]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/bio.c
tracing/events: convert block trace points to TRACE_EVENT()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
30
31 #include <trace/events/block.h>
32
33 /*
34 * Test patch to inline a certain number of bi_io_vec's inside the bio
35 * itself, to shrink a bio data allocation from two mempool calls to one
36 */
37 #define BIO_INLINE_VECS 4
38
39 static mempool_t *bio_split_pool __read_mostly;
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab;
76 unsigned int i, entry = -1;
77
78 mutex_lock(&bio_slab_lock);
79
80 i = 0;
81 while (i < bio_slab_nr) {
82 struct bio_slab *bslab = &bio_slabs[i];
83
84 if (!bslab->slab && entry == -1)
85 entry = i;
86 else if (bslab->slab_size == sz) {
87 slab = bslab->slab;
88 bslab->slab_ref++;
89 break;
90 }
91 i++;
92 }
93
94 if (slab)
95 goto out_unlock;
96
97 if (bio_slab_nr == bio_slab_max && entry == -1) {
98 bio_slab_max <<= 1;
99 bio_slabs = krealloc(bio_slabs,
100 bio_slab_max * sizeof(struct bio_slab),
101 GFP_KERNEL);
102 if (!bio_slabs)
103 goto out_unlock;
104 }
105 if (entry == -1)
106 entry = bio_slab_nr++;
107
108 bslab = &bio_slabs[entry];
109
110 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
111 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
112 if (!slab)
113 goto out_unlock;
114
115 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
116 bslab->slab = slab;
117 bslab->slab_ref = 1;
118 bslab->slab_size = sz;
119 out_unlock:
120 mutex_unlock(&bio_slab_lock);
121 return slab;
122 }
123
124 static void bio_put_slab(struct bio_set *bs)
125 {
126 struct bio_slab *bslab = NULL;
127 unsigned int i;
128
129 mutex_lock(&bio_slab_lock);
130
131 for (i = 0; i < bio_slab_nr; i++) {
132 if (bs->bio_slab == bio_slabs[i].slab) {
133 bslab = &bio_slabs[i];
134 break;
135 }
136 }
137
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
141 WARN_ON(!bslab->slab_ref);
142
143 if (--bslab->slab_ref)
144 goto out;
145
146 kmem_cache_destroy(bslab->slab);
147 bslab->slab = NULL;
148
149 out:
150 mutex_unlock(&bio_slab_lock);
151 }
152
153 unsigned int bvec_nr_vecs(unsigned short idx)
154 {
155 return bvec_slabs[idx].nr_vecs;
156 }
157
158 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
159 {
160 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
161
162 if (idx == BIOVEC_MAX_IDX)
163 mempool_free(bv, bs->bvec_pool);
164 else {
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169 }
170
171 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
172 struct bio_set *bs)
173 {
174 struct bio_vec *bvl;
175
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
206 if (*idx == BIOVEC_MAX_IDX) {
207 fallback:
208 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
212
213 /*
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
217 */
218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219
220 /*
221 * Try a slab allocation. If this fails and __GFP_WAIT
222 * is set, retry with the 1-entry mempool
223 */
224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
226 *idx = BIOVEC_MAX_IDX;
227 goto fallback;
228 }
229 }
230
231 return bvl;
232 }
233
234 void bio_free(struct bio *bio, struct bio_set *bs)
235 {
236 void *p;
237
238 if (bio_has_allocated_vec(bio))
239 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243
244 /*
245 * If we have front padding, adjust the bio pointer before freeing
246 */
247 p = bio;
248 if (bs->front_pad)
249 p -= bs->front_pad;
250
251 mempool_free(p, bs->bio_pool);
252 }
253
254 void bio_init(struct bio *bio)
255 {
256 memset(bio, 0, sizeof(*bio));
257 bio->bi_flags = 1 << BIO_UPTODATE;
258 bio->bi_comp_cpu = -1;
259 atomic_set(&bio->bi_cnt, 1);
260 }
261
262 /**
263 * bio_alloc_bioset - allocate a bio for I/O
264 * @gfp_mask: the GFP_ mask given to the slab allocator
265 * @nr_iovecs: number of iovecs to pre-allocate
266 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
267 *
268 * Description:
269 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
270 * If %__GFP_WAIT is set then we will block on the internal pool waiting
271 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
272 * fall back to just using @kmalloc to allocate the required memory.
273 *
274 * Note that the caller must set ->bi_destructor on succesful return
275 * of a bio, to do the appropriate freeing of the bio once the reference
276 * count drops to zero.
277 **/
278 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279 {
280 unsigned long idx = BIO_POOL_NONE;
281 struct bio_vec *bvl = NULL;
282 struct bio *bio;
283 void *p;
284
285 p = mempool_alloc(bs->bio_pool, gfp_mask);
286 if (unlikely(!p))
287 return NULL;
288 bio = p + bs->front_pad;
289
290 bio_init(bio);
291
292 if (unlikely(!nr_iovecs))
293 goto out_set;
294
295 if (nr_iovecs <= BIO_INLINE_VECS) {
296 bvl = bio->bi_inline_vecs;
297 nr_iovecs = BIO_INLINE_VECS;
298 } else {
299 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300 if (unlikely(!bvl))
301 goto err_free;
302
303 nr_iovecs = bvec_nr_vecs(idx);
304 }
305 out_set:
306 bio->bi_flags |= idx << BIO_POOL_OFFSET;
307 bio->bi_max_vecs = nr_iovecs;
308 bio->bi_io_vec = bvl;
309 return bio;
310
311 err_free:
312 mempool_free(p, bs->bio_pool);
313 return NULL;
314 }
315
316 static void bio_fs_destructor(struct bio *bio)
317 {
318 bio_free(bio, fs_bio_set);
319 }
320
321 /**
322 * bio_alloc - allocate a new bio, memory pool backed
323 * @gfp_mask: allocation mask to use
324 * @nr_iovecs: number of iovecs
325 *
326 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask
327 * contains __GFP_WAIT, the allocation is guaranteed to succeed.
