]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/binfmt_flat.c
binfmt_flat: use proper user space accessors with relocs processing code
[mirror_ubuntu-artful-kernel.git] / fs / binfmt_flat.c
1 /****************************************************************************/
2 /*
3 * linux/fs/binfmt_flat.c
4 *
5 * Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
6 * Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
7 * Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
8 * Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
9 * based heavily on:
10 *
11 * linux/fs/binfmt_aout.c:
12 * Copyright (C) 1991, 1992, 1996 Linus Torvalds
13 * linux/fs/binfmt_flat.c for 2.0 kernel
14 * Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
15 * JAN/99 -- coded full program relocation (gerg@snapgear.com)
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/mm.h>
23 #include <linux/mman.h>
24 #include <linux/errno.h>
25 #include <linux/signal.h>
26 #include <linux/string.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/ptrace.h>
30 #include <linux/user.h>
31 #include <linux/slab.h>
32 #include <linux/binfmts.h>
33 #include <linux/personality.h>
34 #include <linux/init.h>
35 #include <linux/flat.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <asm/cacheflush.h>
41 #include <asm/page.h>
42
43 /****************************************************************************/
44
45 /*
46 * User data (data section and bss) needs to be aligned.
47 * We pick 0x20 here because it is the max value elf2flt has always
48 * used in producing FLAT files, and because it seems to be large
49 * enough to make all the gcc alignment related tests happy.
50 */
51 #define FLAT_DATA_ALIGN (0x20)
52
53 /*
54 * User data (stack) also needs to be aligned.
55 * Here we can be a bit looser than the data sections since this
56 * needs to only meet arch ABI requirements.
57 */
58 #define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
59
60 #define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
61 #define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
62
63 struct lib_info {
64 struct {
65 unsigned long start_code; /* Start of text segment */
66 unsigned long start_data; /* Start of data segment */
67 unsigned long start_brk; /* End of data segment */
68 unsigned long text_len; /* Length of text segment */
69 unsigned long entry; /* Start address for this module */
70 unsigned long build_date; /* When this one was compiled */
71 bool loaded; /* Has this library been loaded? */
72 } lib_list[MAX_SHARED_LIBS];
73 };
74
75 #ifdef CONFIG_BINFMT_SHARED_FLAT
76 static int load_flat_shared_library(int id, struct lib_info *p);
77 #endif
78
79 static int load_flat_binary(struct linux_binprm *);
80 static int flat_core_dump(struct coredump_params *cprm);
81
82 static struct linux_binfmt flat_format = {
83 .module = THIS_MODULE,
84 .load_binary = load_flat_binary,
85 .core_dump = flat_core_dump,
86 .min_coredump = PAGE_SIZE
87 };
88
89 /****************************************************************************/
90 /*
91 * Routine writes a core dump image in the current directory.
92 * Currently only a stub-function.
93 */
94
95 static int flat_core_dump(struct coredump_params *cprm)
96 {
97 pr_warn("Process %s:%d received signr %d and should have core dumped\n",
98 current->comm, current->pid, cprm->siginfo->si_signo);
99 return 1;
100 }
101
102 /****************************************************************************/
103 /*
104 * create_flat_tables() parses the env- and arg-strings in new user
105 * memory and creates the pointer tables from them, and puts their
106 * addresses on the "stack", recording the new stack pointer value.
