]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/bio.c
bio: use memset() in bio_init()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
30
31 #define BIO_POOL_SIZE 2
32
33 static struct kmem_cache *bio_slab __read_mostly;
34
35 #define BIOVEC_NR_POOLS 6
36
37 /*
38 * a small number of entries is fine, not going to be performance critical.
39 * basically we just need to survive
40 */
41 #define BIO_SPLIT_ENTRIES 2
42 mempool_t *bio_split_pool __read_mostly;
43
44 struct biovec_slab {
45 int nr_vecs;
46 char *name;
47 struct kmem_cache *slab;
48 };
49
50 /*
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
53 * unsigned short
54 */
55
56 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
57 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
59 };
60 #undef BV
61
62 /*
63 * bio_set is used to allow other portions of the IO system to
64 * allocate their own private memory pools for bio and iovec structures.
65 * These memory pools in turn all allocate from the bio_slab
66 * and the bvec_slabs[].
67 */
68 struct bio_set {
69 mempool_t *bio_pool;
70 mempool_t *bvec_pools[BIOVEC_NR_POOLS];
71 };
72
73 /*
74 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
75 * IO code that does not need private memory pools.
76 */
77 static struct bio_set *fs_bio_set;
78
79 static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
80 {
81 struct bio_vec *bvl;
82
83 /*
84 * see comment near bvec_array define!
85 */
86 switch (nr) {
87 case 1 : *idx = 0; break;
88 case 2 ... 4: *idx = 1; break;
89 case 5 ... 16: *idx = 2; break;
90 case 17 ... 64: *idx = 3; break;
91 case 65 ... 128: *idx = 4; break;
92 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
93 default:
94 return NULL;
95 }
96 /*
97 * idx now points to the pool we want to allocate from
98 */
99
100 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
101 if (bvl) {
102 struct biovec_slab *bp = bvec_slabs + *idx;
103
104 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
105 }
106
107 return bvl;
108 }
109
110 void bio_free(struct bio *bio, struct bio_set *bio_set)
111 {
112 const int pool_idx = BIO_POOL_IDX(bio);
113
114 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
115
116 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
117 mempool_free(bio, bio_set->bio_pool);
118 }
119
120 /*
121 * default destructor for a bio allocated with bio_alloc_bioset()
122 */
123 static void bio_fs_destructor(struct bio *bio)
124 {
125 bio_free(bio, fs_bio_set);
126 }
127
128 void bio_init(struct bio *bio)
129 {
130 memset(bio, 0, sizeof(*bio));
131 bio->bi_flags = 1 << BIO_UPTODATE;
132 atomic_set(&bio->bi_cnt, 1);
133 }
134
135 /**
136 * bio_alloc_bioset - allocate a bio for I/O
137 * @gfp_mask: the GFP_ mask given to the slab allocator
138 * @nr_iovecs: number of iovecs to pre-allocate
139 * @bs: the bio_set to allocate from
140 *
141 * Description:
142 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
143 * If %__GFP_WAIT is set then we will block on the internal pool waiting
144 * for a &struct bio to become free.
145 *
146 * allocate bio and iovecs from the memory pools specified by the
147 * bio_set structure.
148 **/
149 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
150 {
151 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
152
153 if (likely(bio)) {
154 struct bio_vec *bvl = NULL;
155
156 bio_init(bio);
157 if (likely(nr_iovecs)) {
158 unsigned long idx = 0; /* shut up gcc */
159
160 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
161 if (unlikely(!bvl)) {
162 mempool_free(bio, bs->bio_pool);
163 bio = NULL;
164 goto out;
165 }
166 bio->bi_flags |= idx << BIO_POOL_OFFSET;
167 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
168 }
169 bio->bi_io_vec = bvl;
170 }
171 out:
172 return bio;
173 }
174
175 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
176 {
177 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
178
179 if (bio)
180 bio->bi_destructor = bio_fs_destructor;
181
182 return bio;
183 }
184
185 void zero_fill_bio(struct bio *bio)
186 {
187 unsigned long flags;
188 struct bio_vec *bv;
189 int i;
190
191 bio_for_each_segment(bv, bio, i) {
192 char *data = bvec_kmap_irq(bv, &flags);
193 memset(data, 0, bv->bv_len);
194 flush_dcache_page(bv->bv_page);
195 bvec_kunmap_irq(data, &flags);
196 }
197 }
198 EXPORT_SYMBOL(zero_fill_bio);
199
200 /**
201 * bio_put - release a reference to a bio
202 * @bio: bio to release reference to
203 *
204 * Description:
205 * Put a reference to a &struct bio, either one you have gotten with
206 * bio_alloc or bio_get. The last put of a bio will free it.