328 *
329 * RETURNS:
330 * Pointer to new bio on success, NULL on failure.
331 */
332 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
333 {
334 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
335
336 if (bio)
337 bio->bi_destructor = bio_fs_destructor;
338
339 return bio;
340 }
341
342 static void bio_kmalloc_destructor(struct bio *bio)
343 {
344 if (bio_integrity(bio))
345 bio_integrity_free(bio);
346 kfree(bio);
347 }
348
349 /**
350 * bio_alloc - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
353 *
354 * Description:
355 * bio_alloc will allocate a bio and associated bio_vec array that can hold
356 * at least @nr_iovecs entries. Allocations will be done from the
357 * fs_bio_set. Also see @bio_alloc_bioset.
358 *
359 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
360 * a bio. This is due to the mempool guarantees. To make this work, callers
361 * must never allocate more than 1 bio at the time from this pool. Callers
362 * that need to allocate more than 1 bio must always submit the previously
363 * allocate bio for IO before attempting to allocate a new one. Failure to
364 * do so can cause livelocks under memory pressure.
365 *
366 **/
367 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
368 {
369 struct bio *bio;
370
371 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
372 gfp_mask);
373 if (unlikely(!bio))
374 return NULL;
375
376 bio_init(bio);
377 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
378 bio->bi_max_vecs = nr_iovecs;
379 bio->bi_io_vec = bio->bi_inline_vecs;
380 bio->bi_destructor = bio_kmalloc_destructor;
381
382 return bio;
383 }
384
385 void zero_fill_bio(struct bio *bio)
386 {
387 unsigned long flags;
388 struct bio_vec *bv;
389 int i;
390
391 bio_for_each_segment(bv, bio, i) {
392 char *data = bvec_kmap_irq(bv, &flags);
393 memset(data, 0, bv->bv_len);
394 flush_dcache_page(bv->bv_page);
395 bvec_kunmap_irq(data, &flags);
396 }
397 }
398 EXPORT_SYMBOL(zero_fill_bio);
399
400 /**
401 * bio_put - release a reference to a bio
402 * @bio: bio to release reference to
403 *
404 * Description:
405 * Put a reference to a &struct bio, either one you have gotten with
406 * bio_alloc or bio_get. The last put of a bio will free it.
407 **/
408 void bio_put(struct bio *bio)
409 {
410 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
411
412 /*
413 * last put frees it
414 */
415 if (atomic_dec_and_test(&bio->bi_cnt)) {
416 bio->bi_next = NULL;
417 bio->bi_destructor(bio);
418 }
419 }
420
421 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
422 {
423 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
424 blk_recount_segments(q, bio);
425
426 return bio->bi_phys_segments;
427 }
428
429 /**
430 * __bio_clone - clone a bio
431 * @bio: destination bio
432 * @bio_src: bio to clone
433 *
434 * Clone a &bio. Caller will own the returned bio, but not
435 * the actual data it points to. Reference count of returned
436 * bio will be one.
437 */
438 void __bio_clone(struct bio *bio, struct bio *bio_src)
439 {
440 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
441 bio_src->bi_max_vecs * sizeof(struct bio_vec));
442
443 /*
444 * most users will be overriding ->bi_bdev with a new target,
445 * so we don't set nor calculate new physical/hw segment counts here
446 */
447 bio->bi_sector = bio_src->bi_sector;
448 bio->bi_bdev = bio_src->bi_bdev;
449 bio->bi_flags |= 1 << BIO_CLONED;
450 bio->bi_rw = bio_src->bi_rw;
451 bio->bi_vcnt = bio_src->bi_vcnt;
452 bio->bi_size = bio_src->bi_size;
453 bio->bi_idx = bio_src->bi_idx;
454 }
455
456 /**
457 * bio_clone - clone a bio
458 * @bio: bio to clone
459 * @gfp_mask: allocation priority
460 *
461 * Like __bio_clone, only also allocates the returned bio
462 */
463 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
464 {
465 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
466
467 if (!b)
468 return NULL;
469
470 b->bi_destructor = bio_fs_destructor;
471 __bio_clone(b, bio);
472
473 if (bio_integrity(bio)) {
474 int ret;
475
476 ret = bio_integrity_clone(b, bio, gfp_mask);
477
478 if (ret < 0) {
479 bio_put(b);
480 return NULL;
481 }
482 }
483
484 return b;
485 }
486
487 /**
488 * bio_get_nr_vecs - return approx number of vecs
489 * @bdev: I/O target
490 *
491 * Return the approximate number of pages we can send to this target.
492 * There's no guarantee that you will be able to fit this number of pages
493 * into a bio, it does not account for dynamic restrictions that vary
494 * on offset.
