]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63 vaf.fmt = fmt;
64 vaf.va = &args;
65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 va_end(args);
67 }
68
69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 struct inode *inode = bdev->bd_inode;
72 int ret;
73
74 spin_lock(&inode->i_lock);
75 while (inode->i_state & I_DIRTY) {
76 spin_unlock(&inode->i_lock);
77 ret = write_inode_now(inode, true);
78 if (ret) {
79 char name[BDEVNAME_SIZE];
80 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 "for block device %s (err=%d).\n",
82 bdevname(bdev, name), ret);
83 }
84 spin_lock(&inode->i_lock);
85 }
86 spin_unlock(&inode->i_lock);
87 }
88
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
90 void kill_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 return;
96
97 invalidate_bh_lrus();
98 truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101
102 /* Invalidate clean unused buffers and pagecache. */
103 void invalidate_bdev(struct block_device *bdev)
104 {
105 struct address_space *mapping = bdev->bd_inode->i_mapping;
106
107 if (mapping->nrpages) {
108 invalidate_bh_lrus();
109 lru_add_drain_all(); /* make sure all lru add caches are flushed */
110 invalidate_mapping_pages(mapping, 0, -1);
111 }
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
230
231 ret = bio_iov_iter_get_pages(&bio, iter);
232 if (unlikely(ret))
233 return ret;
234 ret = bio.bi_iter.bi_size;
235
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
239 should_dirty = true;
240 } else {
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
243 }
244
245 qc = submit_bio(&bio);
246 for (;;) {
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
249 break;
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
252 io_schedule();
253 }
254 __set_current_state(TASK_RUNNING);
255
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
260 }
261
262 if (vecs != inline_vecs)
263 kfree(vecs);
264
265 if (unlikely(bio.bi_error))
266 ret = bio.bi_error;
267
268 bio_uninit(&bio);
269
270 return ret;
271 }
272
273 struct blkdev_dio {
274 union {
275 struct kiocb *iocb;
276 struct task_struct *waiter;
277 };
278 size_t size;
279 atomic_t ref;
280 bool multi_bio : 1;
281 bool should_dirty : 1;
282 bool is_sync : 1;
283 struct bio bio;
284 };
285
286 static struct bio_set *blkdev_dio_pool __read_mostly;
287
288 static void blkdev_bio_end_io(struct bio *bio)
289 {
290 struct blkdev_dio *dio = bio->bi_private;
291 bool should_dirty = dio->should_dirty;
292
293 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
294 if (bio->bi_error && !dio->bio.bi_error)
295 dio->bio.bi_error = bio->bi_error;
296 } else {
297 if (!dio->is_sync) {
298 struct kiocb *iocb = dio->iocb;
299 ssize_t ret = dio->bio.bi_error;
300
301 if (likely(!ret)) {
302 ret = dio->size;
303 iocb->ki_pos += ret;
304 }
305
306 dio->iocb->ki_complete(iocb, ret, 0);
307 bio_put(&dio->bio);
308 } else {
309 struct task_struct *waiter = dio->waiter;
310
311 WRITE_ONCE(dio->waiter, NULL);
312 wake_up_process(waiter);
313 }
314 }
315
316 if (should_dirty) {
317 bio_check_pages_dirty(bio);
318 } else {
319 struct bio_vec *bvec;
320 int i;
321
322 bio_for_each_segment_all(bvec, bio, i)
323 put_page(bvec->bv_page);
324 bio_put(bio);
325 }
326 }
327
328 static ssize_t
329 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
330 {
331 struct file *file = iocb->ki_filp;
332 struct inode *inode = bdev_file_inode(file);
333 struct block_device *bdev = I_BDEV(inode);
334 struct blk_plug plug;
335 struct blkdev_dio *dio;
336 struct bio *bio;
337 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
338 loff_t pos = iocb->ki_pos;
339 blk_qc_t qc = BLK_QC_T_NONE;
340 int ret;
341
342 if ((pos | iov_iter_alignment(iter)) &
343 (bdev_logical_block_size(bdev) - 1))
344 return -EINVAL;
345
346 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
347 bio_get(bio); /* extra ref for the completion handler */
348
349 dio = container_of(bio, struct blkdev_dio, bio);
350 dio->is_sync = is_sync = is_sync_kiocb(iocb);
351 if (dio->is_sync)
352 dio->waiter = current;
353 else
354 dio->iocb = iocb;
355
356 dio->size = 0;
357 dio->multi_bio = false;
358 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
359
360 blk_start_plug(&plug);
361 for (;;) {
362 bio->bi_bdev = bdev;
363 bio->bi_iter.bi_sector = pos >> 9;
364 bio->bi_private = dio;
365 bio->bi_end_io = blkdev_bio_end_io;
366
367 ret = bio_iov_iter_get_pages(bio, iter);
368 if (unlikely(ret)) {
369 bio->bi_error = ret;
370 bio_endio(bio);
371 break;
372 }
373
374 if (is_read) {
375 bio->bi_opf = REQ_OP_READ;
376 if (dio->should_dirty)
377 bio_set_pages_dirty(bio);
378 } else {
379 bio->bi_opf = dio_bio_write_op(iocb);
380 task_io_account_write(bio->bi_iter.bi_size);
381 }
382
383 dio->size += bio->bi_iter.bi_size;
384 pos += bio->bi_iter.bi_size;
385
386 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
387 if (!nr_pages) {
388 qc = submit_bio(bio);
389 break;
390 }
391
392 if (!dio->multi_bio) {
393 dio->multi_bio = true;
394 atomic_set(&dio->ref, 2);
395 } else {
396 atomic_inc(&dio->ref);
397 }
398
399 submit_bio(bio);
400 bio = bio_alloc(GFP_KERNEL, nr_pages);
401 }
402 blk_finish_plug(&plug);
403
404 if (!is_sync)
405 return -EIOCBQUEUED;
406
407 for (;;) {
408 set_current_state(TASK_UNINTERRUPTIBLE);
409 if (!READ_ONCE(dio->waiter))
410 break;
411
412 if (!(iocb->ki_flags & IOCB_HIPRI) ||
413 !blk_mq_poll(bdev_get_queue(bdev), qc))
414 io_schedule();
415 }
416 __set_current_state(TASK_RUNNING);
417
418 ret = dio->bio.bi_error;
419 if (likely(!ret))
420 ret = dio->size;
421
422 bio_put(&dio->bio);
423 return ret;
424 }
425
426 static ssize_t
427 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
428 {
429 int nr_pages;
430
431 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
432 if (!nr_pages)
433 return 0;
434 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
435 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
436
437 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
438 }
439
440 static __init int blkdev_init(void)
441 {
442 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
443 if (!blkdev_dio_pool)
444 return -ENOMEM;
445 return 0;
446 }
447 module_init(blkdev_init);
448
449 int __sync_blockdev(struct block_device *bdev, int wait)
450 {
451 if (!bdev)
452 return 0;
453 if (!wait)
454 return filemap_flush(bdev->bd_inode->i_mapping);
455 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
456 }
457
458 /*
459 * Write out and wait upon all the dirty data associated with a block
460 * device via its mapping. Does not take the superblock lock.
