]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/bio.c
Merge branch 'acpi-pci-hotplug'
[mirror_ubuntu-bionic-kernel.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165
166 if (idx == BIOVEC_MAX_IDX)
167 mempool_free(bv, pool);
168 else {
169 struct biovec_slab *bvs = bvec_slabs + idx;
170
171 kmem_cache_free(bvs->slab, bv);
172 }
173 }
174
175 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
176 mempool_t *pool)
177 {
178 struct bio_vec *bvl;
179
180 /*
181 * see comment near bvec_array define!
182 */
183 switch (nr) {
184 case 1:
185 *idx = 0;
186 break;
187 case 2 ... 4:
188 *idx = 1;
189 break;
190 case 5 ... 16:
191 *idx = 2;
192 break;
193 case 17 ... 64:
194 *idx = 3;
195 break;
196 case 65 ... 128:
197 *idx = 4;
198 break;
199 case 129 ... BIO_MAX_PAGES:
200 *idx = 5;
201 break;
202 default:
203 return NULL;
204 }
205
206 /*
207 * idx now points to the pool we want to allocate from. only the
208 * 1-vec entry pool is mempool backed.
209 */
210 if (*idx == BIOVEC_MAX_IDX) {
211 fallback:
212 bvl = mempool_alloc(pool, gfp_mask);
213 } else {
214 struct biovec_slab *bvs = bvec_slabs + *idx;
215 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
216
217 /*
218 * Make this allocation restricted and don't dump info on
219 * allocation failures, since we'll fallback to the mempool
220 * in case of failure.
221 */
222 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
223
224 /*
225 * Try a slab allocation. If this fails and __GFP_WAIT
226 * is set, retry with the 1-entry mempool
227 */
228 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
229 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
230 *idx = BIOVEC_MAX_IDX;
231 goto fallback;
232 }
233 }
234
235 return bvl;
236 }
237
238 static void __bio_free(struct bio *bio)
239 {
240 bio_disassociate_task(bio);
241
242 if (bio_integrity(bio))
243 bio_integrity_free(bio);
244 }
245
246 static void bio_free(struct bio *bio)
247 {
248 struct bio_set *bs = bio->bi_pool;
249 void *p;
250
251 __bio_free(bio);
252
253 if (bs) {
254 if (bio_flagged(bio, BIO_OWNS_VEC))
255 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
256
257 /*
258 * If we have front padding, adjust the bio pointer before freeing
259 */
260 p = bio;
261 p -= bs->front_pad;
262
263 mempool_free(p, bs->bio_pool);
264 } else {
265 /* Bio was allocated by bio_kmalloc() */
266 kfree(bio);
267 }
268 }
269
270 void bio_init(struct bio *bio)
271 {
272 memset(bio, 0, sizeof(*bio));
273 bio->bi_flags = 1 << BIO_UPTODATE;
274 atomic_set(&bio->bi_remaining, 1);
275 atomic_set(&bio->bi_cnt, 1);
276 }
277 EXPORT_SYMBOL(bio_init);
278
279 /**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289 void bio_reset(struct bio *bio)
290 {
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
293 __bio_free(bio);
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297 atomic_set(&bio->bi_remaining, 1);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_chain_endio(struct bio *bio, int error)
302 {
303 bio_endio(bio->bi_private, error);
304 bio_put(bio);
305 }
306
307 /**
308 * bio_chain - chain bio completions
309 *
310 * The caller won't have a bi_end_io called when @bio completes - instead,
311 * @parent's bi_end_io won't be called until both @parent and @bio have
312 * completed; the chained bio will also be freed when it completes.
313 *
314 * The caller must not set bi_private or bi_end_io in @bio.
315 */
316 void bio_chain(struct bio *bio, struct bio *parent)
317 {
318 BUG_ON(bio->bi_private || bio->bi_end_io);
319
320 bio->bi_private = parent;
321 bio->bi_end_io = bio_chain_endio;
322 atomic_inc(&parent->bi_remaining);
323 }
324 EXPORT_SYMBOL(bio_chain);
325
326 static void bio_alloc_rescue(struct work_struct *work)
327 {
328 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
329 struct bio *bio;
330
331 while (1) {
332 spin_lock(&bs->rescue_lock);
333 bio = bio_list_pop(&bs->rescue_list);
334 spin_unlock(&bs->rescue_lock);
335
336 if (!bio)
337 break;
338
339 generic_make_request(bio);
340 }
341 }
342
343 static void punt_bios_to_rescuer(struct bio_set *bs)
344 {
345 struct bio_list punt, nopunt;
346 struct bio *bio;
347
348 /*
349 * In order to guarantee forward progress we must punt only bios that
350 * were allocated from this bio_set; otherwise, if there was a bio on
351 * there for a stacking driver higher up in the stack, processing it
352 * could require allocating bios from this bio_set, and doing that from
353 * our own rescuer would be bad.
354 *
355 * Since bio lists are singly linked, pop them all instead of trying to
356 * remove from the middle of the list:
357 */
358
359 bio_list_init(&punt);
360 bio_list_init(&nopunt);
361
362 while ((bio = bio_list_pop(current->bio_list)))
363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
364
365 *current->bio_list = nopunt;
366
367 spin_lock(&bs->rescue_lock);
368 bio_list_merge(&bs->rescue_list, &punt);
369 spin_unlock(&bs->rescue_lock);
370
371 queue_work(bs->rescue_workqueue, &bs->rescue_work);
372 }
373
374 /**
375 * bio_alloc_bioset - allocate a bio for I/O
376 * @gfp_mask: the GFP_ mask given to the slab allocator
377 * @nr_iovecs: number of iovecs to pre-allocate
378 * @bs: the bio_set to allocate from.
379 *
380 * Description:
381 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
382 * backed by the @bs's mempool.
383 *
384 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
385 * able to allocate a bio. This is due to the mempool guarantees. To make this
386 * work, callers must never allocate more than 1 bio at a time from this pool.
387 * Callers that need to allocate more than 1 bio must always submit the
388 * previously allocated bio for IO before attempting to allocate a new one.
389 * Failure to do so can cause deadlocks under memory pressure.
390 *
391 * Note that when running under generic_make_request() (i.e. any block
392 * driver), bios are not submitted until after you return - see the code in
393 * generic_make_request() that converts recursion into iteration, to prevent
394 * stack overflows.
395 *
396 * This would normally mean allocating multiple bios under
397 * generic_make_request() would be susceptible to deadlocks, but we have
398 * deadlock avoidance code that resubmits any blocked bios from a rescuer
399 * thread.
400 *
401 * However, we do not guarantee forward progress for allocations from other
402 * mempools. Doing multiple allocations from the same mempool under
403 * generic_make_request() should be avoided - instead, use bio_set's front_pad
404 * for per bio allocations.
405 *
406 * RETURNS:
407 * Pointer to new bio on success, NULL on failure.
