 {
1386 phdr->p_type = PT_NOTE;
1387 phdr->p_offset = offset;
1388 phdr->p_vaddr = 0;
1389 phdr->p_paddr = 0;
1390 phdr->p_filesz = sz;
1391 phdr->p_memsz = 0;
1392 phdr->p_flags = 0;
1393 phdr->p_align = 0;
1394 return;
1395 }
1396
1397 static void fill_note(struct memelfnote *note, const char *name, int type,
1398 unsigned int sz, void *data)
1399 {
1400 note->name = name;
1401 note->type = type;
1402 note->datasz = sz;
1403 note->data = data;
1404 return;
1405 }
1406
1407 /*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411 static void fill_prstatus(struct elf_prstatus *prstatus,
1412 struct task_struct *p, long signr)
1413 {
1414 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415 prstatus->pr_sigpend = p->pending.signal.sig[0];
1416 prstatus->pr_sighold = p->blocked.sig[0];
1417 rcu_read_lock();
1418 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419 rcu_read_unlock();
1420 prstatus->pr_pid = task_pid_vnr(p);
1421 prstatus->pr_pgrp = task_pgrp_vnr(p);
1422 prstatus->pr_sid = task_session_vnr(p);
1423 if (thread_group_leader(p)) {
1424 struct task_cputime cputime;
1425
1426 /*
1427 * This is the record for the group leader. It shows the
1428 * group-wide total, not its individual thread total.
1429 */
1430 thread_group_cputime(p, &cputime);
1431 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1432 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1433 } else {
1434 u64 utime, stime;
1435
1436 task_cputime(p, &utime, &stime);
1437 prstatus->pr_utime = ns_to_timeval(utime);
1438 prstatus->pr_stime = ns_to_timeval(stime);
1439 }
1440
1441 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1442 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1443 }
1444
1445 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1446 struct mm_struct *mm)
1447 {
1448 const struct cred *cred;
1449 unsigned int i, len;
1450
1451 /* first copy the parameters from user space */
1452 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1453
1454 len = mm->arg_end - mm->arg_start;
1455 if (len >= ELF_PRARGSZ)
1456 len = ELF_PRARGSZ-1;
1457 if (copy_from_user(&psinfo->pr_psargs,
1458 (const char __user *)mm->arg_start, len))
1459 return -EFAULT;
1460 for(i = 0; i < len; i++)
1461 if (psinfo->pr_psargs[i] == 0)
1462 psinfo->pr_psargs[i] = ' ';
1463 psinfo->pr_psargs[len] = 0;
1464
1465 rcu_read_lock();
1466 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1467 rcu_read_unlock();
1468 psinfo->pr_pid = task_pid_vnr(p);
1469 psinfo->pr_pgrp = task_pgrp_vnr(p);
1470 psinfo->pr_sid = task_session_vnr(p);
1471
1472 i = p->state ? ffz(~p->state) + 1 : 0;
1473 psinfo->pr_state = i;
1474 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1475 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1476 psinfo->pr_nice = task_nice(p);
1477 psinfo->pr_flag = p->flags;
1478 rcu_read_lock();
1479 cred = __task_cred(p);
1480 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1481 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1482 rcu_read_unlock();
1483 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1484
1485 return 0;
1486 }
1487
1488 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1489 {
1490 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1491 int i = 0;
1492 do
1493 i += 2;
1494 while (auxv[i - 2] != AT_NULL);
1495 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1496 }
1497
1498 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1499 const siginfo_t *siginfo)
1500 {
1501 mm_segment_t old_fs = get_fs();
1502 set_fs(KERNEL_DS);
1503 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1504 set_fs(old_fs);
1505 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1506 }
1507
1508 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1509 /*
1510 * Format of NT_FILE note:
1511 *
1512 * long count -- how many files are mapped
1513 * long page_size -- units for file_ofs
1514 * array of [COUNT] elements of
1515 * long start