207 **/
208 void bio_put(struct bio *bio)
209 {
210 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
211
212 /*
213 * last put frees it
214 */
215 if (atomic_dec_and_test(&bio->bi_cnt)) {
216 bio->bi_next = NULL;
217 bio->bi_destructor(bio);
218 }
219 }
220
221 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
222 {
223 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
224 blk_recount_segments(q, bio);
225
226 return bio->bi_phys_segments;
227 }
228
229 inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
230 {
231 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
232 blk_recount_segments(q, bio);
233
234 return bio->bi_hw_segments;
235 }
236
237 /**
238 * __bio_clone - clone a bio
239 * @bio: destination bio
240 * @bio_src: bio to clone
241 *
242 * Clone a &bio. Caller will own the returned bio, but not
243 * the actual data it points to. Reference count of returned
244 * bio will be one.
245 */
246 void __bio_clone(struct bio *bio, struct bio *bio_src)
247 {
248 struct request_queue *q = bdev_get_queue(bio_src->bi_bdev);
249
250 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
251 bio_src->bi_max_vecs * sizeof(struct bio_vec));
252
253 bio->bi_sector = bio_src->bi_sector;
254 bio->bi_bdev = bio_src->bi_bdev;
255 bio->bi_flags |= 1 << BIO_CLONED;
256 bio->bi_rw = bio_src->bi_rw;
257 bio->bi_vcnt = bio_src->bi_vcnt;
258 bio->bi_size = bio_src->bi_size;
259 bio->bi_idx = bio_src->bi_idx;
260 bio_phys_segments(q, bio);
261 bio_hw_segments(q, bio);
262 }
263
264 /**
265 * bio_clone - clone a bio
266 * @bio: bio to clone
267 * @gfp_mask: allocation priority
268 *
269 * Like __bio_clone, only also allocates the returned bio
270 */
271 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
272 {
273 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
274
275 if (b) {
276 b->bi_destructor = bio_fs_destructor;
277 __bio_clone(b, bio);
278 }
279
280 return b;
281 }
282
283 /**
284 * bio_get_nr_vecs - return approx number of vecs
285 * @bdev: I/O target
286 *
287 * Return the approximate number of pages we can send to this target.
288 * There's no guarantee that you will be able to fit this number of pages
289 * into a bio, it does not account for dynamic restrictions that vary
290 * on offset.
291 */
292 int bio_get_nr_vecs(struct block_device *bdev)
293 {
294 struct request_queue *q = bdev_get_queue(bdev);
295 int nr_pages;
296
297 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
298 if (nr_pages > q->max_phys_segments)
299 nr_pages = q->max_phys_segments;
300 if (nr_pages > q->max_hw_segments)
301 nr_pages = q->max_hw_segments;
302
303 return nr_pages;
304 }
305
306 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
307 *page, unsigned int len, unsigned int offset,
308 unsigned short max_sectors)
309 {
310 int retried_segments = 0;
311 struct bio_vec *bvec;
312
313 /*
314 * cloned bio must not modify vec list
315 */
316 if (unlikely(bio_flagged(bio, BIO_CLONED)))
317 return 0;
318
319 if (((bio->bi_size + len) >> 9) > max_sectors)
320 return 0;
321
322 /*
323 * For filesystems with a blocksize smaller than the pagesize
324 * we will often be called with the same page as last time and
325 * a consecutive offset. Optimize this special case.
