]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/binfmt_elf.c
exec: introduce finalize_exec() before start_thread()
[mirror_ubuntu-eoan-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 int, int, unsigned long);
62
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68
69 /*
70 * If we don't support core dumping, then supply a NULL so we
71 * don't even try.
72 */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump NULL
77 #endif
78
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN PAGE_SIZE
83 #endif
84
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS 0
87 #endif
88
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92
93 static struct linux_binfmt elf_format = {
94 .module = THIS_MODULE,
95 .load_binary = load_elf_binary,
96 .load_shlib = load_elf_library,
97 .core_dump = elf_core_dump,
98 .min_coredump = ELF_EXEC_PAGESIZE,
99 };
100
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102
103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 start = ELF_PAGEALIGN(start);
106 end = ELF_PAGEALIGN(end);
107 if (end > start) {
108 /*
109 * Map the last of the bss segment.
110 * If the header is requesting these pages to be
111 * executable, honour that (ppc32 needs this).
112 */
113 int error = vm_brk_flags(start, end - start,
114 prot & PROT_EXEC ? VM_EXEC : 0);
115 if (error)
116 return error;
117 }
118 current->mm->start_brk = current->mm->brk = end;
119 return 0;
120 }
121
122 /* We need to explicitly zero any fractional pages
123 after the data section (i.e. bss). This would
124 contain the junk from the file that should not
125 be in memory
126 */
127 static int padzero(unsigned long elf_bss)
128 {
129 unsigned long nbyte;
130
131 nbyte = ELF_PAGEOFFSET(elf_bss);
132 if (nbyte) {
133 nbyte = ELF_MIN_ALIGN - nbyte;
134 if (clear_user((void __user *) elf_bss, nbyte))
135 return -EFAULT;
136 }
137 return 0;
138 }
139
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 (((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154
155 #ifndef ELF_BASE_PLATFORM
156 /*
157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163
164 static int
165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 unsigned long p = bprm->p;
169 int argc = bprm->argc;
170 int envc = bprm->envc;
171 elf_addr_t __user *sp;
172 elf_addr_t __user *u_platform;
173 elf_addr_t __user *u_base_platform;
174 elf_addr_t __user *u_rand_bytes;
175 const char *k_platform = ELF_PLATFORM;
176 const char *k_base_platform = ELF_BASE_PLATFORM;
177 unsigned char k_rand_bytes[16];
178 int items;
179 elf_addr_t *elf_info;
180 int ei_index = 0;
181 const struct cred *cred = current_cred();
182 struct vm_area_struct *vma;
183
184 /*
185 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 * evictions by the processes running on the same package. One
187 * thing we can do is to shuffle the initial stack for them.
188 */
189
190 p = arch_align_stack(p);
191
192 /*
193 * If this architecture has a platform capability string, copy it
194 * to userspace. In some cases (Sparc), this info is impossible
195 * for userspace to get any other way, in others (i386) it is
196 * merely difficult.
197 */
198 u_platform = NULL;
199 if (k_platform) {
200 size_t len = strlen(k_platform) + 1;
201
202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_platform, k_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * If this architecture has a "base" platform capability
209 * string, copy it to userspace.
210 */
211 u_base_platform = NULL;
212 if (k_base_platform) {
213 size_t len = strlen(k_base_platform) + 1;
214
215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 if (__copy_to_user(u_base_platform, k_base_platform, len))
217 return -EFAULT;
218 }
219
220 /*
221 * Generate 16 random bytes for userspace PRNG seeding.
222 */
223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 u_rand_bytes = (elf_addr_t __user *)
225 STACK_ALLOC(p, sizeof(k_rand_bytes));
226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 return -EFAULT;
228
229 /* Create the ELF interpreter info */
230 elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 do { \
234 elf_info[ei_index++] = id; \
235 elf_info[ei_index++] = val; \
236 } while (0)
237
238 #ifdef ARCH_DLINFO
239 /*
240 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * AUXV.
242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 * ARCH_DLINFO changes
244 */
245 ARCH_DLINFO;
246 #endif
247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 NEW_AUX_ENT(AT_FLAGS, 0);
255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 if (k_platform) {
267 NEW_AUX_ENT(AT_PLATFORM,
268 (elf_addr_t)(unsigned long)u_platform);
269 }
270 if (k_base_platform) {
271 NEW_AUX_ENT(AT_BASE_PLATFORM,
272 (elf_addr_t)(unsigned long)u_base_platform);
273 }
274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 }
277 #undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(&elf_info[ei_index], 0,
280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281
282 /* And advance past the AT_NULL entry. */
283 ei_index += 2;
284
285 sp = STACK_ADD(p, ei_index);
286
287 items = (argc + 1) + (envc + 1) + 1;
288 bprm->p = STACK_ROUND(sp, items);
289
290 /* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 sp = (elf_addr_t __user *)bprm->p;
296 #endif
297
298
299 /*
300 * Grow the stack manually; some architectures have a limit on how
301 * far ahead a user-space access may be in order to grow the stack.
302 */
303 vma = find_extend_vma(current->mm, bprm->p);
304 if (!vma)
305 return -EFAULT;
306
307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 if (__put_user(argc, sp++))
309 return -EFAULT;
310
311 /* Populate list of argv pointers back to argv strings. */
312 p = current->mm->arg_end = current->mm->arg_start;
313 while (argc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, sp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, sp++))
323 return -EFAULT;
324 current->mm->arg_end = p;
325
326 /* Populate list of envp pointers back to envp strings. */
327 current->mm->env_end = current->mm->env_start = p;
328 while (envc-- > 0) {
329 size_t len;
330 if (__put_user((elf_addr_t)p, sp++))
331 return -EFAULT;
332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 if (!len || len > MAX_ARG_STRLEN)
334 return -EINVAL;
335 p += len;
336 }
337 if (__put_user(0, sp++))
338 return -EFAULT;
339 current->mm->env_end = p;
340
341 /* Put the elf_info on the stack in the right place. */
342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 return -EFAULT;
344 return 0;
345 }
346
347 #ifndef elf_map
348
349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 struct elf_phdr *eppnt, int prot, int type,
351 unsigned long total_size)
352 {
353 unsigned long map_addr;
354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 addr = ELF_PAGESTART(addr);
357 size = ELF_PAGEALIGN(size);
358
359 /* mmap() will return -EINVAL if given a zero size, but a
360 * segment with zero filesize is perfectly valid */
361 if (!size)
362 return addr;
363
364 /*
365 * total_size is the size of the ELF (interpreter) image.
366 * The _first_ mmap needs to know the full size, otherwise
367 * randomization might put this image into an overlapping
368 * position with the ELF binary image. (since size < total_size)
369 * So we first map the 'big' image - and unmap the remainder at
370 * the end. (which unmap is needed for ELF images with holes.)
371 */
372 if (total_size) {
373 total_size = ELF_PAGEALIGN(total_size);
374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 if (!BAD_ADDR(map_addr))
376 vm_munmap(map_addr+size, total_size-size);
377 } else
378 map_addr = vm_mmap(filep, addr, size, prot, type, off);
379
380 return(map_addr);
381 }
382
383 #endif /* !elf_map */
384
385 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
386 {
387 int i, first_idx = -1, last_idx = -1;
388
389 for (i = 0; i < nr; i++) {
390 if (cmds[i].p_type == PT_LOAD) {
391 last_idx = i;
392 if (first_idx == -1)
393 first_idx = i;
394 }
395 }
396 if (first_idx == -1)
397 return 0;
398
399 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
400 ELF_PAGESTART(cmds[first_idx].p_vaddr);
401 }
402
403 /**
404 * load_elf_phdrs() - load ELF program headers
405 * @elf_ex: ELF header of the binary whose program headers should be loaded
406 * @elf_file: the opened ELF binary file
407 *
408 * Loads ELF program headers from the binary file elf_file, which has the ELF
409 * header pointed to by elf_ex, into a newly allocated array. The caller is
410 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
411 */
412 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
413 struct file *elf_file)
414 {
415 struct elf_phdr *elf_phdata = NULL;
416 int retval, size, err = -1;
417 loff_t pos = elf_ex->e_phoff;
418
419 /*
420 * If the size of this structure has changed, then punt, since
421 * we will be doing the wrong thing.