461 */
462 int sync_blockdev(struct block_device *bdev)
463 {
464 return __sync_blockdev(bdev, 1);
465 }
466 EXPORT_SYMBOL(sync_blockdev);
467
468 /*
469 * Write out and wait upon all dirty data associated with this
470 * device. Filesystem data as well as the underlying block
471 * device. Takes the superblock lock.
472 */
473 int fsync_bdev(struct block_device *bdev)
474 {
475 struct super_block *sb = get_super(bdev);
476 if (sb) {
477 int res = sync_filesystem(sb);
478 drop_super(sb);
479 return res;
480 }
481 return sync_blockdev(bdev);
482 }
483 EXPORT_SYMBOL(fsync_bdev);
484
485 /**
486 * freeze_bdev -- lock a filesystem and force it into a consistent state
487 * @bdev: blockdevice to lock
488 *
489 * If a superblock is found on this device, we take the s_umount semaphore
490 * on it to make sure nobody unmounts until the snapshot creation is done.
491 * The reference counter (bd_fsfreeze_count) guarantees that only the last
492 * unfreeze process can unfreeze the frozen filesystem actually when multiple
493 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
494 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
495 * actually.
496 */
497 struct super_block *freeze_bdev(struct block_device *bdev)
498 {
499 struct super_block *sb;
500 int error = 0;
501
502 mutex_lock(&bdev->bd_fsfreeze_mutex);
503 if (++bdev->bd_fsfreeze_count > 1) {
504 /*
505 * We don't even need to grab a reference - the first call
506 * to freeze_bdev grab an active reference and only the last
507 * thaw_bdev drops it.
508 */
509 sb = get_super(bdev);
510 if (sb)
511 drop_super(sb);
512 mutex_unlock(&bdev->bd_fsfreeze_mutex);
513 return sb;
514 }
515
516 sb = get_active_super(bdev);
517 if (!sb)
518 goto out;
519 if (sb->s_op->freeze_super)
520 error = sb->s_op->freeze_super(sb);
521 else
522 error = freeze_super(sb);
523 if (error) {
524 deactivate_super(sb);
525 bdev->bd_fsfreeze_count--;
526 mutex_unlock(&bdev->bd_fsfreeze_mutex);
527 return ERR_PTR(error);
528 }
529 deactivate_super(sb);
530 out:
531 sync_blockdev(bdev);
532 mutex_unlock(&bdev->bd_fsfreeze_mutex);
533 return sb; /* thaw_bdev releases s->s_umount */
534 }
535 EXPORT_SYMBOL(freeze_bdev);
536
537 /**
538 * thaw_bdev -- unlock filesystem
539 * @bdev: blockdevice to unlock
540 * @sb: associated superblock
541 *
542 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
543 */
544 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
545 {
546 int error = -EINVAL;
547
548 mutex_lock(&bdev->bd_fsfreeze_mutex);
549 if (!bdev->bd_fsfreeze_count)
550 goto out;
551
552 error = 0;
553 if (--bdev->bd_fsfreeze_count > 0)
554 goto out;
555
556 if (!sb)
557 goto out;
558
559 if (sb->s_op->thaw_super)
560 error = sb->s_op->thaw_super(sb);
561 else
562 error = thaw_super(sb);
563 if (error)
564 bdev->bd_fsfreeze_count++;
565 out:
566 mutex_unlock(&bdev->bd_fsfreeze_mutex);
567 return error;
568 }
569 EXPORT_SYMBOL(thaw_bdev);
570
571 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
572 {
573 return block_write_full_page(page, blkdev_get_block, wbc);
574 }
575
576 static int blkdev_readpage(struct file * file, struct page * page)
577 {
578 return block_read_full_page(page, blkdev_get_block);
579 }
580
581 static int blkdev_readpages(struct file *file, struct address_space *mapping,
582 struct list_head *pages, unsigned nr_pages)
583 {
584 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
585 }
586
587 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
588 loff_t pos, unsigned len, unsigned flags,
589 struct page **pagep, void **fsdata)
590 {
591 return block_write_begin(mapping, pos, len, flags, pagep,
592 blkdev_get_block);
593 }
594
595 static int blkdev_write_end(struct file *file, struct address_space *mapping,
596 loff_t pos, unsigned len, unsigned copied,
597 struct page *page, void *fsdata)
598 {
599 int ret;
600 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
601
602 unlock_page(page);
603 put_page(page);
604
605 return ret;
606 }
607
608 /*
609 * private llseek:
610 * for a block special file file_inode(file)->i_size is zero
611 * so we compute the size by hand (just as in block_read/write above)
612 */
613 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
614 {
615 struct inode *bd_inode = bdev_file_inode(file);
616 loff_t retval;
617
618 inode_lock(bd_inode);
619 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
620 inode_unlock(bd_inode);
621 return retval;
622 }
623
624 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
625 {
626 struct inode *bd_inode = bdev_file_inode(filp);
627 struct block_device *bdev = I_BDEV(bd_inode);
628 int error;
629
630 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
631 if (error)
632 return error;
633
634 /*
635 * There is no need to serialise calls to blkdev_issue_flush with
636 * i_mutex and doing so causes performance issues with concurrent
637 * O_SYNC writers to a block device.