495 */
496 int bio_get_nr_vecs(struct block_device *bdev)
497 {
498 struct request_queue *q = bdev_get_queue(bdev);
499 int nr_pages;
500
501 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
502 if (nr_pages > q->max_phys_segments)
503 nr_pages = q->max_phys_segments;
504 if (nr_pages > q->max_hw_segments)
505 nr_pages = q->max_hw_segments;
506
507 return nr_pages;
508 }
509
510 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
511 *page, unsigned int len, unsigned int offset,
512 unsigned short max_sectors)
513 {
514 int retried_segments = 0;
515 struct bio_vec *bvec;
516
517 /*
518 * cloned bio must not modify vec list
519 */
520 if (unlikely(bio_flagged(bio, BIO_CLONED)))
521 return 0;
522
523 if (((bio->bi_size + len) >> 9) > max_sectors)
524 return 0;
525
526 /*
527 * For filesystems with a blocksize smaller than the pagesize
528 * we will often be called with the same page as last time and
529 * a consecutive offset. Optimize this special case.
530 */
531 if (bio->bi_vcnt > 0) {
532 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
533
534 if (page == prev->bv_page &&
535 offset == prev->bv_offset + prev->bv_len) {
536 prev->bv_len += len;
537
538 if (q->merge_bvec_fn) {
539 struct bvec_merge_data bvm = {
540 .bi_bdev = bio->bi_bdev,
541 .bi_sector = bio->bi_sector,
542 .bi_size = bio->bi_size,
543 .bi_rw = bio->bi_rw,
544 };
545
546 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
547 prev->bv_len -= len;
548 return 0;
549 }
550 }
551
552 goto done;
553 }
554 }
555
556 if (bio->bi_vcnt >= bio->bi_max_vecs)
557 return 0;
558
559 /*
560 * we might lose a segment or two here, but rather that than
561 * make this too complex.
562 */
563
564 while (bio->bi_phys_segments >= q->max_phys_segments
565 || bio->bi_phys_segments >= q->max_hw_segments) {
566
567 if (retried_segments)
568 return 0;
569
570 retried_segments = 1;
571 blk_recount_segments(q, bio);
572 }
573
574 /*
575 * setup the new entry, we might clear it again later if we
576 * cannot add the page
577 */
578 bvec = &bio->bi_io_vec[bio->bi_vcnt];
579 bvec->bv_page = page;
580 bvec->bv_len = len;
581 bvec->bv_offset = offset;
582
583 /*
584 * if queue has other restrictions (eg varying max sector size
585 * depending on offset), it can specify a merge_bvec_fn in the
586 * queue to get further control
587 */
588 if (q->merge_bvec_fn) {
589 struct bvec_merge_data bvm = {
590 .bi_bdev = bio->bi_bdev,
591 .bi_sector = bio->bi_sector,
592 .bi_size = bio->bi_size,
593 .bi_rw = bio->bi_rw,
594 };
595
596 /*
597 * merge_bvec_fn() returns number of bytes it can accept
598 * at this offset
599 */
600 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
601 bvec->bv_page = NULL;
602 bvec->bv_len = 0;
603 bvec->bv_offset = 0;
604 return 0;
605 }
606 }
607
608 /* If we may be able to merge these biovecs, force a recount */
609 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
610 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
611
612 bio->bi_vcnt++;
613 bio->bi_phys_segments++;
614 done:
615 bio->bi_size += len;
616 return len;
617 }
618
619 /**
620 * bio_add_pc_page - attempt to add page to bio
621 * @q: the target queue
622 * @bio: destination bio
623 * @page: page to add
624 * @len: vec entry length
625 * @offset: vec entry offset
626 *
627 * Attempt to add a page to the bio_vec maplist. This can fail for a
628 * number of reasons, such as the bio being full or target block
629 * device limitations. The target block device must allow bio's
630 * smaller than PAGE_SIZE, so it is always possible to add a single
631 * page to an empty bio. This should only be used by REQ_PC bios.
632 */
633 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
634 unsigned int len, unsigned int offset)
635 {
636 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
637 }
638
639 /**
640 * bio_add_page - attempt to add page to bio
641 * @bio: destination bio
642 * @page: page to add
643 * @len: vec entry length
644 * @offset: vec entry offset
645 *
646 * Attempt to add a page to the bio_vec maplist. This can fail for a
647 * number of reasons, such as the bio being full or target block
648 * device limitations. The target block device must allow bio's
649 * smaller than PAGE_SIZE, so it is always possible to add a single
650 * page to an empty bio.
651 */
652 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
653 unsigned int offset)
654 {
655 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
656 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
657 }
658
659 struct bio_map_data {
660 struct bio_vec *iovecs;
661 struct sg_iovec *sgvecs;
662 int nr_sgvecs;
663 int is_our_pages;
664 };
665
666 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
667 struct sg_iovec *iov, int iov_count,
668 int is_our_pages)
669 {
670 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
671 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
672 bmd->nr_sgvecs = iov_count;
673 bmd->is_our_pages = is_our_pages;
674 bio->bi_private = bmd;
675 }
676
677 static void bio_free_map_data(struct bio_map_data *bmd)
678 {
679 kfree(bmd->iovecs);
680 kfree(bmd->sgvecs);
681 kfree(bmd);
682 }
683
684 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
685 gfp_t gfp_mask)
686 {
687 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
688
689 if (!bmd)
690 return NULL;
691
692 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
693 if (!bmd->iovecs) {
694 kfree(bmd);
695 return NULL;
696 }
697
698 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
699 if (bmd->sgvecs)
700 return bmd;
701
702 kfree(bmd->iovecs);
703 kfree(bmd);
704 return NULL;
705 }
706
707 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
708 struct sg_iovec *iov, int iov_count, int uncopy,
709 int do_free_page)
710 {
711 int ret = 0, i;
712 struct bio_vec *bvec;
713 int iov_idx = 0;
714 unsigned int iov_off = 0;
715 int read = bio_data_dir(bio) == READ;
716
717 __bio_for_each_segment(bvec, bio, i, 0) {
718 char *bv_addr = page_address(bvec->bv_page);
719 unsigned int bv_len = iovecs[i].bv_len;
720
721 while (bv_len && iov_idx < iov_count) {
722 unsigned int bytes;
723 char *iov_addr;
724
725 bytes = min_t(unsigned int,
726 iov[iov_idx].iov_len - iov_off, bv_len);
727 iov_addr = iov[iov_idx].iov_base + iov_off;
728
729 if (!ret) {
730 if (!read && !uncopy)
731 ret = copy_from_user(bv_addr, iov_addr,
732 bytes);
733 if (read && uncopy)
734 ret = copy_to_user(iov_addr, bv_addr,
735 bytes);
736
737 if (ret)
738 ret = -EFAULT;
739 }
740
741 bv_len -= bytes;
742 bv_addr += bytes;
743 iov_addr += bytes;
744 iov_off += bytes;
745
746 if (iov[iov_idx].iov_len == iov_off) {
747 iov_idx++;
748 iov_off = 0;
749 }
750 }
751
752 if (do_free_page)
753 __free_page(bvec->bv_page);
754 }
755
756 return ret;
757 }
758
759 /**
760 * bio_uncopy_user - finish previously mapped bio
761 * @bio: bio being terminated
762 *
763 * Free pages allocated from bio_copy_user() and write back data
764 * to user space in case of a read.