422 */
423 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
424 goto out;
425
426 /* Sanity check the number of program headers... */
427 if (elf_ex->e_phnum < 1 ||
428 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
429 goto out;
430
431 /* ...and their total size. */
432 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 if (size > ELF_MIN_ALIGN)
434 goto out;
435
436 elf_phdata = kmalloc(size, GFP_KERNEL);
437 if (!elf_phdata)
438 goto out;
439
440 /* Read in the program headers */
441 retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 if (retval != size) {
443 err = (retval < 0) ? retval : -EIO;
444 goto out;
445 }
446
447 /* Success! */
448 err = 0;
449 out:
450 if (err) {
451 kfree(elf_phdata);
452 elf_phdata = NULL;
453 }
454 return elf_phdata;
455 }
456
457 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458
459 /**
460 * struct arch_elf_state - arch-specific ELF loading state
461 *
462 * This structure is used to preserve architecture specific data during
463 * the loading of an ELF file, throughout the checking of architecture
464 * specific ELF headers & through to the point where the ELF load is
465 * known to be proceeding (ie. SET_PERSONALITY).
466 *
467 * This implementation is a dummy for architectures which require no
468 * specific state.
469 */
470 struct arch_elf_state {
471 };
472
473 #define INIT_ARCH_ELF_STATE {}
474
475 /**
476 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477 * @ehdr: The main ELF header
478 * @phdr: The program header to check
479 * @elf: The open ELF file
480 * @is_interp: True if the phdr is from the interpreter of the ELF being
481 * loaded, else false.
482 * @state: Architecture-specific state preserved throughout the process
483 * of loading the ELF.
484 *
485 * Inspects the program header phdr to validate its correctness and/or
486 * suitability for the system. Called once per ELF program header in the
487 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488 * interpreter.
489 *
490 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491 * with that return code.
492 */
493 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 struct elf_phdr *phdr,
495 struct file *elf, bool is_interp,
496 struct arch_elf_state *state)
497 {
498 /* Dummy implementation, always proceed */
499 return 0;
500 }
501
502 /**
503 * arch_check_elf() - check an ELF executable
504 * @ehdr: The main ELF header
505 * @has_interp: True if the ELF has an interpreter, else false.
506 * @interp_ehdr: The interpreter's ELF header
507 * @state: Architecture-specific state preserved throughout the process
508 * of loading the ELF.
509 *
510 * Provides a final opportunity for architecture code to reject the loading
511 * of the ELF & cause an exec syscall to return an error. This is called after
512 * all program headers to be checked by arch_elf_pt_proc have been.
513 *
514 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515 * with that return code.
516 */
517 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 struct elfhdr *interp_ehdr,
519 struct arch_elf_state *state)
520 {
521 /* Dummy implementation, always proceed */
522 return 0;
523 }
524
525 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526
527 /* This is much more generalized than the library routine read function,
528 so we keep this separate. Technically the library read function
529 is only provided so that we can read a.out libraries that have
530 an ELF header */
531
532 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
533 struct file *interpreter, unsigned long *interp_map_addr,
534 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
535 {
536 struct elf_phdr *eppnt;
537 unsigned long load_addr = 0;
538 int load_addr_set = 0;
539 unsigned long last_bss = 0, elf_bss = 0;
540 int bss_prot = 0;
541 unsigned long error = ~0UL;
542 unsigned long total_size;
543 int i;
544
545 /* First of all, some simple consistency checks */
546 if (interp_elf_ex->e_type != ET_EXEC &&
547 interp_elf_ex->e_type != ET_DYN)
548 goto out;
549 if (!elf_check_arch(interp_elf_ex) ||
550 elf_check_fdpic(interp_elf_ex))
551 goto out;
552 if (!interpreter->f_op->mmap)
553 goto out;
554
555 total_size = total_mapping_size(interp_elf_phdata,
556 interp_elf_ex->e_phnum);
557 if (!total_size) {
558 error = -EINVAL;
559 goto out;
560 }
561
562 eppnt = interp_elf_phdata;
563 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
564 if (eppnt->p_type == PT_LOAD) {
565 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
566 int elf_prot = 0;
567 unsigned long vaddr = 0;
568 unsigned long k, map_addr;
569
570 if (eppnt->p_flags & PF_R)
571 elf_prot = PROT_READ;
572 if (eppnt->p_flags & PF_W)
573 elf_prot |= PROT_WRITE;
574 if (eppnt->p_flags & PF_X)
575 elf_prot |= PROT_EXEC;
576 vaddr = eppnt->p_vaddr;
577 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
578 elf_type |= MAP_FIXED;
579 else if (no_base && interp_elf_ex->e_type == ET_DYN)
580 load_addr = -vaddr;
581
582 map_addr = elf_map(interpreter, load_addr + vaddr,
583 eppnt, elf_prot, elf_type, total_size);
584 total_size = 0;
585 if (!*interp_map_addr)
586 *interp_map_addr = map_addr;
587 error = map_addr;
588 if (BAD_ADDR(map_addr))
589 goto out;
590
591 if (!load_addr_set &&
592 interp_elf_ex->e_type == ET_DYN) {
593 load_addr = map_addr - ELF_PAGESTART(vaddr);
594 load_addr_set = 1;
595 }
596
597 /*
598 * Check to see if the section's size will overflow the
599 * allowed task size. Note that p_filesz must always be
600 * <= p_memsize so it's only necessary to check p_memsz.
601 */
602 k = load_addr + eppnt->p_vaddr;
603 if (BAD_ADDR(k) ||
604 eppnt->p_filesz > eppnt->p_memsz ||
605 eppnt->p_memsz > TASK_SIZE ||
606 TASK_SIZE - eppnt->p_memsz < k) {
607 error = -ENOMEM;
608 goto out;
609 }
610
611 /*
612 * Find the end of the file mapping for this phdr, and
613 * keep track of the largest address we see for this.
614 */
615 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
616 if (k > elf_bss)
617 elf_bss = k;
618
619 /*
620 * Do the same thing for the memory mapping - between
621 * elf_bss and last_bss is the bss section.
622 */
623 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
624 if (k > last_bss) {
625 last_bss = k;
626 bss_prot = elf_prot;
627 }
628 }
629 }
630
631 /*
632 * Now fill out the bss section: first pad the last page from
633 * the file up to the page boundary, and zero it from elf_bss
634 * up to the end of the page.
635 */
636 if (padzero(elf_bss)) {
637 error = -EFAULT;
638 goto out;
639 }
640 /*
641 * Next, align both the file and mem bss up to the page size,
642 * since this is where elf_bss was just zeroed up to, and where
643 * last_bss will end after the vm_brk_flags() below.
644 */
645 elf_bss = ELF_PAGEALIGN(elf_bss);
646 last_bss = ELF_PAGEALIGN(last_bss);
647 /* Finally, if there is still more bss to allocate, do it. */
648 if (last_bss > elf_bss) {
649 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
650 bss_prot & PROT_EXEC ? VM_EXEC : 0);
651 if (error)
652 goto out;
653 }
654
655 error = load_addr;
656 out:
657 return error;
658 }
659
660 /*
661 * These are the functions used to load ELF style executables and shared
662 * libraries. There is no binary dependent code anywhere else.
