]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/bio.c
block: submit_bh() inadvertently discards barrier flag on a sync write
[mirror_ubuntu-bionic-kernel.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
30
31 static struct kmem_cache *bio_slab __read_mostly;
32
33 mempool_t *bio_split_pool __read_mostly;
34
35 /*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44 };
45 #undef BV
46
47 /*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51 struct bio_set *fs_bio_set;
52
53 unsigned int bvec_nr_vecs(unsigned short idx)
54 {
55 return bvec_slabs[idx].nr_vecs;
56 }
57
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
59 {
60 struct bio_vec *bvl;
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
82
83 return bvl;
84 }
85
86 void bio_free(struct bio *bio, struct bio_set *bio_set)
87 {
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
90
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
95
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
99 mempool_free(bio, bio_set->bio_pool);
100 }
101
102 /*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105 static void bio_fs_destructor(struct bio *bio)
106 {
107 bio_free(bio, fs_bio_set);
108 }
109
110 void bio_init(struct bio *bio)
111 {
112 memset(bio, 0, sizeof(*bio));
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 atomic_set(&bio->bi_cnt, 1);
115 }
116
117 /**
118 * bio_alloc_bioset - allocate a bio for I/O
119 * @gfp_mask: the GFP_ mask given to the slab allocator
120 * @nr_iovecs: number of iovecs to pre-allocate
121 * @bs: the bio_set to allocate from
122 *
123 * Description:
124 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
125 * If %__GFP_WAIT is set then we will block on the internal pool waiting
126 * for a &struct bio to become free.
127 *
128 * allocate bio and iovecs from the memory pools specified by the
129 * bio_set structure.
130 **/
131 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
132 {
133 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
134
135 if (likely(bio)) {
136 struct bio_vec *bvl = NULL;
137
138 bio_init(bio);
139 if (likely(nr_iovecs)) {
140 unsigned long uninitialized_var(idx);
141
142 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
143 if (unlikely(!bvl)) {
144 mempool_free(bio, bs->bio_pool);
145 bio = NULL;
146 goto out;
147 }
148 bio->bi_flags |= idx << BIO_POOL_OFFSET;
149 bio->bi_max_vecs = bvec_nr_vecs(idx);
150 }
151 bio->bi_io_vec = bvl;
152 }
153 out:
154 return bio;
155 }
156
157 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
158 {
159 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
160
161 if (bio)
162 bio->bi_destructor = bio_fs_destructor;
163
164 return bio;
165 }
166
167 void zero_fill_bio(struct bio *bio)
168 {
169 unsigned long flags;
170 struct bio_vec *bv;
171 int i;
172
173 bio_for_each_segment(bv, bio, i) {
174 char *data = bvec_kmap_irq(bv, &flags);
175 memset(data, 0, bv->bv_len);
176 flush_dcache_page(bv->bv_page);
177 bvec_kunmap_irq(data, &flags);
178 }
179 }
180 EXPORT_SYMBOL(zero_fill_bio);
181
182 /**
183 * bio_put - release a reference to a bio
184 * @bio: bio to release reference to
185 *
186 * Description:
187 * Put a reference to a &struct bio, either one you have gotten with
188 * bio_alloc or bio_get. The last put of a bio will free it.
189 **/
190 void bio_put(struct bio *bio)
191 {
192 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
193
194 /*
195 * last put frees it
196 */
197 if (atomic_dec_and_test(&bio->bi_cnt)) {
198 bio->bi_next = NULL;
199 bio->bi_destructor(bio);
200 }
201 }
202
203 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
204 {
205 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
206 blk_recount_segments(q, bio);
207
208 return bio->bi_phys_segments;
209 }
210
211 inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
212 {
213 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
214 blk_recount_segments(q, bio);
215
216 return bio->bi_hw_segments;
217 }
218
219 /**
220 * __bio_clone - clone a bio
221 * @bio: destination bio
222 * @bio_src: bio to clone
223 *
224 * Clone a &bio. Caller will own the returned bio, but not
225 * the actual data it points to. Reference count of returned
226 * bio will be one.