326 */
327 if (bio->bi_vcnt > 0) {
328 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
329
330 if (page == prev->bv_page &&
331 offset == prev->bv_offset + prev->bv_len) {
332 prev->bv_len += len;
333 if (q->merge_bvec_fn &&
334 q->merge_bvec_fn(q, bio, prev) < len) {
335 prev->bv_len -= len;
336 return 0;
337 }
338
339 goto done;
340 }
341 }
342
343 if (bio->bi_vcnt >= bio->bi_max_vecs)
344 return 0;
345
346 /*
347 * we might lose a segment or two here, but rather that than
348 * make this too complex.
349 */
350
351 while (bio->bi_phys_segments >= q->max_phys_segments
352 || bio->bi_hw_segments >= q->max_hw_segments
353 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
354
355 if (retried_segments)
356 return 0;
357
358 retried_segments = 1;
359 blk_recount_segments(q, bio);
360 }
361
362 /*
363 * setup the new entry, we might clear it again later if we
364 * cannot add the page
365 */
366 bvec = &bio->bi_io_vec[bio->bi_vcnt];
367 bvec->bv_page = page;
368 bvec->bv_len = len;
369 bvec->bv_offset = offset;
370
371 /*
372 * if queue has other restrictions (eg varying max sector size
373 * depending on offset), it can specify a merge_bvec_fn in the
374 * queue to get further control
375 */
376 if (q->merge_bvec_fn) {
377 /*
378 * merge_bvec_fn() returns number of bytes it can accept
379 * at this offset
380 */
381 if (q->merge_bvec_fn(q, bio, bvec) < len) {
382 bvec->bv_page = NULL;
383 bvec->bv_len = 0;
384 bvec->bv_offset = 0;
385 return 0;
386 }
387 }
388
389 /* If we may be able to merge these biovecs, force a recount */
390 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
391 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
392 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
393
394 bio->bi_vcnt++;
395 bio->bi_phys_segments++;
396 bio->bi_hw_segments++;
397 done:
398 bio->bi_size += len;
399 return len;
400 }
401
402 /**
403 * bio_add_pc_page - attempt to add page to bio
404 * @q: the target queue
405 * @bio: destination bio
406 * @page: page to add
407 * @len: vec entry length
408 * @offset: vec entry offset
409 *
410 * Attempt to add a page to the bio_vec maplist. This can fail for a
411 * number of reasons, such as the bio being full or target block
412 * device limitations. The target block device must allow bio's
413 * smaller than PAGE_SIZE, so it is always possible to add a single
414 * page to an empty bio. This should only be used by REQ_PC bios.
415 */
416 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
417 unsigned int len, unsigned int offset)
418 {
419 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
420 }
421
422 /**
423 * bio_add_page - attempt to add page to bio
424 * @bio: destination bio
425 * @page: page to add
426 * @len: vec entry length
427 * @offset: vec entry offset
428 *
429 * Attempt to add a page to the bio_vec maplist. This can fail for a
430 * number of reasons, such as the bio being full or target block
431 * device limitations. The target block device must allow bio's
432 * smaller than PAGE_SIZE, so it is always possible to add a single
433 * page to an empty bio.
434 */
435 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
436 unsigned int offset)
437 {
438 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
439 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
440 }
441
442 struct bio_map_data {
443 struct bio_vec *iovecs;
444 void __user *userptr;
445 };
446
447 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
448 {
449 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
450 bio->bi_private = bmd;
451 }
452
453 static void bio_free_map_data(struct bio_map_data *bmd)
454 {
455 kfree(bmd->iovecs);
456 kfree(bmd);
457 }
458
459 static struct bio_map_data *bio_alloc_map_data(int nr_segs)
460 {
461 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
462
463 if (!bmd)
464 return NULL;
465
466 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
467 if (bmd->iovecs)
468 return bmd;
469
470 kfree(bmd);
471 return NULL;
472 }
473
474 /**
475 * bio_uncopy_user - finish previously mapped bio
476 * @bio: bio being terminated
477 *
478 * Free pages allocated from bio_copy_user() and write back data
479 * to user space in case of a read.
