]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/bio.c
block: Add bio_advance()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/iocontext.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/mempool.h>
28 #include <linux/workqueue.h>
29 #include <linux/cgroup.h>
30 #include <scsi/sg.h> /* for struct sg_iovec */
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 static mempool_t *bio_split_pool __read_mostly;
41
42 /*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
47 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
48 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50 };
51 #undef BV
52
53 /*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
57 struct bio_set *fs_bio_set;
58 EXPORT_SYMBOL(fs_bio_set);
59
60 /*
61 * Our slab pool management
62 */
63 struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68 };
69 static DEFINE_MUTEX(bio_slab_lock);
70 static struct bio_slab *bio_slabs;
71 static unsigned int bio_slab_nr, bio_slab_max;
72
73 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74 {
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
77 struct bio_slab *bslab, *new_bio_slabs;
78 unsigned int new_bio_slab_max;
79 unsigned int i, entry = -1;
80
81 mutex_lock(&bio_slab_lock);
82
83 i = 0;
84 while (i < bio_slab_nr) {
85 bslab = &bio_slabs[i];
86
87 if (!bslab->slab && entry == -1)
88 entry = i;
89 else if (bslab->slab_size == sz) {
90 slab = bslab->slab;
91 bslab->slab_ref++;
92 break;
93 }
94 i++;
95 }
96
97 if (slab)
98 goto out_unlock;
99
100 if (bio_slab_nr == bio_slab_max && entry == -1) {
101 new_bio_slab_max = bio_slab_max << 1;
102 new_bio_slabs = krealloc(bio_slabs,
103 new_bio_slab_max * sizeof(struct bio_slab),
104 GFP_KERNEL);
105 if (!new_bio_slabs)
106 goto out_unlock;
107 bio_slab_max = new_bio_slab_max;
108 bio_slabs = new_bio_slabs;
109 }
110 if (entry == -1)
111 entry = bio_slab_nr++;
112
113 bslab = &bio_slabs[entry];
114
115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
116 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
121 bslab->slab = slab;
122 bslab->slab_ref = 1;
123 bslab->slab_size = sz;
124 out_unlock:
125 mutex_unlock(&bio_slab_lock);
126 return slab;
127 }
128
129 static void bio_put_slab(struct bio_set *bs)
130 {
131 struct bio_slab *bslab = NULL;
132 unsigned int i;
133
134 mutex_lock(&bio_slab_lock);
135
136 for (i = 0; i < bio_slab_nr; i++) {
137 if (bs->bio_slab == bio_slabs[i].slab) {
138 bslab = &bio_slabs[i];
139 break;
140 }
141 }
142
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON(!bslab->slab_ref);
147
148 if (--bslab->slab_ref)
149 goto out;
150
151 kmem_cache_destroy(bslab->slab);
152 bslab->slab = NULL;
153
154 out:
155 mutex_unlock(&bio_slab_lock);
156 }
157
158 unsigned int bvec_nr_vecs(unsigned short idx)
159 {
160 return bvec_slabs[idx].nr_vecs;
161 }
162
163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
164 {
165 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
166
167 if (idx == BIOVEC_MAX_IDX)
168 mempool_free(bv, pool);
169 else {
170 struct biovec_slab *bvs = bvec_slabs + idx;
171
172 kmem_cache_free(bvs->slab, bv);
173 }
174 }
175
176 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
177 mempool_t *pool)
178 {
179 struct bio_vec *bvl;
180
181 /*
182 * see comment near bvec_array define!
183 */
184 switch (nr) {
185 case 1:
186 *idx = 0;
187 break;
188 case 2 ... 4:
189 *idx = 1;
190 break;
191 case 5 ... 16:
192 *idx = 2;
193 break;
194 case 17 ... 64:
195 *idx = 3;
196 break;
197 case 65 ... 128:
198 *idx = 4;
199 break;
200 case 129 ... BIO_MAX_PAGES:
201 *idx = 5;
202 break;
203 default:
204 return NULL;
205 }
206
207 /*
208 * idx now points to the pool we want to allocate from. only the
209 * 1-vec entry pool is mempool backed.
210 */
211 if (*idx == BIOVEC_MAX_IDX) {
212 fallback:
213 bvl = mempool_alloc(pool, gfp_mask);
214 } else {
215 struct biovec_slab *bvs = bvec_slabs + *idx;
216 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217
218 /*
219 * Make this allocation restricted and don't dump info on
220 * allocation failures, since we'll fallback to the mempool
221 * in case of failure.
222 */
223 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
224
225 /*
226 * Try a slab allocation. If this fails and __GFP_WAIT
227 * is set, retry with the 1-entry mempool
228 */
229 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
230 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
231 *idx = BIOVEC_MAX_IDX;
232 goto fallback;
233 }
234 }
235
236 return bvl;
237 }
238
239 static void __bio_free(struct bio *bio)
240 {
241 bio_disassociate_task(bio);
242
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
245 }
246
247 static void bio_free(struct bio *bio)
248 {
249 struct bio_set *bs = bio->bi_pool;
250 void *p;
251
252 __bio_free(bio);
253
254 if (bs) {
255 if (bio_has_allocated_vec(bio))
256 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
257
258 /*
259 * If we have front padding, adjust the bio pointer before freeing
260 */
261 p = bio;
262 p -= bs->front_pad;
263
264 mempool_free(p, bs->bio_pool);
265 } else {
266 /* Bio was allocated by bio_kmalloc() */
267 kfree(bio);
268 }
269 }
270
271 void bio_init(struct bio *bio)
272 {
273 memset(bio, 0, sizeof(*bio));
274 bio->bi_flags = 1 << BIO_UPTODATE;
275 atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278
279 /**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289 void bio_reset(struct bio *bio)
290 {
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293 __bio_free(bio);
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 }
298 EXPORT_SYMBOL(bio_reset);
299
300 static void bio_alloc_rescue(struct work_struct *work)
301 {
302 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
303 struct bio *bio;
304
305 while (1) {
306 spin_lock(&bs->rescue_lock);
307 bio = bio_list_pop(&bs->rescue_list);
308 spin_unlock(&bs->rescue_lock);
309
310 if (!bio)
311 break;
312
313 generic_make_request(bio);
314 }
315 }
316
317 static void punt_bios_to_rescuer(struct bio_set *bs)
318 {
319 struct bio_list punt, nopunt;
320 struct bio *bio;
321
322 /*
323 * In order to guarantee forward progress we must punt only bios that
324 * were allocated from this bio_set; otherwise, if there was a bio on
325 * there for a stacking driver higher up in the stack, processing it
326 * could require allocating bios from this bio_set, and doing that from
327 * our own rescuer would be bad.