227 */
228 void __bio_clone(struct bio *bio, struct bio *bio_src)
229 {
230 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
231 bio_src->bi_max_vecs * sizeof(struct bio_vec));
232
233 /*
234 * most users will be overriding ->bi_bdev with a new target,
235 * so we don't set nor calculate new physical/hw segment counts here
236 */
237 bio->bi_sector = bio_src->bi_sector;
238 bio->bi_bdev = bio_src->bi_bdev;
239 bio->bi_flags |= 1 << BIO_CLONED;
240 bio->bi_rw = bio_src->bi_rw;
241 bio->bi_vcnt = bio_src->bi_vcnt;
242 bio->bi_size = bio_src->bi_size;
243 bio->bi_idx = bio_src->bi_idx;
244 }
245
246 /**
247 * bio_clone - clone a bio
248 * @bio: bio to clone
249 * @gfp_mask: allocation priority
250 *
251 * Like __bio_clone, only also allocates the returned bio
252 */
253 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
254 {
255 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
256
257 if (!b)
258 return NULL;
259
260 b->bi_destructor = bio_fs_destructor;
261 __bio_clone(b, bio);
262
263 if (bio_integrity(bio)) {
264 int ret;
265
266 ret = bio_integrity_clone(b, bio, fs_bio_set);
267
268 if (ret < 0)
269 return NULL;
270 }
271
272 return b;
273 }
274
275 /**
276 * bio_get_nr_vecs - return approx number of vecs
277 * @bdev: I/O target
278 *
279 * Return the approximate number of pages we can send to this target.
280 * There's no guarantee that you will be able to fit this number of pages
281 * into a bio, it does not account for dynamic restrictions that vary
282 * on offset.
283 */
284 int bio_get_nr_vecs(struct block_device *bdev)
285 {
286 struct request_queue *q = bdev_get_queue(bdev);
287 int nr_pages;
288
289 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
290 if (nr_pages > q->max_phys_segments)
291 nr_pages = q->max_phys_segments;
292 if (nr_pages > q->max_hw_segments)
293 nr_pages = q->max_hw_segments;
294
295 return nr_pages;
296 }
297
298 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
299 *page, unsigned int len, unsigned int offset,
300 unsigned short max_sectors)
301 {
302 int retried_segments = 0;
303 struct bio_vec *bvec;
304
305 /*
306 * cloned bio must not modify vec list
307 */
308 if (unlikely(bio_flagged(bio, BIO_CLONED)))
309 return 0;
310
311 if (((bio->bi_size + len) >> 9) > max_sectors)
312 return 0;
313
314 /*
315 * For filesystems with a blocksize smaller than the pagesize
316 * we will often be called with the same page as last time and
317 * a consecutive offset. Optimize this special case.
318 */
319 if (bio->bi_vcnt > 0) {
320 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
321
322 if (page == prev->bv_page &&
323 offset == prev->bv_offset + prev->bv_len) {
324 prev->bv_len += len;
325
326 if (q->merge_bvec_fn) {
327 struct bvec_merge_data bvm = {
328 .bi_bdev = bio->bi_bdev,
329 .bi_sector = bio->bi_sector,
330 .bi_size = bio->bi_size,
331 .bi_rw = bio->bi_rw,
332 };
333
334 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
335 prev->bv_len -= len;
336 return 0;
337 }
338 }
339
340 goto done;
341 }
342 }
343
344 if (bio->bi_vcnt >= bio->bi_max_vecs)
345 return 0;
346
347 /*
348 * we might lose a segment or two here, but rather that than
349 * make this too complex.
350 */
351
352 while (bio->bi_phys_segments >= q->max_phys_segments
353 || bio->bi_hw_segments >= q->max_hw_segments
354 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
355
356 if (retried_segments)
357 return 0;
358
359 retried_segments = 1;
360 blk_recount_segments(q, bio);
361 }
362
363 /*
364 * setup the new entry, we might clear it again later if we
365 * cannot add the page
366 */
367 bvec = &bio->bi_io_vec[bio->bi_vcnt];
368 bvec->bv_page = page;
369 bvec->bv_len = len;
370 bvec->bv_offset = offset;
371
372 /*
373 * if queue has other restrictions (eg varying max sector size
374 * depending on offset), it can specify a merge_bvec_fn in the
375 * queue to get further control
376 */
377 if (q->merge_bvec_fn) {
378 struct bvec_merge_data bvm = {
379 .bi_bdev = bio->bi_bdev,
380 .bi_sector = bio->bi_sector,
381 .bi_size = bio->bi_size,
382 .bi_rw = bio->bi_rw,
383 };
384
385 /*
386 * merge_bvec_fn() returns number of bytes it can accept
387 * at this offset
388 */
389 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
390 bvec->bv_page = NULL;
391 bvec->bv_len = 0;
392 bvec->bv_offset = 0;
393 return 0;
394 }
395 }
396
397 /* If we may be able to merge these biovecs, force a recount */
398 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
399 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
400 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
401
402 bio->bi_vcnt++;
403 bio->bi_phys_segments++;
404 bio->bi_hw_segments++;
405 done:
406 bio->bi_size += len;
407 return len;
408 }
409
410 /**
411 * bio_add_pc_page - attempt to add page to bio
412 * @q: the target queue
413 * @bio: destination bio
414 * @page: page to add
415 * @len: vec entry length
416 * @offset: vec entry offset
417 *
418 * Attempt to add a page to the bio_vec maplist. This can fail for a
419 * number of reasons, such as the bio being full or target block
420 * device limitations. The target block device must allow bio's
421 * smaller than PAGE_SIZE, so it is always possible to add a single
422 * page to an empty bio. This should only be used by REQ_PC bios.