663 */
664
665 #ifndef STACK_RND_MASK
666 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
667 #endif
668
669 static unsigned long randomize_stack_top(unsigned long stack_top)
670 {
671 unsigned long random_variable = 0;
672
673 if (current->flags & PF_RANDOMIZE) {
674 random_variable = get_random_long();
675 random_variable &= STACK_RND_MASK;
676 random_variable <<= PAGE_SHIFT;
677 }
678 #ifdef CONFIG_STACK_GROWSUP
679 return PAGE_ALIGN(stack_top) + random_variable;
680 #else
681 return PAGE_ALIGN(stack_top) - random_variable;
682 #endif
683 }
684
685 static int load_elf_binary(struct linux_binprm *bprm)
686 {
687 struct file *interpreter = NULL; /* to shut gcc up */
688 unsigned long load_addr = 0, load_bias = 0;
689 int load_addr_set = 0;
690 char * elf_interpreter = NULL;
691 unsigned long error;
692 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
693 unsigned long elf_bss, elf_brk;
694 int bss_prot = 0;
695 int retval, i;
696 unsigned long elf_entry;
697 unsigned long interp_load_addr = 0;
698 unsigned long start_code, end_code, start_data, end_data;
699 unsigned long reloc_func_desc __maybe_unused = 0;
700 int executable_stack = EXSTACK_DEFAULT;
701 struct pt_regs *regs = current_pt_regs();
702 struct {
703 struct elfhdr elf_ex;
704 struct elfhdr interp_elf_ex;
705 } *loc;
706 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
707 loff_t pos;
708
709 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
710 if (!loc) {
711 retval = -ENOMEM;
712 goto out_ret;
713 }
714
715 /* Get the exec-header */
716 loc->elf_ex = *((struct elfhdr *)bprm->buf);
717
718 retval = -ENOEXEC;
719 /* First of all, some simple consistency checks */
720 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
721 goto out;
722
723 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
724 goto out;
725 if (!elf_check_arch(&loc->elf_ex))
726 goto out;
727 if (elf_check_fdpic(&loc->elf_ex))
728 goto out;
729 if (!bprm->file->f_op->mmap)
730 goto out;
731
732 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
733 if (!elf_phdata)
734 goto out;
735
736 elf_ppnt = elf_phdata;
737 elf_bss = 0;
738 elf_brk = 0;
739
740 start_code = ~0UL;
741 end_code = 0;
742 start_data = 0;
743 end_data = 0;
744
745 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
746 if (elf_ppnt->p_type == PT_INTERP) {
747 /* This is the program interpreter used for
748 * shared libraries - for now assume that this
749 * is an a.out format binary
750 */
751 retval = -ENOEXEC;
752 if (elf_ppnt->p_filesz > PATH_MAX ||
753 elf_ppnt->p_filesz < 2)
754 goto out_free_ph;
755
756 retval = -ENOMEM;
757 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
758 GFP_KERNEL);
759 if (!elf_interpreter)
760 goto out_free_ph;
761
762 pos = elf_ppnt->p_offset;
763 retval = kernel_read(bprm->file, elf_interpreter,
764 elf_ppnt->p_filesz, &pos);
765 if (retval != elf_ppnt->p_filesz) {
766 if (retval >= 0)
767 retval = -EIO;
768 goto out_free_interp;
769 }
770 /* make sure path is NULL terminated */
771 retval = -ENOEXEC;
772 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 goto out_free_interp;
774
775 interpreter = open_exec(elf_interpreter);
776 retval = PTR_ERR(interpreter);
777 if (IS_ERR(interpreter))
778 goto out_free_interp;
779
780 /*
781 * If the binary is not readable then enforce
782 * mm->dumpable = 0 regardless of the interpreter's
783 * permissions.
784 */
785 would_dump(bprm, interpreter);
786
787 /* Get the exec headers */
788 pos = 0;
789 retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 sizeof(loc->interp_elf_ex), &pos);
791 if (retval != sizeof(loc->interp_elf_ex)) {
792 if (retval >= 0)
793 retval = -EIO;
794 goto out_free_dentry;
795 }
796
797 break;
798 }
799 elf_ppnt++;
800 }
801
802 elf_ppnt = elf_phdata;
803 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
804 switch (elf_ppnt->p_type) {
805 case PT_GNU_STACK:
806 if (elf_ppnt->p_flags & PF_X)
807 executable_stack = EXSTACK_ENABLE_X;
808 else
809 executable_stack = EXSTACK_DISABLE_X;
810 break;
811
812 case PT_LOPROC ... PT_HIPROC:
813 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
814 bprm->file, false,
815 &arch_state);
816 if (retval)
817 goto out_free_dentry;
818 break;
819 }
820
821 /* Some simple consistency checks for the interpreter */
822 if (elf_interpreter) {
823 retval = -ELIBBAD;
824 /* Not an ELF interpreter */
825 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
826 goto out_free_dentry;
827 /* Verify the interpreter has a valid arch */
828 if (!elf_check_arch(&loc->interp_elf_ex) ||
829 elf_check_fdpic(&loc->interp_elf_ex))
830 goto out_free_dentry;
831
832 /* Load the interpreter program headers */
833 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
834 interpreter);
835 if (!interp_elf_phdata)
836 goto out_free_dentry;
837
838 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
839 elf_ppnt = interp_elf_phdata;
840 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
841 switch (elf_ppnt->p_type) {
842 case PT_LOPROC ... PT_HIPROC:
843 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
844 elf_ppnt, interpreter,
845 true, &arch_state);
846 if (retval)
847 goto out_free_dentry;
848 break;
849 }
850 }
851
852 /*
853 * Allow arch code to reject the ELF at this point, whilst it's
854 * still possible to return an error to the code that invoked
855 * the exec syscall.
856 */
857 retval = arch_check_elf(&loc->elf_ex,
858 !!interpreter, &loc->interp_elf_ex,
859 &arch_state);
860 if (retval)
861 goto out_free_dentry;
862
863 /* Flush all traces of the currently running executable */
864 retval = flush_old_exec(bprm);
865 if (retval)
866 goto out_free_dentry;
867
868 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
869 may depend on the personality. */
870 SET_PERSONALITY2(loc->elf_ex, &arch_state);
871 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
872 current->personality |= READ_IMPLIES_EXEC;
873
874 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
875 current->flags |= PF_RANDOMIZE;
876
877 setup_new_exec(bprm);
878 install_exec_creds(bprm);
879
880 /* Do this so that we can load the interpreter, if need be. We will
881 change some of these later */
882 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
883 executable_stack);
884 if (retval < 0)
885 goto out_free_dentry;
886
887 current->mm->start_stack = bprm->p;
888
889 /* Now we do a little grungy work by mmapping the ELF image into
890 the correct location in memory. */
891 for(i = 0, elf_ppnt = elf_phdata;
892 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
893 int elf_prot = 0, elf_flags;
894 unsigned long k, vaddr;
895 unsigned long total_size = 0;
896
897 if (elf_ppnt->p_type != PT_LOAD)
898 continue;
899
900 if (unlikely (elf_brk > elf_bss)) {
901 unsigned long nbyte;
902
903 /* There was a PT_LOAD segment with p_memsz > p_filesz
904 before this one. Map anonymous pages, if needed,
905 and clear the area. */
906 retval = set_brk(elf_bss + load_bias,
907 elf_brk + load_bias,
908 bss_prot);
909 if (retval)
910 goto out_free_dentry;
911 nbyte = ELF_PAGEOFFSET(elf_bss);
912 if (nbyte) {
913 nbyte = ELF_MIN_ALIGN - nbyte;
914 if (nbyte > elf_brk - elf_bss)
915 nbyte = elf_brk - elf_bss;
916 if (clear_user((void __user *)elf_bss +
917 load_bias, nbyte)) {
918 /*
919 * This bss-zeroing can fail if the ELF
920 * file specifies odd protections. So
921 * we don't check the return value
922 */
923 }
924 }
925 }
926
927 if (elf_ppnt->p_flags & PF_R)
928 elf_prot |= PROT_READ;
929 if (elf_ppnt->p_flags & PF_W)
930 elf_prot |= PROT_WRITE;
931 if (elf_ppnt->p_flags & PF_X)
932 elf_prot |= PROT_EXEC;
933
934 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
935
936 vaddr = elf_ppnt->p_vaddr;
937 /*
938 * If we are loading ET_EXEC or we have already performed
939 * the ET_DYN load_addr calculations, proceed normally.
940 */
941 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
942 elf_flags |= MAP_FIXED;
943 } else if (loc->elf_ex.e_type == ET_DYN) {
944 /*
945 * This logic is run once for the first LOAD Program
946 * Header for ET_DYN binaries to calculate the
947 * randomization (load_bias) for all the LOAD
948 * Program Headers, and to calculate the entire
949 * size of the ELF mapping (total_size). (Note that
950 * load_addr_set is set to true later once the
951 * initial mapping is performed.)
952 *
953 * There are effectively two types of ET_DYN
954 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
955 * and loaders (ET_DYN without INTERP, since they
956 * _are_ the ELF interpreter). The loaders must
957 * be loaded away from programs since the program
958 * may otherwise collide with the loader (especially
959 * for ET_EXEC which does not have a randomized
960 * position). For example to handle invocations of
961 * "./ld.so someprog" to test out a new version of
962 * the loader, the subsequent program that the
963 * loader loads must avoid the loader itself, so
964 * they cannot share the same load range. Sufficient
965 * room for the brk must be allocated with the
966 * loader as well, since brk must be available with
967 * the loader.
968 *
969 * Therefore, programs are loaded offset from
970 * ELF_ET_DYN_BASE and loaders are loaded into the
971 * independently randomized mmap region (0 load_bias
972 * without MAP_FIXED).
973 */
974 if (elf_interpreter) {
975 load_bias = ELF_ET_DYN_BASE;
976 if (current->flags & PF_RANDOMIZE)
977 load_bias += arch_mmap_rnd();
978 elf_flags |= MAP_FIXED;
979 } else
980 load_bias = 0;
981
982 /*
983 * Since load_bias is used for all subsequent loading
984 * calculations, we must lower it by the first vaddr
985 * so that the remaining calculations based on the
986 * ELF vaddrs will be correctly offset. The result
987 * is then page aligned.