480 */
481 int bio_uncopy_user(struct bio *bio)
482 {
483 struct bio_map_data *bmd = bio->bi_private;
484 const int read = bio_data_dir(bio) == READ;
485 struct bio_vec *bvec;
486 int i, ret = 0;
487
488 __bio_for_each_segment(bvec, bio, i, 0) {
489 char *addr = page_address(bvec->bv_page);
490 unsigned int len = bmd->iovecs[i].bv_len;
491
492 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
493 ret = -EFAULT;
494
495 __free_page(bvec->bv_page);
496 bmd->userptr += len;
497 }
498 bio_free_map_data(bmd);
499 bio_put(bio);
500 return ret;
501 }
502
503 /**
504 * bio_copy_user - copy user data to bio
505 * @q: destination block queue
506 * @uaddr: start of user address
507 * @len: length in bytes
508 * @write_to_vm: bool indicating writing to pages or not
509 *
510 * Prepares and returns a bio for indirect user io, bouncing data
511 * to/from kernel pages as necessary. Must be paired with
512 * call bio_uncopy_user() on io completion.
513 */
514 struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
515 unsigned int len, int write_to_vm)
516 {
517 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
518 unsigned long start = uaddr >> PAGE_SHIFT;
519 struct bio_map_data *bmd;
520 struct bio_vec *bvec;
521 struct page *page;
522 struct bio *bio;
523 int i, ret;
524
525 bmd = bio_alloc_map_data(end - start);
526 if (!bmd)
527 return ERR_PTR(-ENOMEM);
528
529 bmd->userptr = (void __user *) uaddr;
530
531 ret = -ENOMEM;
532 bio = bio_alloc(GFP_KERNEL, end - start);
533 if (!bio)
534 goto out_bmd;
535
536 bio->bi_rw |= (!write_to_vm << BIO_RW);
537
538 ret = 0;
539 while (len) {
540 unsigned int bytes = PAGE_SIZE;
541
542 if (bytes > len)
543 bytes = len;
544
545 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
546 if (!page) {
547 ret = -ENOMEM;
548 break;
549 }
550
551 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
552 break;
553
554 len -= bytes;
555 }
556
557 if (ret)
558 goto cleanup;
559
560 /*
561 * success
562 */
563 if (!write_to_vm) {
564 char __user *p = (char __user *) uaddr;
565
566 /*
567 * for a write, copy in data to kernel pages
568 */
569 ret = -EFAULT;
570 bio_for_each_segment(bvec, bio, i) {
571 char *addr = page_address(bvec->bv_page);
572
573 if (copy_from_user(addr, p, bvec->bv_len))
574 goto cleanup;
575 p += bvec->bv_len;
576 }
577 }
578
579 bio_set_map_data(bmd, bio);
580 return bio;
581 cleanup:
582 bio_for_each_segment(bvec, bio, i)
583 __free_page(bvec->bv_page);
584
585 bio_put(bio);
586 out_bmd:
587 bio_free_map_data(bmd);
588 return ERR_PTR(ret);
589 }
590
591 static struct bio *__bio_map_user_iov(struct request_queue *q,
592 struct block_device *bdev,
593 struct sg_iovec *iov, int iov_count,
594 int write_to_vm)
595 {
596 int i, j;
597 int nr_pages = 0;
598 struct page **pages;
599 struct bio *bio;
600 int cur_page = 0;
601 int ret, offset;
602
603 for (i = 0; i < iov_count; i++) {
604 unsigned long uaddr = (unsigned long)iov[i].iov_base;
605 unsigned long len = iov[i].iov_len;
606 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
607 unsigned long start = uaddr >> PAGE_SHIFT;
608
609 nr_pages += end - start;
610 /*
611 * buffer must be aligned to at least hardsector size for now
612 */
613 if (uaddr & queue_dma_alignment(q))
614 return ERR_PTR(-EINVAL);
615 }
616
617 if (!nr_pages)
618 return ERR_PTR(-EINVAL);
619
620 bio = bio_alloc(GFP_KERNEL, nr_pages);
621 if (!bio)
622 return ERR_PTR(-ENOMEM);
623
624 ret = -ENOMEM;
625 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
626 if (!pages)
627 goto out;
628
629 for (i = 0; i < iov_count; i++) {
630 unsigned long uaddr = (unsigned long)iov[i].iov_base;
631 unsigned long len = iov[i].iov_len;
632 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
633 unsigned long start = uaddr >> PAGE_SHIFT;
634 const int local_nr_pages = end - start;
635 const int page_limit = cur_page + local_nr_pages;
636
637 down_read(&current->mm->mmap_sem);
638 ret = get_user_pages(current, current->mm, uaddr,
639 local_nr_pages,
640 write_to_vm, 0, &pages[cur_page], NULL);
641 up_read(&current->mm->mmap_sem);
642
643 if (ret < local_nr_pages) {
644 ret = -EFAULT;
645 goto out_unmap;
646 }
647
648 offset = uaddr & ~PAGE_MASK;
649 for (j = cur_page; j < page_limit; j++) {
650 unsigned int bytes = PAGE_SIZE - offset;
651
652 if (len <= 0)
653 break;
654
655 if (bytes > len)
656 bytes = len;
657
658 /*
659 * sorry...