638 */
639 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
640 if (error == -EOPNOTSUPP)
641 error = 0;
642
643 return error;
644 }
645 EXPORT_SYMBOL(blkdev_fsync);
646
647 /**
648 * bdev_read_page() - Start reading a page from a block device
649 * @bdev: The device to read the page from
650 * @sector: The offset on the device to read the page to (need not be aligned)
651 * @page: The page to read
652 *
653 * On entry, the page should be locked. It will be unlocked when the page
654 * has been read. If the block driver implements rw_page synchronously,
655 * that will be true on exit from this function, but it need not be.
656 *
657 * Errors returned by this function are usually "soft", eg out of memory, or
658 * queue full; callers should try a different route to read this page rather
659 * than propagate an error back up the stack.
660 *
661 * Return: negative errno if an error occurs, 0 if submission was successful.
662 */
663 int bdev_read_page(struct block_device *bdev, sector_t sector,
664 struct page *page)
665 {
666 const struct block_device_operations *ops = bdev->bd_disk->fops;
667 int result = -EOPNOTSUPP;
668
669 if (!ops->rw_page || bdev_get_integrity(bdev))
670 return result;
671
672 result = blk_queue_enter(bdev->bd_queue, false);
673 if (result)
674 return result;
675 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
676 blk_queue_exit(bdev->bd_queue);
677 return result;
678 }
679 EXPORT_SYMBOL_GPL(bdev_read_page);
680
681 /**
682 * bdev_write_page() - Start writing a page to a block device
683 * @bdev: The device to write the page to
684 * @sector: The offset on the device to write the page to (need not be aligned)
685 * @page: The page to write
686 * @wbc: The writeback_control for the write
687 *
688 * On entry, the page should be locked and not currently under writeback.
689 * On exit, if the write started successfully, the page will be unlocked and
690 * under writeback. If the write failed already (eg the driver failed to
691 * queue the page to the device), the page will still be locked. If the
692 * caller is a ->writepage implementation, it will need to unlock the page.
693 *
694 * Errors returned by this function are usually "soft", eg out of memory, or
695 * queue full; callers should try a different route to write this page rather
696 * than propagate an error back up the stack.
697 *
698 * Return: negative errno if an error occurs, 0 if submission was successful.
699 */
700 int bdev_write_page(struct block_device *bdev, sector_t sector,
701 struct page *page, struct writeback_control *wbc)
702 {
703 int result;
704 const struct block_device_operations *ops = bdev->bd_disk->fops;
705
706 if (!ops->rw_page || bdev_get_integrity(bdev))
707 return -EOPNOTSUPP;
708 result = blk_queue_enter(bdev->bd_queue, false);
709 if (result)
710 return result;
711
712 set_page_writeback(page);
713 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
714 if (result)
715 end_page_writeback(page);
716 else
717 unlock_page(page);
718 blk_queue_exit(bdev->bd_queue);
719 return result;
720 }
721 EXPORT_SYMBOL_GPL(bdev_write_page);
722
723 /*
724 * pseudo-fs
725 */
726
727 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
728 static struct kmem_cache * bdev_cachep __read_mostly;
729
730 static struct inode *bdev_alloc_inode(struct super_block *sb)
731 {
732 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
733 if (!ei)
734 return NULL;
735 return &ei->vfs_inode;
736 }
737
738 static void bdev_i_callback(struct rcu_head *head)
739 {
740 struct inode *inode = container_of(head, struct inode, i_rcu);
741 struct bdev_inode *bdi = BDEV_I(inode);
742
743 kmem_cache_free(bdev_cachep, bdi);
744 }
745
746 static void bdev_destroy_inode(struct inode *inode)
747 {
748 call_rcu(&inode->i_rcu, bdev_i_callback);
749 }
750
751 static void init_once(void *foo)
752 {
753 struct bdev_inode *ei = (struct bdev_inode *) foo;
754 struct block_device *bdev = &ei->bdev;
755
756 memset(bdev, 0, sizeof(*bdev));
757 mutex_init(&bdev->bd_mutex);
758 INIT_LIST_HEAD(&bdev->bd_list);
759 #ifdef CONFIG_SYSFS
760 INIT_LIST_HEAD(&bdev->bd_holder_disks);
761 #endif
762 bdev->bd_bdi = &noop_backing_dev_info;
763 inode_init_once(&ei->vfs_inode);
764 /* Initialize mutex for freeze. */
765 mutex_init(&bdev->bd_fsfreeze_mutex);
766 }
767
768 static void bdev_evict_inode(struct inode *inode)
769 {
770 struct block_device *bdev = &BDEV_I(inode)->bdev;
771 truncate_inode_pages_final(&inode->i_data);
772 invalidate_inode_buffers(inode); /* is it needed here? */
773 clear_inode(inode);
774 spin_lock(&bdev_lock);
775 list_del_init(&bdev->bd_list);
776 spin_unlock(&bdev_lock);
777 /* Detach inode from wb early as bdi_put() may free bdi->wb */
778 inode_detach_wb(inode);
779 if (bdev->bd_bdi != &noop_backing_dev_info) {
780 bdi_put(bdev->bd_bdi);
781 bdev->bd_bdi = &noop_backing_dev_info;
782 }
783 }
784
785 static const struct super_operations bdev_sops = {
786 .statfs = simple_statfs,
787 .alloc_inode = bdev_alloc_inode,
788 .destroy_inode = bdev_destroy_inode,
789 .drop_inode = generic_delete_inode,
790 .evict_inode = bdev_evict_inode,
791 };
792
793 static struct dentry *bd_mount(struct file_system_type *fs_type,
794 int flags, const char *dev_name, void *data)
795 {
796 struct dentry *dent;
797 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
798 if (!IS_ERR(dent))
799 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
800 return dent;
801 }
802
803 static struct file_system_type bd_type = {
804 .name = "bdev",
805 .mount = bd_mount,
806 .kill_sb = kill_anon_super,
807 };
808
809 struct super_block *blockdev_superblock __read_mostly;
810 EXPORT_SYMBOL_GPL(blockdev_superblock);
811
812 void __init bdev_cache_init(void)
813 {
814 int err;
815 static struct vfsmount *bd_mnt;
816
817 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
818 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
819 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
820 init_once);
821 err = register_filesystem(&bd_type);
822 if (err)
823 panic("Cannot register bdev pseudo-fs");
824 bd_mnt = kern_mount(&bd_type);
825 if (IS_ERR(bd_mnt))
826 panic("Cannot create bdev pseudo-fs");
827 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
828 }
829
830 /*
831 * Most likely _very_ bad one - but then it's hardly critical for small
832 * /dev and can be fixed when somebody will need really large one.