328 *
329 * Since bio lists are singly linked, pop them all instead of trying to
330 * remove from the middle of the list:
331 */
332
333 bio_list_init(&punt);
334 bio_list_init(&nopunt);
335
336 while ((bio = bio_list_pop(current->bio_list)))
337 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
338
339 *current->bio_list = nopunt;
340
341 spin_lock(&bs->rescue_lock);
342 bio_list_merge(&bs->rescue_list, &punt);
343 spin_unlock(&bs->rescue_lock);
344
345 queue_work(bs->rescue_workqueue, &bs->rescue_work);
346 }
347
348 /**
349 * bio_alloc_bioset - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
352 * @bs: the bio_set to allocate from.
353 *
354 * Description:
355 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
356 * backed by the @bs's mempool.
357 *
358 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
359 * able to allocate a bio. This is due to the mempool guarantees. To make this
360 * work, callers must never allocate more than 1 bio at a time from this pool.
361 * Callers that need to allocate more than 1 bio must always submit the
362 * previously allocated bio for IO before attempting to allocate a new one.
363 * Failure to do so can cause deadlocks under memory pressure.
364 *
365 * Note that when running under generic_make_request() (i.e. any block
366 * driver), bios are not submitted until after you return - see the code in
367 * generic_make_request() that converts recursion into iteration, to prevent
368 * stack overflows.
369 *
370 * This would normally mean allocating multiple bios under
371 * generic_make_request() would be susceptible to deadlocks, but we have
372 * deadlock avoidance code that resubmits any blocked bios from a rescuer
373 * thread.
374 *
375 * However, we do not guarantee forward progress for allocations from other
376 * mempools. Doing multiple allocations from the same mempool under
377 * generic_make_request() should be avoided - instead, use bio_set's front_pad
378 * for per bio allocations.
379 *
380 * RETURNS:
381 * Pointer to new bio on success, NULL on failure.
382 */
383 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
384 {
385 gfp_t saved_gfp = gfp_mask;
386 unsigned front_pad;
387 unsigned inline_vecs;
388 unsigned long idx = BIO_POOL_NONE;
389 struct bio_vec *bvl = NULL;
390 struct bio *bio;
391 void *p;
392
393 if (!bs) {
394 if (nr_iovecs > UIO_MAXIOV)
395 return NULL;
396
397 p = kmalloc(sizeof(struct bio) +
398 nr_iovecs * sizeof(struct bio_vec),
399 gfp_mask);
400 front_pad = 0;
401 inline_vecs = nr_iovecs;
402 } else {
403 /*
404 * generic_make_request() converts recursion to iteration; this
405 * means if we're running beneath it, any bios we allocate and
406 * submit will not be submitted (and thus freed) until after we
407 * return.
408 *
409 * This exposes us to a potential deadlock if we allocate
410 * multiple bios from the same bio_set() while running
411 * underneath generic_make_request(). If we were to allocate
412 * multiple bios (say a stacking block driver that was splitting
413 * bios), we would deadlock if we exhausted the mempool's
414 * reserve.
415 *
416 * We solve this, and guarantee forward progress, with a rescuer
417 * workqueue per bio_set. If we go to allocate and there are
418 * bios on current->bio_list, we first try the allocation
419 * without __GFP_WAIT; if that fails, we punt those bios we
420 * would be blocking to the rescuer workqueue before we retry
421 * with the original gfp_flags.
422 */
423
424 if (current->bio_list && !bio_list_empty(current->bio_list))
425 gfp_mask &= ~__GFP_WAIT;
426
427 p = mempool_alloc(bs->bio_pool, gfp_mask);
428 if (!p && gfp_mask != saved_gfp) {
429 punt_bios_to_rescuer(bs);
430 gfp_mask = saved_gfp;
431 p = mempool_alloc(bs->bio_pool, gfp_mask);
432 }
433
434 front_pad = bs->front_pad;
435 inline_vecs = BIO_INLINE_VECS;
436 }
437
438 if (unlikely(!p))
439 return NULL;
440
441 bio = p + front_pad;
442 bio_init(bio);
443
444 if (nr_iovecs > inline_vecs) {
445 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
446 if (!bvl && gfp_mask != saved_gfp) {
447 punt_bios_to_rescuer(bs);
448 gfp_mask = saved_gfp;
449 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
450 }
451
452 if (unlikely(!bvl))
453 goto err_free;
454 } else if (nr_iovecs) {
455 bvl = bio->bi_inline_vecs;
456 }
457
458 bio->bi_pool = bs;
459 bio->bi_flags |= idx << BIO_POOL_OFFSET;
460 bio->bi_max_vecs = nr_iovecs;
461 bio->bi_io_vec = bvl;
462 return bio;
463
464 err_free:
465 mempool_free(p, bs->bio_pool);
466 return NULL;
467 }
468 EXPORT_SYMBOL(bio_alloc_bioset);
469
470 void zero_fill_bio(struct bio *bio)
471 {
472 unsigned long flags;
473 struct bio_vec *bv;
474 int i;
475
476 bio_for_each_segment(bv, bio, i) {
477 char *data = bvec_kmap_irq(bv, &flags);
478 memset(data, 0, bv->bv_len);
479 flush_dcache_page(bv->bv_page);
480 bvec_kunmap_irq(data, &flags);
481 }
482 }
483 EXPORT_SYMBOL(zero_fill_bio);
484
485 /**
486 * bio_put - release a reference to a bio
487 * @bio: bio to release reference to
488 *
489 * Description:
490 * Put a reference to a &struct bio, either one you have gotten with
491 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
492 **/
493 void bio_put(struct bio *bio)
494 {
495 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
496
497 /*
498 * last put frees it
499 */
500 if (atomic_dec_and_test(&bio->bi_cnt))
501 bio_free(bio);
502 }
503 EXPORT_SYMBOL(bio_put);
504
505 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
506 {
507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
508 blk_recount_segments(q, bio);
509
510 return bio->bi_phys_segments;
511 }
512 EXPORT_SYMBOL(bio_phys_segments);
513
514 /**
515 * __bio_clone - clone a bio
516 * @bio: destination bio
517 * @bio_src: bio to clone
518 *
519 * Clone a &bio. Caller will own the returned bio, but not
520 * the actual data it points to. Reference count of returned
521 * bio will be one.