765 */
766 int bio_uncopy_user(struct bio *bio)
767 {
768 struct bio_map_data *bmd = bio->bi_private;
769 int ret = 0;
770
771 if (!bio_flagged(bio, BIO_NULL_MAPPED))
772 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
773 bmd->nr_sgvecs, 1, bmd->is_our_pages);
774 bio_free_map_data(bmd);
775 bio_put(bio);
776 return ret;
777 }
778
779 /**
780 * bio_copy_user_iov - copy user data to bio
781 * @q: destination block queue
782 * @map_data: pointer to the rq_map_data holding pages (if necessary)
783 * @iov: the iovec.
784 * @iov_count: number of elements in the iovec
785 * @write_to_vm: bool indicating writing to pages or not
786 * @gfp_mask: memory allocation flags
787 *
788 * Prepares and returns a bio for indirect user io, bouncing data
789 * to/from kernel pages as necessary. Must be paired with
790 * call bio_uncopy_user() on io completion.
791 */
792 struct bio *bio_copy_user_iov(struct request_queue *q,
793 struct rq_map_data *map_data,
794 struct sg_iovec *iov, int iov_count,
795 int write_to_vm, gfp_t gfp_mask)
796 {
797 struct bio_map_data *bmd;
798 struct bio_vec *bvec;
799 struct page *page;
800 struct bio *bio;
801 int i, ret;
802 int nr_pages = 0;
803 unsigned int len = 0;
804 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
805
806 for (i = 0; i < iov_count; i++) {
807 unsigned long uaddr;
808 unsigned long end;
809 unsigned long start;
810
811 uaddr = (unsigned long)iov[i].iov_base;
812 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
813 start = uaddr >> PAGE_SHIFT;
814
815 nr_pages += end - start;
816 len += iov[i].iov_len;
817 }
818
819 if (offset)
820 nr_pages++;
821
822 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
823 if (!bmd)
824 return ERR_PTR(-ENOMEM);
825
826 ret = -ENOMEM;
827 bio = bio_kmalloc(gfp_mask, nr_pages);
828 if (!bio)
829 goto out_bmd;
830
831 bio->bi_rw |= (!write_to_vm << BIO_RW);
832
833 ret = 0;
834
835 if (map_data) {
836 nr_pages = 1 << map_data->page_order;
837 i = map_data->offset / PAGE_SIZE;
838 }
839 while (len) {
840 unsigned int bytes = PAGE_SIZE;
841
842 bytes -= offset;
843
844 if (bytes > len)
845 bytes = len;
846
847 if (map_data) {
848 if (i == map_data->nr_entries * nr_pages) {
849 ret = -ENOMEM;
850 break;
851 }
852
853 page = map_data->pages[i / nr_pages];
854 page += (i % nr_pages);
855
856 i++;
857 } else {
858 page = alloc_page(q->bounce_gfp | gfp_mask);
859 if (!page) {
860 ret = -ENOMEM;
861 break;
862 }
863 }
864
865 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
866 break;
867
868 len -= bytes;
869 offset = 0;
870 }
871
872 if (ret)
873 goto cleanup;
874
875 /*
876 * success
877 */
878 if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
879 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
880 if (ret)
881 goto cleanup;
882 }
883
884 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
885 return bio;
886 cleanup:
887 if (!map_data)
888 bio_for_each_segment(bvec, bio, i)
889 __free_page(bvec->bv_page);
890
891 bio_put(bio);
892 out_bmd:
893 bio_free_map_data(bmd);
894 return ERR_PTR(ret);
895 }
896
897 /**
898 * bio_copy_user - copy user data to bio
899 * @q: destination block queue
900 * @map_data: pointer to the rq_map_data holding pages (if necessary)
901 * @uaddr: start of user address
902 * @len: length in bytes
903 * @write_to_vm: bool indicating writing to pages or not
904 * @gfp_mask: memory allocation flags
905 *
906 * Prepares and returns a bio for indirect user io, bouncing data
907 * to/from kernel pages as necessary. Must be paired with
908 * call bio_uncopy_user() on io completion.