423 */
424 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
425 unsigned int len, unsigned int offset)
426 {
427 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
428 }
429
430 /**
431 * bio_add_page - attempt to add page to bio
432 * @bio: destination bio
433 * @page: page to add
434 * @len: vec entry length
435 * @offset: vec entry offset
436 *
437 * Attempt to add a page to the bio_vec maplist. This can fail for a
438 * number of reasons, such as the bio being full or target block
439 * device limitations. The target block device must allow bio's
440 * smaller than PAGE_SIZE, so it is always possible to add a single
441 * page to an empty bio.
442 */
443 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
444 unsigned int offset)
445 {
446 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
447 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
448 }
449
450 struct bio_map_data {
451 struct bio_vec *iovecs;
452 int nr_sgvecs;
453 struct sg_iovec *sgvecs;
454 };
455
456 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
457 struct sg_iovec *iov, int iov_count)
458 {
459 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
460 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
461 bmd->nr_sgvecs = iov_count;
462 bio->bi_private = bmd;
463 }
464
465 static void bio_free_map_data(struct bio_map_data *bmd)
466 {
467 kfree(bmd->iovecs);
468 kfree(bmd->sgvecs);
469 kfree(bmd);
470 }
471
472 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count)
473 {
474 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
475
476 if (!bmd)
477 return NULL;
478
479 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
480 if (!bmd->iovecs) {
481 kfree(bmd);
482 return NULL;
483 }
484
485 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, GFP_KERNEL);
486 if (bmd->sgvecs)
487 return bmd;
488
489 kfree(bmd->iovecs);
490 kfree(bmd);
491 return NULL;
492 }
493
494 static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
495 int uncopy)
496 {
497 int ret = 0, i;
498 struct bio_vec *bvec;
499 int iov_idx = 0;
500 unsigned int iov_off = 0;
501 int read = bio_data_dir(bio) == READ;
502
503 __bio_for_each_segment(bvec, bio, i, 0) {
504 char *bv_addr = page_address(bvec->bv_page);
505 unsigned int bv_len = bvec->bv_len;
506
507 while (bv_len && iov_idx < iov_count) {
508 unsigned int bytes;
509 char *iov_addr;
510
511 bytes = min_t(unsigned int,
512 iov[iov_idx].iov_len - iov_off, bv_len);
513 iov_addr = iov[iov_idx].iov_base + iov_off;
514
515 if (!ret) {
516 if (!read && !uncopy)
517 ret = copy_from_user(bv_addr, iov_addr,
518 bytes);
519 if (read && uncopy)
520 ret = copy_to_user(iov_addr, bv_addr,
521 bytes);
522
523 if (ret)
524 ret = -EFAULT;
525 }
526
527 bv_len -= bytes;
528 bv_addr += bytes;
529 iov_addr += bytes;
530 iov_off += bytes;
531
532 if (iov[iov_idx].iov_len == iov_off) {
533 iov_idx++;
534 iov_off = 0;
535 }
536 }
537
538 if (uncopy)
539 __free_page(bvec->bv_page);
540 }
541
542 return ret;
543 }
544
545 /**
546 * bio_uncopy_user - finish previously mapped bio
547 * @bio: bio being terminated
548 *
549 * Free pages allocated from bio_copy_user() and write back data
550 * to user space in case of a read.
551 */
552 int bio_uncopy_user(struct bio *bio)
553 {
554 struct bio_map_data *bmd = bio->bi_private;
555 int ret;
556
557 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1);
558
559 bio_free_map_data(bmd);
560 bio_put(bio);
561 return ret;
562 }
563
564 /**
565 * bio_copy_user_iov - copy user data to bio
566 * @q: destination block queue
567 * @iov: the iovec.
568 * @iov_count: number of elements in the iovec
569 * @write_to_vm: bool indicating writing to pages or not
570 *
571 * Prepares and returns a bio for indirect user io, bouncing data
572 * to/from kernel pages as necessary. Must be paired with
573 * call bio_uncopy_user() on io completion.