107 */
108
109 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
110 {
111 char __user *p;
112 unsigned long __user *sp;
113 long i, len;
114
115 p = (char __user *)arg_start;
116 sp = (unsigned long __user *)current->mm->start_stack;
117
118 sp -= bprm->envc + 1;
119 sp -= bprm->argc + 1;
120 sp -= flat_argvp_envp_on_stack() ? 2 : 0;
121 sp -= 1; /* &argc */
122
123 current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
124 sp = (unsigned long __user *)current->mm->start_stack;
125
126 __put_user(bprm->argc, sp++);
127 if (flat_argvp_envp_on_stack()) {
128 unsigned long argv, envp;
129 argv = (unsigned long)(sp + 2);
130 envp = (unsigned long)(sp + 2 + bprm->argc + 1);
131 __put_user(argv, sp++);
132 __put_user(envp, sp++);
133 }
134
135 current->mm->arg_start = (unsigned long)p;
136 for (i = bprm->argc; i > 0; i--) {
137 __put_user((unsigned long)p, sp++);
138 len = strnlen_user(p, MAX_ARG_STRLEN);
139 if (!len || len > MAX_ARG_STRLEN)
140 return -EINVAL;
141 p += len;
142 }
143 __put_user(0, sp++);
144 current->mm->arg_end = (unsigned long)p;
145
146 current->mm->env_start = (unsigned long) p;
147 for (i = bprm->envc; i > 0; i--) {
148 __put_user((unsigned long)p, sp++);
149 len = strnlen_user(p, MAX_ARG_STRLEN);
150 if (!len || len > MAX_ARG_STRLEN)
151 return -EINVAL;
152 p += len;
153 }
154 __put_user(0, sp++);
155 current->mm->env_end = (unsigned long)p;
156
157 return 0;
158 }
159
160 /****************************************************************************/
161
162 #ifdef CONFIG_BINFMT_ZFLAT
163
164 #include <linux/zlib.h>
165
166 #define LBUFSIZE 4000
167
168 /* gzip flag byte */
169 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
170 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
171 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
172 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
173 #define COMMENT 0x10 /* bit 4 set: file comment present */
174 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
175 #define RESERVED 0xC0 /* bit 6,7: reserved */
176
177 static int decompress_exec(
178 struct linux_binprm *bprm,
179 unsigned long offset,
180 char *dst,
181 long len,
182 int fd)
183 {
184 unsigned char *buf;
185 z_stream strm;
186 loff_t fpos;
187 int ret, retval;
188
189 pr_debug("decompress_exec(offset=%lx,buf=%p,len=%lx)\n", offset, dst, len);
190
191 memset(&strm, 0, sizeof(strm));
192 strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
193 if (strm.workspace == NULL) {
194 pr_debug("no memory for decompress workspace\n");
195 return -ENOMEM;
196 }
197 buf = kmalloc(LBUFSIZE, GFP_KERNEL);
198 if (buf == NULL) {
199 pr_debug("no memory for read buffer\n");
200 retval = -ENOMEM;
201 goto out_free;
202 }
203
204 /* Read in first chunk of data and parse gzip header. */
205 fpos = offset;
206 ret = kernel_read(bprm->file, offset, buf, LBUFSIZE);
207
208 strm.next_in = buf;
209 strm.avail_in = ret;
210 strm.total_in = 0;
211 fpos += ret;
212
213 retval = -ENOEXEC;
214
215 /* Check minimum size -- gzip header */
216 if (ret < 10) {
217 pr_debug("file too small?\n");
218 goto out_free_buf;
219 }
220
221 /* Check gzip magic number */
222 if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
223 pr_debug("unknown compression magic?\n");
224 goto out_free_buf;
225 }
226
227 /* Check gzip method */
228 if (buf[2] != 8) {
229 pr_debug("unknown compression method?\n");
230 goto out_free_buf;
231 }
232 /* Check gzip flags */
233 if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
234 (buf[3] & RESERVED)) {
235 pr_debug("unknown flags?\n");
236 goto out_free_buf;
237 }
238
239 ret = 10;
240 if (buf[3] & EXTRA_FIELD) {
241 ret += 2 + buf[10] + (buf[11] << 8);
242 if (unlikely(ret >= LBUFSIZE)) {
243 pr_debug("buffer overflow (EXTRA)?\n");
244 goto out_free_buf;
245 }
246 }
247 if (buf[3] & ORIG_NAME) {
248 while (ret < LBUFSIZE && buf[ret++] != 0)
249 ;
250 if (unlikely(ret == LBUFSIZE)) {
251 pr_debug("buffer overflow (ORIG_NAME)?\n");
252 goto out_free_buf;
253 }
254 }
255 if (buf[3] & COMMENT) {
256 while (ret < LBUFSIZE && buf[ret++] != 0)
257 ;
258 if (unlikely(ret == LBUFSIZE)) {
259 pr_debug("buffer overflow (COMMENT)?\n");
260 goto out_free_buf;
261 }
262 }
263
264 strm.next_in += ret;
265 strm.avail_in -= ret;
266
267 strm.next_out = dst;
268 strm.avail_out = len;
269 strm.total_out = 0;
270
271 if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
272 pr_debug("zlib init failed?\n");
273 goto out_free_buf;
274 }
275
276 while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
277 ret = kernel_read(bprm->file, fpos, buf, LBUFSIZE);
278 if (ret <= 0)
279 break;
280 len -= ret;
281
282 strm.next_in = buf;
283 strm.avail_in = ret;
284 strm.total_in = 0;