1516 * long end
1517 * long file_ofs
1518 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1519 */
1520 static int fill_files_note(struct memelfnote *note)
1521 {
1522 struct vm_area_struct *vma;
1523 unsigned count, size, names_ofs, remaining, n;
1524 user_long_t *data;
1525 user_long_t *start_end_ofs;
1526 char *name_base, *name_curpos;
1527
1528 /* *Estimated* file count and total data size needed */
1529 count = current->mm->map_count;
1530 size = count * 64;
1531
1532 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1533 alloc:
1534 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1535 return -EINVAL;
1536 size = round_up(size, PAGE_SIZE);
1537 data = vmalloc(size);
1538 if (!data)
1539 return -ENOMEM;
1540
1541 start_end_ofs = data + 2;
1542 name_base = name_curpos = ((char *)data) + names_ofs;
1543 remaining = size - names_ofs;
1544 count = 0;
1545 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1546 struct file *file;
1547 const char *filename;
1548
1549 file = vma->vm_file;
1550 if (!file)
1551 continue;
1552 filename = file_path(file, name_curpos, remaining);
1553 if (IS_ERR(filename)) {
1554 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1555 vfree(data);
1556 size = size * 5 / 4;
1557 goto alloc;
1558 }
1559 continue;
1560 }
1561
1562 /* file_path() fills at the end, move name down */
1563 /* n = strlen(filename) + 1: */
1564 n = (name_curpos + remaining) - filename;
1565 remaining = filename - name_curpos;
1566 memmove(name_curpos, filename, n);
1567 name_curpos += n;
1568
1569 *start_end_ofs++ = vma->vm_start;
1570 *start_end_ofs++ = vma->vm_end;
1571 *start_end_ofs++ = vma->vm_pgoff;
1572 count++;
1573 }
1574
1575 /* Now we know exact count of files, can store it */
1576 data[0] = count;
1577 data[1] = PAGE_SIZE;
1578 /*
1579 * Count usually is less than current->mm->map_count,
1580 * we need to move filenames down.
1581 */
1582 n = current->mm->map_count - count;
1583 if (n != 0) {
1584 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1585 memmove(name_base - shift_bytes, name_base,
1586 name_curpos - name_base);
1587 name_curpos -= shift_bytes;
1588 }
1589
1590 size = name_curpos - (char *)data;
1591 fill_note(note, "CORE", NT_FILE, size, data);
1592 return 0;
1593 }
1594
1595 #ifdef CORE_DUMP_USE_REGSET
1596 #include <linux/regset.h>
1597
1598 struct elf_thread_core_info {
1599 struct elf_thread_core_info *next;
1600 struct task_struct *task;
1601 struct elf_prstatus prstatus;
1602 struct memelfnote notes[0];
1603 };
1604
1605 struct elf_note_info {
1606 struct elf_thread_core_info *thread;
1607 struct memelfnote psinfo;
1608 struct memelfnote signote;
1609 struct memelfnote auxv;
1610 struct memelfnote files;
1611 user_siginfo_t csigdata;
1612 size_t size;
1613 int thread_notes;
1614 };
1615
1616 /*
1617 * When a regset has a writeback hook, we call it on each thread before
1618 * dumping user memory. On register window machines, this makes sure the
1619 * user memory backing the register data is up to date before we read it.
1620 */
1621 static void do_thread_regset_writeback(struct task_struct *task,
1622 const struct user_regset *regset)
1623 {
1624 if (regset->writeback)
1625 regset->writeback(task, regset, 1);
1626 }
1627
1628 #ifndef PRSTATUS_SIZE
1629 #define PRSTATUS_SIZE(S, R) sizeof(S)
1630 #endif
1631
1632 #ifndef SET_PR_FPVALID
1633 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1634 #endif
1635
1636 static int fill_thread_core_info(struct elf_thread_core_info *t,
1637 const struct user_regset_view *view,
1638 long signr, size_t *total)
1639 {
1640 unsigned int i;
1641 unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1642
1643 /*
1644 * NT_PRSTATUS is the one special case, because the regset data
1645 * goes into the pr_reg field inside the note contents, rather
1646 * than being the whole note contents. We fill the reset in here.
1647 * We assume that regset 0 is NT_PRSTATUS.