522 */
523 void __bio_clone(struct bio *bio, struct bio *bio_src)
524 {
525 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
526 bio_src->bi_max_vecs * sizeof(struct bio_vec));
527
528 /*
529 * most users will be overriding ->bi_bdev with a new target,
530 * so we don't set nor calculate new physical/hw segment counts here
531 */
532 bio->bi_sector = bio_src->bi_sector;
533 bio->bi_bdev = bio_src->bi_bdev;
534 bio->bi_flags |= 1 << BIO_CLONED;
535 bio->bi_rw = bio_src->bi_rw;
536 bio->bi_vcnt = bio_src->bi_vcnt;
537 bio->bi_size = bio_src->bi_size;
538 bio->bi_idx = bio_src->bi_idx;
539 }
540 EXPORT_SYMBOL(__bio_clone);
541
542 /**
543 * bio_clone_bioset - clone a bio
544 * @bio: bio to clone
545 * @gfp_mask: allocation priority
546 * @bs: bio_set to allocate from
547 *
548 * Like __bio_clone, only also allocates the returned bio
549 */
550 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
551 struct bio_set *bs)
552 {
553 struct bio *b;
554
555 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
556 if (!b)
557 return NULL;
558
559 __bio_clone(b, bio);
560
561 if (bio_integrity(bio)) {
562 int ret;
563
564 ret = bio_integrity_clone(b, bio, gfp_mask);
565
566 if (ret < 0) {
567 bio_put(b);
568 return NULL;
569 }
570 }
571
572 return b;
573 }
574 EXPORT_SYMBOL(bio_clone_bioset);
575
576 /**
577 * bio_get_nr_vecs - return approx number of vecs
578 * @bdev: I/O target
579 *
580 * Return the approximate number of pages we can send to this target.
581 * There's no guarantee that you will be able to fit this number of pages
582 * into a bio, it does not account for dynamic restrictions that vary
583 * on offset.
584 */
585 int bio_get_nr_vecs(struct block_device *bdev)
586 {
587 struct request_queue *q = bdev_get_queue(bdev);
588 int nr_pages;
589
590 nr_pages = min_t(unsigned,
591 queue_max_segments(q),
592 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
593
594 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
595
596 }
597 EXPORT_SYMBOL(bio_get_nr_vecs);
598
599 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
600 *page, unsigned int len, unsigned int offset,
601 unsigned short max_sectors)
602 {
603 int retried_segments = 0;
604 struct bio_vec *bvec;
605
606 /*
607 * cloned bio must not modify vec list
608 */
609 if (unlikely(bio_flagged(bio, BIO_CLONED)))
610 return 0;
611
612 if (((bio->bi_size + len) >> 9) > max_sectors)
613 return 0;
614
615 /*
616 * For filesystems with a blocksize smaller than the pagesize
617 * we will often be called with the same page as last time and
618 * a consecutive offset. Optimize this special case.
619 */
620 if (bio->bi_vcnt > 0) {
621 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
622
623 if (page == prev->bv_page &&
624 offset == prev->bv_offset + prev->bv_len) {
625 unsigned int prev_bv_len = prev->bv_len;
626 prev->bv_len += len;
627
628 if (q->merge_bvec_fn) {
629 struct bvec_merge_data bvm = {
630 /* prev_bvec is already charged in
631 bi_size, discharge it in order to
632 simulate merging updated prev_bvec
633 as new bvec. */
634 .bi_bdev = bio->bi_bdev,
635 .bi_sector = bio->bi_sector,
636 .bi_size = bio->bi_size - prev_bv_len,
637 .bi_rw = bio->bi_rw,
638 };
639
640 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
641 prev->bv_len -= len;
642 return 0;
643 }
644 }
645
646 goto done;
647 }
648 }
649
650 if (bio->bi_vcnt >= bio->bi_max_vecs)
651 return 0;
652
653 /*
654 * we might lose a segment or two here, but rather that than
655 * make this too complex.
656 */
657
658 while (bio->bi_phys_segments >= queue_max_segments(q)) {
659
660 if (retried_segments)
661 return 0;
662
663 retried_segments = 1;
664 blk_recount_segments(q, bio);
665 }
666
667 /*
668 * setup the new entry, we might clear it again later if we
669 * cannot add the page
670 */
671 bvec = &bio->bi_io_vec[bio->bi_vcnt];
672 bvec->bv_page = page;
673 bvec->bv_len = len;
674 bvec->bv_offset = offset;
675
676 /*
677 * if queue has other restrictions (eg varying max sector size
678 * depending on offset), it can specify a merge_bvec_fn in the
679 * queue to get further control
680 */
681 if (q->merge_bvec_fn) {
682 struct bvec_merge_data bvm = {
683 .bi_bdev = bio->bi_bdev,
684 .bi_sector = bio->bi_sector,
685 .bi_size = bio->bi_size,
686 .bi_rw = bio->bi_rw,
687 };
688
689 /*
690 * merge_bvec_fn() returns number of bytes it can accept
691 * at this offset
692 */
693 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
694 bvec->bv_page = NULL;
695 bvec->bv_len = 0;
696 bvec->bv_offset = 0;
697 return 0;
698 }
699 }
700
701 /* If we may be able to merge these biovecs, force a recount */
702 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
703 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
704
705 bio->bi_vcnt++;
706 bio->bi_phys_segments++;
707 done:
708 bio->bi_size += len;
709 return len;
710 }
711
712 /**
713 * bio_add_pc_page - attempt to add page to bio
714 * @q: the target queue
715 * @bio: destination bio
716 * @page: page to add
717 * @len: vec entry length
718 * @offset: vec entry offset
719 *
720 * Attempt to add a page to the bio_vec maplist. This can fail for a
721 * number of reasons, such as the bio being full or target block device
722 * limitations. The target block device must allow bio's up to PAGE_SIZE,
723 * so it is always possible to add a single page to an empty bio.
724 *
725 * This should only be used by REQ_PC bios.
726 */
727 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
728 unsigned int len, unsigned int offset)
729 {
730 return __bio_add_page(q, bio, page, len, offset,
731 queue_max_hw_sectors(q));
732 }
733 EXPORT_SYMBOL(bio_add_pc_page);
734
735 /**
736 * bio_add_page - attempt to add page to bio
737 * @bio: destination bio
738 * @page: page to add
739 * @len: vec entry length
740 * @offset: vec entry offset
741 *
742 * Attempt to add a page to the bio_vec maplist. This can fail for a
743 * number of reasons, such as the bio being full or target block device
744 * limitations. The target block device must allow bio's up to PAGE_SIZE,
745 * so it is always possible to add a single page to an empty bio.
746 */
747 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
748 unsigned int offset)
749 {
750 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
751 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
752 }
753 EXPORT_SYMBOL(bio_add_page);
754
755 /**
756 * bio_advance - increment/complete a bio by some number of bytes
757 * @bio: bio to advance
758 * @bytes: number of bytes to complete
759 *
760 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
761 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
762 * be updated on the last bvec as well.