285 fpos += ret;
286 }
287
288 if (ret < 0) {
289 pr_debug("decompression failed (%d), %s\n",
290 ret, strm.msg);
291 goto out_zlib;
292 }
293
294 retval = 0;
295 out_zlib:
296 zlib_inflateEnd(&strm);
297 out_free_buf:
298 kfree(buf);
299 out_free:
300 kfree(strm.workspace);
301 return retval;
302 }
303
304 #endif /* CONFIG_BINFMT_ZFLAT */
305
306 /****************************************************************************/
307
308 static unsigned long
309 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
310 {
311 unsigned long addr;
312 int id;
313 unsigned long start_brk;
314 unsigned long start_data;
315 unsigned long text_len;
316 unsigned long start_code;
317
318 #ifdef CONFIG_BINFMT_SHARED_FLAT
319 if (r == 0)
320 id = curid; /* Relocs of 0 are always self referring */
321 else {
322 id = (r >> 24) & 0xff; /* Find ID for this reloc */
323 r &= 0x00ffffff; /* Trim ID off here */
324 }
325 if (id >= MAX_SHARED_LIBS) {
326 pr_err("reference 0x%lx to shared library %d", r, id);
327 goto failed;
328 }
329 if (curid != id) {
330 if (internalp) {
331 pr_err("reloc address 0x%lx not in same module "
332 "(%d != %d)", r, curid, id);
333 goto failed;
334 } else if (!p->lib_list[id].loaded &&
335 load_flat_shared_library(id, p) < 0) {
336 pr_err("failed to load library %d", id);
337 goto failed;
338 }
339 /* Check versioning information (i.e. time stamps) */
340 if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
341 p->lib_list[curid].build_date < p->lib_list[id].build_date) {
342 pr_err("library %d is younger than %d", id, curid);
343 goto failed;
344 }
345 }
346 #else
347 id = 0;
348 #endif
349
350 start_brk = p->lib_list[id].start_brk;
351 start_data = p->lib_list[id].start_data;
352 start_code = p->lib_list[id].start_code;
353 text_len = p->lib_list[id].text_len;
354
355 if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
356 pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
357 r, start_brk-start_data+text_len, text_len);
358 goto failed;
359 }
360
361 if (r < text_len) /* In text segment */
362 addr = r + start_code;
363 else /* In data segment */
364 addr = r - text_len + start_data;
365
366 /* Range checked already above so doing the range tests is redundant...*/
367 return addr;
368
369 failed:
370 pr_cont(", killing %s!\n", current->comm);
371 send_sig(SIGSEGV, current, 0);
372
373 return RELOC_FAILED;
374 }
375
376 /****************************************************************************/
377
378 static void old_reloc(unsigned long rl)
379 {
380 static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
381 flat_v2_reloc_t r;
382 unsigned long *ptr;
383
384 r.value = rl;
385 #if defined(CONFIG_COLDFIRE)
386 ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
387 #else
388 ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
389 #endif
390
391 pr_debug("Relocation of variable at DATASEG+%x "
392 "(address %p, currently %lx) into segment %s\n",
393 r.reloc.offset, ptr, *ptr, segment[r.reloc.type]);
394
395 switch (r.reloc.type) {
396 case OLD_FLAT_RELOC_TYPE_TEXT:
397 *ptr += current->mm->start_code;
398 break;
399 case OLD_FLAT_RELOC_TYPE_DATA:
400 *ptr += current->mm->start_data;
401 break;
402 case OLD_FLAT_RELOC_TYPE_BSS:
403 *ptr += current->mm->end_data;
404 break;
405 default:
406 pr_err("Unknown relocation type=%x\n", r.reloc.type);
407 break;
408 }
409
410 pr_debug("Relocation became %lx\n", *ptr);
411 }
412
413 /****************************************************************************/
414
415 static int load_flat_file(struct linux_binprm *bprm,
416 struct lib_info *libinfo, int id, unsigned long *extra_stack)
417 {
418 struct flat_hdr *hdr;
419 unsigned long textpos, datapos, realdatastart;
420 unsigned long text_len, data_len, bss_len, stack_len, full_data, flags;
421 unsigned long len, memp, memp_size, extra, rlim;
422 unsigned long __user *reloc, *rp;
423 struct inode *inode;
424 int i, rev, relocs;
425 loff_t fpos;
426 unsigned long start_code, end_code;
427 ssize_t result;
428 int ret;
429
430 hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
431 inode = file_inode(bprm->file);
432
433 text_len = ntohl(hdr->data_start);
434 data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
435 bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
436 stack_len = ntohl(hdr->stack_size);
437 if (extra_stack) {
438 stack_len += *extra_stack;
439 *extra_stack = stack_len;
440 }
441 relocs = ntohl(hdr->reloc_count);
442 flags = ntohl(hdr->flags);
443 rev = ntohl(hdr->rev);
444 full_data = data_len + relocs * sizeof(unsigned long);
445
446 if (strncmp(hdr->magic, "bFLT", 4)) {
447 /*
448 * Previously, here was a printk to tell people
449 * "BINFMT_FLAT: bad header magic".