1648 */
1649 fill_prstatus(&t->prstatus, t->task, signr);
1650 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1651 &t->prstatus.pr_reg, NULL);
1652
1653 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1654 PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1655 *total += notesize(&t->notes[0]);
1656
1657 do_thread_regset_writeback(t->task, &view->regsets[0]);
1658
1659 /*
1660 * Each other regset might generate a note too. For each regset
1661 * that has no core_note_type or is inactive, we leave t->notes[i]
1662 * all zero and we'll know to skip writing it later.
1663 */
1664 for (i = 1; i < view->n; ++i) {
1665 const struct user_regset *regset = &view->regsets[i];
1666 do_thread_regset_writeback(t->task, regset);
1667 if (regset->core_note_type && regset->get &&
1668 (!regset->active || regset->active(t->task, regset))) {
1669 int ret;
1670 size_t size = regset->n * regset->size;
1671 void *data = kmalloc(size, GFP_KERNEL);
1672 if (unlikely(!data))
1673 return 0;
1674 ret = regset->get(t->task, regset,
1675 0, size, data, NULL);
1676 if (unlikely(ret))
1677 kfree(data);
1678 else {
1679 if (regset->core_note_type != NT_PRFPREG)
1680 fill_note(&t->notes[i], "LINUX",
1681 regset->core_note_type,
1682 size, data);
1683 else {
1684 SET_PR_FPVALID(&t->prstatus,
1685 1, regset_size);
1686 fill_note(&t->notes[i], "CORE",
1687 NT_PRFPREG, size, data);
1688 }
1689 *total += notesize(&t->notes[i]);
1690 }
1691 }
1692 }
1693
1694 return 1;
1695 }
1696
1697 static int fill_note_info(struct elfhdr *elf, int phdrs,
1698 struct elf_note_info *info,
1699 const siginfo_t *siginfo, struct pt_regs *regs)
1700 {
1701 struct task_struct *dump_task = current;
1702 const struct user_regset_view *view = task_user_regset_view(dump_task);
1703 struct elf_thread_core_info *t;
1704 struct elf_prpsinfo *psinfo;
1705 struct core_thread *ct;
1706 unsigned int i;
1707
1708 info->size = 0;
1709 info->thread = NULL;
1710
1711 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1712 if (psinfo == NULL) {
1713 info->psinfo.data = NULL; /* So we don't free this wrongly */
1714 return 0;
1715 }
1716
1717 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1718
1719 /*
1720 * Figure out how many notes we're going to need for each thread.
1721 */
1722 info->thread_notes = 0;
1723 for (i = 0; i < view->n; ++i)
1724 if (view->regsets[i].core_note_type != 0)
1725 ++info->thread_notes;
1726
1727 /*
1728 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1729 * since it is our one special case.
1730 */
1731 if (unlikely(info->thread_notes == 0) ||
1732 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1733 WARN_ON(1);
1734 return 0;
1735 }
1736
1737 /*
1738 * Initialize the ELF file header.
1739 */
1740 fill_elf_header(elf, phdrs,
1741 view->e_machine, view->e_flags);
1742
1743 /*
1744 * Allocate a structure for each thread.
1745 */
1746 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1747 t = kzalloc(offsetof(struct elf_thread_core_info,
1748 notes[info->thread_notes]),
1749 GFP_KERNEL);
1750 if (unlikely(!t))
1751 return 0;
1752
1753 t->task = ct->task;
1754 if (ct->task == dump_task || !info->thread) {
1755 t->next = info->thread;
1756 info->thread = t;
1757 } else {
1758 /*
1759 * Make sure to keep the original task at
1760 * the head of the list.
1761 */
1762 t->next = info->thread->next;
1763 info->thread->next = t;
1764 }
1765 }
1766
1767 /*
1768 * Now fill in each thread's information.
1769 */
1770 for (t = info->thread; t != NULL; t = t->next)
1771 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1772 return 0;
1773
1774 /*
1775 * Fill in the two process-wide notes.