833 * Keep in mind that it will be fed through icache hash function too.
834 */
835 static inline unsigned long hash(dev_t dev)
836 {
837 return MAJOR(dev)+MINOR(dev);
838 }
839
840 static int bdev_test(struct inode *inode, void *data)
841 {
842 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
843 }
844
845 static int bdev_set(struct inode *inode, void *data)
846 {
847 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
848 return 0;
849 }
850
851 static LIST_HEAD(all_bdevs);
852
853 /*
854 * If there is a bdev inode for this device, unhash it so that it gets evicted
855 * as soon as last inode reference is dropped.
856 */
857 void bdev_unhash_inode(dev_t dev)
858 {
859 struct inode *inode;
860
861 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
862 if (inode) {
863 remove_inode_hash(inode);
864 iput(inode);
865 }
866 }
867
868 struct block_device *bdget(dev_t dev)
869 {
870 struct block_device *bdev;
871 struct inode *inode;
872
873 inode = iget5_locked(blockdev_superblock, hash(dev),
874 bdev_test, bdev_set, &dev);
875
876 if (!inode)
877 return NULL;
878
879 bdev = &BDEV_I(inode)->bdev;
880
881 if (inode->i_state & I_NEW) {
882 bdev->bd_contains = NULL;
883 bdev->bd_super = NULL;
884 bdev->bd_inode = inode;
885 bdev->bd_block_size = i_blocksize(inode);
886 bdev->bd_part_count = 0;
887 bdev->bd_invalidated = 0;
888 inode->i_mode = S_IFBLK;
889 inode->i_rdev = dev;
890 inode->i_bdev = bdev;
891 inode->i_data.a_ops = &def_blk_aops;
892 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
893 spin_lock(&bdev_lock);
894 list_add(&bdev->bd_list, &all_bdevs);
895 spin_unlock(&bdev_lock);
896 unlock_new_inode(inode);
897 }
898 return bdev;
899 }
900
901 EXPORT_SYMBOL(bdget);
902
903 /**
904 * bdgrab -- Grab a reference to an already referenced block device
905 * @bdev: Block device to grab a reference to.
906 */
907 struct block_device *bdgrab(struct block_device *bdev)
908 {
909 ihold(bdev->bd_inode);
910 return bdev;
911 }
912 EXPORT_SYMBOL(bdgrab);
913
914 long nr_blockdev_pages(void)
915 {
916 struct block_device *bdev;
917 long ret = 0;
918 spin_lock(&bdev_lock);
919 list_for_each_entry(bdev, &all_bdevs, bd_list) {
920 ret += bdev->bd_inode->i_mapping->nrpages;
921 }
922 spin_unlock(&bdev_lock);
923 return ret;
924 }
925
926 void bdput(struct block_device *bdev)
927 {
928 iput(bdev->bd_inode);
929 }
930
931 EXPORT_SYMBOL(bdput);
932
933 static struct block_device *bd_acquire(struct inode *inode)
934 {
935 struct block_device *bdev;
936
937 spin_lock(&bdev_lock);
938 bdev = inode->i_bdev;
939 if (bdev && !inode_unhashed(bdev->bd_inode)) {
940 bdgrab(bdev);
941 spin_unlock(&bdev_lock);
942 return bdev;
943 }
944 spin_unlock(&bdev_lock);
945
946 /*
947 * i_bdev references block device inode that was already shut down
948 * (corresponding device got removed). Remove the reference and look
949 * up block device inode again just in case new device got
950 * reestablished under the same device number.
951 */
952 if (bdev)
953 bd_forget(inode);
954
955 bdev = bdget(inode->i_rdev);
956 if (bdev) {
957 spin_lock(&bdev_lock);
958 if (!inode->i_bdev) {
959 /*
960 * We take an additional reference to bd_inode,
961 * and it's released in clear_inode() of inode.
962 * So, we can access it via ->i_mapping always
963 * without igrab().
964 */
965 bdgrab(bdev);
966 inode->i_bdev = bdev;
967 inode->i_mapping = bdev->bd_inode->i_mapping;
968 }
969 spin_unlock(&bdev_lock);
970 }
971 return bdev;
972 }
973
974 /* Call when you free inode */
975
976 void bd_forget(struct inode *inode)
977 {
978 struct block_device *bdev = NULL;
979
980 spin_lock(&bdev_lock);
981 if (!sb_is_blkdev_sb(inode->i_sb))
982 bdev = inode->i_bdev;
983 inode->i_bdev = NULL;
984 inode->i_mapping = &inode->i_data;
985 spin_unlock(&bdev_lock);
986
987 if (bdev)
988 bdput(bdev);
989 }
990
991 /**
992 * bd_may_claim - test whether a block device can be claimed
993 * @bdev: block device of interest
994 * @whole: whole block device containing @bdev, may equal @bdev
995 * @holder: holder trying to claim @bdev
996 *
997 * Test whether @bdev can be claimed by @holder.
998 *
999 * CONTEXT:
1000 * spin_lock(&bdev_lock).
1001 *
1002 * RETURNS:
1003 * %true if @bdev can be claimed, %false otherwise.