450 * But for the kernel which also use ELF FD-PIC format, this
451 * error message is confusing.
452 * because a lot of people do not manage to produce good
453 */
454 ret = -ENOEXEC;
455 goto err;
456 }
457
458 if (flags & FLAT_FLAG_KTRACE)
459 pr_info("Loading file: %s\n", bprm->filename);
460
461 if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
462 pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
463 rev, FLAT_VERSION, OLD_FLAT_VERSION);
464 ret = -ENOEXEC;
465 goto err;
466 }
467
468 /* Don't allow old format executables to use shared libraries */
469 if (rev == OLD_FLAT_VERSION && id != 0) {
470 pr_err("shared libraries are not available before rev 0x%lx\n",
471 FLAT_VERSION);
472 ret = -ENOEXEC;
473 goto err;
474 }
475
476 /*
477 * Make sure the header params are sane.
478 * 28 bits (256 MB) is way more than reasonable in this case.
479 * If some top bits are set we have probable binary corruption.
480 */
481 if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
482 pr_err("bad header\n");
483 ret = -ENOEXEC;
484 goto err;
485 }
486
487 /*
488 * fix up the flags for the older format, there were all kinds
489 * of endian hacks, this only works for the simple cases
490 */
491 if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
492 flags = FLAT_FLAG_RAM;
493
494 #ifndef CONFIG_BINFMT_ZFLAT
495 if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
496 pr_err("Support for ZFLAT executables is not enabled.\n");
497 ret = -ENOEXEC;
498 goto err;
499 }
500 #endif
501
502 /*
503 * Check initial limits. This avoids letting people circumvent
504 * size limits imposed on them by creating programs with large
505 * arrays in the data or bss.
506 */
507 rlim = rlimit(RLIMIT_DATA);
508 if (rlim >= RLIM_INFINITY)
509 rlim = ~0;
510 if (data_len + bss_len > rlim) {
511 ret = -ENOMEM;
512 goto err;
513 }
514
515 /* Flush all traces of the currently running executable */
516 if (id == 0) {
517 ret = flush_old_exec(bprm);
518 if (ret)
519 goto err;
520
521 /* OK, This is the point of no return */
522 set_personality(PER_LINUX_32BIT);
523 setup_new_exec(bprm);
524 }
525
526 /*
527 * calculate the extra space we need to map in
528 */
529 extra = max_t(unsigned long, bss_len + stack_len,
530 relocs * sizeof(unsigned long));
531
532 /*
533 * there are a couple of cases here, the separate code/data
534 * case, and then the fully copied to RAM case which lumps
535 * it all together.