1776 */
1777 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1778 info->size += notesize(&info->psinfo);
1779
1780 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1781 info->size += notesize(&info->signote);
1782
1783 fill_auxv_note(&info->auxv, current->mm);
1784 info->size += notesize(&info->auxv);
1785
1786 if (fill_files_note(&info->files) == 0)
1787 info->size += notesize(&info->files);
1788
1789 return 1;
1790 }
1791
1792 static size_t get_note_info_size(struct elf_note_info *info)
1793 {
1794 return info->size;
1795 }
1796
1797 /*
1798 * Write all the notes for each thread. When writing the first thread, the
1799 * process-wide notes are interleaved after the first thread-specific note.
1800 */
1801 static int write_note_info(struct elf_note_info *info,
1802 struct coredump_params *cprm)
1803 {
1804 bool first = true;
1805 struct elf_thread_core_info *t = info->thread;
1806
1807 do {
1808 int i;
1809
1810 if (!writenote(&t->notes[0], cprm))
1811 return 0;
1812
1813 if (first && !writenote(&info->psinfo, cprm))
1814 return 0;
1815 if (first && !writenote(&info->signote, cprm))
1816 return 0;
1817 if (first && !writenote(&info->auxv, cprm))
1818 return 0;
1819 if (first && info->files.data &&
1820 !writenote(&info->files, cprm))
1821 return 0;
1822
1823 for (i = 1; i < info->thread_notes; ++i)
1824 if (t->notes[i].data &&
1825 !writenote(&t->notes[i], cprm))
1826 return 0;
1827
1828 first = false;
1829 t = t->next;
1830 } while (t);
1831
1832 return 1;
1833 }
1834
1835 static void free_note_info(struct elf_note_info *info)
1836 {
1837 struct elf_thread_core_info *threads = info->thread;
1838 while (threads) {
1839 unsigned int i;
1840 struct elf_thread_core_info *t = threads;
1841 threads = t->next;
1842 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1843 for (i = 1; i < info->thread_notes; ++i)
1844 kfree(t->notes[i].data);
1845 kfree(t);
1846 }
1847 kfree(info->psinfo.data);
1848 vfree(info->files.data);
1849 }
1850
1851 #else
1852
1853 /* Here is the structure in which status of each thread is captured. */
1854 struct elf_thread_status
1855 {
1856 struct list_head list;
1857 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1858 elf_fpregset_t fpu; /* NT_PRFPREG */
1859 struct task_struct *thread;
1860 #ifdef ELF_CORE_COPY_XFPREGS
1861 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1862 #endif
1863 struct memelfnote notes[3];
1864 int num_notes;
1865 };
1866
1867 /*
1868 * In order to add the specific thread information for the elf file format,
1869 * we need to keep a linked list of every threads pr_status and then create
1870 * a single section for them in the final core file.
1871 */
1872 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1873 {
1874 int sz = 0;
1875 struct task_struct *p = t->thread;
1876 t->num_notes = 0;
1877
1878 fill_prstatus(&t->prstatus, p, signr);
1879 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1880
1881 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1882 &(t->prstatus));
1883 t->num_notes++;
1884 sz += notesize(&t->notes[0]);
1885
1886 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1887 &t->fpu))) {
1888 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1889 &(t->fpu));
1890 t->num_notes++;
1891 sz += notesize(&t->notes[1]);
1892 }
1893
1894 #ifdef ELF_CORE_COPY_XFPREGS
1895 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1896 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1897 sizeof(t->xfpu), &t->xfpu);
1898 t->num_notes++;
1899 sz += notesize(&t->notes[2]);
1900 }
1901 #endif
1902 return sz;
1903 }
1904
1905 struct elf_note_info {
1906 struct memelfnote *notes;
1907 struct memelfnote *notes_files;
1908 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1909 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1910 struct list_head thread_list;
1911 elf_fpregset_t *fpu;
1912 #ifdef ELF_CORE_COPY_XFPREGS
1913 elf_fpxregset_t *xfpu;
1914 #endif
1915 user_siginfo_t csigdata;
1916 int thread_status_size;
1917 int numnote;
1918 };
1919
1920 static int elf_note_info_init(struct elf_note_info *info)
1921 {
1922 memset(info, 0, sizeof(*info));
1923 INIT_LIST_HEAD(&info->thread_list);
1924
1925 /* Allocate space for ELF notes */
1926 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1927 if (!info->notes)
1928 return 0;
1929 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1930 if (!info->psinfo)
1931 return 0;
