]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/binfmt_flat.c
Merge tag 'm68k-for-v5.3-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[mirror_ubuntu-hirsute-kernel.git] / fs / binfmt_flat.c
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************/
3 /*
4 * linux/fs/binfmt_flat.c
5 *
6 * Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
7 * Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
8 * Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
9 * Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
10 * based heavily on:
11 *
12 * linux/fs/binfmt_aout.c:
13 * Copyright (C) 1991, 1992, 1996 Linus Torvalds
14 * linux/fs/binfmt_flat.c for 2.0 kernel
15 * Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
16 * JAN/99 -- coded full program relocation (gerg@snapgear.com)
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/errno.h>
27 #include <linux/signal.h>
28 #include <linux/string.h>
29 #include <linux/fs.h>
30 #include <linux/file.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/slab.h>
34 #include <linux/binfmts.h>
35 #include <linux/personality.h>
36 #include <linux/init.h>
37 #include <linux/flat.h>
38 #include <linux/uaccess.h>
39 #include <linux/vmalloc.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 #include <asm/flat.h>
46
47 #ifndef flat_get_relocate_addr
48 #define flat_get_relocate_addr(rel) (rel)
49 #endif
50
51 /****************************************************************************/
52
53 /*
54 * User data (data section and bss) needs to be aligned.
55 * We pick 0x20 here because it is the max value elf2flt has always
56 * used in producing FLAT files, and because it seems to be large
57 * enough to make all the gcc alignment related tests happy.
58 */
59 #define FLAT_DATA_ALIGN (0x20)
60
61 /*
62 * User data (stack) also needs to be aligned.
63 * Here we can be a bit looser than the data sections since this
64 * needs to only meet arch ABI requirements.
65 */
66 #define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
67
68 #define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
69 #define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
70
71 #ifdef CONFIG_BINFMT_SHARED_FLAT
72 #define MAX_SHARED_LIBS (4)
73 #else
74 #define MAX_SHARED_LIBS (1)
75 #endif
76
77 struct lib_info {
78 struct {
79 unsigned long start_code; /* Start of text segment */
80 unsigned long start_data; /* Start of data segment */
81 unsigned long start_brk; /* End of data segment */
82 unsigned long text_len; /* Length of text segment */
83 unsigned long entry; /* Start address for this module */
84 unsigned long build_date; /* When this one was compiled */
85 bool loaded; /* Has this library been loaded? */
86 } lib_list[MAX_SHARED_LIBS];
87 };
88
89 #ifdef CONFIG_BINFMT_SHARED_FLAT
90 static int load_flat_shared_library(int id, struct lib_info *p);
91 #endif
92
93 static int load_flat_binary(struct linux_binprm *);
94 static int flat_core_dump(struct coredump_params *cprm);
95
96 static struct linux_binfmt flat_format = {
97 .module = THIS_MODULE,
98 .load_binary = load_flat_binary,
99 .core_dump = flat_core_dump,
100 .min_coredump = PAGE_SIZE
101 };
102
103 /****************************************************************************/
104 /*
105 * Routine writes a core dump image in the current directory.
106 * Currently only a stub-function.
107 */
108
109 static int flat_core_dump(struct coredump_params *cprm)
110 {
111 pr_warn("Process %s:%d received signr %d and should have core dumped\n",
112 current->comm, current->pid, cprm->siginfo->si_signo);
113 return 1;
114 }
115
116 /****************************************************************************/
117 /*
118 * create_flat_tables() parses the env- and arg-strings in new user
119 * memory and creates the pointer tables from them, and puts their
120 * addresses on the "stack", recording the new stack pointer value.