536 */
537 if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
538 /*
539 * this should give us a ROM ptr, but if it doesn't we don't
540 * really care
541 */
542 pr_debug("ROM mapping of file (we hope)\n");
543
544 textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
545 MAP_PRIVATE|MAP_EXECUTABLE, 0);
546 if (!textpos || IS_ERR_VALUE(textpos)) {
547 ret = textpos;
548 if (!textpos)
549 ret = -ENOMEM;
550 pr_err("Unable to mmap process text, errno %d\n", ret);
551 goto err;
552 }
553
554 len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
555 len = PAGE_ALIGN(len);
556 realdatastart = vm_mmap(NULL, 0, len,
557 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
558
559 if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
560 ret = realdatastart;
561 if (!realdatastart)
562 ret = -ENOMEM;
563 pr_err("Unable to allocate RAM for process data, "
564 "errno %d\n", ret);
565 vm_munmap(textpos, text_len);
566 goto err;
567 }
568 datapos = ALIGN(realdatastart +
569 MAX_SHARED_LIBS * sizeof(unsigned long),
570 FLAT_DATA_ALIGN);
571
572 pr_debug("Allocated data+bss+stack (%ld bytes): %lx\n",
573 data_len + bss_len + stack_len, datapos);
574
575 fpos = ntohl(hdr->data_start);
576 #ifdef CONFIG_BINFMT_ZFLAT
577 if (flags & FLAT_FLAG_GZDATA) {
578 result = decompress_exec(bprm, fpos, (char *)datapos,
579 full_data, 0);
580 } else
581 #endif
582 {
583 result = read_code(bprm->file, datapos, fpos,
584 full_data);
585 }
586 if (IS_ERR_VALUE(result)) {
587 ret = result;
588 pr_err("Unable to read data+bss, errno %d\n", ret);
589 vm_munmap(textpos, text_len);
590 vm_munmap(realdatastart, len);
591 goto err;
592 }
593
594 reloc = (unsigned long __user *)
595 (datapos + (ntohl(hdr->reloc_start) - text_len));
596 memp = realdatastart;
597 memp_size = len;
598 } else {
599
600 len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
601 len = PAGE_ALIGN(len);
602 textpos = vm_mmap(NULL, 0, len,
603 PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
604
605 if (!textpos || IS_ERR_VALUE(textpos)) {
606 ret = textpos;
607 if (!textpos)
608 ret = -ENOMEM;
609 pr_err("Unable to allocate RAM for process text/data, "
610 "errno %d\n", ret);
611 goto err;
612 }
613
614 realdatastart = textpos + ntohl(hdr->data_start);
615 datapos = ALIGN(realdatastart +
616 MAX_SHARED_LIBS * sizeof(unsigned long),
617 FLAT_DATA_ALIGN);
618
619 reloc = (unsigned long __user *)
620 (datapos + (ntohl(hdr->reloc_start) - text_len));
621 memp = textpos;
622 memp_size = len;
623 #ifdef CONFIG_BINFMT_ZFLAT
624 /*
625 * load it all in and treat it like a RAM load from now on
626 */
627 if (flags & FLAT_FLAG_GZIP) {
628 result = decompress_exec(bprm, sizeof(struct flat_hdr),
629 (((char *)textpos) + sizeof(struct flat_hdr)),
630 (text_len + full_data
631 - sizeof(struct flat_hdr)),
632 0);
633 memmove((void *) datapos, (void *) realdatastart,
634 full_data);
635 } else if (flags & FLAT_FLAG_GZDATA) {
636 result = read_code(bprm->file, textpos, 0, text_len);
637 if (!IS_ERR_VALUE(result))
638 result = decompress_exec(bprm, text_len, (char *) datapos,
639 full_data, 0);
640 } else
641 #endif
642 {
643 result = read_code(bprm->file, textpos, 0, text_len);
644 if (!IS_ERR_VALUE(result))
645 result = read_code(bprm->file, datapos,
646 ntohl(hdr->data_start),
647 full_data);
648 }
649 if (IS_ERR_VALUE(result)) {
650 ret = result;
651 pr_err("Unable to read code+data+bss, errno %d\n", ret);
652 vm_munmap(textpos, text_len + data_len + extra +
653 MAX_SHARED_LIBS * sizeof(unsigned long));
654 goto err;
655 }
656 }
657
658 start_code = textpos + sizeof(struct flat_hdr);
659 end_code = textpos + text_len;
660 text_len -= sizeof(struct flat_hdr); /* the real code len */
661
662 /* The main program needs a little extra setup in the task structure */
663 if (id == 0) {
664 current->mm->start_code = start_code;
665 current->mm->end_code = end_code;
666 current->mm->start_data = datapos;
667 current->mm->end_data = datapos + data_len;
668 /*
669 * set up the brk stuff, uses any slack left in data/bss/stack
670 * allocation. We put the brk after the bss (between the bss
671 * and stack) like other platforms.
672 * Userspace code relies on the stack pointer starting out at
673 * an address right at the end of a page.