574 */
575 struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
576 int iov_count, int write_to_vm)
577 {
578 struct bio_map_data *bmd;
579 struct bio_vec *bvec;
580 struct page *page;
581 struct bio *bio;
582 int i, ret;
583 int nr_pages = 0;
584 unsigned int len = 0;
585
586 for (i = 0; i < iov_count; i++) {
587 unsigned long uaddr;
588 unsigned long end;
589 unsigned long start;
590
591 uaddr = (unsigned long)iov[i].iov_base;
592 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
593 start = uaddr >> PAGE_SHIFT;
594
595 nr_pages += end - start;
596 len += iov[i].iov_len;
597 }
598
599 bmd = bio_alloc_map_data(nr_pages, iov_count);
600 if (!bmd)
601 return ERR_PTR(-ENOMEM);
602
603 ret = -ENOMEM;
604 bio = bio_alloc(GFP_KERNEL, nr_pages);
605 if (!bio)
606 goto out_bmd;
607
608 bio->bi_rw |= (!write_to_vm << BIO_RW);
609
610 ret = 0;
611 while (len) {
612 unsigned int bytes = PAGE_SIZE;
613
614 if (bytes > len)
615 bytes = len;
616
617 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
618 if (!page) {
619 ret = -ENOMEM;
620 break;
621 }
622
623 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
624 break;
625
626 len -= bytes;
627 }
628
629 if (ret)
630 goto cleanup;
631
632 /*
633 * success
634 */
635 if (!write_to_vm) {
636 ret = __bio_copy_iov(bio, iov, iov_count, 0);
637 if (ret)
638 goto cleanup;
639 }
640
641 bio_set_map_data(bmd, bio, iov, iov_count);
642 return bio;
643 cleanup:
644 bio_for_each_segment(bvec, bio, i)
645 __free_page(bvec->bv_page);
646
647 bio_put(bio);
648 out_bmd:
649 bio_free_map_data(bmd);
650 return ERR_PTR(ret);
651 }
652
653 /**
654 * bio_copy_user - copy user data to bio
655 * @q: destination block queue
656 * @uaddr: start of user address
657 * @len: length in bytes
658 * @write_to_vm: bool indicating writing to pages or not
659 *
660 * Prepares and returns a bio for indirect user io, bouncing data
661 * to/from kernel pages as necessary. Must be paired with
662 * call bio_uncopy_user() on io completion.
663 */
664 struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
665 unsigned int len, int write_to_vm)
666 {
667 struct sg_iovec iov;
668
669 iov.iov_base = (void __user *)uaddr;
670 iov.iov_len = len;
671
672 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
673 }
674
675 static struct bio *__bio_map_user_iov(struct request_queue *q,
676 struct block_device *bdev,
677 struct sg_iovec *iov, int iov_count,
678 int write_to_vm)
679 {
680 int i, j;
681 int nr_pages = 0;
682 struct page **pages;
683 struct bio *bio;
684 int cur_page = 0;
685 int ret, offset;
686
687 for (i = 0; i < iov_count; i++) {
688 unsigned long uaddr = (unsigned long)iov[i].iov_base;
689 unsigned long len = iov[i].iov_len;
690 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
691 unsigned long start = uaddr >> PAGE_SHIFT;
692
693 nr_pages += end - start;
694 /*
695 * buffer must be aligned to at least hardsector size for now
696 */
697 if (uaddr & queue_dma_alignment(q))
698 return ERR_PTR(-EINVAL);
699 }
700
701 if (!nr_pages)
702 return ERR_PTR(-EINVAL);
703
704 bio = bio_alloc(GFP_KERNEL, nr_pages);
705 if (!bio)
706 return ERR_PTR(-ENOMEM);
707
708 ret = -ENOMEM;
709 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
710 if (!pages)
711 goto out;
712
713 for (i = 0; i < iov_count; i++) {
714 unsigned long uaddr = (unsigned long)iov[i].iov_base;
715 unsigned long len = iov[i].iov_len;
716 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
717 unsigned long start = uaddr >> PAGE_SHIFT;
718 const int local_nr_pages = end - start;
719 const int page_limit = cur_page + local_nr_pages;
720
721 ret = get_user_pages_fast(uaddr, local_nr_pages,
722 write_to_vm, &pages[cur_page]);
723 if (ret < local_nr_pages) {
724 ret = -EFAULT;
725 goto out_unmap;
726 }
727
728 offset = uaddr & ~PAGE_MASK;
729 for (j = cur_page; j < page_limit; j++) {
730 unsigned int bytes = PAGE_SIZE - offset;
731
732 if (len <= 0)
733 break;
734
735 if (bytes > len)
736 bytes = len;
737
738 /*
739 * sorry...