763 *
764 * @bio will then represent the remaining, uncompleted portion of the io.
765 */
766 void bio_advance(struct bio *bio, unsigned bytes)
767 {
768 if (bio_integrity(bio))
769 bio_integrity_advance(bio, bytes);
770
771 bio->bi_sector += bytes >> 9;
772 bio->bi_size -= bytes;
773
774 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
775 return;
776
777 while (bytes) {
778 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
779 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
780 bio->bi_idx, bio->bi_vcnt);
781 break;
782 }
783
784 if (bytes >= bio_iovec(bio)->bv_len) {
785 bytes -= bio_iovec(bio)->bv_len;
786 bio->bi_idx++;
787 } else {
788 bio_iovec(bio)->bv_len -= bytes;
789 bio_iovec(bio)->bv_offset += bytes;
790 bytes = 0;
791 }
792 }
793 }
794 EXPORT_SYMBOL(bio_advance);
795
796 struct bio_map_data {
797 struct bio_vec *iovecs;
798 struct sg_iovec *sgvecs;
799 int nr_sgvecs;
800 int is_our_pages;
801 };
802
803 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
804 struct sg_iovec *iov, int iov_count,
805 int is_our_pages)
806 {
807 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
808 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
809 bmd->nr_sgvecs = iov_count;
810 bmd->is_our_pages = is_our_pages;
811 bio->bi_private = bmd;
812 }
813
814 static void bio_free_map_data(struct bio_map_data *bmd)
815 {
816 kfree(bmd->iovecs);
817 kfree(bmd->sgvecs);
818 kfree(bmd);
819 }
820
821 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
822 unsigned int iov_count,
823 gfp_t gfp_mask)
824 {
825 struct bio_map_data *bmd;
826
827 if (iov_count > UIO_MAXIOV)
828 return NULL;
829
830 bmd = kmalloc(sizeof(*bmd), gfp_mask);
831 if (!bmd)
832 return NULL;
833
834 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
835 if (!bmd->iovecs) {
836 kfree(bmd);
837 return NULL;
838 }
839
840 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
841 if (bmd->sgvecs)
842 return bmd;
843
844 kfree(bmd->iovecs);
845 kfree(bmd);
846 return NULL;
847 }
848
849 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
850 struct sg_iovec *iov, int iov_count,
851 int to_user, int from_user, int do_free_page)
852 {
853 int ret = 0, i;
854 struct bio_vec *bvec;
855 int iov_idx = 0;
856 unsigned int iov_off = 0;
857
858 __bio_for_each_segment(bvec, bio, i, 0) {
859 char *bv_addr = page_address(bvec->bv_page);
860 unsigned int bv_len = iovecs[i].bv_len;
861
862 while (bv_len && iov_idx < iov_count) {
863 unsigned int bytes;
864 char __user *iov_addr;
865
866 bytes = min_t(unsigned int,
867 iov[iov_idx].iov_len - iov_off, bv_len);
868 iov_addr = iov[iov_idx].iov_base + iov_off;
869
870 if (!ret) {
871 if (to_user)
872 ret = copy_to_user(iov_addr, bv_addr,
873 bytes);
874
875 if (from_user)
876 ret = copy_from_user(bv_addr, iov_addr,
877 bytes);
878
879 if (ret)
880 ret = -EFAULT;
881 }
882
883 bv_len -= bytes;
884 bv_addr += bytes;
885 iov_addr += bytes;
886 iov_off += bytes;
887
888 if (iov[iov_idx].iov_len == iov_off) {
889 iov_idx++;
890 iov_off = 0;
891 }
892 }
893
894 if (do_free_page)
895 __free_page(bvec->bv_page);
896 }
897
898 return ret;
899 }
900
901 /**
902 * bio_uncopy_user - finish previously mapped bio
903 * @bio: bio being terminated
904 *
905 * Free pages allocated from bio_copy_user() and write back data
906 * to user space in case of a read.
907 */
908 int bio_uncopy_user(struct bio *bio)
909 {
910 struct bio_map_data *bmd = bio->bi_private;
911 int ret = 0;
912
913 if (!bio_flagged(bio, BIO_NULL_MAPPED))
914 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
915 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
916 0, bmd->is_our_pages);
917 bio_free_map_data(bmd);
918 bio_put(bio);
919 return ret;
920 }
921 EXPORT_SYMBOL(bio_uncopy_user);
922
923 /**
924 * bio_copy_user_iov - copy user data to bio
925 * @q: destination block queue
926 * @map_data: pointer to the rq_map_data holding pages (if necessary)
927 * @iov: the iovec.
928 * @iov_count: number of elements in the iovec
929 * @write_to_vm: bool indicating writing to pages or not
930 * @gfp_mask: memory allocation flags
931 *
932 * Prepares and returns a bio for indirect user io, bouncing data
933 * to/from kernel pages as necessary. Must be paired with
934 * call bio_uncopy_user() on io completion.