408 */
409 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
410 {
411 gfp_t saved_gfp = gfp_mask;
412 unsigned front_pad;
413 unsigned inline_vecs;
414 unsigned long idx = BIO_POOL_NONE;
415 struct bio_vec *bvl = NULL;
416 struct bio *bio;
417 void *p;
418
419 if (!bs) {
420 if (nr_iovecs > UIO_MAXIOV)
421 return NULL;
422
423 p = kmalloc(sizeof(struct bio) +
424 nr_iovecs * sizeof(struct bio_vec),
425 gfp_mask);
426 front_pad = 0;
427 inline_vecs = nr_iovecs;
428 } else {
429 /*
430 * generic_make_request() converts recursion to iteration; this
431 * means if we're running beneath it, any bios we allocate and
432 * submit will not be submitted (and thus freed) until after we
433 * return.
434 *
435 * This exposes us to a potential deadlock if we allocate
436 * multiple bios from the same bio_set() while running
437 * underneath generic_make_request(). If we were to allocate
438 * multiple bios (say a stacking block driver that was splitting
439 * bios), we would deadlock if we exhausted the mempool's
440 * reserve.
441 *
442 * We solve this, and guarantee forward progress, with a rescuer
443 * workqueue per bio_set. If we go to allocate and there are
444 * bios on current->bio_list, we first try the allocation
445 * without __GFP_WAIT; if that fails, we punt those bios we
446 * would be blocking to the rescuer workqueue before we retry
447 * with the original gfp_flags.
448 */
449
450 if (current->bio_list && !bio_list_empty(current->bio_list))
451 gfp_mask &= ~__GFP_WAIT;
452
453 p = mempool_alloc(bs->bio_pool, gfp_mask);
454 if (!p && gfp_mask != saved_gfp) {
455 punt_bios_to_rescuer(bs);
456 gfp_mask = saved_gfp;
457 p = mempool_alloc(bs->bio_pool, gfp_mask);
458 }
459
460 front_pad = bs->front_pad;
461 inline_vecs = BIO_INLINE_VECS;
462 }
463
464 if (unlikely(!p))
465 return NULL;
466
467 bio = p + front_pad;
468 bio_init(bio);
469
470 if (nr_iovecs > inline_vecs) {
471 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
472 if (!bvl && gfp_mask != saved_gfp) {
473 punt_bios_to_rescuer(bs);
474 gfp_mask = saved_gfp;
475 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
476 }
477
478 if (unlikely(!bvl))
479 goto err_free;
480
481 bio->bi_flags |= 1 << BIO_OWNS_VEC;
482 } else if (nr_iovecs) {
483 bvl = bio->bi_inline_vecs;
484 }
485
486 bio->bi_pool = bs;
487 bio->bi_flags |= idx << BIO_POOL_OFFSET;
488 bio->bi_max_vecs = nr_iovecs;
489 bio->bi_io_vec = bvl;
490 return bio;
491
492 err_free:
493 mempool_free(p, bs->bio_pool);
494 return NULL;
495 }
496 EXPORT_SYMBOL(bio_alloc_bioset);
497
498 void zero_fill_bio(struct bio *bio)
499 {
500 unsigned long flags;
501 struct bio_vec bv;
502 struct bvec_iter iter;
503
504 bio_for_each_segment(bv, bio, iter) {
505 char *data = bvec_kmap_irq(&bv, &flags);
506 memset(data, 0, bv.bv_len);
507 flush_dcache_page(bv.bv_page);
508 bvec_kunmap_irq(data, &flags);
509 }
510 }
511 EXPORT_SYMBOL(zero_fill_bio);
512
513 /**
514 * bio_put - release a reference to a bio
515 * @bio: bio to release reference to
516 *
517 * Description:
518 * Put a reference to a &struct bio, either one you have gotten with
519 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
520 **/
521 void bio_put(struct bio *bio)
522 {
523 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
524
525 /*
526 * last put frees it
527 */
528 if (atomic_dec_and_test(&bio->bi_cnt))
529 bio_free(bio);
530 }
531 EXPORT_SYMBOL(bio_put);
532
533 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
534 {
535 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
536 blk_recount_segments(q, bio);
537
538 return bio->bi_phys_segments;
539 }
540 EXPORT_SYMBOL(bio_phys_segments);
541
542 /**
543 * __bio_clone_fast - clone a bio that shares the original bio's biovec
544 * @bio: destination bio
545 * @bio_src: bio to clone
546 *
547 * Clone a &bio. Caller will own the returned bio, but not
548 * the actual data it points to. Reference count of returned
549 * bio will be one.
550 *
551 * Caller must ensure that @bio_src is not freed before @bio.
552 */
553 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
554 {
555 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
556
557 /*
558 * most users will be overriding ->bi_bdev with a new target,
559 * so we don't set nor calculate new physical/hw segment counts here
560 */
561 bio->bi_bdev = bio_src->bi_bdev;
562 bio->bi_flags |= 1 << BIO_CLONED;
563 bio->bi_rw = bio_src->bi_rw;
564 bio->bi_iter = bio_src->bi_iter;
565 bio->bi_io_vec = bio_src->bi_io_vec;
566 }
567 EXPORT_SYMBOL(__bio_clone_fast);
568
569 /**
570 * bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: bio to clone
572 * @gfp_mask: allocation priority
573 * @bs: bio_set to allocate from
574 *
575 * Like __bio_clone_fast, only also allocates the returned bio
576 */
577 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
578 {
579 struct bio *b;
580
581 b = bio_alloc_bioset(gfp_mask, 0, bs);
582 if (!b)
583 return NULL;
584
585 __bio_clone_fast(b, bio);
586
587 if (bio_integrity(bio)) {
588 int ret;
589
590 ret = bio_integrity_clone(b, bio, gfp_mask);
591
592 if (ret < 0) {
593 bio_put(b);
594 return NULL;
595 }
596 }
597
598 return b;
599 }
600 EXPORT_SYMBOL(bio_clone_fast);
601
602 /**
603 * bio_clone_bioset - clone a bio
604 * @bio_src: bio to clone
605 * @gfp_mask: allocation priority
606 * @bs: bio_set to allocate from
607 *
608 * Clone bio. Caller will own the returned bio, but not the actual data it
609 * points to. Reference count of returned bio will be one.
610 */
611 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
612 struct bio_set *bs)
613 {
614 struct bvec_iter iter;
615 struct bio_vec bv;
616 struct bio *bio;
617
618 /*
619 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
620 * bio_src->bi_io_vec to bio->bi_io_vec.
621 *
622 * We can't do that anymore, because:
623 *
624 * - The point of cloning the biovec is to produce a bio with a biovec
625 * the caller can modify: bi_idx and bi_bvec_done should be 0.
626 *
627 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
628 * we tried to clone the whole thing bio_alloc_bioset() would fail.
629 * But the clone should succeed as long as the number of biovecs we
630 * actually need to allocate is fewer than BIO_MAX_PAGES.