740 */
741 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
742 bytes)
743 break;
744
745 len -= bytes;
746 offset = 0;
747 }
748
749 cur_page = j;
750 /*
751 * release the pages we didn't map into the bio, if any
752 */
753 while (j < page_limit)
754 page_cache_release(pages[j++]);
755 }
756
757 kfree(pages);
758
759 /*
760 * set data direction, and check if mapped pages need bouncing
761 */
762 if (!write_to_vm)
763 bio->bi_rw |= (1 << BIO_RW);
764
765 bio->bi_bdev = bdev;
766 bio->bi_flags |= (1 << BIO_USER_MAPPED);
767 return bio;
768
769 out_unmap:
770 for (i = 0; i < nr_pages; i++) {
771 if(!pages[i])
772 break;
773 page_cache_release(pages[i]);
774 }
775 out:
776 kfree(pages);
777 bio_put(bio);
778 return ERR_PTR(ret);
779 }
780
781 /**
782 * bio_map_user - map user address into bio
783 * @q: the struct request_queue for the bio
784 * @bdev: destination block device
785 * @uaddr: start of user address
786 * @len: length in bytes
787 * @write_to_vm: bool indicating writing to pages or not
788 *
789 * Map the user space address into a bio suitable for io to a block
790 * device. Returns an error pointer in case of error.
791 */
792 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
793 unsigned long uaddr, unsigned int len, int write_to_vm)
794 {
795 struct sg_iovec iov;
796
797 iov.iov_base = (void __user *)uaddr;
798 iov.iov_len = len;
799
800 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
801 }
802
803 /**
804 * bio_map_user_iov - map user sg_iovec table into bio
805 * @q: the struct request_queue for the bio
806 * @bdev: destination block device
807 * @iov: the iovec.
808 * @iov_count: number of elements in the iovec
809 * @write_to_vm: bool indicating writing to pages or not
810 *
811 * Map the user space address into a bio suitable for io to a block
812 * device. Returns an error pointer in case of error.
813 */
814 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
815 struct sg_iovec *iov, int iov_count,
816 int write_to_vm)
817 {
818 struct bio *bio;
819
820 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
821
822 if (IS_ERR(bio))
823 return bio;
824
825 /*
826 * subtle -- if __bio_map_user() ended up bouncing a bio,
827 * it would normally disappear when its bi_end_io is run.
828 * however, we need it for the unmap, so grab an extra
829 * reference to it
830 */
831 bio_get(bio);
832
833 return bio;
834 }
835
836 static void __bio_unmap_user(struct bio *bio)
837 {
838 struct bio_vec *bvec;
839 int i;
840
841 /*
842 * make sure we dirty pages we wrote to
843 */
844 __bio_for_each_segment(bvec, bio, i, 0) {
845 if (bio_data_dir(bio) == READ)
846 set_page_dirty_lock(bvec->bv_page);
847
848 page_cache_release(bvec->bv_page);
849 }
850
851 bio_put(bio);
852 }
853
854 /**
855 * bio_unmap_user - unmap a bio
856 * @bio: the bio being unmapped
857 *
858 * Unmap a bio previously mapped by bio_map_user(). Must be called with
859 * a process context.
860 *
861 * bio_unmap_user() may sleep.
862 */
863 void bio_unmap_user(struct bio *bio)
864 {
865 __bio_unmap_user(bio);
866 bio_put(bio);
867 }
868
869 static void bio_map_kern_endio(struct bio *bio, int err)
870 {
871 bio_put(bio);
872 }
873
874
875 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
876 unsigned int len, gfp_t gfp_mask)
877 {
878 unsigned long kaddr = (unsigned long)data;
879 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
880 unsigned long start = kaddr >> PAGE_SHIFT;
881 const int nr_pages = end - start;
882 int offset, i;
883 struct bio *bio;
884
885 bio = bio_alloc(gfp_mask, nr_pages);
886 if (!bio)
887 return ERR_PTR(-ENOMEM);
888
889 offset = offset_in_page(kaddr);
890 for (i = 0; i < nr_pages; i++) {
891 unsigned int bytes = PAGE_SIZE - offset;
892
893 if (len <= 0)
894 break;
895
896 if (bytes > len)
897 bytes = len;
898
899 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
900 offset) < bytes)
901 break;
902
903 data += bytes;
904 len -= bytes;
905 offset = 0;
906 }
907
908 bio->bi_end_io = bio_map_kern_endio;
909 return bio;
910 }
911
912 /**
913 * bio_map_kern - map kernel address into bio
914 * @q: the struct request_queue for the bio
915 * @data: pointer to buffer to map
916 * @len: length in bytes
917 * @gfp_mask: allocation flags for bio allocation
918 *
919 * Map the kernel address into a bio suitable for io to a block
920 * device. Returns an error pointer in case of error.