988 */
989 load_bias = ELF_PAGESTART(load_bias - vaddr);
990
991 total_size = total_mapping_size(elf_phdata,
992 loc->elf_ex.e_phnum);
993 if (!total_size) {
994 retval = -EINVAL;
995 goto out_free_dentry;
996 }
997 }
998
999 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1000 elf_prot, elf_flags, total_size);
1001 if (BAD_ADDR(error)) {
1002 retval = IS_ERR((void *)error) ?
1003 PTR_ERR((void*)error) : -EINVAL;
1004 goto out_free_dentry;
1005 }
1006
1007 if (!load_addr_set) {
1008 load_addr_set = 1;
1009 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1010 if (loc->elf_ex.e_type == ET_DYN) {
1011 load_bias += error -
1012 ELF_PAGESTART(load_bias + vaddr);
1013 load_addr += load_bias;
1014 reloc_func_desc = load_bias;
1015 }
1016 }
1017 k = elf_ppnt->p_vaddr;
1018 if (k < start_code)
1019 start_code = k;
1020 if (start_data < k)
1021 start_data = k;
1022
1023 /*
1024 * Check to see if the section's size will overflow the
1025 * allowed task size. Note that p_filesz must always be
1026 * <= p_memsz so it is only necessary to check p_memsz.
1027 */
1028 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1029 elf_ppnt->p_memsz > TASK_SIZE ||
1030 TASK_SIZE - elf_ppnt->p_memsz < k) {
1031 /* set_brk can never work. Avoid overflows. */
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035
1036 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1037
1038 if (k > elf_bss)
1039 elf_bss = k;
1040 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1041 end_code = k;
1042 if (end_data < k)
1043 end_data = k;
1044 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1045 if (k > elf_brk) {
1046 bss_prot = elf_prot;
1047 elf_brk = k;
1048 }
1049 }
1050
1051 loc->elf_ex.e_entry += load_bias;
1052 elf_bss += load_bias;
1053 elf_brk += load_bias;
1054 start_code += load_bias;
1055 end_code += load_bias;
1056 start_data += load_bias;
1057 end_data += load_bias;
1058
1059 /* Calling set_brk effectively mmaps the pages that we need
1060 * for the bss and break sections. We must do this before
1061 * mapping in the interpreter, to make sure it doesn't wind
1062 * up getting placed where the bss needs to go.
1063 */
1064 retval = set_brk(elf_bss, elf_brk, bss_prot);
1065 if (retval)
1066 goto out_free_dentry;
1067 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1068 retval = -EFAULT; /* Nobody gets to see this, but.. */
1069 goto out_free_dentry;
1070 }
1071
1072 if (elf_interpreter) {
1073 unsigned long interp_map_addr = 0;
1074
1075 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1076 interpreter,
1077 &interp_map_addr,
1078 load_bias, interp_elf_phdata);
1079 if (!IS_ERR((void *)elf_entry)) {
1080 /*
1081 * load_elf_interp() returns relocation
1082 * adjustment
1083 */
1084 interp_load_addr = elf_entry;
1085 elf_entry += loc->interp_elf_ex.e_entry;
1086 }
1087 if (BAD_ADDR(elf_entry)) {
1088 retval = IS_ERR((void *)elf_entry) ?
1089 (int)elf_entry : -EINVAL;
1090 goto out_free_dentry;
1091 }
1092 reloc_func_desc = interp_load_addr;
1093
1094 allow_write_access(interpreter);
1095 fput(interpreter);
1096 kfree(elf_interpreter);
1097 } else {
1098 elf_entry = loc->elf_ex.e_entry;
1099 if (BAD_ADDR(elf_entry)) {
1100 retval = -EINVAL;
1101 goto out_free_dentry;
1102 }
1103 }
1104
1105 kfree(interp_elf_phdata);
1106 kfree(elf_phdata);
1107
1108 set_binfmt(&elf_format);
1109
1110 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1111 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1112 if (retval < 0)
1113 goto out;
1114 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1115
1116 retval = create_elf_tables(bprm, &loc->elf_ex,
1117 load_addr, interp_load_addr);
1118 if (retval < 0)
1119 goto out;
1120 /* N.B. passed_fileno might not be initialized? */
1121 current->mm->end_code = end_code;
1122 current->mm->start_code = start_code;
1123 current->mm->start_data = start_data;
1124 current->mm->end_data = end_data;
1125 current->mm->start_stack = bprm->p;
1126
1127 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1128 current->mm->brk = current->mm->start_brk =
1129 arch_randomize_brk(current->mm);
1130 #ifdef compat_brk_randomized
1131 current->brk_randomized = 1;
1132 #endif
1133 }
1134
1135 if (current->personality & MMAP_PAGE_ZERO) {
1136 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1137 and some applications "depend" upon this behavior.
1138 Since we do not have the power to recompile these, we
1139 emulate the SVr4 behavior. Sigh. */
1140 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1141 MAP_FIXED | MAP_PRIVATE, 0);
1142 }
1143
1144 #ifdef ELF_PLAT_INIT
1145 /*
1146 * The ABI may specify that certain registers be set up in special
1147 * ways (on i386 %edx is the address of a DT_FINI function, for
1148 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1149 * that the e_entry field is the address of the function descriptor
1150 * for the startup routine, rather than the address of the startup
1151 * routine itself. This macro performs whatever initialization to
1152 * the regs structure is required as well as any relocations to the
1153 * function descriptor entries when executing dynamically links apps.
1154 */
1155 ELF_PLAT_INIT(regs, reloc_func_desc);
1156 #endif
1157
1158 finalize_exec(bprm);
1159 start_thread(regs, elf_entry, bprm->p);
1160 retval = 0;
1161 out:
1162 kfree(loc);
1163 out_ret:
1164 return retval;
1165
1166 /* error cleanup */
1167 out_free_dentry:
1168 kfree(interp_elf_phdata);
1169 allow_write_access(interpreter);
1170 if (interpreter)
1171 fput(interpreter);
1172 out_free_interp:
1173 kfree(elf_interpreter);
1174 out_free_ph:
1175 kfree(elf_phdata);
1176 goto out;
1177 }
1178
1179 #ifdef CONFIG_USELIB
1180 /* This is really simpleminded and specialized - we are loading an
1181 a.out library that is given an ELF header. */
1182 static int load_elf_library(struct file *file)
1183 {
1184 struct elf_phdr *elf_phdata;
1185 struct elf_phdr *eppnt;
1186 unsigned long elf_bss, bss, len;
1187 int retval, error, i, j;
1188 struct elfhdr elf_ex;
1189 loff_t pos = 0;
1190
1191 error = -ENOEXEC;
1192 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1193 if (retval != sizeof(elf_ex))
1194 goto out;
1195
1196 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1197 goto out;
1198
1199 /* First of all, some simple consistency checks */
1200 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1201 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1202 goto out;
1203 if (elf_check_fdpic(&elf_ex))
1204 goto out;
1205
1206 /* Now read in all of the header information */
1207
1208 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210
1211 error = -ENOMEM;
1212 elf_phdata = kmalloc(j, GFP_KERNEL);
1213 if (!elf_phdata)
1214 goto out;
1215
1216 eppnt = elf_phdata;
1217 error = -ENOEXEC;
1218 pos = elf_ex.e_phoff;
1219 retval = kernel_read(file, eppnt, j, &pos);
1220 if (retval != j)
1221 goto out_free_ph;
1222
1223 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 if ((eppnt + i)->p_type == PT_LOAD)
1225 j++;
1226 if (j != 1)
1227 goto out_free_ph;
1228
1229 while (eppnt->p_type != PT_LOAD)
1230 eppnt++;
1231
1232 /* Now use mmap to map the library into memory. */
1233 error = vm_mmap(file,
1234 ELF_PAGESTART(eppnt->p_vaddr),
1235 (eppnt->p_filesz +
1236 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 PROT_READ | PROT_WRITE | PROT_EXEC,
1238 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1239 (eppnt->p_offset -
1240 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242 goto out_free_ph;
1243
1244 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 if (padzero(elf_bss)) {
1246 error = -EFAULT;
1247 goto out_free_ph;
1248 }
1249
1250 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1251 ELF_MIN_ALIGN - 1);
1252 bss = eppnt->p_memsz + eppnt->p_vaddr;
1253 if (bss > len) {
1254 error = vm_brk(len, bss - len);
1255 if (error)
1256 goto out_free_ph;
1257 }
1258 error = 0;
1259
1260 out_free_ph:
1261 kfree(elf_phdata);
1262 out:
1263 return error;
1264 }
1265 #endif /* #ifdef CONFIG_USELIB */
1266
1267 #ifdef CONFIG_ELF_CORE
1268 /*
1269 * ELF core dumper
1270 *
1271 * Modelled on fs/exec.c:aout_core_dump()
1272 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1273 */
1274
1275 /*
1276 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1277 * that are useful for post-mortem analysis are included in every core dump.