660 */
661 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
662 bytes)
663 break;
664
665 len -= bytes;
666 offset = 0;
667 }
668
669 cur_page = j;
670 /*
671 * release the pages we didn't map into the bio, if any
672 */
673 while (j < page_limit)
674 page_cache_release(pages[j++]);
675 }
676
677 kfree(pages);
678
679 /*
680 * set data direction, and check if mapped pages need bouncing
681 */
682 if (!write_to_vm)
683 bio->bi_rw |= (1 << BIO_RW);
684
685 bio->bi_bdev = bdev;
686 bio->bi_flags |= (1 << BIO_USER_MAPPED);
687 return bio;
688
689 out_unmap:
690 for (i = 0; i < nr_pages; i++) {
691 if(!pages[i])
692 break;
693 page_cache_release(pages[i]);
694 }
695 out:
696 kfree(pages);
697 bio_put(bio);
698 return ERR_PTR(ret);
699 }
700
701 /**
702 * bio_map_user - map user address into bio
703 * @q: the struct request_queue for the bio
704 * @bdev: destination block device
705 * @uaddr: start of user address
706 * @len: length in bytes
707 * @write_to_vm: bool indicating writing to pages or not
708 *
709 * Map the user space address into a bio suitable for io to a block
710 * device. Returns an error pointer in case of error.
711 */
712 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
713 unsigned long uaddr, unsigned int len, int write_to_vm)
714 {
715 struct sg_iovec iov;
716
717 iov.iov_base = (void __user *)uaddr;
718 iov.iov_len = len;
719
720 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
721 }
722
723 /**
724 * bio_map_user_iov - map user sg_iovec table into bio
725 * @q: the struct request_queue for the bio
726 * @bdev: destination block device
727 * @iov: the iovec.
728 * @iov_count: number of elements in the iovec
729 * @write_to_vm: bool indicating writing to pages or not
730 *
731 * Map the user space address into a bio suitable for io to a block
732 * device. Returns an error pointer in case of error.
733 */
734 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
735 struct sg_iovec *iov, int iov_count,
736 int write_to_vm)
737 {
738 struct bio *bio;
739
740 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
741
742 if (IS_ERR(bio))
743 return bio;
744
745 /*
746 * subtle -- if __bio_map_user() ended up bouncing a bio,
747 * it would normally disappear when its bi_end_io is run.
748 * however, we need it for the unmap, so grab an extra
749 * reference to it
750 */
751 bio_get(bio);
752
753 return bio;
754 }
755
756 static void __bio_unmap_user(struct bio *bio)
757 {
758 struct bio_vec *bvec;
759 int i;
760
761 /*
762 * make sure we dirty pages we wrote to
763 */
764 __bio_for_each_segment(bvec, bio, i, 0) {
765 if (bio_data_dir(bio) == READ)
766 set_page_dirty_lock(bvec->bv_page);
767
768 page_cache_release(bvec->bv_page);
769 }
770
771 bio_put(bio);
772 }
773
774 /**
775 * bio_unmap_user - unmap a bio
776 * @bio: the bio being unmapped
777 *
778 * Unmap a bio previously mapped by bio_map_user(). Must be called with
779 * a process context.
780 *
781 * bio_unmap_user() may sleep.