121 */
122
123 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
124 {
125 char __user *p;
126 unsigned long __user *sp;
127 long i, len;
128
129 p = (char __user *)arg_start;
130 sp = (unsigned long __user *)current->mm->start_stack;
131
132 sp -= bprm->envc + 1;
133 sp -= bprm->argc + 1;
134 if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
135 sp -= 2; /* argvp + envp */
136 sp -= 1; /* &argc */
137
138 current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
139 sp = (unsigned long __user *)current->mm->start_stack;
140
141 __put_user(bprm->argc, sp++);
142 if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
143 unsigned long argv, envp;
144 argv = (unsigned long)(sp + 2);
145 envp = (unsigned long)(sp + 2 + bprm->argc + 1);
146 __put_user(argv, sp++);
147 __put_user(envp, sp++);
148 }
149
150 current->mm->arg_start = (unsigned long)p;
151 for (i = bprm->argc; i > 0; i--) {
152 __put_user((unsigned long)p, sp++);
153 len = strnlen_user(p, MAX_ARG_STRLEN);
154 if (!len || len > MAX_ARG_STRLEN)
155 return -EINVAL;
156 p += len;
157 }
158 __put_user(0, sp++);
159 current->mm->arg_end = (unsigned long)p;
160
161 current->mm->env_start = (unsigned long) p;
162 for (i = bprm->envc; i > 0; i--) {
163 __put_user((unsigned long)p, sp++);
164 len = strnlen_user(p, MAX_ARG_STRLEN);
165 if (!len || len > MAX_ARG_STRLEN)
166 return -EINVAL;
167 p += len;
168 }
169 __put_user(0, sp++);
170 current->mm->env_end = (unsigned long)p;
171
172 return 0;
173 }
174
175 /****************************************************************************/
176
177 #ifdef CONFIG_BINFMT_ZFLAT
178
179 #include <linux/zlib.h>
180
181 #define LBUFSIZE 4000
182
183 /* gzip flag byte */
184 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
185 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
186 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
187 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
188 #define COMMENT 0x10 /* bit 4 set: file comment present */
189 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
190 #define RESERVED 0xC0 /* bit 6,7: reserved */
191
192 static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
193 long len, int fd)
194 {
195 unsigned char *buf;
196 z_stream strm;
197 int ret, retval;
198
199 pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
200
201 memset(&strm, 0, sizeof(strm));
202 strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
203 if (!strm.workspace)
204 return -ENOMEM;
205
206 buf = kmalloc(LBUFSIZE, GFP_KERNEL);
207 if (!buf) {
208 retval = -ENOMEM;
209 goto out_free;
210 }
211
212 /* Read in first chunk of data and parse gzip header. */
213 ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
214
215 strm.next_in = buf;
216 strm.avail_in = ret;
217 strm.total_in = 0;
218
219 retval = -ENOEXEC;
220
221 /* Check minimum size -- gzip header */
222 if (ret < 10) {
223 pr_debug("file too small?\n");
224 goto out_free_buf;
225 }
226
227 /* Check gzip magic number */
228 if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
229 pr_debug("unknown compression magic?\n");
230 goto out_free_buf;
231 }
232
233 /* Check gzip method */
234 if (buf[2] != 8) {
235 pr_debug("unknown compression method?\n");
236 goto out_free_buf;
237 }
238 /* Check gzip flags */
239 if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
240 (buf[3] & RESERVED)) {
241 pr_debug("unknown flags?\n");
242 goto out_free_buf;
243 }
244
245 ret = 10;
246 if (buf[3] & EXTRA_FIELD) {
247 ret += 2 + buf[10] + (buf[11] << 8);
248 if (unlikely(ret >= LBUFSIZE)) {
249 pr_debug("buffer overflow (EXTRA)?\n");
250 goto out_free_buf;
251 }
252 }
253 if (buf[3] & ORIG_NAME) {
254 while (ret < LBUFSIZE && buf[ret++] != 0)
255 ;
256 if (unlikely(ret == LBUFSIZE)) {
257 pr_debug("buffer overflow (ORIG_NAME)?\n");