909 */
910 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
911 unsigned long uaddr, unsigned int len,
912 int write_to_vm, gfp_t gfp_mask)
913 {
914 struct sg_iovec iov;
915
916 iov.iov_base = (void __user *)uaddr;
917 iov.iov_len = len;
918
919 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
920 }
921
922 static struct bio *__bio_map_user_iov(struct request_queue *q,
923 struct block_device *bdev,
924 struct sg_iovec *iov, int iov_count,
925 int write_to_vm, gfp_t gfp_mask)
926 {
927 int i, j;
928 int nr_pages = 0;
929 struct page **pages;
930 struct bio *bio;
931 int cur_page = 0;
932 int ret, offset;
933
934 for (i = 0; i < iov_count; i++) {
935 unsigned long uaddr = (unsigned long)iov[i].iov_base;
936 unsigned long len = iov[i].iov_len;
937 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
938 unsigned long start = uaddr >> PAGE_SHIFT;
939
940 nr_pages += end - start;
941 /*
942 * buffer must be aligned to at least hardsector size for now
943 */
944 if (uaddr & queue_dma_alignment(q))
945 return ERR_PTR(-EINVAL);
946 }
947
948 if (!nr_pages)
949 return ERR_PTR(-EINVAL);
950
951 bio = bio_kmalloc(gfp_mask, nr_pages);
952 if (!bio)
953 return ERR_PTR(-ENOMEM);
954
955 ret = -ENOMEM;
956 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
957 if (!pages)
958 goto out;
959
960 for (i = 0; i < iov_count; i++) {
961 unsigned long uaddr = (unsigned long)iov[i].iov_base;
962 unsigned long len = iov[i].iov_len;
963 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
964 unsigned long start = uaddr >> PAGE_SHIFT;
965 const int local_nr_pages = end - start;
966 const int page_limit = cur_page + local_nr_pages;
967
968 ret = get_user_pages_fast(uaddr, local_nr_pages,
969 write_to_vm, &pages[cur_page]);
970 if (ret < local_nr_pages) {
971 ret = -EFAULT;
972 goto out_unmap;
973 }
974
975 offset = uaddr & ~PAGE_MASK;
976 for (j = cur_page; j < page_limit; j++) {
977 unsigned int bytes = PAGE_SIZE - offset;
978
979 if (len <= 0)
980 break;
981
982 if (bytes > len)
983 bytes = len;
984
985 /*
986 * sorry...
987 */
988 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
989 bytes)
990 break;
991
992 len -= bytes;
993 offset = 0;
994 }
995
996 cur_page = j;
997 /*
998 * release the pages we didn't map into the bio, if any
999 */
1000 while (j < page_limit)
1001 page_cache_release(pages[j++]);
1002 }
1003
1004 kfree(pages);
1005
1006 /*
1007 * set data direction, and check if mapped pages need bouncing
1008 */
1009 if (!write_to_vm)
1010 bio->bi_rw |= (1 << BIO_RW);
1011
1012 bio->bi_bdev = bdev;
1013 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1014 return bio;
1015
1016 out_unmap:
1017 for (i = 0; i < nr_pages; i++) {
1018 if(!pages[i])
1019 break;
1020 page_cache_release(pages[i]);
1021 }
1022 out:
1023 kfree(pages);
1024 bio_put(bio);
1025 return ERR_PTR(ret);
1026 }
1027
1028 /**
1029 * bio_map_user - map user address into bio
1030 * @q: the struct request_queue for the bio
1031 * @bdev: destination block device
1032 * @uaddr: start of user address
1033 * @len: length in bytes
1034 * @write_to_vm: bool indicating writing to pages or not
1035 * @gfp_mask: memory allocation flags
1036 *
1037 * Map the user space address into a bio suitable for io to a block
1038 * device. Returns an error pointer in case of error.
1039 */
1040 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1041 unsigned long uaddr, unsigned int len, int write_to_vm,
1042 gfp_t gfp_mask)
1043 {
1044 struct sg_iovec iov;
1045
1046 iov.iov_base = (void __user *)uaddr;
1047 iov.iov_len = len;
1048
1049 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1050 }
1051
1052 /**
1053 * bio_map_user_iov - map user sg_iovec table into bio
1054 * @q: the struct request_queue for the bio
1055 * @bdev: destination block device
1056 * @iov: the iovec.
1057 * @iov_count: number of elements in the iovec
1058 * @write_to_vm: bool indicating writing to pages or not
1059 * @gfp_mask: memory allocation flags
1060 *
1061 * Map the user space address into a bio suitable for io to a block
1062 * device. Returns an error pointer in case of error.
1063 */
1064 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1065 struct sg_iovec *iov, int iov_count,
1066 int write_to_vm, gfp_t gfp_mask)
1067 {
1068 struct bio *bio;
1069
1070 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1071 gfp_mask);
1072 if (IS_ERR(bio))
1073 return bio;
1074
1075 /*
1076 * subtle -- if __bio_map_user() ended up bouncing a bio,
1077 * it would normally disappear when its bi_end_io is run.
1078 * however, we need it for the unmap, so grab an extra
1079 * reference to it
1080 */
1081 bio_get(bio);
1082
1083 return bio;
1084 }
1085
1086 static void __bio_unmap_user(struct bio *bio)
1087 {
1088 struct bio_vec *bvec;
1089 int i;
1090
1091 /*
1092 * make sure we dirty pages we wrote to
1093 */
1094 __bio_for_each_segment(bvec, bio, i, 0) {
1095 if (bio_data_dir(bio) == READ)
1096 set_page_dirty_lock(bvec->bv_page);
1097
1098 page_cache_release(bvec->bv_page);
1099 }
1100
1101 bio_put(bio);
1102 }
1103
1104 /**
1105 * bio_unmap_user - unmap a bio
1106 * @bio: the bio being unmapped
1107 *
1108 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1109 * a process context.