631 *
632 * - Lastly, bi_vcnt should not be looked at or relied upon by code
633 * that does not own the bio - reason being drivers don't use it for
634 * iterating over the biovec anymore, so expecting it to be kept up
635 * to date (i.e. for clones that share the parent biovec) is just
636 * asking for trouble and would force extra work on
637 * __bio_clone_fast() anyways.
638 */
639
640 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
641 if (!bio)
642 return NULL;
643
644 bio->bi_bdev = bio_src->bi_bdev;
645 bio->bi_rw = bio_src->bi_rw;
646 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
647 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
648
649 if (bio->bi_rw & REQ_DISCARD)
650 goto integrity_clone;
651
652 if (bio->bi_rw & REQ_WRITE_SAME) {
653 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
654 goto integrity_clone;
655 }
656
657 bio_for_each_segment(bv, bio_src, iter)
658 bio->bi_io_vec[bio->bi_vcnt++] = bv;
659
660 integrity_clone:
661 if (bio_integrity(bio_src)) {
662 int ret;
663
664 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
665 if (ret < 0) {
666 bio_put(bio);
667 return NULL;
668 }
669 }
670
671 return bio;
672 }
673 EXPORT_SYMBOL(bio_clone_bioset);
674
675 /**
676 * bio_get_nr_vecs - return approx number of vecs
677 * @bdev: I/O target
678 *
679 * Return the approximate number of pages we can send to this target.
680 * There's no guarantee that you will be able to fit this number of pages
681 * into a bio, it does not account for dynamic restrictions that vary
682 * on offset.
683 */
684 int bio_get_nr_vecs(struct block_device *bdev)
685 {
686 struct request_queue *q = bdev_get_queue(bdev);
687 int nr_pages;
688
689 nr_pages = min_t(unsigned,
690 queue_max_segments(q),
691 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
692
693 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
694
695 }
696 EXPORT_SYMBOL(bio_get_nr_vecs);
697
698 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
699 *page, unsigned int len, unsigned int offset,
700 unsigned int max_sectors)
701 {
702 int retried_segments = 0;
703 struct bio_vec *bvec;
704
705 /*
706 * cloned bio must not modify vec list
707 */
708 if (unlikely(bio_flagged(bio, BIO_CLONED)))
709 return 0;
710
711 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
712 return 0;
713
714 /*
715 * For filesystems with a blocksize smaller than the pagesize
716 * we will often be called with the same page as last time and
717 * a consecutive offset. Optimize this special case.
718 */
719 if (bio->bi_vcnt > 0) {
720 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
721
722 if (page == prev->bv_page &&
723 offset == prev->bv_offset + prev->bv_len) {
724 unsigned int prev_bv_len = prev->bv_len;
725 prev->bv_len += len;
726
727 if (q->merge_bvec_fn) {
728 struct bvec_merge_data bvm = {
729 /* prev_bvec is already charged in
730 bi_size, discharge it in order to
731 simulate merging updated prev_bvec
732 as new bvec. */
733 .bi_bdev = bio->bi_bdev,
734 .bi_sector = bio->bi_iter.bi_sector,
735 .bi_size = bio->bi_iter.bi_size -
736 prev_bv_len,
737 .bi_rw = bio->bi_rw,
738 };
739
740 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
741 prev->bv_len -= len;
742 return 0;
743 }
744 }
745
746 goto done;
747 }
748 }
749
750 if (bio->bi_vcnt >= bio->bi_max_vecs)
751 return 0;
752
753 /*
754 * we might lose a segment or two here, but rather that than
755 * make this too complex.
756 */
757
758 while (bio->bi_phys_segments >= queue_max_segments(q)) {
759
760 if (retried_segments)
761 return 0;
762
763 retried_segments = 1;
764 blk_recount_segments(q, bio);
765 }
766
767 /*
768 * setup the new entry, we might clear it again later if we
769 * cannot add the page
770 */
771 bvec = &bio->bi_io_vec[bio->bi_vcnt];
772 bvec->bv_page = page;
773 bvec->bv_len = len;
774 bvec->bv_offset = offset;
775
776 /*
777 * if queue has other restrictions (eg varying max sector size
778 * depending on offset), it can specify a merge_bvec_fn in the
779 * queue to get further control
780 */
781 if (q->merge_bvec_fn) {
782 struct bvec_merge_data bvm = {
783 .bi_bdev = bio->bi_bdev,
784 .bi_sector = bio->bi_iter.bi_sector,
785 .bi_size = bio->bi_iter.bi_size,
786 .bi_rw = bio->bi_rw,
787 };
788
789 /*
790 * merge_bvec_fn() returns number of bytes it can accept
791 * at this offset
792 */
793 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
794 bvec->bv_page = NULL;
795 bvec->bv_len = 0;
796 bvec->bv_offset = 0;
797 return 0;
798 }
799 }
800
801 /* If we may be able to merge these biovecs, force a recount */
802 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
803 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
804
805 bio->bi_vcnt++;
806 bio->bi_phys_segments++;
807 done:
808 bio->bi_iter.bi_size += len;
809 return len;
810 }
811
812 /**
813 * bio_add_pc_page - attempt to add page to bio
814 * @q: the target queue
815 * @bio: destination bio
816 * @page: page to add
817 * @len: vec entry length
818 * @offset: vec entry offset
819 *
820 * Attempt to add a page to the bio_vec maplist. This can fail for a
821 * number of reasons, such as the bio being full or target block device
822 * limitations. The target block device must allow bio's up to PAGE_SIZE,
823 * so it is always possible to add a single page to an empty bio.
824 *
825 * This should only be used by REQ_PC bios.
826 */
827 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
828 unsigned int len, unsigned int offset)
829 {
830 return __bio_add_page(q, bio, page, len, offset,
831 queue_max_hw_sectors(q));
832 }
833 EXPORT_SYMBOL(bio_add_pc_page);
834
835 /**
836 * bio_add_page - attempt to add page to bio
837 * @bio: destination bio
838 * @page: page to add
839 * @len: vec entry length
840 * @offset: vec entry offset
841 *
842 * Attempt to add a page to the bio_vec maplist. This can fail for a
843 * number of reasons, such as the bio being full or target block device
844 * limitations. The target block device must allow bio's up to PAGE_SIZE,
845 * so it is always possible to add a single page to an empty bio.
846 */
847 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
848 unsigned int offset)
849 {
850 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
851 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
852 }
853 EXPORT_SYMBOL(bio_add_page);
854
855 struct submit_bio_ret {
856 struct completion event;
857 int error;
858 };
859
860 static void submit_bio_wait_endio(struct bio *bio, int error)
861 {
862 struct submit_bio_ret *ret = bio->bi_private;
863
864 ret->error = error;
865 complete(&ret->event);
866 }
867
868 /**
869 * submit_bio_wait - submit a bio, and wait until it completes
870 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
871 * @bio: The &struct bio which describes the I/O
872 *
873 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
874 * bio_endio() on failure.