1004 */
1005 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1006 void *holder)
1007 {
1008 if (bdev->bd_holder == holder)
1009 return true; /* already a holder */
1010 else if (bdev->bd_holder != NULL)
1011 return false; /* held by someone else */
1012 else if (whole == bdev)
1013 return true; /* is a whole device which isn't held */
1014
1015 else if (whole->bd_holder == bd_may_claim)
1016 return true; /* is a partition of a device that is being partitioned */
1017 else if (whole->bd_holder != NULL)
1018 return false; /* is a partition of a held device */
1019 else
1020 return true; /* is a partition of an un-held device */
1021 }
1022
1023 /**
1024 * bd_prepare_to_claim - prepare to claim a block device
1025 * @bdev: block device of interest
1026 * @whole: the whole device containing @bdev, may equal @bdev
1027 * @holder: holder trying to claim @bdev
1028 *
1029 * Prepare to claim @bdev. This function fails if @bdev is already
1030 * claimed by another holder and waits if another claiming is in
1031 * progress. This function doesn't actually claim. On successful
1032 * return, the caller has ownership of bd_claiming and bd_holder[s].
1033 *
1034 * CONTEXT:
1035 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1036 * it multiple times.
1037 *
1038 * RETURNS:
1039 * 0 if @bdev can be claimed, -EBUSY otherwise.
1040 */
1041 static int bd_prepare_to_claim(struct block_device *bdev,
1042 struct block_device *whole, void *holder)
1043 {
1044 retry:
1045 /* if someone else claimed, fail */
1046 if (!bd_may_claim(bdev, whole, holder))
1047 return -EBUSY;
1048
1049 /* if claiming is already in progress, wait for it to finish */
1050 if (whole->bd_claiming) {
1051 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1052 DEFINE_WAIT(wait);
1053
1054 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1055 spin_unlock(&bdev_lock);
1056 schedule();
1057 finish_wait(wq, &wait);
1058 spin_lock(&bdev_lock);
1059 goto retry;
1060 }
1061
1062 /* yay, all mine */
1063 return 0;
1064 }
1065
1066 /**
1067 * bd_start_claiming - start claiming a block device
1068 * @bdev: block device of interest
1069 * @holder: holder trying to claim @bdev
1070 *
1071 * @bdev is about to be opened exclusively. Check @bdev can be opened
1072 * exclusively and mark that an exclusive open is in progress. Each
1073 * successful call to this function must be matched with a call to
1074 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1075 * fail).
1076 *
1077 * This function is used to gain exclusive access to the block device
1078 * without actually causing other exclusive open attempts to fail. It
1079 * should be used when the open sequence itself requires exclusive
1080 * access but may subsequently fail.
1081 *
1082 * CONTEXT:
1083 * Might sleep.
1084 *
1085 * RETURNS:
1086 * Pointer to the block device containing @bdev on success, ERR_PTR()
1087 * value on failure.
1088 */
1089 static struct block_device *bd_start_claiming(struct block_device *bdev,
1090 void *holder)
1091 {
1092 struct gendisk *disk;
1093 struct block_device *whole;
1094 int partno, err;
1095
1096 might_sleep();
1097
1098 /*
1099 * @bdev might not have been initialized properly yet, look up
1100 * and grab the outer block device the hard way.
1101 */
1102 disk = get_gendisk(bdev->bd_dev, &partno);
1103 if (!disk)
1104 return ERR_PTR(-ENXIO);
1105
1106 /*
1107 * Normally, @bdev should equal what's returned from bdget_disk()
1108 * if partno is 0; however, some drivers (floppy) use multiple
1109 * bdev's for the same physical device and @bdev may be one of the
1110 * aliases. Keep @bdev if partno is 0. This means claimer
1111 * tracking is broken for those devices but it has always been that
1112 * way.
1113 */
1114 if (partno)
1115 whole = bdget_disk(disk, 0);
1116 else
1117 whole = bdgrab(bdev);
1118
1119 module_put(disk->fops->owner);
1120 put_disk(disk);
1121 if (!whole)
1122 return ERR_PTR(-ENOMEM);
1123
1124 /* prepare to claim, if successful, mark claiming in progress */
1125 spin_lock(&bdev_lock);
1126
1127 err = bd_prepare_to_claim(bdev, whole, holder);
1128 if (err == 0) {
1129 whole->bd_claiming = holder;
1130 spin_unlock(&bdev_lock);
1131 return whole;
1132 } else {
1133 spin_unlock(&bdev_lock);
1134 bdput(whole);
1135 return ERR_PTR(err);
1136 }
1137 }
1138
1139 #ifdef CONFIG_SYSFS
1140 struct bd_holder_disk {
1141 struct list_head list;
1142 struct gendisk *disk;
1143 int refcnt;
1144 };
1145
1146 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1147 struct gendisk *disk)
1148 {
1149 struct bd_holder_disk *holder;
1150
1151 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1152 if (holder->disk == disk)
1153 return holder;
1154 return NULL;
1155 }
1156
1157 static int add_symlink(struct kobject *from, struct kobject *to)
1158 {
1159 return sysfs_create_link(from, to, kobject_name(to));
1160 }
1161
1162 static void del_symlink(struct kobject *from, struct kobject *to)
1163 {
1164 sysfs_remove_link(from, kobject_name(to));
1165 }
1166
1167 /**
1168 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1169 * @bdev: the claimed slave bdev
1170 * @disk: the holding disk
1171 *
1172 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1173 *
1174 * This functions creates the following sysfs symlinks.
1175 *
1176 * - from "slaves" directory of the holder @disk to the claimed @bdev
1177 * - from "holders" directory of the @bdev to the holder @disk
1178 *
1179 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1180 * passed to bd_link_disk_holder(), then:
1181 *
1182 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1183 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1184 *
1185 * The caller must have claimed @bdev before calling this function and
1186 * ensure that both @bdev and @disk are valid during the creation and
1187 * lifetime of these symlinks.
1188 *
1189 * CONTEXT:
1190 * Might sleep.
1191 *
1192 * RETURNS:
1193 * 0 on success, -errno on failure.