921 */
922 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
923 gfp_t gfp_mask)
924 {
925 struct bio *bio;
926
927 bio = __bio_map_kern(q, data, len, gfp_mask);
928 if (IS_ERR(bio))
929 return bio;
930
931 if (bio->bi_size == len)
932 return bio;
933
934 /*
935 * Don't support partial mappings.
936 */
937 bio_put(bio);
938 return ERR_PTR(-EINVAL);
939 }
940
941 static void bio_copy_kern_endio(struct bio *bio, int err)
942 {
943 struct bio_vec *bvec;
944 const int read = bio_data_dir(bio) == READ;
945 char *p = bio->bi_private;
946 int i;
947
948 __bio_for_each_segment(bvec, bio, i, 0) {
949 char *addr = page_address(bvec->bv_page);
950
951 if (read && !err)
952 memcpy(p, addr, bvec->bv_len);
953
954 __free_page(bvec->bv_page);
955 p += bvec->bv_len;
956 }
957
958 bio_put(bio);
959 }
960
961 /**
962 * bio_copy_kern - copy kernel address into bio
963 * @q: the struct request_queue for the bio
964 * @data: pointer to buffer to copy
965 * @len: length in bytes
966 * @gfp_mask: allocation flags for bio and page allocation
967 * @reading: data direction is READ
968 *
969 * copy the kernel address into a bio suitable for io to a block
970 * device. Returns an error pointer in case of error.
971 */
972 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
973 gfp_t gfp_mask, int reading)
974 {
975 unsigned long kaddr = (unsigned long)data;
976 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
977 unsigned long start = kaddr >> PAGE_SHIFT;
978 const int nr_pages = end - start;
979 struct bio *bio;
980 struct bio_vec *bvec;
981 int i, ret;
982
983 bio = bio_alloc(gfp_mask, nr_pages);
984 if (!bio)
985 return ERR_PTR(-ENOMEM);
986
987 while (len) {
988 struct page *page;
989 unsigned int bytes = PAGE_SIZE;
990
991 if (bytes > len)
992 bytes = len;
993
994 page = alloc_page(q->bounce_gfp | gfp_mask);
995 if (!page) {
996 ret = -ENOMEM;
997 goto cleanup;
998 }
999
1000 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1001 ret = -EINVAL;
1002 goto cleanup;
1003 }
1004
1005 len -= bytes;
1006 }
1007
1008 if (!reading) {
1009 void *p = data;
1010
1011 bio_for_each_segment(bvec, bio, i) {
1012 char *addr = page_address(bvec->bv_page);
1013
1014 memcpy(addr, p, bvec->bv_len);
1015 p += bvec->bv_len;
1016 }
1017 }
1018
1019 bio->bi_private = data;
1020 bio->bi_end_io = bio_copy_kern_endio;
1021 return bio;
1022 cleanup:
1023 bio_for_each_segment(bvec, bio, i)
1024 __free_page(bvec->bv_page);
1025
1026 bio_put(bio);
1027
1028 return ERR_PTR(ret);
1029 }
1030
1031 /*
1032 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1033 * for performing direct-IO in BIOs.
1034 *
1035 * The problem is that we cannot run set_page_dirty() from interrupt context
1036 * because the required locks are not interrupt-safe. So what we can do is to
1037 * mark the pages dirty _before_ performing IO. And in interrupt context,
1038 * check that the pages are still dirty. If so, fine. If not, redirty them
1039 * in process context.
1040 *
1041 * We special-case compound pages here: normally this means reads into hugetlb
1042 * pages. The logic in here doesn't really work right for compound pages
1043 * because the VM does not uniformly chase down the head page in all cases.
1044 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1045 * handle them at all. So we skip compound pages here at an early stage.
1046 *
1047 * Note that this code is very hard to test under normal circumstances because
1048 * direct-io pins the pages with get_user_pages(). This makes
1049 * is_page_cache_freeable return false, and the VM will not clean the pages.
1050 * But other code (eg, pdflush) could clean the pages if they are mapped
1051 * pagecache.
1052 *
1053 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1054 * deferred bio dirtying paths.
1055 */
1056
1057 /*
1058 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1059 */
1060 void bio_set_pages_dirty(struct bio *bio)
1061 {
1062 struct bio_vec *bvec = bio->bi_io_vec;
1063 int i;
1064
1065 for (i = 0; i < bio->bi_vcnt; i++) {
1066 struct page *page = bvec[i].bv_page;
1067
1068 if (page && !PageCompound(page))
1069 set_page_dirty_lock(page);
1070 }
1071 }
1072
1073 static void bio_release_pages(struct bio *bio)
1074 {
1075 struct bio_vec *bvec = bio->bi_io_vec;
1076 int i;
1077
1078 for (i = 0; i < bio->bi_vcnt; i++) {
1079 struct page *page = bvec[i].bv_page;
1080
1081 if (page)
1082 put_page(page);
1083 }
1084 }
1085
1086 /*
1087 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1088 * If they are, then fine. If, however, some pages are clean then they must
1089 * have been written out during the direct-IO read. So we take another ref on
1090 * the BIO and the offending pages and re-dirty the pages in process context.