875 */
876 int submit_bio_wait(int rw, struct bio *bio)
877 {
878 struct submit_bio_ret ret;
879
880 rw |= REQ_SYNC;
881 init_completion(&ret.event);
882 bio->bi_private = &ret;
883 bio->bi_end_io = submit_bio_wait_endio;
884 submit_bio(rw, bio);
885 wait_for_completion(&ret.event);
886
887 return ret.error;
888 }
889 EXPORT_SYMBOL(submit_bio_wait);
890
891 /**
892 * bio_advance - increment/complete a bio by some number of bytes
893 * @bio: bio to advance
894 * @bytes: number of bytes to complete
895 *
896 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
897 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
898 * be updated on the last bvec as well.
899 *
900 * @bio will then represent the remaining, uncompleted portion of the io.
901 */
902 void bio_advance(struct bio *bio, unsigned bytes)
903 {
904 if (bio_integrity(bio))
905 bio_integrity_advance(bio, bytes);
906
907 bio_advance_iter(bio, &bio->bi_iter, bytes);
908 }
909 EXPORT_SYMBOL(bio_advance);
910
911 /**
912 * bio_alloc_pages - allocates a single page for each bvec in a bio
913 * @bio: bio to allocate pages for
914 * @gfp_mask: flags for allocation
915 *
916 * Allocates pages up to @bio->bi_vcnt.
917 *
918 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
919 * freed.
920 */
921 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
922 {
923 int i;
924 struct bio_vec *bv;
925
926 bio_for_each_segment_all(bv, bio, i) {
927 bv->bv_page = alloc_page(gfp_mask);
928 if (!bv->bv_page) {
929 while (--bv >= bio->bi_io_vec)
930 __free_page(bv->bv_page);
931 return -ENOMEM;
932 }
933 }
934
935 return 0;
936 }
937 EXPORT_SYMBOL(bio_alloc_pages);
938
939 /**
940 * bio_copy_data - copy contents of data buffers from one chain of bios to
941 * another
942 * @src: source bio list
943 * @dst: destination bio list
944 *
945 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
946 * @src and @dst as linked lists of bios.
947 *
948 * Stops when it reaches the end of either @src or @dst - that is, copies
949 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
950 */
951 void bio_copy_data(struct bio *dst, struct bio *src)
952 {
953 struct bvec_iter src_iter, dst_iter;
954 struct bio_vec src_bv, dst_bv;
955 void *src_p, *dst_p;
956 unsigned bytes;
957
958 src_iter = src->bi_iter;
959 dst_iter = dst->bi_iter;
960
961 while (1) {
962 if (!src_iter.bi_size) {
963 src = src->bi_next;
964 if (!src)
965 break;
966
967 src_iter = src->bi_iter;
968 }
969
970 if (!dst_iter.bi_size) {
971 dst = dst->bi_next;
972 if (!dst)
973 break;
974
975 dst_iter = dst->bi_iter;
976 }
977
978 src_bv = bio_iter_iovec(src, src_iter);
979 dst_bv = bio_iter_iovec(dst, dst_iter);
980
981 bytes = min(src_bv.bv_len, dst_bv.bv_len);
982
983 src_p = kmap_atomic(src_bv.bv_page);
984 dst_p = kmap_atomic(dst_bv.bv_page);
985
986 memcpy(dst_p + dst_bv.bv_offset,
987 src_p + src_bv.bv_offset,
988 bytes);
989
990 kunmap_atomic(dst_p);
991 kunmap_atomic(src_p);
992
993 bio_advance_iter(src, &src_iter, bytes);
994 bio_advance_iter(dst, &dst_iter, bytes);
995 }
996 }
997 EXPORT_SYMBOL(bio_copy_data);
998
999 struct bio_map_data {
1000 int nr_sgvecs;
1001 int is_our_pages;
1002 struct sg_iovec sgvecs[];
1003 };
1004
1005 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1006 struct sg_iovec *iov, int iov_count,
1007 int is_our_pages)
1008 {
1009 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1010 bmd->nr_sgvecs = iov_count;
1011 bmd->is_our_pages = is_our_pages;
1012 bio->bi_private = bmd;
1013 }
1014
1015 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
1016 unsigned int iov_count,
1017 gfp_t gfp_mask)
1018 {
1019 if (iov_count > UIO_MAXIOV)
1020 return NULL;
1021
1022 return kmalloc(sizeof(struct bio_map_data) +
1023 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1024 }
1025
1026 static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
1027 int to_user, int from_user, int do_free_page)
1028 {
1029 int ret = 0, i;
1030 struct bio_vec *bvec;
1031 int iov_idx = 0;
1032 unsigned int iov_off = 0;
1033
1034 bio_for_each_segment_all(bvec, bio, i) {
1035 char *bv_addr = page_address(bvec->bv_page);
1036 unsigned int bv_len = bvec->bv_len;
1037
1038 while (bv_len && iov_idx < iov_count) {
1039 unsigned int bytes;
1040 char __user *iov_addr;
1041
1042 bytes = min_t(unsigned int,
1043 iov[iov_idx].iov_len - iov_off, bv_len);
1044 iov_addr = iov[iov_idx].iov_base + iov_off;
1045
1046 if (!ret) {
1047 if (to_user)
1048 ret = copy_to_user(iov_addr, bv_addr,
1049 bytes);
1050
1051 if (from_user)
1052 ret = copy_from_user(bv_addr, iov_addr,
1053 bytes);
1054
1055 if (ret)
1056 ret = -EFAULT;
1057 }
1058
1059 bv_len -= bytes;
1060 bv_addr += bytes;
1061 iov_addr += bytes;
1062 iov_off += bytes;
1063
1064 if (iov[iov_idx].iov_len == iov_off) {
1065 iov_idx++;
1066 iov_off = 0;
1067 }
1068 }
1069
1070 if (do_free_page)
1071 __free_page(bvec->bv_page);
1072 }
1073
1074 return ret;
1075 }
1076
1077 /**
1078 * bio_uncopy_user - finish previously mapped bio
1079 * @bio: bio being terminated
1080 *
1081 * Free pages allocated from bio_copy_user() and write back data
1082 * to user space in case of a read.
1083 */
1084 int bio_uncopy_user(struct bio *bio)
1085 {
1086 struct bio_map_data *bmd = bio->bi_private;
1087 struct bio_vec *bvec;
1088 int ret = 0, i;
1089
1090 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1091 /*
1092 * if we're in a workqueue, the request is orphaned, so
1093 * don't copy into a random user address space, just free.
1094 */
1095 if (current->mm)
1096 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1097 bio_data_dir(bio) == READ,
1098 0, bmd->is_our_pages);
1099 else if (bmd->is_our_pages)
1100 bio_for_each_segment_all(bvec, bio, i)
1101 __free_page(bvec->bv_page);
1102 }
1103 kfree(bmd);
1104 bio_put(bio);
1105 return ret;
1106 }
1107 EXPORT_SYMBOL(bio_uncopy_user);
1108
1109 /**
1110 * bio_copy_user_iov - copy user data to bio
1111 * @q: destination block queue
1112 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1113 * @iov: the iovec.