1110 *
1111 * bio_unmap_user() may sleep.
1112 */
1113 void bio_unmap_user(struct bio *bio)
1114 {
1115 __bio_unmap_user(bio);
1116 bio_put(bio);
1117 }
1118
1119 static void bio_map_kern_endio(struct bio *bio, int err)
1120 {
1121 bio_put(bio);
1122 }
1123
1124
1125 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1126 unsigned int len, gfp_t gfp_mask)
1127 {
1128 unsigned long kaddr = (unsigned long)data;
1129 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1130 unsigned long start = kaddr >> PAGE_SHIFT;
1131 const int nr_pages = end - start;
1132 int offset, i;
1133 struct bio *bio;
1134
1135 bio = bio_kmalloc(gfp_mask, nr_pages);
1136 if (!bio)
1137 return ERR_PTR(-ENOMEM);
1138
1139 offset = offset_in_page(kaddr);
1140 for (i = 0; i < nr_pages; i++) {
1141 unsigned int bytes = PAGE_SIZE - offset;
1142
1143 if (len <= 0)
1144 break;
1145
1146 if (bytes > len)
1147 bytes = len;
1148
1149 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1150 offset) < bytes)
1151 break;
1152
1153 data += bytes;
1154 len -= bytes;
1155 offset = 0;
1156 }
1157
1158 bio->bi_end_io = bio_map_kern_endio;
1159 return bio;
1160 }
1161
1162 /**
1163 * bio_map_kern - map kernel address into bio
1164 * @q: the struct request_queue for the bio
1165 * @data: pointer to buffer to map
1166 * @len: length in bytes
1167 * @gfp_mask: allocation flags for bio allocation
1168 *
1169 * Map the kernel address into a bio suitable for io to a block
1170 * device. Returns an error pointer in case of error.
1171 */
1172 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1173 gfp_t gfp_mask)
1174 {
1175 struct bio *bio;
1176
1177 bio = __bio_map_kern(q, data, len, gfp_mask);
1178 if (IS_ERR(bio))
1179 return bio;
1180
1181 if (bio->bi_size == len)
1182 return bio;
1183
1184 /*
1185 * Don't support partial mappings.
1186 */
1187 bio_put(bio);
1188 return ERR_PTR(-EINVAL);
1189 }
1190
1191 static void bio_copy_kern_endio(struct bio *bio, int err)
1192 {
1193 struct bio_vec *bvec;
1194 const int read = bio_data_dir(bio) == READ;
1195 struct bio_map_data *bmd = bio->bi_private;
1196 int i;
1197 char *p = bmd->sgvecs[0].iov_base;
1198
1199 __bio_for_each_segment(bvec, bio, i, 0) {
1200 char *addr = page_address(bvec->bv_page);
1201 int len = bmd->iovecs[i].bv_len;
1202
1203 if (read && !err)
1204 memcpy(p, addr, len);
1205
1206 __free_page(bvec->bv_page);
1207 p += len;
1208 }
1209
1210 bio_free_map_data(bmd);
1211 bio_put(bio);
1212 }
1213
1214 /**
1215 * bio_copy_kern - copy kernel address into bio
1216 * @q: the struct request_queue for the bio
1217 * @data: pointer to buffer to copy
1218 * @len: length in bytes
1219 * @gfp_mask: allocation flags for bio and page allocation
1220 * @reading: data direction is READ
1221 *
1222 * copy the kernel address into a bio suitable for io to a block
1223 * device. Returns an error pointer in case of error.
1224 */
1225 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1226 gfp_t gfp_mask, int reading)
1227 {
1228 struct bio *bio;
1229 struct bio_vec *bvec;
1230 int i;
1231
1232 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1233 if (IS_ERR(bio))
1234 return bio;
1235
1236 if (!reading) {
1237 void *p = data;
1238
1239 bio_for_each_segment(bvec, bio, i) {
1240 char *addr = page_address(bvec->bv_page);
1241
1242 memcpy(addr, p, bvec->bv_len);
1243 p += bvec->bv_len;
1244 }
1245 }
1246
1247 bio->bi_end_io = bio_copy_kern_endio;
1248
1249 return bio;
1250 }
1251
1252 /*
1253 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1254 * for performing direct-IO in BIOs.
1255 *
1256 * The problem is that we cannot run set_page_dirty() from interrupt context
1257 * because the required locks are not interrupt-safe. So what we can do is to
1258 * mark the pages dirty _before_ performing IO. And in interrupt context,
1259 * check that the pages are still dirty. If so, fine. If not, redirty them
1260 * in process context.
1261 *
1262 * We special-case compound pages here: normally this means reads into hugetlb
1263 * pages. The logic in here doesn't really work right for compound pages
1264 * because the VM does not uniformly chase down the head page in all cases.
1265 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1266 * handle them at all. So we skip compound pages here at an early stage.
1267 *
1268 * Note that this code is very hard to test under normal circumstances because
1269 * direct-io pins the pages with get_user_pages(). This makes
1270 * is_page_cache_freeable return false, and the VM will not clean the pages.
1271 * But other code (eg, pdflush) could clean the pages if they are mapped
1272 * pagecache.
1273 *
1274 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1275 * deferred bio dirtying paths.