258 goto out_free_buf;
259 }
260 }
261 if (buf[3] & COMMENT) {
262 while (ret < LBUFSIZE && buf[ret++] != 0)
263 ;
264 if (unlikely(ret == LBUFSIZE)) {
265 pr_debug("buffer overflow (COMMENT)?\n");
266 goto out_free_buf;
267 }
268 }
269
270 strm.next_in += ret;
271 strm.avail_in -= ret;
272
273 strm.next_out = dst;
274 strm.avail_out = len;
275 strm.total_out = 0;
276
277 if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
278 pr_debug("zlib init failed?\n");
279 goto out_free_buf;
280 }
281
282 while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
283 ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
284 if (ret <= 0)
285 break;
286 len -= ret;
287
288 strm.next_in = buf;
289 strm.avail_in = ret;
290 strm.total_in = 0;
291 }
292
293 if (ret < 0) {
294 pr_debug("decompression failed (%d), %s\n",
295 ret, strm.msg);
296 goto out_zlib;
297 }
298
299 retval = 0;
300 out_zlib:
301 zlib_inflateEnd(&strm);
302 out_free_buf:
303 kfree(buf);
304 out_free:
305 kfree(strm.workspace);
306 return retval;
307 }
308
309 #endif /* CONFIG_BINFMT_ZFLAT */
310
311 /****************************************************************************/
312
313 static unsigned long
314 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
315 {
316 unsigned long addr;
317 int id;
318 unsigned long start_brk;
319 unsigned long start_data;
320 unsigned long text_len;
321 unsigned long start_code;
322
323 #ifdef CONFIG_BINFMT_SHARED_FLAT
324 if (r == 0)
325 id = curid; /* Relocs of 0 are always self referring */
326 else {
327 id = (r >> 24) & 0xff; /* Find ID for this reloc */
328 r &= 0x00ffffff; /* Trim ID off here */
329 }
330 if (id >= MAX_SHARED_LIBS) {
331 pr_err("reference 0x%lx to shared library %d", r, id);
332 goto failed;
333 }
334 if (curid != id) {
335 if (internalp) {
336 pr_err("reloc address 0x%lx not in same module "
337 "(%d != %d)", r, curid, id);
338 goto failed;
339 } else if (!p->lib_list[id].loaded &&
340 load_flat_shared_library(id, p) < 0) {
341 pr_err("failed to load library %d", id);
342 goto failed;
343 }
344 /* Check versioning information (i.e. time stamps) */
345 if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
346 p->lib_list[curid].build_date < p->lib_list[id].build_date) {
347 pr_err("library %d is younger than %d", id, curid);
348 goto failed;
349 }
350 }
351 #else
352 id = 0;
353 #endif
354
355 start_brk = p->lib_list[id].start_brk;
356 start_data = p->lib_list[id].start_data;
357 start_code = p->lib_list[id].start_code;
358 text_len = p->lib_list[id].text_len;
359
360 if (r > start_brk - start_data + text_len) {
361 pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
362 r, start_brk-start_data+text_len, text_len);
363 goto failed;
364 }
365
366 if (r < text_len) /* In text segment */
367 addr = r + start_code;
368 else /* In data segment */
369 addr = r - text_len + start_data;
370
371 /* Range checked already above so doing the range tests is redundant...*/
372 return addr;
373
374 failed:
375 pr_cont(", killing %s!\n", current->comm);
376 send_sig(SIGSEGV, current, 0);
377
378 return RELOC_FAILED;
379 }
380
381 /****************************************************************************/
382
383 #ifdef CONFIG_BINFMT_FLAT_OLD
384 static void old_reloc(unsigned long rl)
385 {
386 static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
387 flat_v2_reloc_t r;
388 unsigned long __user *ptr;
389 unsigned long val;
390
391 r.value = rl;
392 #if defined(CONFIG_COLDFIRE)
393 ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
394 #else
395 ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
396 #endif
397 get_user(val, ptr);
398
399 pr_debug("Relocation of variable at DATASEG+%x "
400 "(address %p, currently %lx) into segment %s\n",
401 r.reloc.offset, ptr, val, segment[r.reloc.type]);