935 */
936 struct bio *bio_copy_user_iov(struct request_queue *q,
937 struct rq_map_data *map_data,
938 struct sg_iovec *iov, int iov_count,
939 int write_to_vm, gfp_t gfp_mask)
940 {
941 struct bio_map_data *bmd;
942 struct bio_vec *bvec;
943 struct page *page;
944 struct bio *bio;
945 int i, ret;
946 int nr_pages = 0;
947 unsigned int len = 0;
948 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
949
950 for (i = 0; i < iov_count; i++) {
951 unsigned long uaddr;
952 unsigned long end;
953 unsigned long start;
954
955 uaddr = (unsigned long)iov[i].iov_base;
956 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
957 start = uaddr >> PAGE_SHIFT;
958
959 /*
960 * Overflow, abort
961 */
962 if (end < start)
963 return ERR_PTR(-EINVAL);
964
965 nr_pages += end - start;
966 len += iov[i].iov_len;
967 }
968
969 if (offset)
970 nr_pages++;
971
972 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
973 if (!bmd)
974 return ERR_PTR(-ENOMEM);
975
976 ret = -ENOMEM;
977 bio = bio_kmalloc(gfp_mask, nr_pages);
978 if (!bio)
979 goto out_bmd;
980
981 if (!write_to_vm)
982 bio->bi_rw |= REQ_WRITE;
983
984 ret = 0;
985
986 if (map_data) {
987 nr_pages = 1 << map_data->page_order;
988 i = map_data->offset / PAGE_SIZE;
989 }
990 while (len) {
991 unsigned int bytes = PAGE_SIZE;
992
993 bytes -= offset;
994
995 if (bytes > len)
996 bytes = len;
997
998 if (map_data) {
999 if (i == map_data->nr_entries * nr_pages) {
1000 ret = -ENOMEM;
1001 break;
1002 }
1003
1004 page = map_data->pages[i / nr_pages];
1005 page += (i % nr_pages);
1006
1007 i++;
1008 } else {
1009 page = alloc_page(q->bounce_gfp | gfp_mask);
1010 if (!page) {
1011 ret = -ENOMEM;
1012 break;
1013 }
1014 }
1015
1016 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1017 break;
1018
1019 len -= bytes;
1020 offset = 0;
1021 }
1022
1023 if (ret)
1024 goto cleanup;
1025
1026 /*
1027 * success
1028 */
1029 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1030 (map_data && map_data->from_user)) {
1031 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1032 if (ret)
1033 goto cleanup;
1034 }
1035
1036 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1037 return bio;
1038 cleanup:
1039 if (!map_data)
1040 bio_for_each_segment(bvec, bio, i)
1041 __free_page(bvec->bv_page);
1042
1043 bio_put(bio);
1044 out_bmd:
1045 bio_free_map_data(bmd);
1046 return ERR_PTR(ret);
1047 }
1048
1049 /**
1050 * bio_copy_user - copy user data to bio
1051 * @q: destination block queue
1052 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1053 * @uaddr: start of user address
1054 * @len: length in bytes
1055 * @write_to_vm: bool indicating writing to pages or not
1056 * @gfp_mask: memory allocation flags
1057 *
1058 * Prepares and returns a bio for indirect user io, bouncing data
1059 * to/from kernel pages as necessary. Must be paired with
1060 * call bio_uncopy_user() on io completion.
1061 */
1062 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1063 unsigned long uaddr, unsigned int len,
1064 int write_to_vm, gfp_t gfp_mask)
1065 {
1066 struct sg_iovec iov;
1067
1068 iov.iov_base = (void __user *)uaddr;
1069 iov.iov_len = len;
1070
1071 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1072 }
1073 EXPORT_SYMBOL(bio_copy_user);
1074
1075 static struct bio *__bio_map_user_iov(struct request_queue *q,
1076 struct block_device *bdev,
1077 struct sg_iovec *iov, int iov_count,
1078 int write_to_vm, gfp_t gfp_mask)
1079 {
1080 int i, j;
1081 int nr_pages = 0;
1082 struct page **pages;
1083 struct bio *bio;
1084 int cur_page = 0;
1085 int ret, offset;
1086
1087 for (i = 0; i < iov_count; i++) {
1088 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1089 unsigned long len = iov[i].iov_len;
1090 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1091 unsigned long start = uaddr >> PAGE_SHIFT;
1092
1093 /*
1094 * Overflow, abort
1095 */
1096 if (end < start)
1097 return ERR_PTR(-EINVAL);
1098
1099 nr_pages += end - start;
1100 /*
1101 * buffer must be aligned to at least hardsector size for now
1102 */
1103 if (uaddr & queue_dma_alignment(q))
1104 return ERR_PTR(-EINVAL);
1105 }
1106
1107 if (!nr_pages)
1108 return ERR_PTR(-EINVAL);
1109
1110 bio = bio_kmalloc(gfp_mask, nr_pages);
1111 if (!bio)
1112 return ERR_PTR(-ENOMEM);
1113
1114 ret = -ENOMEM;
1115 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1116 if (!pages)
1117 goto out;
1118
1119 for (i = 0; i < iov_count; i++) {
1120 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1121 unsigned long len = iov[i].iov_len;
1122 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123 unsigned long start = uaddr >> PAGE_SHIFT;
1124 const int local_nr_pages = end - start;
1125 const int page_limit = cur_page + local_nr_pages;
1126
1127 ret = get_user_pages_fast(uaddr, local_nr_pages,
1128 write_to_vm, &pages[cur_page]);
1129 if (ret < local_nr_pages) {
1130 ret = -EFAULT;
1131 goto out_unmap;
1132 }
1133
1134 offset = uaddr & ~PAGE_MASK;
1135 for (j = cur_page; j < page_limit; j++) {
1136 unsigned int bytes = PAGE_SIZE - offset;
1137
1138 if (len <= 0)
1139 break;
1140
1141 if (bytes > len)
1142 bytes = len;
1143
1144 /*
1145 * sorry...
1146 */
1147 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1148 bytes)
1149 break;
1150
1151 len -= bytes;
1152 offset = 0;
1153 }
1154
1155 cur_page = j;
1156 /*
1157 * release the pages we didn't map into the bio, if any
1158 */
1159 while (j < page_limit)
1160 page_cache_release(pages[j++]);
1161 }
1162
1163 kfree(pages);
1164
1165 /*
1166 * set data direction, and check if mapped pages need bouncing
1167 */
1168 if (!write_to_vm)
1169 bio->bi_rw |= REQ_WRITE;
1170
1171 bio->bi_bdev = bdev;
1172 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1173 return bio;
1174
1175 out_unmap:
1176 for (i = 0; i < nr_pages; i++) {
1177 if(!pages[i])
1178 break;
1179 page_cache_release(pages[i]);
1180 }
1181 out:
1182 kfree(pages);
1183 bio_put(bio);
1184 return ERR_PTR(ret);
1185 }
1186
1187 /**
1188 * bio_map_user - map user address into bio
1189 * @q: the struct request_queue for the bio
1190 * @bdev: destination block device
1191 * @uaddr: start of user address
1192 * @len: length in bytes
1193 * @write_to_vm: bool indicating writing to pages or not
1194 * @gfp_mask: memory allocation flags
1195 *
1196 * Map the user space address into a bio suitable for io to a block
1197 * device. Returns an error pointer in case of error.
1198 */
1199 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1200 unsigned long uaddr, unsigned int len, int write_to_vm,
1201 gfp_t gfp_mask)
1202 {
1203 struct sg_iovec iov;
1204
1205 iov.iov_base = (void __user *)uaddr;
1206 iov.iov_len = len;
1207
1208 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1209 }
1210 EXPORT_SYMBOL(bio_map_user);
1211
1212 /**
1213 * bio_map_user_iov - map user sg_iovec table into bio
1214 * @q: the struct request_queue for the bio
1215 * @bdev: destination block device
1216 * @iov: the iovec.
1217 * @iov_count: number of elements in the iovec
1218 * @write_to_vm: bool indicating writing to pages or not
1219 * @gfp_mask: memory allocation flags
1220 *
1221 * Map the user space address into a bio suitable for io to a block
1222 * device. Returns an error pointer in case of error.