1114 * @iov_count: number of elements in the iovec
1115 * @write_to_vm: bool indicating writing to pages or not
1116 * @gfp_mask: memory allocation flags
1117 *
1118 * Prepares and returns a bio for indirect user io, bouncing data
1119 * to/from kernel pages as necessary. Must be paired with
1120 * call bio_uncopy_user() on io completion.
1121 */
1122 struct bio *bio_copy_user_iov(struct request_queue *q,
1123 struct rq_map_data *map_data,
1124 struct sg_iovec *iov, int iov_count,
1125 int write_to_vm, gfp_t gfp_mask)
1126 {
1127 struct bio_map_data *bmd;
1128 struct bio_vec *bvec;
1129 struct page *page;
1130 struct bio *bio;
1131 int i, ret;
1132 int nr_pages = 0;
1133 unsigned int len = 0;
1134 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1135
1136 for (i = 0; i < iov_count; i++) {
1137 unsigned long uaddr;
1138 unsigned long end;
1139 unsigned long start;
1140
1141 uaddr = (unsigned long)iov[i].iov_base;
1142 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1143 start = uaddr >> PAGE_SHIFT;
1144
1145 /*
1146 * Overflow, abort
1147 */
1148 if (end < start)
1149 return ERR_PTR(-EINVAL);
1150
1151 nr_pages += end - start;
1152 len += iov[i].iov_len;
1153 }
1154
1155 if (offset)
1156 nr_pages++;
1157
1158 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1159 if (!bmd)
1160 return ERR_PTR(-ENOMEM);
1161
1162 ret = -ENOMEM;
1163 bio = bio_kmalloc(gfp_mask, nr_pages);
1164 if (!bio)
1165 goto out_bmd;
1166
1167 if (!write_to_vm)
1168 bio->bi_rw |= REQ_WRITE;
1169
1170 ret = 0;
1171
1172 if (map_data) {
1173 nr_pages = 1 << map_data->page_order;
1174 i = map_data->offset / PAGE_SIZE;
1175 }
1176 while (len) {
1177 unsigned int bytes = PAGE_SIZE;
1178
1179 bytes -= offset;
1180
1181 if (bytes > len)
1182 bytes = len;
1183
1184 if (map_data) {
1185 if (i == map_data->nr_entries * nr_pages) {
1186 ret = -ENOMEM;
1187 break;
1188 }
1189
1190 page = map_data->pages[i / nr_pages];
1191 page += (i % nr_pages);
1192
1193 i++;
1194 } else {
1195 page = alloc_page(q->bounce_gfp | gfp_mask);
1196 if (!page) {
1197 ret = -ENOMEM;
1198 break;
1199 }
1200 }
1201
1202 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1203 break;
1204
1205 len -= bytes;
1206 offset = 0;
1207 }
1208
1209 if (ret)
1210 goto cleanup;
1211
1212 /*
1213 * success
1214 */
1215 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1216 (map_data && map_data->from_user)) {
1217 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1218 if (ret)
1219 goto cleanup;
1220 }
1221
1222 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1223 return bio;
1224 cleanup:
1225 if (!map_data)
1226 bio_for_each_segment_all(bvec, bio, i)
1227 __free_page(bvec->bv_page);
1228
1229 bio_put(bio);
1230 out_bmd:
1231 kfree(bmd);
1232 return ERR_PTR(ret);
1233 }
1234
1235 /**
1236 * bio_copy_user - copy user data to bio
1237 * @q: destination block queue
1238 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1239 * @uaddr: start of user address
1240 * @len: length in bytes
1241 * @write_to_vm: bool indicating writing to pages or not
1242 * @gfp_mask: memory allocation flags
1243 *
1244 * Prepares and returns a bio for indirect user io, bouncing data
1245 * to/from kernel pages as necessary. Must be paired with
1246 * call bio_uncopy_user() on io completion.
1247 */
1248 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1249 unsigned long uaddr, unsigned int len,
1250 int write_to_vm, gfp_t gfp_mask)
1251 {
1252 struct sg_iovec iov;
1253
1254 iov.iov_base = (void __user *)uaddr;
1255 iov.iov_len = len;
1256
1257 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1258 }
1259 EXPORT_SYMBOL(bio_copy_user);
1260
1261 static struct bio *__bio_map_user_iov(struct request_queue *q,
1262 struct block_device *bdev,
1263 struct sg_iovec *iov, int iov_count,
1264 int write_to_vm, gfp_t gfp_mask)
1265 {
1266 int i, j;
1267 int nr_pages = 0;
1268 struct page **pages;
1269 struct bio *bio;
1270 int cur_page = 0;
1271 int ret, offset;
1272
1273 for (i = 0; i < iov_count; i++) {
1274 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1275 unsigned long len = iov[i].iov_len;
1276 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1277 unsigned long start = uaddr >> PAGE_SHIFT;
1278
1279 /*
1280 * Overflow, abort
1281 */
1282 if (end < start)
1283 return ERR_PTR(-EINVAL);
1284
1285 nr_pages += end - start;
1286 /*
1287 * buffer must be aligned to at least hardsector size for now
1288 */
1289 if (uaddr & queue_dma_alignment(q))
1290 return ERR_PTR(-EINVAL);
1291 }
1292
1293 if (!nr_pages)
1294 return ERR_PTR(-EINVAL);
1295
1296 bio = bio_kmalloc(gfp_mask, nr_pages);
1297 if (!bio)
1298 return ERR_PTR(-ENOMEM);
1299
1300 ret = -ENOMEM;
1301 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1302 if (!pages)
1303 goto out;
1304
1305 for (i = 0; i < iov_count; i++) {
1306 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1307 unsigned long len = iov[i].iov_len;
1308 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1309 unsigned long start = uaddr >> PAGE_SHIFT;
1310 const int local_nr_pages = end - start;
1311 const int page_limit = cur_page + local_nr_pages;
1312
1313 ret = get_user_pages_fast(uaddr, local_nr_pages,
1314 write_to_vm, &pages[cur_page]);
1315 if (ret < local_nr_pages) {
1316 ret = -EFAULT;
1317 goto out_unmap;
1318 }
1319
1320 offset = uaddr & ~PAGE_MASK;
1321 for (j = cur_page; j < page_limit; j++) {
1322 unsigned int bytes = PAGE_SIZE - offset;
1323
1324 if (len <= 0)
1325 break;
1326
1327 if (bytes > len)
1328 bytes = len;
1329
1330 /*
1331 * sorry...