402
403 switch (r.reloc.type) {
404 case OLD_FLAT_RELOC_TYPE_TEXT:
405 val += current->mm->start_code;
406 break;
407 case OLD_FLAT_RELOC_TYPE_DATA:
408 val += current->mm->start_data;
409 break;
410 case OLD_FLAT_RELOC_TYPE_BSS:
411 val += current->mm->end_data;
412 break;
413 default:
414 pr_err("Unknown relocation type=%x\n", r.reloc.type);
415 break;
416 }
417 put_user(val, ptr);
418
419 pr_debug("Relocation became %lx\n", val);
420 }
421 #endif /* CONFIG_BINFMT_FLAT_OLD */
422
423 /****************************************************************************/
424
425 static int load_flat_file(struct linux_binprm *bprm,
426 struct lib_info *libinfo, int id, unsigned long *extra_stack)
427 {
428 struct flat_hdr *hdr;
429 unsigned long textpos, datapos, realdatastart;
430 u32 text_len, data_len, bss_len, stack_len, full_data, flags;
431 unsigned long len, memp, memp_size, extra, rlim;
432 __be32 __user *reloc;
433 u32 __user *rp;
434 struct inode *inode;
435 int i, rev, relocs;
436 loff_t fpos;
437 unsigned long start_code, end_code;
438 ssize_t result;
439 int ret;
440
441 hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
442 inode = file_inode(bprm->file);
443
444 text_len = ntohl(hdr->data_start);
445 data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
446 bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
447 stack_len = ntohl(hdr->stack_size);
448 if (extra_stack) {
449 stack_len += *extra_stack;
450 *extra_stack = stack_len;
451 }
452 relocs = ntohl(hdr->reloc_count);
453 flags = ntohl(hdr->flags);
454 rev = ntohl(hdr->rev);
455 full_data = data_len + relocs * sizeof(unsigned long);
456
457 if (strncmp(hdr->magic, "bFLT", 4)) {
458 /*
459 * Previously, here was a printk to tell people
460 * "BINFMT_FLAT: bad header magic".
461 * But for the kernel which also use ELF FD-PIC format, this
462 * error message is confusing.
463 * because a lot of people do not manage to produce good
464 */
465 ret = -ENOEXEC;
466 goto err;
467 }
468
469 if (flags & FLAT_FLAG_KTRACE)
470 pr_info("Loading file: %s\n", bprm->filename);
471
472 #ifdef CONFIG_BINFMT_FLAT_OLD
473 if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
474 pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
475 rev, FLAT_VERSION, OLD_FLAT_VERSION);
476 ret = -ENOEXEC;
477 goto err;
478 }
479
480 /* Don't allow old format executables to use shared libraries */
481 if (rev == OLD_FLAT_VERSION && id != 0) {
482 pr_err("shared libraries are not available before rev 0x%lx\n",
483 FLAT_VERSION);
484 ret = -ENOEXEC;
485 goto err;
486 }
487
488 /*
489 * fix up the flags for the older format, there were all kinds
490 * of endian hacks, this only works for the simple cases
491 */
492 if (rev == OLD_FLAT_VERSION &&
493 (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
494 flags = FLAT_FLAG_RAM;
495
496 #else /* CONFIG_BINFMT_FLAT_OLD */
497 if (rev != FLAT_VERSION) {
498 pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
499 rev, FLAT_VERSION);
500 ret = -ENOEXEC;
501 goto err;
502 }
503 #endif /* !CONFIG_BINFMT_FLAT_OLD */
504
505 /*
506 * Make sure the header params are sane.
507 * 28 bits (256 MB) is way more than reasonable in this case.
508 * If some top bits are set we have probable binary corruption.
509 */
510 if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
511 pr_err("bad header\n");
512 ret = -ENOEXEC;
513 goto err;
514 }
515
516 #ifndef CONFIG_BINFMT_ZFLAT
517 if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
518 pr_err("Support for ZFLAT executables is not enabled.\n");
519 ret = -ENOEXEC;
520 goto err;
521 }
522 #endif
523
524 /*
525 * Check initial limits. This avoids letting people circumvent
526 * size limits imposed on them by creating programs with large
527 * arrays in the data or bss.