1223 */
1224 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1225 struct sg_iovec *iov, int iov_count,
1226 int write_to_vm, gfp_t gfp_mask)
1227 {
1228 struct bio *bio;
1229
1230 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1231 gfp_mask);
1232 if (IS_ERR(bio))
1233 return bio;
1234
1235 /*
1236 * subtle -- if __bio_map_user() ended up bouncing a bio,
1237 * it would normally disappear when its bi_end_io is run.
1238 * however, we need it for the unmap, so grab an extra
1239 * reference to it
1240 */
1241 bio_get(bio);
1242
1243 return bio;
1244 }
1245
1246 static void __bio_unmap_user(struct bio *bio)
1247 {
1248 struct bio_vec *bvec;
1249 int i;
1250
1251 /*
1252 * make sure we dirty pages we wrote to
1253 */
1254 __bio_for_each_segment(bvec, bio, i, 0) {
1255 if (bio_data_dir(bio) == READ)
1256 set_page_dirty_lock(bvec->bv_page);
1257
1258 page_cache_release(bvec->bv_page);
1259 }
1260
1261 bio_put(bio);
1262 }
1263
1264 /**
1265 * bio_unmap_user - unmap a bio
1266 * @bio: the bio being unmapped
1267 *
1268 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1269 * a process context.
1270 *
1271 * bio_unmap_user() may sleep.
1272 */
1273 void bio_unmap_user(struct bio *bio)
1274 {
1275 __bio_unmap_user(bio);
1276 bio_put(bio);
1277 }
1278 EXPORT_SYMBOL(bio_unmap_user);
1279
1280 static void bio_map_kern_endio(struct bio *bio, int err)
1281 {
1282 bio_put(bio);
1283 }
1284
1285 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1286 unsigned int len, gfp_t gfp_mask)
1287 {
1288 unsigned long kaddr = (unsigned long)data;
1289 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 unsigned long start = kaddr >> PAGE_SHIFT;
1291 const int nr_pages = end - start;
1292 int offset, i;
1293 struct bio *bio;
1294
1295 bio = bio_kmalloc(gfp_mask, nr_pages);
1296 if (!bio)
1297 return ERR_PTR(-ENOMEM);
1298
1299 offset = offset_in_page(kaddr);
1300 for (i = 0; i < nr_pages; i++) {
1301 unsigned int bytes = PAGE_SIZE - offset;
1302
1303 if (len <= 0)
1304 break;
1305
1306 if (bytes > len)
1307 bytes = len;
1308
1309 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1310 offset) < bytes)
1311 break;
1312
1313 data += bytes;
1314 len -= bytes;
1315 offset = 0;
1316 }
1317
1318 bio->bi_end_io = bio_map_kern_endio;
1319 return bio;
1320 }
1321
1322 /**
1323 * bio_map_kern - map kernel address into bio
1324 * @q: the struct request_queue for the bio
1325 * @data: pointer to buffer to map
1326 * @len: length in bytes
1327 * @gfp_mask: allocation flags for bio allocation
1328 *
1329 * Map the kernel address into a bio suitable for io to a block
1330 * device. Returns an error pointer in case of error.
1331 */
1332 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1333 gfp_t gfp_mask)
1334 {
1335 struct bio *bio;
1336
1337 bio = __bio_map_kern(q, data, len, gfp_mask);
1338 if (IS_ERR(bio))
1339 return bio;
1340
1341 if (bio->bi_size == len)
1342 return bio;
1343
1344 /*
1345 * Don't support partial mappings.
1346 */
1347 bio_put(bio);
1348 return ERR_PTR(-EINVAL);
1349 }
1350 EXPORT_SYMBOL(bio_map_kern);
1351
1352 static void bio_copy_kern_endio(struct bio *bio, int err)
1353 {
1354 struct bio_vec *bvec;
1355 const int read = bio_data_dir(bio) == READ;
1356 struct bio_map_data *bmd = bio->bi_private;
1357 int i;
1358 char *p = bmd->sgvecs[0].iov_base;
1359
1360 __bio_for_each_segment(bvec, bio, i, 0) {
1361 char *addr = page_address(bvec->bv_page);
1362 int len = bmd->iovecs[i].bv_len;
1363
1364 if (read)
1365 memcpy(p, addr, len);
1366
1367 __free_page(bvec->bv_page);
1368 p += len;
1369 }
1370
1371 bio_free_map_data(bmd);
1372 bio_put(bio);
1373 }
1374
1375 /**
1376 * bio_copy_kern - copy kernel address into bio
1377 * @q: the struct request_queue for the bio
1378 * @data: pointer to buffer to copy
1379 * @len: length in bytes
1380 * @gfp_mask: allocation flags for bio and page allocation
1381 * @reading: data direction is READ
1382 *
1383 * copy the kernel address into a bio suitable for io to a block
1384 * device. Returns an error pointer in case of error.
1385 */
1386 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1387 gfp_t gfp_mask, int reading)
1388 {
1389 struct bio *bio;
1390 struct bio_vec *bvec;
1391 int i;
1392
1393 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1394 if (IS_ERR(bio))
1395 return bio;
1396
1397 if (!reading) {
1398 void *p = data;
1399
1400 bio_for_each_segment(bvec, bio, i) {
1401 char *addr = page_address(bvec->bv_page);
1402
1403 memcpy(addr, p, bvec->bv_len);
1404 p += bvec->bv_len;
1405 }
1406 }
1407
1408 bio->bi_end_io = bio_copy_kern_endio;
1409
1410 return bio;
1411 }
1412 EXPORT_SYMBOL(bio_copy_kern);
1413
1414 /*
1415 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1416 * for performing direct-IO in BIOs.
1417 *
1418 * The problem is that we cannot run set_page_dirty() from interrupt context
1419 * because the required locks are not interrupt-safe. So what we can do is to
1420 * mark the pages dirty _before_ performing IO. And in interrupt context,
1421 * check that the pages are still dirty. If so, fine. If not, redirty them
1422 * in process context.
1423 *
1424 * We special-case compound pages here: normally this means reads into hugetlb
1425 * pages. The logic in here doesn't really work right for compound pages
1426 * because the VM does not uniformly chase down the head page in all cases.
1427 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1428 * handle them at all. So we skip compound pages here at an early stage.
1429 *
1430 * Note that this code is very hard to test under normal circumstances because
1431 * direct-io pins the pages with get_user_pages(). This makes
1432 * is_page_cache_freeable return false, and the VM will not clean the pages.
1433 * But other code (eg, flusher threads) could clean the pages if they are mapped
1434 * pagecache.
1435 *
1436 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1437 * deferred bio dirtying paths.