1932 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1933 if (!info->prstatus)
1934 return 0;
1935 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1936 if (!info->fpu)
1937 return 0;
1938 #ifdef ELF_CORE_COPY_XFPREGS
1939 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1940 if (!info->xfpu)
1941 return 0;
1942 #endif
1943 return 1;
1944 }
1945
1946 static int fill_note_info(struct elfhdr *elf, int phdrs,
1947 struct elf_note_info *info,
1948 const siginfo_t *siginfo, struct pt_regs *regs)
1949 {
1950 struct list_head *t;
1951 struct core_thread *ct;
1952 struct elf_thread_status *ets;
1953
1954 if (!elf_note_info_init(info))
1955 return 0;
1956
1957 for (ct = current->mm->core_state->dumper.next;
1958 ct; ct = ct->next) {
1959 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1960 if (!ets)
1961 return 0;
1962
1963 ets->thread = ct->task;
1964 list_add(&ets->list, &info->thread_list);
1965 }
1966
1967 list_for_each(t, &info->thread_list) {
1968 int sz;
1969
1970 ets = list_entry(t, struct elf_thread_status, list);
1971 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1972 info->thread_status_size += sz;
1973 }
1974 /* now collect the dump for the current */
1975 memset(info->prstatus, 0, sizeof(*info->prstatus));
1976 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1977 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1978
1979 /* Set up header */
1980 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1981
1982 /*
1983 * Set up the notes in similar form to SVR4 core dumps made
1984 * with info from their /proc.
1985 */
1986
1987 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1988 sizeof(*info->prstatus), info->prstatus);
1989 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1990 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1991 sizeof(*info->psinfo), info->psinfo);
1992
1993 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1994 fill_auxv_note(info->notes + 3, current->mm);
1995 info->numnote = 4;
1996
1997 if (fill_files_note(info->notes + info->numnote) == 0) {
1998 info->notes_files = info->notes + info->numnote;
1999 info->numnote++;
2000 }
2001
2002 /* Try to dump the FPU. */
2003 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2004 info->fpu);
2005 if (info->prstatus->pr_fpvalid)
2006 fill_note(info->notes + info->numnote++,
2007 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2008 #ifdef ELF_CORE_COPY_XFPREGS
2009 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2010 fill_note(info->notes + info->numnote++,
2011 "LINUX", ELF_CORE_XFPREG_TYPE,
2012 sizeof(*info->xfpu), info->xfpu);
2013 #endif
2014
2015 return 1;
2016 }
2017
2018 static size_t get_note_info_size(struct elf_note_info *info)
2019 {
2020 int sz = 0;
2021 int i;
2022
2023 for (i = 0; i < info->numnote; i++)
2024 sz += notesize(info->notes + i);
2025
2026 sz += info->thread_status_size;
2027
2028 return sz;
2029 }
2030
2031 static int write_note_info(struct elf_note_info *info,
2032 struct coredump_params *cprm)
2033 {
2034 int i;
2035 struct list_head *t;
2036
2037 for (i = 0; i < info->numnote; i++)
2038 if (!writenote(info->notes + i, cprm))
2039 return 0;
2040
2041 /* write out the thread status notes section */
2042 list_for_each(t, &info->thread_list) {
2043 struct elf_thread_status *tmp =
2044 list_entry(t, struct elf_thread_status, list);
2045
2046 for (i = 0; i < tmp->num_notes; i++)
2047 if (!writenote(&tmp->notes[i], cprm))
2048 return 0;
2049 }
2050
2051 return 1;
2052 }
2053
2054 static void free_note_info(struct elf_note_info *info)
2055 {
2056 while (!list_empty(&info->thread_list)) {
2057 struct list_head *tmp = info->thread_list.next;
2058 list_del(tmp);
2059 kfree(list_entry(tmp, struct elf_thread_status, list));
2060 }
2061
2062 /* Free data possibly allocated by fill_files_note(): */
2063 if (info->notes_files)
2064 vfree(info->notes_files->data);
2065
2066 kfree(info->prstatus);
2067 kfree(info->psinfo);
2068 kfree(info->notes);
2069 kfree(info->fpu);
2070 #ifdef ELF_CORE_COPY_XFPREGS
2071 kfree(info->xfpu);
2072 #endif
2073 }
2074
2075 #endif
2076
2077 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2078 struct vm_area_struct *gate_vma)
2079 {
2080 struct vm_area_struct *ret = tsk->mm->mmap;
2081
2082 if (ret)
2083 return ret;
2084 return gate_vma;
2085 }
2086 /*
2087 * Helper function for iterating across a vma list. It ensures that the caller
2088 * will visit `gate_vma' prior to terminating the search.