782 */
783 void bio_unmap_user(struct bio *bio)
784 {
785 __bio_unmap_user(bio);
786 bio_put(bio);
787 }
788
789 static void bio_map_kern_endio(struct bio *bio, int err)
790 {
791 bio_put(bio);
792 }
793
794
795 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
796 unsigned int len, gfp_t gfp_mask)
797 {
798 unsigned long kaddr = (unsigned long)data;
799 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
800 unsigned long start = kaddr >> PAGE_SHIFT;
801 const int nr_pages = end - start;
802 int offset, i;
803 struct bio *bio;
804
805 bio = bio_alloc(gfp_mask, nr_pages);
806 if (!bio)
807 return ERR_PTR(-ENOMEM);
808
809 offset = offset_in_page(kaddr);
810 for (i = 0; i < nr_pages; i++) {
811 unsigned int bytes = PAGE_SIZE - offset;
812
813 if (len <= 0)
814 break;
815
816 if (bytes > len)
817 bytes = len;
818
819 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
820 offset) < bytes)
821 break;
822
823 data += bytes;
824 len -= bytes;
825 offset = 0;
826 }
827
828 bio->bi_end_io = bio_map_kern_endio;
829 return bio;
830 }
831
832 /**
833 * bio_map_kern - map kernel address into bio
834 * @q: the struct request_queue for the bio
835 * @data: pointer to buffer to map
836 * @len: length in bytes
837 * @gfp_mask: allocation flags for bio allocation
838 *
839 * Map the kernel address into a bio suitable for io to a block
840 * device. Returns an error pointer in case of error.
841 */
842 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
843 gfp_t gfp_mask)
844 {
845 struct bio *bio;
846
847 bio = __bio_map_kern(q, data, len, gfp_mask);
848 if (IS_ERR(bio))
849 return bio;
850
851 if (bio->bi_size == len)
852 return bio;
853
854 /*
855 * Don't support partial mappings.
856 */
857 bio_put(bio);
858 return ERR_PTR(-EINVAL);
859 }
860
861 /*
862 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
863 * for performing direct-IO in BIOs.
864 *
865 * The problem is that we cannot run set_page_dirty() from interrupt context
866 * because the required locks are not interrupt-safe. So what we can do is to
867 * mark the pages dirty _before_ performing IO. And in interrupt context,
868 * check that the pages are still dirty. If so, fine. If not, redirty them
869 * in process context.
870 *
871 * We special-case compound pages here: normally this means reads into hugetlb
872 * pages. The logic in here doesn't really work right for compound pages
873 * because the VM does not uniformly chase down the head page in all cases.
874 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
875 * handle them at all. So we skip compound pages here at an early stage.
876 *
877 * Note that this code is very hard to test under normal circumstances because
878 * direct-io pins the pages with get_user_pages(). This makes
879 * is_page_cache_freeable return false, and the VM will not clean the pages.
880 * But other code (eg, pdflush) could clean the pages if they are mapped
881 * pagecache.
882 *
883 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
884 * deferred bio dirtying paths.
885 */
886
887 /*
888 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
889 */
890 void bio_set_pages_dirty(struct bio *bio)
891 {
892 struct bio_vec *bvec = bio->bi_io_vec;
893 int i;
894
895 for (i = 0; i < bio->bi_vcnt; i++) {
896 struct page *page = bvec[i].bv_page;
897
898 if (page && !PageCompound(page))
899 set_page_dirty_lock(page);
900 }
901 }
902
903 void bio_release_pages(struct bio *bio)
904 {
905 struct bio_vec *bvec = bio->bi_io_vec;
906 int i;
907
908 for (i = 0; i < bio->bi_vcnt; i++) {
909 struct page *page = bvec[i].bv_page;
910
911 if (page)
912 put_page(page);
913 }
914 }
915
916 /*
917 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
918 * If they are, then fine. If, however, some pages are clean then they must
919 * have been written out during the direct-IO read. So we take another ref on
920 * the BIO and the offending pages and re-dirty the pages in process context.
921 *
922 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
923 * here on. It will run one page_cache_release() against each page and will
924 * run one bio_put() against the BIO.