674 */
675 current->mm->start_brk = datapos + data_len + bss_len;
676 current->mm->brk = (current->mm->start_brk + 3) & ~3;
677 current->mm->context.end_brk = memp + memp_size - stack_len;
678 }
679
680 if (flags & FLAT_FLAG_KTRACE) {
681 pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
682 textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
683 pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
684 id ? "Lib" : "Load", bprm->filename,
685 start_code, end_code, datapos, datapos + data_len,
686 datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
687 }
688
689 /* Store the current module values into the global library structure */
690 libinfo->lib_list[id].start_code = start_code;
691 libinfo->lib_list[id].start_data = datapos;
692 libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
693 libinfo->lib_list[id].text_len = text_len;
694 libinfo->lib_list[id].loaded = 1;
695 libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
696 libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
697
698 /*
699 * We just load the allocations into some temporary memory to
700 * help simplify all this mumbo jumbo
701 *
702 * We've got two different sections of relocation entries.
703 * The first is the GOT which resides at the beginning of the data segment
704 * and is terminated with a -1. This one can be relocated in place.
705 * The second is the extra relocation entries tacked after the image's
706 * data segment. These require a little more processing as the entry is
707 * really an offset into the image which contains an offset into the
708 * image.
709 */
710 if (flags & FLAT_FLAG_GOTPIC) {
711 for (rp = (unsigned long __user *)datapos; ; rp++) {
712 unsigned long addr, rp_val;
713 if (get_user(rp_val, rp))
714 return -EFAULT;
715 if (rp_val == 0xffffffff)
716 break;
717 if (rp_val) {
718 addr = calc_reloc(rp_val, libinfo, id, 0);
719 if (addr == RELOC_FAILED) {
720 ret = -ENOEXEC;
721 goto err;
722 }
723 if (put_user(addr, rp))
724 return -EFAULT;
725 }
726 }
727 }
728
729 /*
730 * Now run through the relocation entries.
731 * We've got to be careful here as C++ produces relocatable zero
732 * entries in the constructor and destructor tables which are then
733 * tested for being not zero (which will always occur unless we're
734 * based from address zero). This causes an endless loop as __start
735 * is at zero. The solution used is to not relocate zero addresses.
736 * This has the negative side effect of not allowing a global data
737 * reference to be statically initialised to _stext (I've moved
738 * __start to address 4 so that is okay).
739 */
740 if (rev > OLD_FLAT_VERSION) {
741 unsigned long __maybe_unused persistent = 0;
742 for (i = 0; i < relocs; i++) {
743 unsigned long addr, relval;
744
745 /*
746 * Get the address of the pointer to be
747 * relocated (of course, the address has to be
748 * relocated first).
749 */
750 if (get_user(relval, reloc + i))
751 return -EFAULT;
752 relval = ntohl(relval);
753 if (flat_set_persistent(relval, &persistent))
754 continue;
755 addr = flat_get_relocate_addr(relval);
756 rp = (unsigned long __user *)calc_reloc(addr, libinfo, id, 1);
757 if (rp == (unsigned long __user *)RELOC_FAILED) {
758 ret = -ENOEXEC;
759 goto err;
760 }
761
762 /* Get the pointer's value. */
763 addr = flat_get_addr_from_rp(rp, relval, flags,
764 &persistent);
765 if (addr != 0) {
766 /*
767 * Do the relocation. PIC relocs in the data section are
768 * already in target order
769 */
770 if ((flags & FLAT_FLAG_GOTPIC) == 0)
771 addr = ntohl(addr);
772 addr = calc_reloc(addr, libinfo, id, 0);
773 if (addr == RELOC_FAILED) {
774 ret = -ENOEXEC;
775 goto err;
776 }
777
778 /* Write back the relocated pointer. */
779 flat_put_addr_at_rp(rp, addr, relval);
780 }
781 }
782 } else {
783 for (i = 0; i < relocs; i++)
784 old_reloc(ntohl(reloc[i]));
785 }
786
787 flush_icache_range(start_code, end_code);
788
789 /* zero the BSS, BRK and stack areas */
790 memset((void *)(datapos + data_len), 0, bss_len +
791 (memp + memp_size - stack_len - /* end brk */
792 libinfo->lib_list[id].start_brk) + /* start brk */
793 stack_len);
794
795 return 0;
796 err:
797 return ret;
798 }
799
800
801 /****************************************************************************/
802 #ifdef CONFIG_BINFMT_SHARED_FLAT
803
804 /*
805 * Load a shared library into memory. The library gets its own data
806 * segment (including bss) but not argv/argc/environ.