1438 */
1439
1440 /*
1441 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1442 */
1443 void bio_set_pages_dirty(struct bio *bio)
1444 {
1445 struct bio_vec *bvec = bio->bi_io_vec;
1446 int i;
1447
1448 for (i = 0; i < bio->bi_vcnt; i++) {
1449 struct page *page = bvec[i].bv_page;
1450
1451 if (page && !PageCompound(page))
1452 set_page_dirty_lock(page);
1453 }
1454 }
1455
1456 static void bio_release_pages(struct bio *bio)
1457 {
1458 struct bio_vec *bvec = bio->bi_io_vec;
1459 int i;
1460
1461 for (i = 0; i < bio->bi_vcnt; i++) {
1462 struct page *page = bvec[i].bv_page;
1463
1464 if (page)
1465 put_page(page);
1466 }
1467 }
1468
1469 /*
1470 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1471 * If they are, then fine. If, however, some pages are clean then they must
1472 * have been written out during the direct-IO read. So we take another ref on
1473 * the BIO and the offending pages and re-dirty the pages in process context.
1474 *
1475 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1476 * here on. It will run one page_cache_release() against each page and will
1477 * run one bio_put() against the BIO.
1478 */
1479
1480 static void bio_dirty_fn(struct work_struct *work);
1481
1482 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1483 static DEFINE_SPINLOCK(bio_dirty_lock);
1484 static struct bio *bio_dirty_list;
1485
1486 /*
1487 * This runs in process context
1488 */
1489 static void bio_dirty_fn(struct work_struct *work)
1490 {
1491 unsigned long flags;
1492 struct bio *bio;
1493
1494 spin_lock_irqsave(&bio_dirty_lock, flags);
1495 bio = bio_dirty_list;
1496 bio_dirty_list = NULL;
1497 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1498
1499 while (bio) {
1500 struct bio *next = bio->bi_private;
1501
1502 bio_set_pages_dirty(bio);
1503 bio_release_pages(bio);
1504 bio_put(bio);
1505 bio = next;
1506 }
1507 }
1508
1509 void bio_check_pages_dirty(struct bio *bio)
1510 {
1511 struct bio_vec *bvec = bio->bi_io_vec;
1512 int nr_clean_pages = 0;
1513 int i;
1514
1515 for (i = 0; i < bio->bi_vcnt; i++) {
1516 struct page *page = bvec[i].bv_page;
1517
1518 if (PageDirty(page) || PageCompound(page)) {
1519 page_cache_release(page);
1520 bvec[i].bv_page = NULL;
1521 } else {
1522 nr_clean_pages++;
1523 }
1524 }
1525
1526 if (nr_clean_pages) {
1527 unsigned long flags;
1528
1529 spin_lock_irqsave(&bio_dirty_lock, flags);
1530 bio->bi_private = bio_dirty_list;
1531 bio_dirty_list = bio;
1532 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1533 schedule_work(&bio_dirty_work);
1534 } else {
1535 bio_put(bio);
1536 }
1537 }
1538
1539 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1540 void bio_flush_dcache_pages(struct bio *bi)
1541 {
1542 int i;
1543 struct bio_vec *bvec;
1544
1545 bio_for_each_segment(bvec, bi, i)
1546 flush_dcache_page(bvec->bv_page);
1547 }
1548 EXPORT_SYMBOL(bio_flush_dcache_pages);
1549 #endif
1550
1551 /**
1552 * bio_endio - end I/O on a bio
1553 * @bio: bio
1554 * @error: error, if any
1555 *
1556 * Description:
1557 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1558 * preferred way to end I/O on a bio, it takes care of clearing
1559 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1560 * established -Exxxx (-EIO, for instance) error values in case
1561 * something went wrong. No one should call bi_end_io() directly on a
1562 * bio unless they own it and thus know that it has an end_io
1563 * function.
1564 **/
1565 void bio_endio(struct bio *bio, int error)
1566 {
1567 if (error)
1568 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1569 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1570 error = -EIO;
1571
1572 trace_block_bio_complete(bio, error);
1573
1574 if (bio->bi_end_io)
1575 bio->bi_end_io(bio, error);
1576 }
1577 EXPORT_SYMBOL(bio_endio);
1578
1579 void bio_pair_release(struct bio_pair *bp)
1580 {
1581 if (atomic_dec_and_test(&bp->cnt)) {
1582 struct bio *master = bp->bio1.bi_private;
1583
1584 bio_endio(master, bp->error);
1585 mempool_free(bp, bp->bio2.bi_private);
1586 }
1587 }
1588 EXPORT_SYMBOL(bio_pair_release);
1589
1590 static void bio_pair_end_1(struct bio *bi, int err)
1591 {
1592 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1593
1594 if (err)
1595 bp->error = err;
1596
1597 bio_pair_release(bp);
1598 }
1599
1600 static void bio_pair_end_2(struct bio *bi, int err)
1601 {
1602 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1603
1604 if (err)
1605 bp->error = err;
1606
1607 bio_pair_release(bp);
1608 }
1609
1610 /*
1611 * split a bio - only worry about a bio with a single page in its iovec
1612 */
1613 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1614 {
1615 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1616
1617 if (!bp)
1618 return bp;
1619
1620 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1621 bi->bi_sector + first_sectors);
1622
1623 BUG_ON(bi->bi_vcnt != 1 && bi->bi_vcnt != 0);
1624 BUG_ON(bi->bi_idx != 0);
1625 atomic_set(&bp->cnt, 3);
1626 bp->error = 0;
1627 bp->bio1 = *bi;
1628 bp->bio2 = *bi;
1629 bp->bio2.bi_sector += first_sectors;
1630 bp->bio2.bi_size -= first_sectors << 9;
1631 bp->bio1.bi_size = first_sectors << 9;
1632
1633 if (bi->bi_vcnt != 0) {
1634 bp->bv1 = bi->bi_io_vec[0];
1635 bp->bv2 = bi->bi_io_vec[0];
1636
1637 if (bio_is_rw(bi)) {
1638 bp->bv2.bv_offset += first_sectors << 9;
1639 bp->bv2.bv_len -= first_sectors << 9;
1640 bp->bv1.bv_len = first_sectors << 9;
1641 }
1642
1643 bp->bio1.bi_io_vec = &bp->bv1;
1644 bp->bio2.bi_io_vec = &bp->bv2;
1645
1646 bp->bio1.bi_max_vecs = 1;
1647 bp->bio2.bi_max_vecs = 1;
1648 }
1649
1650 bp->bio1.bi_end_io = bio_pair_end_1;
1651 bp->bio2.bi_end_io = bio_pair_end_2;
1652
1653 bp->bio1.bi_private = bi;
1654 bp->bio2.bi_private = bio_split_pool;
1655
1656 if (bio_integrity(bi))
1657 bio_integrity_split(bi, bp, first_sectors);
1658
1659 return bp;
1660 }
1661 EXPORT_SYMBOL(bio_split);
1662
1663 /**
1664 * bio_sector_offset - Find hardware sector offset in bio
1665 * @bio: bio to inspect
1666 * @index: bio_vec index
1667 * @offset: offset in bv_page
1668 *
1669 * Return the number of hardware sectors between beginning of bio
1670 * and an end point indicated by a bio_vec index and an offset
1671 * within that vector's page.