925 */
926
927 static void bio_dirty_fn(struct work_struct *work);
928
929 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
930 static DEFINE_SPINLOCK(bio_dirty_lock);
931 static struct bio *bio_dirty_list;
932
933 /*
934 * This runs in process context
935 */
936 static void bio_dirty_fn(struct work_struct *work)
937 {
938 unsigned long flags;
939 struct bio *bio;
940
941 spin_lock_irqsave(&bio_dirty_lock, flags);
942 bio = bio_dirty_list;
943 bio_dirty_list = NULL;
944 spin_unlock_irqrestore(&bio_dirty_lock, flags);
945
946 while (bio) {
947 struct bio *next = bio->bi_private;
948
949 bio_set_pages_dirty(bio);
950 bio_release_pages(bio);
951 bio_put(bio);
952 bio = next;
953 }
954 }
955
956 void bio_check_pages_dirty(struct bio *bio)
957 {
958 struct bio_vec *bvec = bio->bi_io_vec;
959 int nr_clean_pages = 0;
960 int i;
961
962 for (i = 0; i < bio->bi_vcnt; i++) {
963 struct page *page = bvec[i].bv_page;
964
965 if (PageDirty(page) || PageCompound(page)) {
966 page_cache_release(page);
967 bvec[i].bv_page = NULL;
968 } else {
969 nr_clean_pages++;
970 }
971 }
972
973 if (nr_clean_pages) {
974 unsigned long flags;
975
976 spin_lock_irqsave(&bio_dirty_lock, flags);
977 bio->bi_private = bio_dirty_list;
978 bio_dirty_list = bio;
979 spin_unlock_irqrestore(&bio_dirty_lock, flags);
980 schedule_work(&bio_dirty_work);
981 } else {
982 bio_put(bio);
983 }
984 }
985
986 /**
987 * bio_endio - end I/O on a bio
988 * @bio: bio
989 * @error: error, if any
990 *
991 * Description:
992 * bio_endio() will end I/O on the whole bio. bio_endio() is the
993 * preferred way to end I/O on a bio, it takes care of clearing
994 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
995 * established -Exxxx (-EIO, for instance) error values in case
996 * something went wrong. Noone should call bi_end_io() directly on a
997 * bio unless they own it and thus know that it has an end_io
998 * function.
999 **/
1000 void bio_endio(struct bio *bio, int error)
1001 {
1002 if (error)
1003 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1004 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1005 error = -EIO;
1006
1007 if (bio->bi_end_io)
1008 bio->bi_end_io(bio, error);
1009 }
1010
1011 void bio_pair_release(struct bio_pair *bp)
1012 {
1013 if (atomic_dec_and_test(&bp->cnt)) {
1014 struct bio *master = bp->bio1.bi_private;
1015
1016 bio_endio(master, bp->error);
1017 mempool_free(bp, bp->bio2.bi_private);
1018 }
1019 }
1020
1021 static void bio_pair_end_1(struct bio *bi, int err)
1022 {
1023 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1024
1025 if (err)
1026 bp->error = err;
1027
1028 bio_pair_release(bp);
1029 }
1030
1031 static void bio_pair_end_2(struct bio *bi, int err)
1032 {
1033 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1034
1035 if (err)
1036 bp->error = err;
1037
1038 bio_pair_release(bp);
1039 }
1040
1041 /*
1042 * split a bio - only worry about a bio with a single page
1043 * in it's iovec
1044 */
1045 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1046 {
1047 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1048
1049 if (!bp)
1050 return bp;
1051
1052 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1053 bi->bi_sector + first_sectors);
1054
1055 BUG_ON(bi->bi_vcnt != 1);
1056 BUG_ON(bi->bi_idx != 0);
1057 atomic_set(&bp->cnt, 3);
1058 bp->error = 0;
1059 bp->bio1 = *bi;
1060 bp->bio2 = *bi;
1061 bp->bio2.bi_sector += first_sectors;
1062 bp->bio2.bi_size -= first_sectors << 9;
1063 bp->bio1.bi_size = first_sectors << 9;
1064
1065 bp->bv1 = bi->bi_io_vec[0];
1066 bp->bv2 = bi->bi_io_vec[0];
1067 bp->bv2.bv_offset += first_sectors << 9;
1068 bp->bv2.bv_len -= first_sectors << 9;
1069 bp->bv1.bv_len = first_sectors << 9;
1070
1071 bp->bio1.bi_io_vec = &bp->bv1;
1072 bp->bio2.bi_io_vec = &bp->bv2;
1073
1074 bp->bio1.bi_max_vecs = 1;
1075 bp->bio2.bi_max_vecs = 1;
1076
1077 bp->bio1.bi_end_io = bio_pair_end_1;
1078 bp->bio2.bi_end_io = bio_pair_end_2;
1079
1080 bp->bio1.bi_private = bi;
1081 bp->bio2.bi_private = pool;
1082
1083 return bp;
1084 }
1085
1086
1087 /*
1088 * create memory pools for biovec's in a bio_set.