1332 */
1333 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1334 bytes)
1335 break;
1336
1337 len -= bytes;
1338 offset = 0;
1339 }
1340
1341 cur_page = j;
1342 /*
1343 * release the pages we didn't map into the bio, if any
1344 */
1345 while (j < page_limit)
1346 page_cache_release(pages[j++]);
1347 }
1348
1349 kfree(pages);
1350
1351 /*
1352 * set data direction, and check if mapped pages need bouncing
1353 */
1354 if (!write_to_vm)
1355 bio->bi_rw |= REQ_WRITE;
1356
1357 bio->bi_bdev = bdev;
1358 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1359 return bio;
1360
1361 out_unmap:
1362 for (i = 0; i < nr_pages; i++) {
1363 if(!pages[i])
1364 break;
1365 page_cache_release(pages[i]);
1366 }
1367 out:
1368 kfree(pages);
1369 bio_put(bio);
1370 return ERR_PTR(ret);
1371 }
1372
1373 /**
1374 * bio_map_user - map user address into bio
1375 * @q: the struct request_queue for the bio
1376 * @bdev: destination block device
1377 * @uaddr: start of user address
1378 * @len: length in bytes
1379 * @write_to_vm: bool indicating writing to pages or not
1380 * @gfp_mask: memory allocation flags
1381 *
1382 * Map the user space address into a bio suitable for io to a block
1383 * device. Returns an error pointer in case of error.
1384 */
1385 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1386 unsigned long uaddr, unsigned int len, int write_to_vm,
1387 gfp_t gfp_mask)
1388 {
1389 struct sg_iovec iov;
1390
1391 iov.iov_base = (void __user *)uaddr;
1392 iov.iov_len = len;
1393
1394 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1395 }
1396 EXPORT_SYMBOL(bio_map_user);
1397
1398 /**
1399 * bio_map_user_iov - map user sg_iovec table into bio
1400 * @q: the struct request_queue for the bio
1401 * @bdev: destination block device
1402 * @iov: the iovec.
1403 * @iov_count: number of elements in the iovec
1404 * @write_to_vm: bool indicating writing to pages or not
1405 * @gfp_mask: memory allocation flags
1406 *
1407 * Map the user space address into a bio suitable for io to a block
1408 * device. Returns an error pointer in case of error.
1409 */
1410 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1411 struct sg_iovec *iov, int iov_count,
1412 int write_to_vm, gfp_t gfp_mask)
1413 {
1414 struct bio *bio;
1415
1416 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1417 gfp_mask);
1418 if (IS_ERR(bio))
1419 return bio;
1420
1421 /*
1422 * subtle -- if __bio_map_user() ended up bouncing a bio,
1423 * it would normally disappear when its bi_end_io is run.
1424 * however, we need it for the unmap, so grab an extra
1425 * reference to it
1426 */
1427 bio_get(bio);
1428
1429 return bio;
1430 }
1431
1432 static void __bio_unmap_user(struct bio *bio)
1433 {
1434 struct bio_vec *bvec;
1435 int i;
1436
1437 /*
1438 * make sure we dirty pages we wrote to
1439 */
1440 bio_for_each_segment_all(bvec, bio, i) {
1441 if (bio_data_dir(bio) == READ)
1442 set_page_dirty_lock(bvec->bv_page);
1443
1444 page_cache_release(bvec->bv_page);
1445 }
1446
1447 bio_put(bio);
1448 }
1449
1450 /**
1451 * bio_unmap_user - unmap a bio
1452 * @bio: the bio being unmapped
1453 *
1454 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1455 * a process context.
1456 *
1457 * bio_unmap_user() may sleep.
1458 */
1459 void bio_unmap_user(struct bio *bio)
1460 {
1461 __bio_unmap_user(bio);
1462 bio_put(bio);
1463 }
1464 EXPORT_SYMBOL(bio_unmap_user);
1465
1466 static void bio_map_kern_endio(struct bio *bio, int err)
1467 {
1468 bio_put(bio);
1469 }
1470
1471 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1472 unsigned int len, gfp_t gfp_mask)
1473 {
1474 unsigned long kaddr = (unsigned long)data;
1475 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476 unsigned long start = kaddr >> PAGE_SHIFT;
1477 const int nr_pages = end - start;
1478 int offset, i;
1479 struct bio *bio;
1480
1481 bio = bio_kmalloc(gfp_mask, nr_pages);
1482 if (!bio)
1483 return ERR_PTR(-ENOMEM);
1484
1485 offset = offset_in_page(kaddr);
1486 for (i = 0; i < nr_pages; i++) {
1487 unsigned int bytes = PAGE_SIZE - offset;
1488
1489 if (len <= 0)
1490 break;
1491
1492 if (bytes > len)
1493 bytes = len;
1494
1495 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1496 offset) < bytes)
1497 break;
1498
1499 data += bytes;
1500 len -= bytes;
1501 offset = 0;
1502 }
1503
1504 bio->bi_end_io = bio_map_kern_endio;
1505 return bio;
1506 }
1507
1508 /**
1509 * bio_map_kern - map kernel address into bio
1510 * @q: the struct request_queue for the bio
1511 * @data: pointer to buffer to map
1512 * @len: length in bytes
1513 * @gfp_mask: allocation flags for bio allocation
1514 *
1515 * Map the kernel address into a bio suitable for io to a block
1516 * device. Returns an error pointer in case of error.
1517 */
1518 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1519 gfp_t gfp_mask)
1520 {
1521 struct bio *bio;
1522
1523 bio = __bio_map_kern(q, data, len, gfp_mask);
1524 if (IS_ERR(bio))
1525 return bio;
1526
1527 if (bio->bi_iter.bi_size == len)
1528 return bio;
1529
1530 /*
1531 * Don't support partial mappings.
1532 */
1533 bio_put(bio);
1534 return ERR_PTR(-EINVAL);
1535 }
1536 EXPORT_SYMBOL(bio_map_kern);
1537
1538 static void bio_copy_kern_endio(struct bio *bio, int err)
1539 {
1540 struct bio_vec *bvec;
1541 const int read = bio_data_dir(bio) == READ;
1542 struct bio_map_data *bmd = bio->bi_private;
1543 int i;
1544 char *p = bmd->sgvecs[0].iov_base;
1545
1546 bio_for_each_segment_all(bvec, bio, i) {
1547 char *addr = page_address(bvec->bv_page);
1548
1549 if (read)
1550 memcpy(p, addr, bvec->bv_len);
1551
1552 __free_page(bvec->bv_page);
1553 p += bvec->bv_len;
1554 }
1555
1556 kfree(bmd);
1557 bio_put(bio);
1558 }
1559
1560 /**
1561 * bio_copy_kern - copy kernel address into bio
1562 * @q: the struct request_queue for the bio
1563 * @data: pointer to buffer to copy
1564 * @len: length in bytes
1565 * @gfp_mask: allocation flags for bio and page allocation
1566 * @reading: data direction is READ
1567 *
1568 * copy the kernel address into a bio suitable for io to a block
1569 * device. Returns an error pointer in case of error.