528 */
529 rlim = rlimit(RLIMIT_DATA);
530 if (rlim >= RLIM_INFINITY)
531 rlim = ~0;
532 if (data_len + bss_len > rlim) {
533 ret = -ENOMEM;
534 goto err;
535 }
536
537 /* Flush all traces of the currently running executable */
538 if (id == 0) {
539 ret = flush_old_exec(bprm);
540 if (ret)
541 goto err;
542
543 /* OK, This is the point of no return */
544 set_personality(PER_LINUX_32BIT);
545 setup_new_exec(bprm);
546 }
547
548 /*
549 * calculate the extra space we need to map in
550 */
551 extra = max_t(unsigned long, bss_len + stack_len,
552 relocs * sizeof(unsigned long));
553
554 /*
555 * there are a couple of cases here, the separate code/data
556 * case, and then the fully copied to RAM case which lumps
557 * it all together.
558 */
559 if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
560 /*
561 * this should give us a ROM ptr, but if it doesn't we don't
562 * really care
563 */
564 pr_debug("ROM mapping of file (we hope)\n");
565
566 textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
567 MAP_PRIVATE|MAP_EXECUTABLE, 0);
568 if (!textpos || IS_ERR_VALUE(textpos)) {
569 ret = textpos;
570 if (!textpos)
571 ret = -ENOMEM;
572 pr_err("Unable to mmap process text, errno %d\n", ret);
573 goto err;
574 }
575
576 len = data_len + extra;
577 len = PAGE_ALIGN(len);
578 realdatastart = vm_mmap(NULL, 0, len,
579 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
580
581 if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
582 ret = realdatastart;
583 if (!realdatastart)
584 ret = -ENOMEM;
585 pr_err("Unable to allocate RAM for process data, "
586 "errno %d\n", ret);
587 vm_munmap(textpos, text_len);
588 goto err;
589 }
590 datapos = ALIGN(realdatastart, FLAT_DATA_ALIGN);
591
592 pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
593 data_len + bss_len + stack_len, datapos);
594
595 fpos = ntohl(hdr->data_start);
596 #ifdef CONFIG_BINFMT_ZFLAT
597 if (flags & FLAT_FLAG_GZDATA) {
598 result = decompress_exec(bprm, fpos, (char *)datapos,
599 full_data, 0);
600 } else
601 #endif
602 {
603 result = read_code(bprm->file, datapos, fpos,
604 full_data);
605 }
606 if (IS_ERR_VALUE(result)) {
607 ret = result;
608 pr_err("Unable to read data+bss, errno %d\n", ret);
609 vm_munmap(textpos, text_len);
610 vm_munmap(realdatastart, len);
611 goto err;
612 }
613
614 reloc = (__be32 __user *)
615 (datapos + (ntohl(hdr->reloc_start) - text_len));
616 memp = realdatastart;
617 memp_size = len;
618 } else {
619
620 len = text_len + data_len + extra;
621 len = PAGE_ALIGN(len);
622 textpos = vm_mmap(NULL, 0, len,
623 PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
624
625 if (!textpos || IS_ERR_VALUE(textpos)) {
626 ret = textpos;
627 if (!textpos)
628 ret = -ENOMEM;
629 pr_err("Unable to allocate RAM for process text/data, "
630 "errno %d\n", ret);
631 goto err;
632 }
633
634 realdatastart = textpos + ntohl(hdr->data_start);
635 datapos = ALIGN(realdatastart, FLAT_DATA_ALIGN);
636
637 reloc = (__be32 __user *)
638 (datapos + (ntohl(hdr->reloc_start) - text_len));
639 memp = textpos;
640 memp_size = len;
641 #ifdef CONFIG_BINFMT_ZFLAT
642 /*
643 * load it all in and treat it like a RAM load from now on
644 */
645 if (flags & FLAT_FLAG_GZIP) {
646 #ifndef CONFIG_MMU
647 result = decompress_exec(bprm, sizeof(struct flat_hdr),
648 (((char *)textpos) + sizeof(struct flat_hdr)),
649 (text_len + full_data
650 - sizeof(struct flat_hdr)),
651 0);
652 if (datapos != realdatastart)
653 memmove((void *)datapos, (void *)realdatastart,
654 full_data);
655 #else
656 /*
657 * This is used on MMU systems mainly for testing.
658 * Let's use a kernel buffer to simplify things.