1672 */
1673 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1674 unsigned int offset)
1675 {
1676 unsigned int sector_sz;
1677 struct bio_vec *bv;
1678 sector_t sectors;
1679 int i;
1680
1681 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1682 sectors = 0;
1683
1684 if (index >= bio->bi_idx)
1685 index = bio->bi_vcnt - 1;
1686
1687 __bio_for_each_segment(bv, bio, i, 0) {
1688 if (i == index) {
1689 if (offset > bv->bv_offset)
1690 sectors += (offset - bv->bv_offset) / sector_sz;
1691 break;
1692 }
1693
1694 sectors += bv->bv_len / sector_sz;
1695 }
1696
1697 return sectors;
1698 }
1699 EXPORT_SYMBOL(bio_sector_offset);
1700
1701 /*
1702 * create memory pools for biovec's in a bio_set.
1703 * use the global biovec slabs created for general use.
1704 */
1705 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1706 {
1707 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1708
1709 return mempool_create_slab_pool(pool_entries, bp->slab);
1710 }
1711
1712 void bioset_free(struct bio_set *bs)
1713 {
1714 if (bs->rescue_workqueue)
1715 destroy_workqueue(bs->rescue_workqueue);
1716
1717 if (bs->bio_pool)
1718 mempool_destroy(bs->bio_pool);
1719
1720 if (bs->bvec_pool)
1721 mempool_destroy(bs->bvec_pool);
1722
1723 bioset_integrity_free(bs);
1724 bio_put_slab(bs);
1725
1726 kfree(bs);
1727 }
1728 EXPORT_SYMBOL(bioset_free);
1729
1730 /**
1731 * bioset_create - Create a bio_set
1732 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1733 * @front_pad: Number of bytes to allocate in front of the returned bio
1734 *
1735 * Description:
1736 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1737 * to ask for a number of bytes to be allocated in front of the bio.
1738 * Front pad allocation is useful for embedding the bio inside
1739 * another structure, to avoid allocating extra data to go with the bio.
1740 * Note that the bio must be embedded at the END of that structure always,
1741 * or things will break badly.
1742 */
1743 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1744 {
1745 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1746 struct bio_set *bs;
1747
1748 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1749 if (!bs)
1750 return NULL;
1751
1752 bs->front_pad = front_pad;
1753
1754 spin_lock_init(&bs->rescue_lock);
1755 bio_list_init(&bs->rescue_list);
1756 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1757
1758 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1759 if (!bs->bio_slab) {
1760 kfree(bs);
1761 return NULL;
1762 }
1763
1764 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1765 if (!bs->bio_pool)
1766 goto bad;
1767
1768 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1769 if (!bs->bvec_pool)
1770 goto bad;
1771
1772 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1773 if (!bs->rescue_workqueue)
1774 goto bad;
1775
1776 return bs;
1777 bad:
1778 bioset_free(bs);
1779 return NULL;
1780 }
1781 EXPORT_SYMBOL(bioset_create);
1782
1783 #ifdef CONFIG_BLK_CGROUP
1784 /**
1785 * bio_associate_current - associate a bio with %current
1786 * @bio: target bio
1787 *
1788 * Associate @bio with %current if it hasn't been associated yet. Block
1789 * layer will treat @bio as if it were issued by %current no matter which
1790 * task actually issues it.
1791 *
1792 * This function takes an extra reference of @task's io_context and blkcg
1793 * which will be put when @bio is released. The caller must own @bio,
1794 * ensure %current->io_context exists, and is responsible for synchronizing
1795 * calls to this function.
1796 */
1797 int bio_associate_current(struct bio *bio)
1798 {
1799 struct io_context *ioc;
1800 struct cgroup_subsys_state *css;
1801
1802 if (bio->bi_ioc)
1803 return -EBUSY;
1804
1805 ioc = current->io_context;
1806 if (!ioc)
1807 return -ENOENT;
1808
1809 /* acquire active ref on @ioc and associate */
1810 get_io_context_active(ioc);
1811 bio->bi_ioc = ioc;
1812
1813 /* associate blkcg if exists */
1814 rcu_read_lock();
1815 css = task_subsys_state(current, blkio_subsys_id);
1816 if (css && css_tryget(css))
1817 bio->bi_css = css;
1818 rcu_read_unlock();
1819
1820 return 0;
1821 }
1822
1823 /**
1824 * bio_disassociate_task - undo bio_associate_current()
1825 * @bio: target bio
1826 */
1827 void bio_disassociate_task(struct bio *bio)
1828 {
1829 if (bio->bi_ioc) {
1830 put_io_context(bio->bi_ioc);
1831 bio->bi_ioc = NULL;
1832 }
1833 if (bio->bi_css) {
1834 css_put(bio->bi_css);
1835 bio->bi_css = NULL;
1836 }
1837 }
1838
1839 #endif /* CONFIG_BLK_CGROUP */
1840
1841 static void __init biovec_init_slabs(void)
1842 {
1843 int i;
1844
1845 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1846 int size;
1847 struct biovec_slab *bvs = bvec_slabs + i;
1848
1849 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1850 bvs->slab = NULL;
1851 continue;
1852 }
1853
1854 size = bvs->nr_vecs * sizeof(struct bio_vec);
1855 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1856 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1857 }
1858 }
1859
1860 static int __init init_bio(void)
1861 {
1862 bio_slab_max = 2;
1863 bio_slab_nr = 0;
1864 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1865 if (!bio_slabs)
1866 panic("bio: can't allocate bios\n");
1867
1868 bio_integrity_init();
1869 biovec_init_slabs();
1870
1871 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1872 if (!fs_bio_set)
1873 panic("bio: can't allocate bios\n");
1874
1875 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1876 panic("bio: can't create integrity pool\n");
1877
1878 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1879 sizeof(struct bio_pair));
1880 if (!bio_split_pool)
1881 panic("bio: can't create split pool\n");
1882
1883 return 0;
1884 }
1885 subsys_initcall(init_bio);