1278 * In that way we ensure that the core dump is fully interpretable later
1279 * without matching up the same kernel and hardware config to see what PC values
1280 * meant. These special mappings include - vDSO, vsyscall, and other
1281 * architecture specific mappings
1282 */
1283 static bool always_dump_vma(struct vm_area_struct *vma)
1284 {
1285 /* Any vsyscall mappings? */
1286 if (vma == get_gate_vma(vma->vm_mm))
1287 return true;
1288
1289 /*
1290 * Assume that all vmas with a .name op should always be dumped.
1291 * If this changes, a new vm_ops field can easily be added.
1292 */
1293 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1294 return true;
1295
1296 /*
1297 * arch_vma_name() returns non-NULL for special architecture mappings,
1298 * such as vDSO sections.
1299 */
1300 if (arch_vma_name(vma))
1301 return true;
1302
1303 return false;
1304 }
1305
1306 /*
1307 * Decide what to dump of a segment, part, all or none.
1308 */
1309 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1310 unsigned long mm_flags)
1311 {
1312 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1313
1314 /* always dump the vdso and vsyscall sections */
1315 if (always_dump_vma(vma))
1316 goto whole;
1317
1318 if (vma->vm_flags & VM_DONTDUMP)
1319 return 0;
1320
1321 /* support for DAX */
1322 if (vma_is_dax(vma)) {
1323 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1324 goto whole;
1325 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1326 goto whole;
1327 return 0;
1328 }
1329
1330 /* Hugetlb memory check */
1331 if (vma->vm_flags & VM_HUGETLB) {
1332 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1333 goto whole;
1334 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1335 goto whole;
1336 return 0;
1337 }
1338
1339 /* Do not dump I/O mapped devices or special mappings */
1340 if (vma->vm_flags & VM_IO)
1341 return 0;
1342
1343 /* By default, dump shared memory if mapped from an anonymous file. */
1344 if (vma->vm_flags & VM_SHARED) {
1345 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1346 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1347 goto whole;
1348 return 0;
1349 }
1350
1351 /* Dump segments that have been written to. */
1352 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1353 goto whole;
1354 if (vma->vm_file == NULL)
1355 return 0;
1356
1357 if (FILTER(MAPPED_PRIVATE))
1358 goto whole;
1359
1360 /*
1361 * If this looks like the beginning of a DSO or executable mapping,
1362 * check for an ELF header. If we find one, dump the first page to
1363 * aid in determining what was mapped here.
1364 */
1365 if (FILTER(ELF_HEADERS) &&
1366 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1367 u32 __user *header = (u32 __user *) vma->vm_start;
1368 u32 word;
1369 mm_segment_t fs = get_fs();
1370 /*
1371 * Doing it this way gets the constant folded by GCC.
1372 */
1373 union {
1374 u32 cmp;
1375 char elfmag[SELFMAG];
1376 } magic;
1377 BUILD_BUG_ON(SELFMAG != sizeof word);
1378 magic.elfmag[EI_MAG0] = ELFMAG0;
1379 magic.elfmag[EI_MAG1] = ELFMAG1;
1380 magic.elfmag[EI_MAG2] = ELFMAG2;
1381 magic.elfmag[EI_MAG3] = ELFMAG3;
1382 /*
1383 * Switch to the user "segment" for get_user(),
1384 * then put back what elf_core_dump() had in place.
1385 */
1386 set_fs(USER_DS);
1387 if (unlikely(get_user(word, header)))
1388 word = 0;
1389 set_fs(fs);
1390 if (word == magic.cmp)
1391 return PAGE_SIZE;
1392 }
1393
1394 #undef FILTER
1395
1396 return 0;
1397
1398 whole:
1399 return vma->vm_end - vma->vm_start;
1400 }
1401
1402 /* An ELF note in memory */
1403 struct memelfnote
1404 {
1405 const char *name;
1406 int type;
1407 unsigned int datasz;
1408 void *data;
1409 };
1410
1411 static int notesize(struct memelfnote *en)
1412 {
1413 int sz;
1414
1415 sz = sizeof(struct elf_note);
1416 sz += roundup(strlen(en->name) + 1, 4);
1417 sz += roundup(en->datasz, 4);
1418
1419 return sz;
1420 }
1421
1422 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1423 {
1424 struct elf_note en;
1425 en.n_namesz = strlen(men->name) + 1;
1426 en.n_descsz = men->datasz;
1427 en.n_type = men->type;
1428
1429 return dump_emit(cprm, &en, sizeof(en)) &&
1430 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1431 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1432 }
1433
1434 static void fill_elf_header(struct elfhdr *elf, int segs,
1435 u16 machine, u32 flags)
1436 {
1437 memset(elf, 0, sizeof(*elf));
1438
1439 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1440 elf->e_ident[EI_CLASS] = ELF_CLASS;
1441 elf->e_ident[EI_DATA] = ELF_DATA;
1442 elf->e_ident[EI_VERSION] = EV_CURRENT;
1443 elf->e_ident[EI_OSABI] = ELF_OSABI;
1444
1445 elf->e_type = ET_CORE;
1446 elf->e_machine = machine;
1447 elf->e_version = EV_CURRENT;
1448 elf->e_phoff = sizeof(struct elfhdr);
1449 elf->e_flags = flags;
1450 elf->e_ehsize = sizeof(struct elfhdr);
1451 elf->e_phentsize = sizeof(struct elf_phdr);
1452 elf->e_phnum = segs;
1453
1454 return;
1455 }
1456
1457 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1458 {
1459 phdr->p_type = PT_NOTE;
1460 phdr->p_offset = offset;
1461 phdr->p_vaddr = 0;
1462 phdr->p_paddr = 0;
1463 phdr->p_filesz = sz;
1464 phdr->p_memsz = 0;
1465 phdr->p_flags = 0;
1466 phdr->p_align = 0;
1467 return;
1468 }
1469
1470 static void fill_note(struct memelfnote *note, const char *name, int type,
1471 unsigned int sz, void *data)
1472 {
1473 note->name = name;
1474 note->type = type;
1475 note->datasz = sz;
1476 note->data = data;
1477 return;
1478 }
1479
1480 /*
1481 * fill up all the fields in prstatus from the given task struct, except
1482 * registers which need to be filled up separately.
1483 */
1484 static void fill_prstatus(struct elf_prstatus *prstatus,
1485 struct task_struct *p, long signr)
1486 {
1487 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1488 prstatus->pr_sigpend = p->pending.signal.sig[0];
1489 prstatus->pr_sighold = p->blocked.sig[0];
1490 rcu_read_lock();
1491 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1492 rcu_read_unlock();
1493 prstatus->pr_pid = task_pid_vnr(p);
1494 prstatus->pr_pgrp = task_pgrp_vnr(p);
1495 prstatus->pr_sid = task_session_vnr(p);
1496 if (thread_group_leader(p)) {
1497 struct task_cputime cputime;
1498
1499 /*
1500 * This is the record for the group leader. It shows the
1501 * group-wide total, not its individual thread total.