659 */
660 long unz_text_len = text_len - sizeof(struct flat_hdr);
661 long unz_len = unz_text_len + full_data;
662 char *unz_data = vmalloc(unz_len);
663 if (!unz_data) {
664 result = -ENOMEM;
665 } else {
666 result = decompress_exec(bprm, sizeof(struct flat_hdr),
667 unz_data, unz_len, 0);
668 if (result == 0 &&
669 (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
670 unz_data, unz_text_len) ||
671 copy_to_user((void __user *)datapos,
672 unz_data + unz_text_len, full_data)))
673 result = -EFAULT;
674 vfree(unz_data);
675 }
676 #endif
677 } else if (flags & FLAT_FLAG_GZDATA) {
678 result = read_code(bprm->file, textpos, 0, text_len);
679 if (!IS_ERR_VALUE(result)) {
680 #ifndef CONFIG_MMU
681 result = decompress_exec(bprm, text_len, (char *) datapos,
682 full_data, 0);
683 #else
684 char *unz_data = vmalloc(full_data);
685 if (!unz_data) {
686 result = -ENOMEM;
687 } else {
688 result = decompress_exec(bprm, text_len,
689 unz_data, full_data, 0);
690 if (result == 0 &&
691 copy_to_user((void __user *)datapos,
692 unz_data, full_data))
693 result = -EFAULT;
694 vfree(unz_data);
695 }
696 #endif
697 }
698 } else
699 #endif /* CONFIG_BINFMT_ZFLAT */
700 {
701 result = read_code(bprm->file, textpos, 0, text_len);
702 if (!IS_ERR_VALUE(result))
703 result = read_code(bprm->file, datapos,
704 ntohl(hdr->data_start),
705 full_data);
706 }
707 if (IS_ERR_VALUE(result)) {
708 ret = result;
709 pr_err("Unable to read code+data+bss, errno %d\n", ret);
710 vm_munmap(textpos, text_len + data_len + extra);
711 goto err;
712 }
713 }
714
715 start_code = textpos + sizeof(struct flat_hdr);
716 end_code = textpos + text_len;
717 text_len -= sizeof(struct flat_hdr); /* the real code len */
718
719 /* The main program needs a little extra setup in the task structure */
720 if (id == 0) {
721 current->mm->start_code = start_code;
722 current->mm->end_code = end_code;
723 current->mm->start_data = datapos;
724 current->mm->end_data = datapos + data_len;
725 /*
726 * set up the brk stuff, uses any slack left in data/bss/stack
727 * allocation. We put the brk after the bss (between the bss
728 * and stack) like other platforms.
729 * Userspace code relies on the stack pointer starting out at
730 * an address right at the end of a page.
731 */
732 current->mm->start_brk = datapos + data_len + bss_len;
733 current->mm->brk = (current->mm->start_brk + 3) & ~3;
734 #ifndef CONFIG_MMU
735 current->mm->context.end_brk = memp + memp_size - stack_len;
736 #endif
737 }
738
739 if (flags & FLAT_FLAG_KTRACE) {
740 pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
741 textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
742 pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
743 id ? "Lib" : "Load", bprm->filename,
744 start_code, end_code, datapos, datapos + data_len,
745 datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
746 }
747
748 /* Store the current module values into the global library structure */
749 libinfo->lib_list[id].start_code = start_code;
750 libinfo->lib_list[id].start_data = datapos;
751 libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
752 libinfo->lib_list[id].text_len = text_len;
753 libinfo->lib_list[id].loaded = 1;
754 libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
755 libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
756
757 /*
758 * We just load the allocations into some temporary memory to
759 * help simplify all this mumbo jumbo
760 *
761 * We've got two different sections of relocation entries.
762 * The first is the GOT which resides at the beginning of the data segment
763 * and is terminated with a -1. This one can be relocated in place.
764 * The second is the extra relocation entries tacked after the image's
765 * data segment. These require a little more processing as the entry is
766 * really an offset into the image which contains an offset into the
767 * image.