807 */
808
809 static int load_flat_shared_library(int id, struct lib_info *libs)
810 {
811 struct linux_binprm bprm;
812 int res;
813 char buf[16];
814
815 memset(&bprm, 0, sizeof(bprm));
816
817 /* Create the file name */
818 sprintf(buf, "/lib/lib%d.so", id);
819
820 /* Open the file up */
821 bprm.filename = buf;
822 bprm.file = open_exec(bprm.filename);
823 res = PTR_ERR(bprm.file);
824 if (IS_ERR(bprm.file))
825 return res;
826
827 bprm.cred = prepare_exec_creds();
828 res = -ENOMEM;
829 if (!bprm.cred)
830 goto out;
831
832 /* We don't really care about recalculating credentials at this point
833 * as we're past the point of no return and are dealing with shared
834 * libraries.
835 */
836 bprm.cred_prepared = 1;
837
838 res = prepare_binprm(&bprm);
839
840 if (!res)
841 res = load_flat_file(&bprm, libs, id, NULL);
842
843 abort_creds(bprm.cred);
844
845 out:
846 allow_write_access(bprm.file);
847 fput(bprm.file);
848
849 return res;
850 }
851
852 #endif /* CONFIG_BINFMT_SHARED_FLAT */
853 /****************************************************************************/
854
855 /*
856 * These are the functions used to load flat style executables and shared
857 * libraries. There is no binary dependent code anywhere else.
858 */
859
860 static int load_flat_binary(struct linux_binprm *bprm)
861 {
862 struct lib_info libinfo;
863 struct pt_regs *regs = current_pt_regs();
864 unsigned long stack_len;
865 unsigned long start_addr;
866 int res;
867 int i, j;
868
869 memset(&libinfo, 0, sizeof(libinfo));
870
871 /*
872 * We have to add the size of our arguments to our stack size
873 * otherwise it's too easy for users to create stack overflows
874 * by passing in a huge argument list. And yes, we have to be
875 * pedantic and include space for the argv/envp array as it may have
876 * a lot of entries.
877 */
878 stack_len = PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
879 stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
880 stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
881 stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
882
883 res = load_flat_file(bprm, &libinfo, 0, &stack_len);
884 if (res < 0)
885 return res;
886
887 /* Update data segment pointers for all libraries */
888 for (i = 0; i < MAX_SHARED_LIBS; i++)
889 if (libinfo.lib_list[i].loaded)
890 for (j = 0; j < MAX_SHARED_LIBS; j++)
891 (-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
892 (libinfo.lib_list[j].loaded) ?
893 libinfo.lib_list[j].start_data : UNLOADED_LIB;
894
895 install_exec_creds(bprm);
896
897 set_binfmt(&flat_format);
898
899 /* Stash our initial stack pointer into the mm structure */
900 current->mm->start_stack =
901 ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
902 pr_debug("sp=%lx\n", current->mm->start_stack);
903
904 /* copy the arg pages onto the stack */
905 res = transfer_args_to_stack(bprm, &current->mm->start_stack);
906 if (!res)
907 res = create_flat_tables(bprm, current->mm->start_stack);
908 if (res)
909 return res;
910
911 /* Fake some return addresses to ensure the call chain will
912 * initialise library in order for us. We are required to call
913 * lib 1 first, then 2, ... and finally the main program (id 0).
914 */
915 start_addr = libinfo.lib_list[0].entry;
916
917 #ifdef CONFIG_BINFMT_SHARED_FLAT
918 for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
919 if (libinfo.lib_list[i].loaded) {
920 /* Push previos first to call address */
921 unsigned long __user *sp;
922 current->mm->start_stack -= sizeof(unsigned long);
923 sp = (unsigned long __user *)current->mm->start_stack;
924 __put_user(start_addr, sp);
925 start_addr = libinfo.lib_list[i].entry;
926 }
927 }
928 #endif
929
930 #ifdef FLAT_PLAT_INIT
931 FLAT_PLAT_INIT(regs);
932 #endif
933
934 pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
935 regs, start_addr, current->mm->start_stack);
936 start_thread(regs, start_addr, current->mm->start_stack);
937
938 return 0;
939 }
940
941 /****************************************************************************/
942
943 static int __init init_flat_binfmt(void)
944 {
945 register_binfmt(&flat_format);
946 return 0;
947 }
948 core_initcall(init_flat_binfmt);
949
950 /****************************************************************************/