1570 */
1571 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1572 gfp_t gfp_mask, int reading)
1573 {
1574 struct bio *bio;
1575 struct bio_vec *bvec;
1576 int i;
1577
1578 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1579 if (IS_ERR(bio))
1580 return bio;
1581
1582 if (!reading) {
1583 void *p = data;
1584
1585 bio_for_each_segment_all(bvec, bio, i) {
1586 char *addr = page_address(bvec->bv_page);
1587
1588 memcpy(addr, p, bvec->bv_len);
1589 p += bvec->bv_len;
1590 }
1591 }
1592
1593 bio->bi_end_io = bio_copy_kern_endio;
1594
1595 return bio;
1596 }
1597 EXPORT_SYMBOL(bio_copy_kern);
1598
1599 /*
1600 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1601 * for performing direct-IO in BIOs.
1602 *
1603 * The problem is that we cannot run set_page_dirty() from interrupt context
1604 * because the required locks are not interrupt-safe. So what we can do is to
1605 * mark the pages dirty _before_ performing IO. And in interrupt context,
1606 * check that the pages are still dirty. If so, fine. If not, redirty them
1607 * in process context.
1608 *
1609 * We special-case compound pages here: normally this means reads into hugetlb
1610 * pages. The logic in here doesn't really work right for compound pages
1611 * because the VM does not uniformly chase down the head page in all cases.
1612 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1613 * handle them at all. So we skip compound pages here at an early stage.
1614 *
1615 * Note that this code is very hard to test under normal circumstances because
1616 * direct-io pins the pages with get_user_pages(). This makes
1617 * is_page_cache_freeable return false, and the VM will not clean the pages.
1618 * But other code (eg, flusher threads) could clean the pages if they are mapped
1619 * pagecache.
1620 *
1621 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1622 * deferred bio dirtying paths.
1623 */
1624
1625 /*
1626 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1627 */
1628 void bio_set_pages_dirty(struct bio *bio)
1629 {
1630 struct bio_vec *bvec;
1631 int i;
1632
1633 bio_for_each_segment_all(bvec, bio, i) {
1634 struct page *page = bvec->bv_page;
1635
1636 if (page && !PageCompound(page))
1637 set_page_dirty_lock(page);
1638 }
1639 }
1640
1641 static void bio_release_pages(struct bio *bio)
1642 {
1643 struct bio_vec *bvec;
1644 int i;
1645
1646 bio_for_each_segment_all(bvec, bio, i) {
1647 struct page *page = bvec->bv_page;
1648
1649 if (page)
1650 put_page(page);
1651 }
1652 }
1653
1654 /*
1655 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1656 * If they are, then fine. If, however, some pages are clean then they must
1657 * have been written out during the direct-IO read. So we take another ref on
1658 * the BIO and the offending pages and re-dirty the pages in process context.
1659 *
1660 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1661 * here on. It will run one page_cache_release() against each page and will
1662 * run one bio_put() against the BIO.
1663 */
1664
1665 static void bio_dirty_fn(struct work_struct *work);
1666
1667 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1668 static DEFINE_SPINLOCK(bio_dirty_lock);
1669 static struct bio *bio_dirty_list;
1670
1671 /*
1672 * This runs in process context
1673 */
1674 static void bio_dirty_fn(struct work_struct *work)
1675 {
1676 unsigned long flags;
1677 struct bio *bio;
1678
1679 spin_lock_irqsave(&bio_dirty_lock, flags);
1680 bio = bio_dirty_list;
1681 bio_dirty_list = NULL;
1682 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1683
1684 while (bio) {
1685 struct bio *next = bio->bi_private;
1686
1687 bio_set_pages_dirty(bio);
1688 bio_release_pages(bio);
1689 bio_put(bio);
1690 bio = next;
1691 }
1692 }
1693
1694 void bio_check_pages_dirty(struct bio *bio)
1695 {
1696 struct bio_vec *bvec;
1697 int nr_clean_pages = 0;
1698 int i;
1699
1700 bio_for_each_segment_all(bvec, bio, i) {
1701 struct page *page = bvec->bv_page;
1702
1703 if (PageDirty(page) || PageCompound(page)) {
1704 page_cache_release(page);
1705 bvec->bv_page = NULL;
1706 } else {
1707 nr_clean_pages++;
1708 }
1709 }
1710
1711 if (nr_clean_pages) {
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&bio_dirty_lock, flags);
1715 bio->bi_private = bio_dirty_list;
1716 bio_dirty_list = bio;
1717 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1718 schedule_work(&bio_dirty_work);
1719 } else {
1720 bio_put(bio);
1721 }
1722 }
1723
1724 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1725 void bio_flush_dcache_pages(struct bio *bi)
1726 {
1727 struct bio_vec bvec;
1728 struct bvec_iter iter;
1729
1730 bio_for_each_segment(bvec, bi, iter)
1731 flush_dcache_page(bvec.bv_page);
1732 }
1733 EXPORT_SYMBOL(bio_flush_dcache_pages);
1734 #endif
1735
1736 /**
1737 * bio_endio - end I/O on a bio
1738 * @bio: bio
1739 * @error: error, if any
1740 *
1741 * Description:
1742 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1743 * preferred way to end I/O on a bio, it takes care of clearing
1744 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1745 * established -Exxxx (-EIO, for instance) error values in case
1746 * something went wrong. No one should call bi_end_io() directly on a
1747 * bio unless they own it and thus know that it has an end_io
1748 * function.
1749 **/
1750 void bio_endio(struct bio *bio, int error)
1751 {
1752 while (bio) {
1753 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1754
1755 if (error)
1756 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1757 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1758 error = -EIO;
1759
1760 if (!atomic_dec_and_test(&bio->bi_remaining))
1761 return;
1762
1763 /*
1764 * Need to have a real endio function for chained bios,
1765 * otherwise various corner cases will break (like stacking
1766 * block devices that save/restore bi_end_io) - however, we want
1767 * to avoid unbounded recursion and blowing the stack. Tail call
1768 * optimization would handle this, but compiling with frame
1769 * pointers also disables gcc's sibling call optimization.
1770 */
1771 if (bio->bi_end_io == bio_chain_endio) {
1772 struct bio *parent = bio->bi_private;
1773 bio_put(bio);
1774 bio = parent;
1775 } else {
1776 if (bio->bi_end_io)
1777 bio->bi_end_io(bio, error);
1778 bio = NULL;
1779 }
1780 }
1781 }
1782 EXPORT_SYMBOL(bio_endio);
1783
1784 /**
1785 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1786 * @bio: bio
1787 * @error: error, if any
1788 *
1789 * For code that has saved and restored bi_end_io; thing hard before using this
1790 * function, probably you should've cloned the entire bio.
1791 **/
1792 void bio_endio_nodec(struct bio *bio, int error)
1793 {
1794 atomic_inc(&bio->bi_remaining);
1795 bio_endio(bio, error);
1796 }
1797 EXPORT_SYMBOL(bio_endio_nodec);
1798
1799 /**
1800 * bio_split - split a bio
1801 * @bio: bio to split
1802 * @sectors: number of sectors to split from the front of @bio
1803 * @gfp: gfp mask
1804 * @bs: bio set to allocate from
1805 *
1806 * Allocates and returns a new bio which represents @sectors from the start of
1807 * @bio, and updates @bio to represent the remaining sectors.