768 */
769 if (flags & FLAT_FLAG_GOTPIC) {
770 for (rp = (u32 __user *)datapos; ; rp++) {
771 u32 addr, rp_val;
772 if (get_user(rp_val, rp))
773 return -EFAULT;
774 if (rp_val == 0xffffffff)
775 break;
776 if (rp_val) {
777 addr = calc_reloc(rp_val, libinfo, id, 0);
778 if (addr == RELOC_FAILED) {
779 ret = -ENOEXEC;
780 goto err;
781 }
782 if (put_user(addr, rp))
783 return -EFAULT;
784 }
785 }
786 }
787
788 /*
789 * Now run through the relocation entries.
790 * We've got to be careful here as C++ produces relocatable zero
791 * entries in the constructor and destructor tables which are then
792 * tested for being not zero (which will always occur unless we're
793 * based from address zero). This causes an endless loop as __start
794 * is at zero. The solution used is to not relocate zero addresses.
795 * This has the negative side effect of not allowing a global data
796 * reference to be statically initialised to _stext (I've moved
797 * __start to address 4 so that is okay).
798 */
799 if (rev > OLD_FLAT_VERSION) {
800 for (i = 0; i < relocs; i++) {
801 u32 addr, relval;
802 __be32 tmp;
803
804 /*
805 * Get the address of the pointer to be
806 * relocated (of course, the address has to be
807 * relocated first).
808 */
809 if (get_user(tmp, reloc + i))
810 return -EFAULT;
811 relval = ntohl(tmp);
812 addr = flat_get_relocate_addr(relval);
813 rp = (u32 __user *)calc_reloc(addr, libinfo, id, 1);
814 if (rp == (u32 __user *)RELOC_FAILED) {
815 ret = -ENOEXEC;
816 goto err;
817 }
818
819 /* Get the pointer's value. */
820 ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
821 if (unlikely(ret))
822 goto err;
823
824 if (addr != 0) {
825 /*
826 * Do the relocation. PIC relocs in the data section are
827 * already in target order
828 */
829 if ((flags & FLAT_FLAG_GOTPIC) == 0) {
830 /*
831 * Meh, the same value can have a different
832 * byte order based on a flag..
833 */
834 addr = ntohl((__force __be32)addr);
835 }
836 addr = calc_reloc(addr, libinfo, id, 0);
837 if (addr == RELOC_FAILED) {
838 ret = -ENOEXEC;
839 goto err;
840 }
841
842 /* Write back the relocated pointer. */
843 ret = flat_put_addr_at_rp(rp, addr, relval);
844 if (unlikely(ret))
845 goto err;
846 }
847 }
848 #ifdef CONFIG_BINFMT_FLAT_OLD
849 } else {
850 for (i = 0; i < relocs; i++) {
851 __be32 relval;
852 if (get_user(relval, reloc + i))
853 return -EFAULT;
854 old_reloc(ntohl(relval));
855 }
856 #endif /* CONFIG_BINFMT_FLAT_OLD */
857 }
858
859 flush_icache_range(start_code, end_code);
860
861 /* zero the BSS, BRK and stack areas */
862 if (clear_user((void __user *)(datapos + data_len), bss_len +
863 (memp + memp_size - stack_len - /* end brk */
864 libinfo->lib_list[id].start_brk) + /* start brk */
865 stack_len))
866 return -EFAULT;
867
868 return 0;
869 err:
870 return ret;
871 }
872
873
874 /****************************************************************************/
875 #ifdef CONFIG_BINFMT_SHARED_FLAT
876
877 /*
878 * Load a shared library into memory. The library gets its own data
879 * segment (including bss) but not argv/argc/environ.
880 */
881
882 static int load_flat_shared_library(int id, struct lib_info *libs)
883 {
884 /*
885 * This is a fake bprm struct; only the members "buf", "file" and
886 * "filename" are actually used.