2089 */
2090 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2091 struct vm_area_struct *gate_vma)
2092 {
2093 struct vm_area_struct *ret;
2094
2095 ret = this_vma->vm_next;
2096 if (ret)
2097 return ret;
2098 if (this_vma == gate_vma)
2099 return NULL;
2100 return gate_vma;
2101 }
2102
2103 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2104 elf_addr_t e_shoff, int segs)
2105 {
2106 elf->e_shoff = e_shoff;
2107 elf->e_shentsize = sizeof(*shdr4extnum);
2108 elf->e_shnum = 1;
2109 elf->e_shstrndx = SHN_UNDEF;
2110
2111 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2112
2113 shdr4extnum->sh_type = SHT_NULL;
2114 shdr4extnum->sh_size = elf->e_shnum;
2115 shdr4extnum->sh_link = elf->e_shstrndx;
2116 shdr4extnum->sh_info = segs;
2117 }
2118
2119 /*
2120 * Actual dumper
2121 *
2122 * This is a two-pass process; first we find the offsets of the bits,
2123 * and then they are actually written out. If we run out of core limit
2124 * we just truncate.
2125 */
2126 static int elf_core_dump(struct coredump_params *cprm)
2127 {
2128 int has_dumped = 0;
2129 mm_segment_t fs;
2130 int segs, i;
2131 size_t vma_data_size = 0;
2132 struct vm_area_struct *vma, *gate_vma;
2133 struct elfhdr *elf = NULL;
2134 loff_t offset = 0, dataoff;
2135 struct elf_note_info info = { };
2136 struct elf_phdr *phdr4note = NULL;
2137 struct elf_shdr *shdr4extnum = NULL;
2138 Elf_Half e_phnum;
2139 elf_addr_t e_shoff;
2140 elf_addr_t *vma_filesz = NULL;
2141
2142 /*
2143 * We no longer stop all VM operations.
2144 *
2145 * This is because those proceses that could possibly change map_count
2146 * or the mmap / vma pages are now blocked in do_exit on current
2147 * finishing this core dump.
2148 *
2149 * Only ptrace can touch these memory addresses, but it doesn't change
2150 * the map_count or the pages allocated. So no possibility of crashing
2151 * exists while dumping the mm->vm_next areas to the core file.
2152 */
2153
2154 /* alloc memory for large data structures: too large to be on stack */
2155 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2156 if (!elf)
2157 goto out;
2158 /*
2159 * The number of segs are recored into ELF header as 16bit value.
2160 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2161 */
2162 segs = current->mm->map_count;
2163 segs += elf_core_extra_phdrs();
2164
2165 gate_vma = get_gate_vma(current->mm);
2166 if (gate_vma != NULL)
2167 segs++;
2168
2169 /* for notes section */
2170 segs++;
2171
2172 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2173 * this, kernel supports extended numbering. Have a look at
2174 * include/linux/elf.h for further information. */
2175 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2176
2177 /*
2178 * Collect all the non-memory information about the process for the
2179 * notes. This also sets up the file header.