1808 *
1809 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1810 * responsibility to ensure that @bio is not freed before the split.
1811 */
1812 struct bio *bio_split(struct bio *bio, int sectors,
1813 gfp_t gfp, struct bio_set *bs)
1814 {
1815 struct bio *split = NULL;
1816
1817 BUG_ON(sectors <= 0);
1818 BUG_ON(sectors >= bio_sectors(bio));
1819
1820 split = bio_clone_fast(bio, gfp, bs);
1821 if (!split)
1822 return NULL;
1823
1824 split->bi_iter.bi_size = sectors << 9;
1825
1826 if (bio_integrity(split))
1827 bio_integrity_trim(split, 0, sectors);
1828
1829 bio_advance(bio, split->bi_iter.bi_size);
1830
1831 return split;
1832 }
1833 EXPORT_SYMBOL(bio_split);
1834
1835 /**
1836 * bio_trim - trim a bio
1837 * @bio: bio to trim
1838 * @offset: number of sectors to trim from the front of @bio
1839 * @size: size we want to trim @bio to, in sectors
1840 */
1841 void bio_trim(struct bio *bio, int offset, int size)
1842 {
1843 /* 'bio' is a cloned bio which we need to trim to match
1844 * the given offset and size.
1845 */
1846
1847 size <<= 9;
1848 if (offset == 0 && size == bio->bi_iter.bi_size)
1849 return;
1850
1851 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1852
1853 bio_advance(bio, offset << 9);
1854
1855 bio->bi_iter.bi_size = size;
1856 }
1857 EXPORT_SYMBOL_GPL(bio_trim);
1858
1859 /*
1860 * create memory pools for biovec's in a bio_set.
1861 * use the global biovec slabs created for general use.
1862 */
1863 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1864 {
1865 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1866
1867 return mempool_create_slab_pool(pool_entries, bp->slab);
1868 }
1869
1870 void bioset_free(struct bio_set *bs)
1871 {
1872 if (bs->rescue_workqueue)
1873 destroy_workqueue(bs->rescue_workqueue);
1874
1875 if (bs->bio_pool)
1876 mempool_destroy(bs->bio_pool);
1877
1878 if (bs->bvec_pool)
1879 mempool_destroy(bs->bvec_pool);
1880
1881 bioset_integrity_free(bs);
1882 bio_put_slab(bs);
1883
1884 kfree(bs);
1885 }
1886 EXPORT_SYMBOL(bioset_free);
1887
1888 /**
1889 * bioset_create - Create a bio_set
1890 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1891 * @front_pad: Number of bytes to allocate in front of the returned bio
1892 *
1893 * Description:
1894 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1895 * to ask for a number of bytes to be allocated in front of the bio.
1896 * Front pad allocation is useful for embedding the bio inside
1897 * another structure, to avoid allocating extra data to go with the bio.
1898 * Note that the bio must be embedded at the END of that structure always,
1899 * or things will break badly.
1900 */
1901 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1902 {
1903 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1904 struct bio_set *bs;
1905
1906 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1907 if (!bs)
1908 return NULL;
1909
1910 bs->front_pad = front_pad;
1911
1912 spin_lock_init(&bs->rescue_lock);
1913 bio_list_init(&bs->rescue_list);
1914 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1915
1916 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1917 if (!bs->bio_slab) {
1918 kfree(bs);
1919 return NULL;
1920 }
1921
1922 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1923 if (!bs->bio_pool)
1924 goto bad;
1925
1926 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1927 if (!bs->bvec_pool)
1928 goto bad;
1929
1930 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1931 if (!bs->rescue_workqueue)
1932 goto bad;
1933
1934 return bs;
1935 bad:
1936 bioset_free(bs);
1937 return NULL;
1938 }
1939 EXPORT_SYMBOL(bioset_create);
1940
1941 #ifdef CONFIG_BLK_CGROUP
1942 /**
1943 * bio_associate_current - associate a bio with %current
1944 * @bio: target bio
1945 *
1946 * Associate @bio with %current if it hasn't been associated yet. Block
1947 * layer will treat @bio as if it were issued by %current no matter which
1948 * task actually issues it.
1949 *
1950 * This function takes an extra reference of @task's io_context and blkcg
1951 * which will be put when @bio is released. The caller must own @bio,
1952 * ensure %current->io_context exists, and is responsible for synchronizing
1953 * calls to this function.
1954 */
1955 int bio_associate_current(struct bio *bio)
1956 {
1957 struct io_context *ioc;
1958 struct cgroup_subsys_state *css;
1959
1960 if (bio->bi_ioc)
1961 return -EBUSY;
1962
1963 ioc = current->io_context;
1964 if (!ioc)
1965 return -ENOENT;
1966
1967 /* acquire active ref on @ioc and associate */
1968 get_io_context_active(ioc);
1969 bio->bi_ioc = ioc;
1970
1971 /* associate blkcg if exists */
1972 rcu_read_lock();
1973 css = task_css(current, blkio_subsys_id);
1974 if (css && css_tryget(css))
1975 bio->bi_css = css;
1976 rcu_read_unlock();
1977
1978 return 0;
1979 }
1980
1981 /**
1982 * bio_disassociate_task - undo bio_associate_current()
1983 * @bio: target bio
1984 */
1985 void bio_disassociate_task(struct bio *bio)
1986 {
1987 if (bio->bi_ioc) {
1988 put_io_context(bio->bi_ioc);
1989 bio->bi_ioc = NULL;
1990 }
1991 if (bio->bi_css) {
1992 css_put(bio->bi_css);
1993 bio->bi_css = NULL;
1994 }
1995 }
1996
1997 #endif /* CONFIG_BLK_CGROUP */
1998
1999 static void __init biovec_init_slabs(void)
2000 {
2001 int i;
2002
2003 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2004 int size;
2005 struct biovec_slab *bvs = bvec_slabs + i;
2006
2007 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2008 bvs->slab = NULL;
2009 continue;
2010 }
2011
2012 size = bvs->nr_vecs * sizeof(struct bio_vec);
2013 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2014 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2015 }
2016 }
2017
2018 static int __init init_bio(void)
2019 {
2020 bio_slab_max = 2;
2021 bio_slab_nr = 0;
2022 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2023 if (!bio_slabs)
2024 panic("bio: can't allocate bios\n");
2025
2026 bio_integrity_init();
2027 biovec_init_slabs();
2028
2029 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2030 if (!fs_bio_set)
2031 panic("bio: can't allocate bios\n");
2032
2033 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2034 panic("bio: can't create integrity pool\n");
2035
2036 return 0;
2037 }
2038 subsys_initcall(init_bio);