887 */
888 struct linux_binprm bprm;
889 int res;
890 char buf[16];
891 loff_t pos = 0;
892
893 memset(&bprm, 0, sizeof(bprm));
894
895 /* Create the file name */
896 sprintf(buf, "/lib/lib%d.so", id);
897
898 /* Open the file up */
899 bprm.filename = buf;
900 bprm.file = open_exec(bprm.filename);
901 res = PTR_ERR(bprm.file);
902 if (IS_ERR(bprm.file))
903 return res;
904
905 res = kernel_read(bprm.file, bprm.buf, BINPRM_BUF_SIZE, &pos);
906
907 if (res >= 0)
908 res = load_flat_file(&bprm, libs, id, NULL);
909
910 allow_write_access(bprm.file);
911 fput(bprm.file);
912
913 return res;
914 }
915
916 #endif /* CONFIG_BINFMT_SHARED_FLAT */
917 /****************************************************************************/
918
919 /*
920 * These are the functions used to load flat style executables and shared
921 * libraries. There is no binary dependent code anywhere else.
922 */
923
924 static int load_flat_binary(struct linux_binprm *bprm)
925 {
926 struct lib_info libinfo;
927 struct pt_regs *regs = current_pt_regs();
928 unsigned long stack_len = 0;
929 unsigned long start_addr;
930 int res;
931 int i, j;
932
933 memset(&libinfo, 0, sizeof(libinfo));
934
935 /*
936 * We have to add the size of our arguments to our stack size
937 * otherwise it's too easy for users to create stack overflows
938 * by passing in a huge argument list. And yes, we have to be
939 * pedantic and include space for the argv/envp array as it may have
940 * a lot of entries.
941 */
942 #ifndef CONFIG_MMU
943 stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
944 #endif
945 stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
946 stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
947 stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
948
949 res = load_flat_file(bprm, &libinfo, 0, &stack_len);
950 if (res < 0)
951 return res;
952
953 /* Update data segment pointers for all libraries */
954 for (i = 0; i < MAX_SHARED_LIBS; i++) {
955 if (!libinfo.lib_list[i].loaded)
956 continue;
957 for (j = 0; j < MAX_SHARED_LIBS; j++) {
958 unsigned long val = libinfo.lib_list[j].loaded ?
959 libinfo.lib_list[j].start_data : UNLOADED_LIB;
960 unsigned long __user *p = (unsigned long __user *)
961 libinfo.lib_list[i].start_data;
962 p -= j + 1;
963 if (put_user(val, p))
964 return -EFAULT;
965 }
966 }
967
968 install_exec_creds(bprm);
969
970 set_binfmt(&flat_format);
971
972 #ifdef CONFIG_MMU
973 res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
974 if (!res)
975 res = create_flat_tables(bprm, bprm->p);
976 #else
977 /* Stash our initial stack pointer into the mm structure */
978 current->mm->start_stack =
979 ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
980 pr_debug("sp=%lx\n", current->mm->start_stack);
981
982 /* copy the arg pages onto the stack */
983 res = transfer_args_to_stack(bprm, &current->mm->start_stack);
984 if (!res)
985 res = create_flat_tables(bprm, current->mm->start_stack);
986 #endif
987 if (res)
988 return res;
989
990 /* Fake some return addresses to ensure the call chain will
991 * initialise library in order for us. We are required to call
992 * lib 1 first, then 2, ... and finally the main program (id 0).
993 */
994 start_addr = libinfo.lib_list[0].entry;
995
996 #ifdef CONFIG_BINFMT_SHARED_FLAT
997 for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
998 if (libinfo.lib_list[i].loaded) {
999 /* Push previos first to call address */
1000 unsigned long __user *sp;
1001 current->mm->start_stack -= sizeof(unsigned long);
1002 sp = (unsigned long __user *)current->mm->start_stack;
1003 __put_user(start_addr, sp);
1004 start_addr = libinfo.lib_list[i].entry;
1005 }
1006 }
1007 #endif
1008
1009 #ifdef FLAT_PLAT_INIT
1010 FLAT_PLAT_INIT(regs);
1011 #endif
1012
1013 finalize_exec(bprm);
1014 pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
1015 regs, start_addr, current->mm->start_stack);
1016 start_thread(regs, start_addr, current->mm->start_stack);
1017
1018 return 0;
1019 }
1020
1021 /****************************************************************************/
1022
1023 static int __init init_flat_binfmt(void)
1024 {
1025 register_binfmt(&flat_format);
1026 return 0;
1027 }
1028 core_initcall(init_flat_binfmt);
1029
1030 /****************************************************************************/