1276 */
1277
1278 /*
1279 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1280 */
1281 void bio_set_pages_dirty(struct bio *bio)
1282 {
1283 struct bio_vec *bvec = bio->bi_io_vec;
1284 int i;
1285
1286 for (i = 0; i < bio->bi_vcnt; i++) {
1287 struct page *page = bvec[i].bv_page;
1288
1289 if (page && !PageCompound(page))
1290 set_page_dirty_lock(page);
1291 }
1292 }
1293
1294 static void bio_release_pages(struct bio *bio)
1295 {
1296 struct bio_vec *bvec = bio->bi_io_vec;
1297 int i;
1298
1299 for (i = 0; i < bio->bi_vcnt; i++) {
1300 struct page *page = bvec[i].bv_page;
1301
1302 if (page)
1303 put_page(page);
1304 }
1305 }
1306
1307 /*
1308 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1309 * If they are, then fine. If, however, some pages are clean then they must
1310 * have been written out during the direct-IO read. So we take another ref on
1311 * the BIO and the offending pages and re-dirty the pages in process context.
1312 *
1313 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1314 * here on. It will run one page_cache_release() against each page and will
1315 * run one bio_put() against the BIO.
1316 */
1317
1318 static void bio_dirty_fn(struct work_struct *work);
1319
1320 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1321 static DEFINE_SPINLOCK(bio_dirty_lock);
1322 static struct bio *bio_dirty_list;
1323
1324 /*
1325 * This runs in process context
1326 */
1327 static void bio_dirty_fn(struct work_struct *work)
1328 {
1329 unsigned long flags;
1330 struct bio *bio;
1331
1332 spin_lock_irqsave(&bio_dirty_lock, flags);
1333 bio = bio_dirty_list;
1334 bio_dirty_list = NULL;
1335 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1336
1337 while (bio) {
1338 struct bio *next = bio->bi_private;
1339
1340 bio_set_pages_dirty(bio);
1341 bio_release_pages(bio);
1342 bio_put(bio);
1343 bio = next;
1344 }
1345 }
1346
1347 void bio_check_pages_dirty(struct bio *bio)
1348 {
1349 struct bio_vec *bvec = bio->bi_io_vec;
1350 int nr_clean_pages = 0;
1351 int i;
1352
1353 for (i = 0; i < bio->bi_vcnt; i++) {
1354 struct page *page = bvec[i].bv_page;
1355
1356 if (PageDirty(page) || PageCompound(page)) {
1357 page_cache_release(page);
1358 bvec[i].bv_page = NULL;
1359 } else {
1360 nr_clean_pages++;
1361 }
1362 }
1363
1364 if (nr_clean_pages) {
1365 unsigned long flags;
1366
1367 spin_lock_irqsave(&bio_dirty_lock, flags);
1368 bio->bi_private = bio_dirty_list;
1369 bio_dirty_list = bio;
1370 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1371 schedule_work(&bio_dirty_work);
1372 } else {
1373 bio_put(bio);
1374 }
1375 }
1376
1377 /**
1378 * bio_endio - end I/O on a bio
1379 * @bio: bio
1380 * @error: error, if any
1381 *
1382 * Description:
1383 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1384 * preferred way to end I/O on a bio, it takes care of clearing
1385 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1386 * established -Exxxx (-EIO, for instance) error values in case
1387 * something went wrong. Noone should call bi_end_io() directly on a
1388 * bio unless they own it and thus know that it has an end_io
1389 * function.
1390 **/
1391 void bio_endio(struct bio *bio, int error)
1392 {
1393 if (error)
1394 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1395 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1396 error = -EIO;
1397
1398 if (bio->bi_end_io)
1399 bio->bi_end_io(bio, error);
1400 }
1401
1402 void bio_pair_release(struct bio_pair *bp)
1403 {
1404 if (atomic_dec_and_test(&bp->cnt)) {
1405 struct bio *master = bp->bio1.bi_private;
1406
1407 bio_endio(master, bp->error);
1408 mempool_free(bp, bp->bio2.bi_private);
1409 }
1410 }
1411
1412 static void bio_pair_end_1(struct bio *bi, int err)
1413 {
1414 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1415
1416 if (err)
1417 bp->error = err;
1418
1419 bio_pair_release(bp);
1420 }
1421
1422 static void bio_pair_end_2(struct bio *bi, int err)
1423 {
1424 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1425
1426 if (err)
1427 bp->error = err;
1428
1429 bio_pair_release(bp);
1430 }
1431
1432 /*
1433 * split a bio - only worry about a bio with a single page in its iovec
1434 */
1435 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1436 {
1437 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1438
1439 if (!bp)
1440 return bp;
1441
1442 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1443 bi->bi_sector + first_sectors);
1444
1445 BUG_ON(bi->bi_vcnt != 1);
1446 BUG_ON(bi->bi_idx != 0);
1447 atomic_set(&bp->cnt, 3);
1448 bp->error = 0;
1449 bp->bio1 = *bi;
1450 bp->bio2 = *bi;
1451 bp->bio2.bi_sector += first_sectors;
1452 bp->bio2.bi_size -= first_sectors << 9;
1453 bp->bio1.bi_size = first_sectors << 9;
1454
1455 bp->bv1 = bi->bi_io_vec[0];
1456 bp->bv2 = bi->bi_io_vec[0];
1457 bp->bv2.bv_offset += first_sectors << 9;
1458 bp->bv2.bv_len -= first_sectors << 9;
1459 bp->bv1.bv_len = first_sectors << 9;
1460
1461 bp->bio1.bi_io_vec = &bp->bv1;
1462 bp->bio2.bi_io_vec = &bp->bv2;
1463
1464 bp->bio1.bi_max_vecs = 1;
1465 bp->bio2.bi_max_vecs = 1;
1466
1467 bp->bio1.bi_end_io = bio_pair_end_1;
1468 bp->bio2.bi_end_io = bio_pair_end_2;
1469
1470 bp->bio1.bi_private = bi;
1471 bp->bio2.bi_private = bio_split_pool;
1472
1473 if (bio_integrity(bi))
1474 bio_integrity_split(bi, bp, first_sectors);
1475
1476 return bp;
1477 }
1478
1479 /**
1480 * bio_sector_offset - Find hardware sector offset in bio
1481 * @bio: bio to inspect
1482 * @index: bio_vec index
1483 * @offset: offset in bv_page
1484 *
1485 * Return the number of hardware sectors between beginning of bio
1486 * and an end point indicated by a bio_vec index and an offset
1487 * within that vector's page.