1091 *
1092 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1093 * here on. It will run one page_cache_release() against each page and will
1094 * run one bio_put() against the BIO.
1095 */
1096
1097 static void bio_dirty_fn(struct work_struct *work);
1098
1099 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1100 static DEFINE_SPINLOCK(bio_dirty_lock);
1101 static struct bio *bio_dirty_list;
1102
1103 /*
1104 * This runs in process context
1105 */
1106 static void bio_dirty_fn(struct work_struct *work)
1107 {
1108 unsigned long flags;
1109 struct bio *bio;
1110
1111 spin_lock_irqsave(&bio_dirty_lock, flags);
1112 bio = bio_dirty_list;
1113 bio_dirty_list = NULL;
1114 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1115
1116 while (bio) {
1117 struct bio *next = bio->bi_private;
1118
1119 bio_set_pages_dirty(bio);
1120 bio_release_pages(bio);
1121 bio_put(bio);
1122 bio = next;
1123 }
1124 }
1125
1126 void bio_check_pages_dirty(struct bio *bio)
1127 {
1128 struct bio_vec *bvec = bio->bi_io_vec;
1129 int nr_clean_pages = 0;
1130 int i;
1131
1132 for (i = 0; i < bio->bi_vcnt; i++) {
1133 struct page *page = bvec[i].bv_page;
1134
1135 if (PageDirty(page) || PageCompound(page)) {
1136 page_cache_release(page);
1137 bvec[i].bv_page = NULL;
1138 } else {
1139 nr_clean_pages++;
1140 }
1141 }
1142
1143 if (nr_clean_pages) {
1144 unsigned long flags;
1145
1146 spin_lock_irqsave(&bio_dirty_lock, flags);
1147 bio->bi_private = bio_dirty_list;
1148 bio_dirty_list = bio;
1149 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1150 schedule_work(&bio_dirty_work);
1151 } else {
1152 bio_put(bio);
1153 }
1154 }
1155
1156 /**
1157 * bio_endio - end I/O on a bio
1158 * @bio: bio
1159 * @error: error, if any
1160 *
1161 * Description:
1162 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1163 * preferred way to end I/O on a bio, it takes care of clearing
1164 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1165 * established -Exxxx (-EIO, for instance) error values in case
1166 * something went wrong. Noone should call bi_end_io() directly on a
1167 * bio unless they own it and thus know that it has an end_io
1168 * function.
1169 **/
1170 void bio_endio(struct bio *bio, int error)
1171 {
1172 if (error)
1173 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1174 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1175 error = -EIO;
1176
1177 if (bio->bi_end_io)
1178 bio->bi_end_io(bio, error);
1179 }
1180
1181 void bio_pair_release(struct bio_pair *bp)
1182 {
1183 if (atomic_dec_and_test(&bp->cnt)) {
1184 struct bio *master = bp->bio1.bi_private;
1185
1186 bio_endio(master, bp->error);
1187 mempool_free(bp, bp->bio2.bi_private);
1188 }
1189 }
1190
1191 static void bio_pair_end_1(struct bio *bi, int err)
1192 {
1193 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1194
1195 if (err)
1196 bp->error = err;
1197
1198 bio_pair_release(bp);
1199 }
1200
1201 static void bio_pair_end_2(struct bio *bi, int err)
1202 {
1203 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1204
1205 if (err)
1206 bp->error = err;
1207
1208 bio_pair_release(bp);
1209 }
1210
1211 /*
1212 * split a bio - only worry about a bio with a single page
1213 * in it's iovec
1214 */
1215 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1216 {
1217 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1218
1219 if (!bp)
1220 return bp;
1221
1222 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1223 bi->bi_sector + first_sectors);
1224
1225 BUG_ON(bi->bi_vcnt != 1);
1226 BUG_ON(bi->bi_idx != 0);
1227 atomic_set(&bp->cnt, 3);
1228 bp->error = 0;
1229 bp->bio1 = *bi;
1230 bp->bio2 = *bi;
1231 bp->bio2.bi_sector += first_sectors;
1232 bp->bio2.bi_size -= first_sectors << 9;
1233 bp->bio1.bi_size = first_sectors << 9;
1234
1235 bp->bv1 = bi->bi_io_vec[0];
1236 bp->bv2 = bi->bi_io_vec[0];
1237 bp->bv2.bv_offset += first_sectors << 9;
1238 bp->bv2.bv_len -= first_sectors << 9;
1239 bp->bv1.bv_len = first_sectors << 9;
1240
1241 bp->bio1.bi_io_vec = &bp->bv1;
1242 bp->bio2.bi_io_vec = &bp->bv2;
1243
1244 bp->bio1.bi_max_vecs = 1;
1245 bp->bio2.bi_max_vecs = 1;
1246
1247 bp->bio1.bi_end_io = bio_pair_end_1;
1248 bp->bio2.bi_end_io = bio_pair_end_2;
1249
1250 bp->bio1.bi_private = bi;
1251 bp->bio2.bi_private = pool;
1252
1253 if (bio_integrity(bi))
1254 bio_integrity_split(bi, bp, first_sectors);
1255
1256 return bp;
1257 }
1258
1259
1260 /*
1261 * create memory pools for biovec's in a bio_set.