1502 */
1503 thread_group_cputime(p, &cputime);
1504 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1505 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1506 } else {
1507 u64 utime, stime;
1508
1509 task_cputime(p, &utime, &stime);
1510 prstatus->pr_utime = ns_to_timeval(utime);
1511 prstatus->pr_stime = ns_to_timeval(stime);
1512 }
1513
1514 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1515 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1516 }
1517
1518 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1519 struct mm_struct *mm)
1520 {
1521 const struct cred *cred;
1522 unsigned int i, len;
1523
1524 /* first copy the parameters from user space */
1525 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1526
1527 len = mm->arg_end - mm->arg_start;
1528 if (len >= ELF_PRARGSZ)
1529 len = ELF_PRARGSZ-1;
1530 if (copy_from_user(&psinfo->pr_psargs,
1531 (const char __user *)mm->arg_start, len))
1532 return -EFAULT;
1533 for(i = 0; i < len; i++)
1534 if (psinfo->pr_psargs[i] == 0)
1535 psinfo->pr_psargs[i] = ' ';
1536 psinfo->pr_psargs[len] = 0;
1537
1538 rcu_read_lock();
1539 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1540 rcu_read_unlock();
1541 psinfo->pr_pid = task_pid_vnr(p);
1542 psinfo->pr_pgrp = task_pgrp_vnr(p);
1543 psinfo->pr_sid = task_session_vnr(p);
1544
1545 i = p->state ? ffz(~p->state) + 1 : 0;
1546 psinfo->pr_state = i;
1547 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1548 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1549 psinfo->pr_nice = task_nice(p);
1550 psinfo->pr_flag = p->flags;
1551 rcu_read_lock();
1552 cred = __task_cred(p);
1553 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1554 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1555 rcu_read_unlock();
1556 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1557
1558 return 0;
1559 }
1560
1561 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1562 {
1563 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1564 int i = 0;
1565 do
1566 i += 2;
1567 while (auxv[i - 2] != AT_NULL);
1568 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1569 }
1570
1571 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1572 const siginfo_t *siginfo)
1573 {
1574 mm_segment_t old_fs = get_fs();
1575 set_fs(KERNEL_DS);
1576 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1577 set_fs(old_fs);
1578 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1579 }
1580
1581 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1582 /*
1583 * Format of NT_FILE note:
1584 *
1585 * long count -- how many files are mapped
1586 * long page_size -- units for file_ofs
1587 * array of [COUNT] elements of
1588 * long start
1589 * long end
1590 * long file_ofs
1591 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1592 */
1593 static int fill_files_note(struct memelfnote *note)
1594 {
1595 struct vm_area_struct *vma;
1596 unsigned count, size, names_ofs, remaining, n;
1597 user_long_t *data;
1598 user_long_t *start_end_ofs;
1599 char *name_base, *name_curpos;
1600
1601 /* *Estimated* file count and total data size needed */
1602 count = current->mm->map_count;
1603 if (count > UINT_MAX / 64)
1604 return -EINVAL;
1605 size = count * 64;
1606
1607 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1608 alloc:
1609 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1610 return -EINVAL;
1611 size = round_up(size, PAGE_SIZE);
1612 data = vmalloc(size);
1613 if (!data)
1614 return -ENOMEM;
1615
1616 start_end_ofs = data + 2;
1617 name_base = name_curpos = ((char *)data) + names_ofs;
1618 remaining = size - names_ofs;
1619 count = 0;
1620 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1621 struct file *file;
1622 const char *filename;
1623
1624 file = vma->vm_file;
1625 if (!file)
1626 continue;
1627 filename = file_path(file, name_curpos, remaining);
1628 if (IS_ERR(filename)) {
1629 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1630 vfree(data);
1631 size = size * 5 / 4;
1632 goto alloc;
1633 }
1634 continue;
1635 }
1636
1637 /* file_path() fills at the end, move name down */
1638 /* n = strlen(filename) + 1: */
1639 n = (name_curpos + remaining) - filename;
1640 remaining = filename - name_curpos;
1641 memmove(name_curpos, filename, n);
1642 name_curpos += n;
1643
1644 *start_end_ofs++ = vma->vm_start;
1645 *start_end_ofs++ = vma->vm_end;
1646 *start_end_ofs++ = vma->vm_pgoff;
1647 count++;
1648 }
1649
1650 /* Now we know exact count of files, can store it */
1651 data[0] = count;
1652 data[1] = PAGE_SIZE;
1653 /*
1654 * Count usually is less than current->mm->map_count,
1655 * we need to move filenames down.
1656 */
1657 n = current->mm->map_count - count;
1658 if (n != 0) {
1659 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1660 memmove(name_base - shift_bytes, name_base,
1661 name_curpos - name_base);
1662 name_curpos -= shift_bytes;
1663 }
1664
1665 size = name_curpos - (char *)data;
1666 fill_note(note, "CORE", NT_FILE, size, data);
1667 return 0;
1668 }
1669
1670 #ifdef CORE_DUMP_USE_REGSET
1671 #include <linux/regset.h>
1672
1673 struct elf_thread_core_info {
1674 struct elf_thread_core_info *next;
1675 struct task_struct *task;
1676 struct elf_prstatus prstatus;
1677 struct memelfnote notes[0];
1678 };
1679
1680 struct elf_note_info {
1681 struct elf_thread_core_info *thread;
1682 struct memelfnote psinfo;
1683 struct memelfnote signote;
1684 struct memelfnote auxv;
1685 struct memelfnote files;
1686 user_siginfo_t csigdata;
1687 size_t size;
1688 int thread_notes;
1689 };
1690
1691 /*
1692 * When a regset has a writeback hook, we call it on each thread before
1693 * dumping user memory. On register window machines, this makes sure the
1694 * user memory backing the register data is up to date before we read it.
1695 */
1696 static void do_thread_regset_writeback(struct task_struct *task,
1697 const struct user_regset *regset)
1698 {
1699 if (regset->writeback)
1700 regset->writeback(task, regset, 1);
1701 }
1702
1703 #ifndef PRSTATUS_SIZE
1704 #define PRSTATUS_SIZE(S, R) sizeof(S)
1705 #endif
1706
1707 #ifndef SET_PR_FPVALID
1708 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1709 #endif
1710
1711 static int fill_thread_core_info(struct elf_thread_core_info *t,
1712 const struct user_regset_view *view,
1713 long signr, size_t *total)
1714 {
1715 unsigned int i;
1716 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1717
1718 /*
1719 * NT_PRSTATUS is the one special case, because the regset data
1720 * goes into the pr_reg field inside the note contents, rather
1721 * than being the whole note contents. We fill the reset in here.
1722 * We assume that regset 0 is NT_PRSTATUS.
1723 */
1724 fill_prstatus(&t->prstatus, t->task, signr);
1725 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1726 &t->prstatus.pr_reg, NULL);
1727
1728 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1729 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1730 *total += notesize(&t->notes[0]);
1731
1732 do_thread_regset_writeback(t->task, &view->regsets[0]);
1733
1734 /*
1735 * Each other regset might generate a note too. For each regset
1736 * that has no core_note_type or is inactive, we leave t->notes[i]
1737 * all zero and we'll know to skip writing it later.
1738 */
1739 for (i = 1; i < view->n; ++i) {
1740 const struct user_regset *regset = &view->regsets[i];
1741 do_thread_regset_writeback(t->task, regset);
1742 if (regset->core_note_type && regset->get &&
1743 (!regset->active || regset->active(t->task, regset))) {
1744 int ret;
1745 size_t size = regset_size(t->task, regset);
1746 void *data = kmalloc(size, GFP_KERNEL);
1747 if (unlikely(!data))
1748 return 0;
1749 ret = regset->get(t->task, regset,
1750 0, size, data, NULL);
1751 if (unlikely(ret))
1752 kfree(data);
1753 else {
1754 if (regset->core_note_type != NT_PRFPREG)
1755 fill_note(&t->notes[i], "LINUX",
1756 regset->core_note_type,
1757 size, data);
1758 else {
1759 SET_PR_FPVALID(&t->prstatus,
1760 1, regset0_size);
1761 fill_note(&t->notes[i], "CORE",
1762 NT_PRFPREG, size, data);
1763 }
1764 *total += notesize(&t->notes[i]);
1765 }
1766 }
1767 }
1768
1769 return 1;
1770 }
1771
1772 static int fill_note_info(struct elfhdr *elf, int phdrs,
1773 struct elf_note_info *info,
1774 const siginfo_t *siginfo, struct pt_regs *regs)
1775 {
1776 struct task_struct *dump_task = current;
1777 const struct user_regset_view *view = task_user_regset_view(dump_task);
1778 struct elf_thread_core_info *t;
1779 struct elf_prpsinfo *psinfo;
1780 struct core_thread *ct;
1781 unsigned int i;
1782
1783 info->size = 0;
1784 info->thread = NULL;
1785
1786 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1787 if (psinfo == NULL) {
1788 info->psinfo.data = NULL; /* So we don't free this wrongly */
1789 return 0;
1790 }
1791
1792 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1793
1794 /*
1795 * Figure out how many notes we're going to need for each thread.
1796 */
1797 info->thread_notes = 0;
1798 for (i = 0; i < view->n; ++i)
1799 if (view->regsets[i].core_note_type != 0)
1800 ++info->thread_notes;
1801
1802 /*
1803 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1804 * since it is our one special case.
1805 */
1806 if (unlikely(info->thread_notes == 0) ||
1807 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1808 WARN_ON(1);
1809 return 0;
1810 }
1811
1812 /*
1813 * Initialize the ELF file header.
1814 */
1815 fill_elf_header(elf, phdrs,
1816 view->e_machine, view->e_flags);
1817
1818 /*
1819 * Allocate a structure for each thread.