1194 */
1195 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1196 {
1197 struct bd_holder_disk *holder;
1198 int ret = 0;
1199
1200 mutex_lock(&bdev->bd_mutex);
1201
1202 WARN_ON_ONCE(!bdev->bd_holder);
1203
1204 /* FIXME: remove the following once add_disk() handles errors */
1205 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1206 goto out_unlock;
1207
1208 holder = bd_find_holder_disk(bdev, disk);
1209 if (holder) {
1210 holder->refcnt++;
1211 goto out_unlock;
1212 }
1213
1214 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1215 if (!holder) {
1216 ret = -ENOMEM;
1217 goto out_unlock;
1218 }
1219
1220 INIT_LIST_HEAD(&holder->list);
1221 holder->disk = disk;
1222 holder->refcnt = 1;
1223
1224 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1225 if (ret)
1226 goto out_free;
1227
1228 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1229 if (ret)
1230 goto out_del;
1231 /*
1232 * bdev could be deleted beneath us which would implicitly destroy
1233 * the holder directory. Hold on to it.
1234 */
1235 kobject_get(bdev->bd_part->holder_dir);
1236
1237 list_add(&holder->list, &bdev->bd_holder_disks);
1238 goto out_unlock;
1239
1240 out_del:
1241 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1242 out_free:
1243 kfree(holder);
1244 out_unlock:
1245 mutex_unlock(&bdev->bd_mutex);
1246 return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1249
1250 /**
1251 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1252 * @bdev: the calimed slave bdev
1253 * @disk: the holding disk
1254 *
1255 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1256 *
1257 * CONTEXT:
1258 * Might sleep.
1259 */
1260 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1261 {
1262 struct bd_holder_disk *holder;
1263
1264 mutex_lock(&bdev->bd_mutex);
1265
1266 holder = bd_find_holder_disk(bdev, disk);
1267
1268 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1269 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1270 del_symlink(bdev->bd_part->holder_dir,
1271 &disk_to_dev(disk)->kobj);
1272 kobject_put(bdev->bd_part->holder_dir);
1273 list_del_init(&holder->list);
1274 kfree(holder);
1275 }
1276
1277 mutex_unlock(&bdev->bd_mutex);
1278 }
1279 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1280 #endif
1281
1282 /**
1283 * flush_disk - invalidates all buffer-cache entries on a disk
1284 *
1285 * @bdev: struct block device to be flushed
1286 * @kill_dirty: flag to guide handling of dirty inodes
1287 *
1288 * Invalidates all buffer-cache entries on a disk. It should be called
1289 * when a disk has been changed -- either by a media change or online
1290 * resize.
1291 */
1292 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1293 {
1294 if (__invalidate_device(bdev, kill_dirty)) {
1295 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1296 "resized disk %s\n",
1297 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1298 }
1299
1300 if (!bdev->bd_disk)
1301 return;
1302 if (disk_part_scan_enabled(bdev->bd_disk))
1303 bdev->bd_invalidated = 1;
1304 }
1305
1306 /**
1307 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1308 * @disk: struct gendisk to check
1309 * @bdev: struct bdev to adjust.
1310 *
1311 * This routine checks to see if the bdev size does not match the disk size
1312 * and adjusts it if it differs.
1313 */
1314 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1315 {
1316 loff_t disk_size, bdev_size;
1317
1318 disk_size = (loff_t)get_capacity(disk) << 9;
1319 bdev_size = i_size_read(bdev->bd_inode);
1320 if (disk_size != bdev_size) {
1321 printk(KERN_INFO
1322 "%s: detected capacity change from %lld to %lld\n",
1323 disk->disk_name, bdev_size, disk_size);
1324 i_size_write(bdev->bd_inode, disk_size);
1325 flush_disk(bdev, false);
1326 }
1327 }
1328 EXPORT_SYMBOL(check_disk_size_change);
1329
1330 /**
1331 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1332 * @disk: struct gendisk to be revalidated
1333 *
1334 * This routine is a wrapper for lower-level driver's revalidate_disk
1335 * call-backs. It is used to do common pre and post operations needed
1336 * for all revalidate_disk operations.
1337 */
1338 int revalidate_disk(struct gendisk *disk)
1339 {
1340 struct block_device *bdev;
1341 int ret = 0;
1342
1343 if (disk->fops->revalidate_disk)
1344 ret = disk->fops->revalidate_disk(disk);
1345 bdev = bdget_disk(disk, 0);
1346 if (!bdev)
1347 return ret;
1348
1349 mutex_lock(&bdev->bd_mutex);
1350 check_disk_size_change(disk, bdev);
1351 bdev->bd_invalidated = 0;
1352 mutex_unlock(&bdev->bd_mutex);
1353 bdput(bdev);
1354 return ret;
1355 }
1356 EXPORT_SYMBOL(revalidate_disk);
1357
1358 /*
1359 * This routine checks whether a removable media has been changed,
1360 * and invalidates all buffer-cache-entries in that case. This
1361 * is a relatively slow routine, so we have to try to minimize using
1362 * it. Thus it is called only upon a 'mount' or 'open'. This
1363 * is the best way of combining speed and utility, I think.
1364 * People changing diskettes in the middle of an operation deserve
1365 * to lose :-)
1366 */
1367 int check_disk_change(struct block_device *bdev)
1368 {
1369 struct gendisk *disk = bdev->bd_disk;
1370 const struct block_device_operations *bdops = disk->fops;
1371 unsigned int events;
1372
1373 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1374 DISK_EVENT_EJECT_REQUEST);
1375 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1376 return 0;
1377
1378 flush_disk(bdev, true);
1379 if (bdops->revalidate_disk)
1380 bdops->revalidate_disk(bdev->bd_disk);
1381 return 1;
1382 }
1383
1384 EXPORT_SYMBOL(check_disk_change);
1385
1386 void bd_set_size(struct block_device *bdev, loff_t size)
1387 {
1388 unsigned bsize = bdev_logical_block_size(bdev);
1389
1390 inode_lock(bdev->bd_inode);
1391 i_size_write(bdev->bd_inode, size);
1392 inode_unlock(bdev->bd_inode);
1393 while (bsize < PAGE_SIZE) {
1394 if (size & bsize)
1395 break;
1396 bsize <<= 1;
1397 }
1398 bdev->bd_block_size = bsize;
1399 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1400 }
1401 EXPORT_SYMBOL(bd_set_size);
1402
1403 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1404
1405 /*
1406 * bd_mutex locking:
1407 *
1408 * mutex_lock(part->bd_mutex)
1409 * mutex_lock_nested(whole->bd_mutex, 1)
1410 */
1411
1412 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1413 {
1414 struct gendisk *disk;
1415 struct module *owner;
1416 int ret;
1417 int partno;
1418 int perm = 0;
1419
1420 if (mode & FMODE_READ)
1421 perm |= MAY_READ;
1422 if (mode & FMODE_WRITE)
1423 perm |= MAY_WRITE;
1424 /*
1425 * hooks: /n/, see "layering violations".