2180 */
2181 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2182 goto cleanup;
2183
2184 has_dumped = 1;
2185
2186 fs = get_fs();
2187 set_fs(KERNEL_DS);
2188
2189 offset += sizeof(*elf); /* Elf header */
2190 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2191
2192 /* Write notes phdr entry */
2193 {
2194 size_t sz = get_note_info_size(&info);
2195
2196 sz += elf_coredump_extra_notes_size();
2197
2198 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2199 if (!phdr4note)
2200 goto end_coredump;
2201
2202 fill_elf_note_phdr(phdr4note, sz, offset);
2203 offset += sz;
2204 }
2205
2206 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2207
2208 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2209 goto end_coredump;
2210 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2211 if (!vma_filesz)
2212 goto end_coredump;
2213
2214 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2215 vma = next_vma(vma, gate_vma)) {
2216 unsigned long dump_size;
2217
2218 dump_size = vma_dump_size(vma, cprm->mm_flags);
2219 vma_filesz[i++] = dump_size;
2220 vma_data_size += dump_size;
2221 }
2222
2223 offset += vma_data_size;
2224 offset += elf_core_extra_data_size();
2225 e_shoff = offset;
2226
2227 if (e_phnum == PN_XNUM) {
2228 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2229 if (!shdr4extnum)
2230 goto end_coredump;
2231 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2232 }
2233
2234 offset = dataoff;
2235
2236 if (!dump_emit(cprm, elf, sizeof(*elf)))
2237 goto end_coredump;
2238
2239 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2240 goto end_coredump;
2241
2242 /* Write program headers for segments dump */
2243 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2244 vma = next_vma(vma, gate_vma)) {
2245 struct elf_phdr phdr;
2246
2247 phdr.p_type = PT_LOAD;
2248 phdr.p_offset = offset;
2249 phdr.p_vaddr = vma->vm_start;
2250 phdr.p_paddr = 0;
2251 phdr.p_filesz = vma_filesz[i++];
2252 phdr.p_memsz = vma->vm_end - vma->vm_start;
2253 offset += phdr.p_filesz;
2254 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2255 if (vma->vm_flags & VM_WRITE)
2256 phdr.p_flags |= PF_W;
2257 if (vma->vm_flags & VM_EXEC)
2258 phdr.p_flags |= PF_X;
2259 phdr.p_align = ELF_EXEC_PAGESIZE;
2260
2261 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2262 goto end_coredump;
2263 }
2264
2265 if (!elf_core_write_extra_phdrs(cprm, offset))
2266 goto end_coredump;
2267
2268 /* write out the notes section */
2269 if (!write_note_info(&info, cprm))
2270 goto end_coredump;
2271
2272 if (elf_coredump_extra_notes_write(cprm))
2273 goto end_coredump;
2274
2275 /* Align to page */
2276 if (!dump_skip(cprm, dataoff - cprm->pos))
2277 goto end_coredump;
2278
2279 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2280 vma = next_vma(vma, gate_vma)) {
2281 unsigned long addr;
2282 unsigned long end;
2283
2284 end = vma->vm_start + vma_filesz[i++];
2285
2286 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2287 struct page *page;
2288 int stop;
2289
2290 page = get_dump_page(addr);
2291 if (page) {
2292 void *kaddr = kmap(page);
2293 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2294 kunmap(page);
2295 put_page(page);
2296 } else
2297 stop = !dump_skip(cprm, PAGE_SIZE);
2298 if (stop)
2299 goto end_coredump;
2300 }
2301 }
2302 dump_truncate(cprm);
2303
2304 if (!elf_core_write_extra_data(cprm))
2305 goto end_coredump;
2306
2307 if (e_phnum == PN_XNUM) {
2308 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2309 goto end_coredump;
2310 }
2311
2312 end_coredump:
2313 set_fs(fs);
2314
2315 cleanup:
2316 free_note_info(&info);
2317 kfree(shdr4extnum);
2318 vfree(vma_filesz);
2319 kfree(phdr4note);
2320 kfree(elf);
2321 out:
2322 return has_dumped;
2323 }
2324
2325 #endif /* CONFIG_ELF_CORE */
2326
2327 static int __init init_elf_binfmt(void)
2328 {
2329 register_binfmt(&elf_format);
2330 return 0;
2331 }
2332
2333 static void __exit exit_elf_binfmt(void)
2334 {
2335 /* Remove the COFF and ELF loaders. */
2336 unregister_binfmt(&elf_format);
2337 }
2338
2339 core_initcall(init_elf_binfmt);
2340 module_exit(exit_elf_binfmt);
2341 MODULE_LICENSE("GPL");