1820 */
1821 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1822 t = kzalloc(offsetof(struct elf_thread_core_info,
1823 notes[info->thread_notes]),
1824 GFP_KERNEL);
1825 if (unlikely(!t))
1826 return 0;
1827
1828 t->task = ct->task;
1829 if (ct->task == dump_task || !info->thread) {
1830 t->next = info->thread;
1831 info->thread = t;
1832 } else {
1833 /*
1834 * Make sure to keep the original task at
1835 * the head of the list.
1836 */
1837 t->next = info->thread->next;
1838 info->thread->next = t;
1839 }
1840 }
1841
1842 /*
1843 * Now fill in each thread's information.
1844 */
1845 for (t = info->thread; t != NULL; t = t->next)
1846 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1847 return 0;
1848
1849 /*
1850 * Fill in the two process-wide notes.
1851 */
1852 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1853 info->size += notesize(&info->psinfo);
1854
1855 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1856 info->size += notesize(&info->signote);
1857
1858 fill_auxv_note(&info->auxv, current->mm);
1859 info->size += notesize(&info->auxv);
1860
1861 if (fill_files_note(&info->files) == 0)
1862 info->size += notesize(&info->files);
1863
1864 return 1;
1865 }
1866
1867 static size_t get_note_info_size(struct elf_note_info *info)
1868 {
1869 return info->size;
1870 }
1871
1872 /*
1873 * Write all the notes for each thread. When writing the first thread, the
1874 * process-wide notes are interleaved after the first thread-specific note.
1875 */
1876 static int write_note_info(struct elf_note_info *info,
1877 struct coredump_params *cprm)
1878 {
1879 bool first = true;
1880 struct elf_thread_core_info *t = info->thread;
1881
1882 do {
1883 int i;
1884
1885 if (!writenote(&t->notes[0], cprm))
1886 return 0;
1887
1888 if (first && !writenote(&info->psinfo, cprm))
1889 return 0;
1890 if (first && !writenote(&info->signote, cprm))
1891 return 0;
1892 if (first && !writenote(&info->auxv, cprm))
1893 return 0;
1894 if (first && info->files.data &&
1895 !writenote(&info->files, cprm))
1896 return 0;
1897
1898 for (i = 1; i < info->thread_notes; ++i)
1899 if (t->notes[i].data &&
1900 !writenote(&t->notes[i], cprm))
1901 return 0;
1902
1903 first = false;
1904 t = t->next;
1905 } while (t);
1906
1907 return 1;
1908 }
1909
1910 static void free_note_info(struct elf_note_info *info)
1911 {
1912 struct elf_thread_core_info *threads = info->thread;
1913 while (threads) {
1914 unsigned int i;
1915 struct elf_thread_core_info *t = threads;
1916 threads = t->next;
1917 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1918 for (i = 1; i < info->thread_notes; ++i)
1919 kfree(t->notes[i].data);
1920 kfree(t);
1921 }
1922 kfree(info->psinfo.data);
1923 vfree(info->files.data);
1924 }
1925
1926 #else
1927
1928 /* Here is the structure in which status of each thread is captured. */
1929 struct elf_thread_status
1930 {
1931 struct list_head list;
1932 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1933 elf_fpregset_t fpu; /* NT_PRFPREG */
1934 struct task_struct *thread;
1935 #ifdef ELF_CORE_COPY_XFPREGS
1936 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1937 #endif
1938 struct memelfnote notes[3];
1939 int num_notes;
1940 };
1941
1942 /*
1943 * In order to add the specific thread information for the elf file format,
1944 * we need to keep a linked list of every threads pr_status and then create
1945 * a single section for them in the final core file.
1946 */
1947 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1948 {
1949 int sz = 0;
1950 struct task_struct *p = t->thread;
1951 t->num_notes = 0;
1952
1953 fill_prstatus(&t->prstatus, p, signr);
1954 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1955
1956 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1957 &(t->prstatus));
1958 t->num_notes++;
1959 sz += notesize(&t->notes[0]);
1960
1961 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1962 &t->fpu))) {
1963 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1964 &(t->fpu));
1965 t->num_notes++;
1966 sz += notesize(&t->notes[1]);
1967 }
1968
1969 #ifdef ELF_CORE_COPY_XFPREGS
1970 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1971 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1972 sizeof(t->xfpu), &t->xfpu);
1973 t->num_notes++;
1974 sz += notesize(&t->notes[2]);
1975 }
1976 #endif
1977 return sz;
1978 }
1979
1980 struct elf_note_info {
1981 struct memelfnote *notes;
1982 struct memelfnote *notes_files;
1983 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1984 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1985 struct list_head thread_list;
1986 elf_fpregset_t *fpu;
1987 #ifdef ELF_CORE_COPY_XFPREGS
1988 elf_fpxregset_t *xfpu;
1989 #endif
1990 user_siginfo_t csigdata;
1991 int thread_status_size;
1992 int numnote;
1993 };
1994
1995 static int elf_note_info_init(struct elf_note_info *info)
1996 {
1997 memset(info, 0, sizeof(*info));
1998 INIT_LIST_HEAD(&info->thread_list);
1999
2000 /* Allocate space for ELF notes */
2001 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2002 if (!info->notes)
2003 return 0;
2004 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2005 if (!info->psinfo)
2006 return 0;
2007 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2008 if (!info->prstatus)
2009 return 0;
2010 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2011 if (!info->fpu)
2012 return 0;
2013 #ifdef ELF_CORE_COPY_XFPREGS
2014 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2015 if (!info->xfpu)
2016 return 0;
2017 #endif
2018 return 1;
2019 }
2020
2021 static int fill_note_info(struct elfhdr *elf, int phdrs,
2022 struct elf_note_info *info,
2023 const siginfo_t *siginfo, struct pt_regs *regs)
2024 {
2025 struct list_head *t;
2026 struct core_thread *ct;
2027 struct elf_thread_status *ets;
2028
2029 if (!elf_note_info_init(info))
2030 return 0;
2031
2032 for (ct = current->mm->core_state->dumper.next;
2033 ct; ct = ct->next) {
2034 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2035 if (!ets)
2036 return 0;
2037
2038 ets->thread = ct->task;
2039 list_add(&ets->list, &info->thread_list);
2040 }
2041
2042 list_for_each(t, &info->thread_list) {
2043 int sz;
2044
2045 ets = list_entry(t, struct elf_thread_status, list);
2046 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2047 info->thread_status_size += sz;
2048 }
2049 /* now collect the dump for the current */
2050 memset(info->prstatus, 0, sizeof(*info->prstatus));
2051 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2052 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2053
2054 /* Set up header */
2055 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2056
2057 /*
2058 * Set up the notes in similar form to SVR4 core dumps made
2059 * with info from their /proc.
2060 */
2061
2062 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2063 sizeof(*info->prstatus), info->prstatus);
2064 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2065 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2066 sizeof(*info->psinfo), info->psinfo);
2067
2068 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2069 fill_auxv_note(info->notes + 3, current->mm);
2070 info->numnote = 4;
2071
2072 if (fill_files_note(info->notes + info->numnote) == 0) {
2073 info->notes_files = info->notes + info->numnote;
2074 info->numnote++;
2075 }
2076
2077 /* Try to dump the FPU. */
2078 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2079 info->fpu);
2080 if (info->prstatus->pr_fpvalid)
2081 fill_note(info->notes + info->numnote++,
2082 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2083 #ifdef ELF_CORE_COPY_XFPREGS
2084 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2085 fill_note(info->notes + info->numnote++,
2086 "LINUX", ELF_CORE_XFPREG_TYPE,
2087 sizeof(*info->xfpu), info->xfpu);
2088 #endif
2089
2090 return 1;
2091 }
2092
2093 static size_t get_note_info_size(struct elf_note_info *info)
2094 {
2095 int sz = 0;
2096 int i;
2097
2098 for (i = 0; i < info->numnote; i++)
2099 sz += notesize(info->notes + i);
2100
2101 sz += info->thread_status_size;
2102
2103 return sz;
2104 }
2105
2106 static int write_note_info(struct elf_note_info *info,
2107 struct coredump_params *cprm)
2108 {
2109 int i;
2110 struct list_head *t;
2111
2112 for (i = 0; i < info->numnote; i++)
2113 if (!writenote(info->notes + i, cprm))
2114 return 0;
2115
2116 /* write out the thread status notes section */
2117 list_for_each(t, &info->thread_list) {
2118 struct elf_thread_status *tmp =
2119 list_entry(t, struct elf_thread_status, list);
2120
2121 for (i = 0; i < tmp->num_notes; i++)
2122 if (!writenote(&tmp->notes[i], cprm))
2123 return 0;
2124 }
2125
2126 return 1;
2127 }
2128
2129 static void free_note_info(struct elf_note_info *info)
2130 {
2131 while (!list_empty(&info->thread_list)) {
2132 struct list_head *tmp = info->thread_list.next;
2133 list_del(tmp);
2134 kfree(list_entry(tmp, struct elf_thread_status, list));
2135 }
2136
2137 /* Free data possibly allocated by fill_files_note(): */
2138 if (info->notes_files)
2139 vfree(info->notes_files->data);
2140
2141 kfree(info->prstatus);
2142 kfree(info->psinfo);
2143 kfree(info->notes);
2144 kfree(info->fpu);
2145 #ifdef ELF_CORE_COPY_XFPREGS
2146 kfree(info->xfpu);
2147 #endif
2148 }
2149
2150 #endif
2151
2152 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2153 struct vm_area_struct *gate_vma)
2154 {
2155 struct vm_area_struct *ret = tsk->mm->mmap;
2156
2157 if (ret)
2158 return ret;
2159 return gate_vma;
2160 }
2161 /*
2162 * Helper function for iterating across a vma list. It ensures that the caller
2163 * will visit `gate_vma' prior to terminating the search.