1426 */
1427 if (!for_part) {
1428 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1429 if (ret != 0) {
1430 bdput(bdev);
1431 return ret;
1432 }
1433 }
1434
1435 restart:
1436
1437 ret = -ENXIO;
1438 disk = get_gendisk(bdev->bd_dev, &partno);
1439 if (!disk)
1440 goto out;
1441 owner = disk->fops->owner;
1442
1443 disk_block_events(disk);
1444 mutex_lock_nested(&bdev->bd_mutex, for_part);
1445 if (!bdev->bd_openers) {
1446 bdev->bd_disk = disk;
1447 bdev->bd_queue = disk->queue;
1448 bdev->bd_contains = bdev;
1449
1450 if (!partno) {
1451 ret = -ENXIO;
1452 bdev->bd_part = disk_get_part(disk, partno);
1453 if (!bdev->bd_part)
1454 goto out_clear;
1455
1456 ret = 0;
1457 if (disk->fops->open) {
1458 ret = disk->fops->open(bdev, mode);
1459 if (ret == -ERESTARTSYS) {
1460 /* Lost a race with 'disk' being
1461 * deleted, try again.
1462 * See md.c
1463 */
1464 disk_put_part(bdev->bd_part);
1465 bdev->bd_part = NULL;
1466 bdev->bd_disk = NULL;
1467 bdev->bd_queue = NULL;
1468 mutex_unlock(&bdev->bd_mutex);
1469 disk_unblock_events(disk);
1470 put_disk(disk);
1471 module_put(owner);
1472 goto restart;
1473 }
1474 }
1475
1476 if (!ret)
1477 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1478
1479 /*
1480 * If the device is invalidated, rescan partition
1481 * if open succeeded or failed with -ENOMEDIUM.
1482 * The latter is necessary to prevent ghost
1483 * partitions on a removed medium.
1484 */
1485 if (bdev->bd_invalidated) {
1486 if (!ret)
1487 rescan_partitions(disk, bdev);
1488 else if (ret == -ENOMEDIUM)
1489 invalidate_partitions(disk, bdev);
1490 }
1491
1492 if (ret)
1493 goto out_clear;
1494 } else {
1495 struct block_device *whole;
1496 whole = bdget_disk(disk, 0);
1497 ret = -ENOMEM;
1498 if (!whole)
1499 goto out_clear;
1500 BUG_ON(for_part);
1501 ret = __blkdev_get(whole, mode, 1);
1502 if (ret)
1503 goto out_clear;
1504 bdev->bd_contains = whole;
1505 bdev->bd_part = disk_get_part(disk, partno);
1506 if (!(disk->flags & GENHD_FL_UP) ||
1507 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1508 ret = -ENXIO;
1509 goto out_clear;
1510 }
1511 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1512 }
1513
1514 if (bdev->bd_bdi == &noop_backing_dev_info)
1515 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1516 } else {
1517 if (bdev->bd_contains == bdev) {
1518 ret = 0;
1519 if (bdev->bd_disk->fops->open)
1520 ret = bdev->bd_disk->fops->open(bdev, mode);
1521 /* the same as first opener case, read comment there */
1522 if (bdev->bd_invalidated) {
1523 if (!ret)
1524 rescan_partitions(bdev->bd_disk, bdev);
1525 else if (ret == -ENOMEDIUM)
1526 invalidate_partitions(bdev->bd_disk, bdev);
1527 }
1528 if (ret)
1529 goto out_unlock_bdev;
1530 }
1531 /* only one opener holds refs to the module and disk */
1532 put_disk(disk);
1533 module_put(owner);
1534 }
1535 bdev->bd_openers++;
1536 if (for_part)
1537 bdev->bd_part_count++;
1538 mutex_unlock(&bdev->bd_mutex);
1539 disk_unblock_events(disk);
1540 return 0;
1541
1542 out_clear:
1543 disk_put_part(bdev->bd_part);
1544 bdev->bd_disk = NULL;
1545 bdev->bd_part = NULL;
1546 bdev->bd_queue = NULL;
1547 if (bdev != bdev->bd_contains)
1548 __blkdev_put(bdev->bd_contains, mode, 1);
1549 bdev->bd_contains = NULL;
1550 out_unlock_bdev:
1551 mutex_unlock(&bdev->bd_mutex);
1552 disk_unblock_events(disk);
1553 put_disk(disk);
1554 module_put(owner);
1555 out:
1556 bdput(bdev);
1557
1558 return ret;
1559 }
1560
1561 /**
1562 * blkdev_get - open a block device
1563 * @bdev: block_device to open
1564 * @mode: FMODE_* mask
1565 * @holder: exclusive holder identifier
1566 *
1567 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1568 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1569 * @holder is invalid. Exclusive opens may nest for the same @holder.
1570 *
1571 * On success, the reference count of @bdev is unchanged. On failure,
1572 * @bdev is put.
1573 *
1574 * CONTEXT:
1575 * Might sleep.
1576 *
1577 * RETURNS:
1578 * 0 on success, -errno on failure.