1262 * use the global biovec slabs created for general use.
1263 */
1264 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1265 {
1266 int i;
1267
1268 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1269 struct biovec_slab *bp = bvec_slabs + i;
1270 mempool_t **bvp = bs->bvec_pools + i;
1271
1272 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1273 if (!*bvp)
1274 return -ENOMEM;
1275 }
1276 return 0;
1277 }
1278
1279 static void biovec_free_pools(struct bio_set *bs)
1280 {
1281 int i;
1282
1283 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1284 mempool_t *bvp = bs->bvec_pools[i];
1285
1286 if (bvp)
1287 mempool_destroy(bvp);
1288 }
1289
1290 }
1291
1292 void bioset_free(struct bio_set *bs)
1293 {
1294 if (bs->bio_pool)
1295 mempool_destroy(bs->bio_pool);
1296
1297 bioset_integrity_free(bs);
1298 biovec_free_pools(bs);
1299
1300 kfree(bs);
1301 }
1302
1303 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1304 {
1305 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1306
1307 if (!bs)
1308 return NULL;
1309
1310 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1311 if (!bs->bio_pool)
1312 goto bad;
1313
1314 if (bioset_integrity_create(bs, bio_pool_size))
1315 goto bad;
1316
1317 if (!biovec_create_pools(bs, bvec_pool_size))
1318 return bs;
1319
1320 bad:
1321 bioset_free(bs);
1322 return NULL;
1323 }
1324
1325 static void __init biovec_init_slabs(void)
1326 {
1327 int i;
1328
1329 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1330 int size;
1331 struct biovec_slab *bvs = bvec_slabs + i;
1332
1333 size = bvs->nr_vecs * sizeof(struct bio_vec);
1334 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1335 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1336 }
1337 }
1338
1339 static int __init init_bio(void)
1340 {
1341 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1342
1343 bio_integrity_init_slab();
1344 biovec_init_slabs();
1345
1346 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1347 if (!fs_bio_set)
1348 panic("bio: can't allocate bios\n");
1349
1350 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1351 sizeof(struct bio_pair));
1352 if (!bio_split_pool)
1353 panic("bio: can't create split pool\n");
1354
1355 return 0;
1356 }
1357
1358 subsys_initcall(init_bio);
1359
1360 EXPORT_SYMBOL(bio_alloc);
1361 EXPORT_SYMBOL(bio_put);
1362 EXPORT_SYMBOL(bio_free);
1363 EXPORT_SYMBOL(bio_endio);
1364 EXPORT_SYMBOL(bio_init);
1365 EXPORT_SYMBOL(__bio_clone);
1366 EXPORT_SYMBOL(bio_clone);
1367 EXPORT_SYMBOL(bio_phys_segments);
1368 EXPORT_SYMBOL(bio_hw_segments);
1369 EXPORT_SYMBOL(bio_add_page);
1370 EXPORT_SYMBOL(bio_add_pc_page);
1371 EXPORT_SYMBOL(bio_get_nr_vecs);
1372 EXPORT_SYMBOL(bio_map_user);
1373 EXPORT_SYMBOL(bio_unmap_user);
1374 EXPORT_SYMBOL(bio_map_kern);
1375 EXPORT_SYMBOL(bio_copy_kern);
1376 EXPORT_SYMBOL(bio_pair_release);
1377 EXPORT_SYMBOL(bio_split);
1378 EXPORT_SYMBOL(bio_split_pool);
1379 EXPORT_SYMBOL(bio_copy_user);
1380 EXPORT_SYMBOL(bio_uncopy_user);
1381 EXPORT_SYMBOL(bioset_create);
1382 EXPORT_SYMBOL(bioset_free);
1383 EXPORT_SYMBOL(bio_alloc_bioset);