2164 */
2165 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2166 struct vm_area_struct *gate_vma)
2167 {
2168 struct vm_area_struct *ret;
2169
2170 ret = this_vma->vm_next;
2171 if (ret)
2172 return ret;
2173 if (this_vma == gate_vma)
2174 return NULL;
2175 return gate_vma;
2176 }
2177
2178 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2179 elf_addr_t e_shoff, int segs)
2180 {
2181 elf->e_shoff = e_shoff;
2182 elf->e_shentsize = sizeof(*shdr4extnum);
2183 elf->e_shnum = 1;
2184 elf->e_shstrndx = SHN_UNDEF;
2185
2186 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2187
2188 shdr4extnum->sh_type = SHT_NULL;
2189 shdr4extnum->sh_size = elf->e_shnum;
2190 shdr4extnum->sh_link = elf->e_shstrndx;
2191 shdr4extnum->sh_info = segs;
2192 }
2193
2194 /*
2195 * Actual dumper
2196 *
2197 * This is a two-pass process; first we find the offsets of the bits,
2198 * and then they are actually written out. If we run out of core limit
2199 * we just truncate.
2200 */
2201 static int elf_core_dump(struct coredump_params *cprm)
2202 {
2203 int has_dumped = 0;
2204 mm_segment_t fs;
2205 int segs, i;
2206 size_t vma_data_size = 0;
2207 struct vm_area_struct *vma, *gate_vma;
2208 struct elfhdr *elf = NULL;
2209 loff_t offset = 0, dataoff;
2210 struct elf_note_info info = { };
2211 struct elf_phdr *phdr4note = NULL;
2212 struct elf_shdr *shdr4extnum = NULL;
2213 Elf_Half e_phnum;
2214 elf_addr_t e_shoff;
2215 elf_addr_t *vma_filesz = NULL;
2216
2217 /*
2218 * We no longer stop all VM operations.
2219 *
2220 * This is because those proceses that could possibly change map_count
2221 * or the mmap / vma pages are now blocked in do_exit on current
2222 * finishing this core dump.
2223 *
2224 * Only ptrace can touch these memory addresses, but it doesn't change
2225 * the map_count or the pages allocated. So no possibility of crashing
2226 * exists while dumping the mm->vm_next areas to the core file.
2227 */
2228
2229 /* alloc memory for large data structures: too large to be on stack */
2230 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2231 if (!elf)
2232 goto out;
2233 /*
2234 * The number of segs are recored into ELF header as 16bit value.
2235 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2236 */
2237 segs = current->mm->map_count;
2238 segs += elf_core_extra_phdrs();
2239
2240 gate_vma = get_gate_vma(current->mm);
2241 if (gate_vma != NULL)
2242 segs++;
2243
2244 /* for notes section */
2245 segs++;
2246
2247 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2248 * this, kernel supports extended numbering. Have a look at
2249 * include/linux/elf.h for further information. */
2250 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2251
2252 /*
2253 * Collect all the non-memory information about the process for the
2254 * notes. This also sets up the file header.
2255 */
2256 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2257 goto cleanup;
2258
2259 has_dumped = 1;
2260
2261 fs = get_fs();
2262 set_fs(KERNEL_DS);
2263
2264 offset += sizeof(*elf); /* Elf header */
2265 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2266
2267 /* Write notes phdr entry */
2268 {
2269 size_t sz = get_note_info_size(&info);
2270
2271 sz += elf_coredump_extra_notes_size();
2272
2273 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2274 if (!phdr4note)
2275 goto end_coredump;
2276
2277 fill_elf_note_phdr(phdr4note, sz, offset);
2278 offset += sz;
2279 }
2280
2281 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2282
2283 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2284 goto end_coredump;
2285 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2286 if (!vma_filesz)
2287 goto end_coredump;
2288
2289 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2290 vma = next_vma(vma, gate_vma)) {
2291 unsigned long dump_size;
2292
2293 dump_size = vma_dump_size(vma, cprm->mm_flags);
2294 vma_filesz[i++] = dump_size;
2295 vma_data_size += dump_size;
2296 }
2297
2298 offset += vma_data_size;
2299 offset += elf_core_extra_data_size();
2300 e_shoff = offset;
2301
2302 if (e_phnum == PN_XNUM) {
2303 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2304 if (!shdr4extnum)
2305 goto end_coredump;
2306 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2307 }
2308
2309 offset = dataoff;
2310
2311 if (!dump_emit(cprm, elf, sizeof(*elf)))
2312 goto end_coredump;
2313
2314 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2315 goto end_coredump;
2316
2317 /* Write program headers for segments dump */
2318 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2319 vma = next_vma(vma, gate_vma)) {
2320 struct elf_phdr phdr;
2321
2322 phdr.p_type = PT_LOAD;
2323 phdr.p_offset = offset;
2324 phdr.p_vaddr = vma->vm_start;
2325 phdr.p_paddr = 0;
2326 phdr.p_filesz = vma_filesz[i++];
2327 phdr.p_memsz = vma->vm_end - vma->vm_start;
2328 offset += phdr.p_filesz;
2329 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2330 if (vma->vm_flags & VM_WRITE)
2331 phdr.p_flags |= PF_W;
2332 if (vma->vm_flags & VM_EXEC)
2333 phdr.p_flags |= PF_X;
2334 phdr.p_align = ELF_EXEC_PAGESIZE;
2335
2336 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2337 goto end_coredump;
2338 }
2339
2340 if (!elf_core_write_extra_phdrs(cprm, offset))
2341 goto end_coredump;
2342
2343 /* write out the notes section */
2344 if (!write_note_info(&info, cprm))
2345 goto end_coredump;
2346
2347 if (elf_coredump_extra_notes_write(cprm))
2348 goto end_coredump;
2349
2350 /* Align to page */
2351 if (!dump_skip(cprm, dataoff - cprm->pos))
2352 goto end_coredump;
2353
2354 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2355 vma = next_vma(vma, gate_vma)) {
2356 unsigned long addr;
2357 unsigned long end;
2358
2359 end = vma->vm_start + vma_filesz[i++];
2360
2361 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2362 struct page *page;
2363 int stop;
2364
2365 page = get_dump_page(addr);
2366 if (page) {
2367 void *kaddr = kmap(page);
2368 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2369 kunmap(page);
2370 put_page(page);
2371 } else
2372 stop = !dump_skip(cprm, PAGE_SIZE);
2373 if (stop)
2374 goto end_coredump;
2375 }
2376 }
2377 dump_truncate(cprm);
2378
2379 if (!elf_core_write_extra_data(cprm))
2380 goto end_coredump;
2381
2382 if (e_phnum == PN_XNUM) {
2383 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2384 goto end_coredump;
2385 }
2386
2387 end_coredump:
2388 set_fs(fs);
2389
2390 cleanup:
2391 free_note_info(&info);
2392 kfree(shdr4extnum);
2393 vfree(vma_filesz);
2394 kfree(phdr4note);
2395 kfree(elf);
2396 out:
2397 return has_dumped;
2398 }
2399
2400 #endif /* CONFIG_ELF_CORE */
2401
2402 static int __init init_elf_binfmt(void)
2403 {
2404 register_binfmt(&elf_format);
2405 return 0;
2406 }
2407
2408 static void __exit exit_elf_binfmt(void)
2409 {
2410 /* Remove the COFF and ELF loaders. */
2411 unregister_binfmt(&elf_format);
2412 }
2413
2414 core_initcall(init_elf_binfmt);
2415 module_exit(exit_elf_binfmt);
2416 MODULE_LICENSE("GPL");