1089 * use the global biovec slabs created for general use.
1090 */
1091 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1092 {
1093 int i;
1094
1095 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1096 struct biovec_slab *bp = bvec_slabs + i;
1097 mempool_t **bvp = bs->bvec_pools + i;
1098
1099 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1100 if (!*bvp)
1101 return -ENOMEM;
1102 }
1103 return 0;
1104 }
1105
1106 static void biovec_free_pools(struct bio_set *bs)
1107 {
1108 int i;
1109
1110 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1111 mempool_t *bvp = bs->bvec_pools[i];
1112
1113 if (bvp)
1114 mempool_destroy(bvp);
1115 }
1116
1117 }
1118
1119 void bioset_free(struct bio_set *bs)
1120 {
1121 if (bs->bio_pool)
1122 mempool_destroy(bs->bio_pool);
1123
1124 biovec_free_pools(bs);
1125
1126 kfree(bs);
1127 }
1128
1129 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1130 {
1131 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1132
1133 if (!bs)
1134 return NULL;
1135
1136 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1137 if (!bs->bio_pool)
1138 goto bad;
1139
1140 if (!biovec_create_pools(bs, bvec_pool_size))
1141 return bs;
1142
1143 bad:
1144 bioset_free(bs);
1145 return NULL;
1146 }
1147
1148 static void __init biovec_init_slabs(void)
1149 {
1150 int i;
1151
1152 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1153 int size;
1154 struct biovec_slab *bvs = bvec_slabs + i;
1155
1156 size = bvs->nr_vecs * sizeof(struct bio_vec);
1157 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1158 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1159 }
1160 }
1161
1162 static int __init init_bio(void)
1163 {
1164 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1165
1166 biovec_init_slabs();
1167
1168 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1169 if (!fs_bio_set)
1170 panic("bio: can't allocate bios\n");
1171
1172 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1173 sizeof(struct bio_pair));
1174 if (!bio_split_pool)
1175 panic("bio: can't create split pool\n");
1176
1177 return 0;
1178 }
1179
1180 subsys_initcall(init_bio);
1181
1182 EXPORT_SYMBOL(bio_alloc);
1183 EXPORT_SYMBOL(bio_put);
1184 EXPORT_SYMBOL(bio_free);
1185 EXPORT_SYMBOL(bio_endio);
1186 EXPORT_SYMBOL(bio_init);
1187 EXPORT_SYMBOL(__bio_clone);
1188 EXPORT_SYMBOL(bio_clone);
1189 EXPORT_SYMBOL(bio_phys_segments);
1190 EXPORT_SYMBOL(bio_hw_segments);
1191 EXPORT_SYMBOL(bio_add_page);
1192 EXPORT_SYMBOL(bio_add_pc_page);
1193 EXPORT_SYMBOL(bio_get_nr_vecs);
1194 EXPORT_SYMBOL(bio_map_kern);
1195 EXPORT_SYMBOL(bio_pair_release);
1196 EXPORT_SYMBOL(bio_split);
1197 EXPORT_SYMBOL(bio_split_pool);
1198 EXPORT_SYMBOL(bio_copy_user);
1199 EXPORT_SYMBOL(bio_uncopy_user);
1200 EXPORT_SYMBOL(bioset_create);
1201 EXPORT_SYMBOL(bioset_free);
1202 EXPORT_SYMBOL(bio_alloc_bioset);