1488 */
1489 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1490 unsigned int offset)
1491 {
1492 unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
1493 struct bio_vec *bv;
1494 sector_t sectors;
1495 int i;
1496
1497 sectors = 0;
1498
1499 if (index >= bio->bi_idx)
1500 index = bio->bi_vcnt - 1;
1501
1502 __bio_for_each_segment(bv, bio, i, 0) {
1503 if (i == index) {
1504 if (offset > bv->bv_offset)
1505 sectors += (offset - bv->bv_offset) / sector_sz;
1506 break;
1507 }
1508
1509 sectors += bv->bv_len / sector_sz;
1510 }
1511
1512 return sectors;
1513 }
1514 EXPORT_SYMBOL(bio_sector_offset);
1515
1516 /*
1517 * create memory pools for biovec's in a bio_set.
1518 * use the global biovec slabs created for general use.
1519 */
1520 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1521 {
1522 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1523
1524 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1525 if (!bs->bvec_pool)
1526 return -ENOMEM;
1527
1528 return 0;
1529 }
1530
1531 static void biovec_free_pools(struct bio_set *bs)
1532 {
1533 mempool_destroy(bs->bvec_pool);
1534 }
1535
1536 void bioset_free(struct bio_set *bs)
1537 {
1538 if (bs->bio_pool)
1539 mempool_destroy(bs->bio_pool);
1540
1541 biovec_free_pools(bs);
1542 bio_put_slab(bs);
1543
1544 kfree(bs);
1545 }
1546
1547 /**
1548 * bioset_create - Create a bio_set
1549 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1550 * @front_pad: Number of bytes to allocate in front of the returned bio
1551 *
1552 * Description:
1553 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1554 * to ask for a number of bytes to be allocated in front of the bio.
1555 * Front pad allocation is useful for embedding the bio inside
1556 * another structure, to avoid allocating extra data to go with the bio.
1557 * Note that the bio must be embedded at the END of that structure always,
1558 * or things will break badly.
1559 */
1560 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1561 {
1562 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1563 struct bio_set *bs;
1564
1565 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1566 if (!bs)
1567 return NULL;
1568
1569 bs->front_pad = front_pad;
1570
1571 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1572 if (!bs->bio_slab) {
1573 kfree(bs);
1574 return NULL;
1575 }
1576
1577 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1578 if (!bs->bio_pool)
1579 goto bad;
1580
1581 if (!biovec_create_pools(bs, pool_size))
1582 return bs;
1583
1584 bad:
1585 bioset_free(bs);
1586 return NULL;
1587 }
1588
1589 static void __init biovec_init_slabs(void)
1590 {
1591 int i;
1592
1593 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1594 int size;
1595 struct biovec_slab *bvs = bvec_slabs + i;
1596
1597 #ifndef CONFIG_BLK_DEV_INTEGRITY
1598 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1599 bvs->slab = NULL;
1600 continue;
1601 }
1602 #endif
1603
1604 size = bvs->nr_vecs * sizeof(struct bio_vec);
1605 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1606 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1607 }
1608 }
1609
1610 static int __init init_bio(void)
1611 {
1612 bio_slab_max = 2;
1613 bio_slab_nr = 0;
1614 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1615 if (!bio_slabs)
1616 panic("bio: can't allocate bios\n");
1617
1618 biovec_init_slabs();
1619
1620 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1621 if (!fs_bio_set)
1622 panic("bio: can't allocate bios\n");
1623
1624 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1625 sizeof(struct bio_pair));
1626 if (!bio_split_pool)
1627 panic("bio: can't create split pool\n");
1628
1629 return 0;
1630 }
1631
1632 subsys_initcall(init_bio);
1633
1634 EXPORT_SYMBOL(bio_alloc);
1635 EXPORT_SYMBOL(bio_kmalloc);
1636 EXPORT_SYMBOL(bio_put);
1637 EXPORT_SYMBOL(bio_free);
1638 EXPORT_SYMBOL(bio_endio);
1639 EXPORT_SYMBOL(bio_init);
1640 EXPORT_SYMBOL(__bio_clone);
1641 EXPORT_SYMBOL(bio_clone);
1642 EXPORT_SYMBOL(bio_phys_segments);
1643 EXPORT_SYMBOL(bio_add_page);
1644 EXPORT_SYMBOL(bio_add_pc_page);
1645 EXPORT_SYMBOL(bio_get_nr_vecs);
1646 EXPORT_SYMBOL(bio_map_user);
1647 EXPORT_SYMBOL(bio_unmap_user);
1648 EXPORT_SYMBOL(bio_map_kern);
1649 EXPORT_SYMBOL(bio_copy_kern);
1650 EXPORT_SYMBOL(bio_pair_release);
1651 EXPORT_SYMBOL(bio_split);
1652 EXPORT_SYMBOL(bio_copy_user);
1653 EXPORT_SYMBOL(bio_uncopy_user);
1654 EXPORT_SYMBOL(bioset_create);
1655 EXPORT_SYMBOL(bioset_free);
1656 EXPORT_SYMBOL(bio_alloc_bioset);