1579 */
1580 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1581 {
1582 struct block_device *whole = NULL;
1583 int res;
1584
1585 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1586
1587 if ((mode & FMODE_EXCL) && holder) {
1588 whole = bd_start_claiming(bdev, holder);
1589 if (IS_ERR(whole)) {
1590 bdput(bdev);
1591 return PTR_ERR(whole);
1592 }
1593 }
1594
1595 res = __blkdev_get(bdev, mode, 0);
1596
1597 if (whole) {
1598 struct gendisk *disk = whole->bd_disk;
1599
1600 /* finish claiming */
1601 mutex_lock(&bdev->bd_mutex);
1602 spin_lock(&bdev_lock);
1603
1604 if (!res) {
1605 BUG_ON(!bd_may_claim(bdev, whole, holder));
1606 /*
1607 * Note that for a whole device bd_holders
1608 * will be incremented twice, and bd_holder
1609 * will be set to bd_may_claim before being
1610 * set to holder
1611 */
1612 whole->bd_holders++;
1613 whole->bd_holder = bd_may_claim;
1614 bdev->bd_holders++;
1615 bdev->bd_holder = holder;
1616 }
1617
1618 /* tell others that we're done */
1619 BUG_ON(whole->bd_claiming != holder);
1620 whole->bd_claiming = NULL;
1621 wake_up_bit(&whole->bd_claiming, 0);
1622
1623 spin_unlock(&bdev_lock);
1624
1625 /*
1626 * Block event polling for write claims if requested. Any
1627 * write holder makes the write_holder state stick until
1628 * all are released. This is good enough and tracking
1629 * individual writeable reference is too fragile given the
1630 * way @mode is used in blkdev_get/put().
1631 */
1632 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1633 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1634 bdev->bd_write_holder = true;
1635 disk_block_events(disk);
1636 }
1637
1638 mutex_unlock(&bdev->bd_mutex);
1639 bdput(whole);
1640 }
1641
1642 return res;
1643 }
1644 EXPORT_SYMBOL(blkdev_get);
1645
1646 /**
1647 * blkdev_get_by_path - open a block device by name
1648 * @path: path to the block device to open
1649 * @mode: FMODE_* mask
1650 * @holder: exclusive holder identifier
1651 *
1652 * Open the blockdevice described by the device file at @path. @mode
1653 * and @holder are identical to blkdev_get().
1654 *
1655 * On success, the returned block_device has reference count of one.
1656 *
1657 * CONTEXT:
1658 * Might sleep.
1659 *
1660 * RETURNS:
1661 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1662 */
1663 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1664 void *holder)
1665 {
1666 struct block_device *bdev;
1667 int err;
1668
1669 bdev = lookup_bdev(path);
1670 if (IS_ERR(bdev))
1671 return bdev;
1672
1673 err = blkdev_get(bdev, mode, holder);
1674 if (err)
1675 return ERR_PTR(err);
1676
1677 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1678 blkdev_put(bdev, mode);
1679 return ERR_PTR(-EACCES);
1680 }
1681
1682 return bdev;
1683 }
1684 EXPORT_SYMBOL(blkdev_get_by_path);
1685
1686 /**
1687 * blkdev_get_by_dev - open a block device by device number
1688 * @dev: device number of block device to open
1689 * @mode: FMODE_* mask
1690 * @holder: exclusive holder identifier
1691 *
1692 * Open the blockdevice described by device number @dev. @mode and
1693 * @holder are identical to blkdev_get().
1694 *
1695 * Use it ONLY if you really do not have anything better - i.e. when
1696 * you are behind a truly sucky interface and all you are given is a
1697 * device number. _Never_ to be used for internal purposes. If you
1698 * ever need it - reconsider your API.
1699 *
1700 * On success, the returned block_device has reference count of one.
1701 *
1702 * CONTEXT:
1703 * Might sleep.
1704 *
1705 * RETURNS:
1706 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1707 */
1708 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1709 {
1710 struct block_device *bdev;
1711 int err;
1712
1713 bdev = bdget(dev);
1714 if (!bdev)
1715 return ERR_PTR(-ENOMEM);
1716
1717 err = blkdev_get(bdev, mode, holder);
1718 if (err)
1719 return ERR_PTR(err);
1720
1721 return bdev;
1722 }
1723 EXPORT_SYMBOL(blkdev_get_by_dev);
1724
1725 static int blkdev_open(struct inode * inode, struct file * filp)
1726 {
1727 struct block_device *bdev;
1728
1729 /*
1730 * Preserve backwards compatibility and allow large file access
1731 * even if userspace doesn't ask for it explicitly. Some mkfs
1732 * binary needs it. We might want to drop this workaround
1733 * during an unstable branch.
1734 */
1735 filp->f_flags |= O_LARGEFILE;
1736
1737 if (filp->f_flags & O_NDELAY)
1738 filp->f_mode |= FMODE_NDELAY;
1739 if (filp->f_flags & O_EXCL)
1740 filp->f_mode |= FMODE_EXCL;
1741 if ((filp->f_flags & O_ACCMODE) == 3)
1742 filp->f_mode |= FMODE_WRITE_IOCTL;
1743
1744 bdev = bd_acquire(inode);
1745 if (bdev == NULL)
1746 return -ENOMEM;
1747
1748 filp->f_mapping = bdev->bd_inode->i_mapping;
1749
1750 return blkdev_get(bdev, filp->f_mode, filp);
1751 }
1752
1753 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1754 {
1755 struct gendisk *disk = bdev->bd_disk;
1756 struct block_device *victim = NULL;
1757
1758 mutex_lock_nested(&bdev->bd_mutex, for_part);
1759 if (for_part)
1760 bdev->bd_part_count--;
1761
1762 if (!--bdev->bd_openers) {
1763 WARN_ON_ONCE(bdev->bd_holders);
1764 sync_blockdev(bdev);
1765 kill_bdev(bdev);
1766
1767 bdev_write_inode(bdev);
1768 }
1769 if (bdev->bd_contains == bdev) {
1770 if (disk->fops->release)
1771 disk->fops->release(disk, mode);
1772 }
1773 if (!bdev->bd_openers) {
1774 struct module *owner = disk->fops->owner;
1775
1776 disk_put_part(bdev->bd_part);
1777 bdev->bd_part = NULL;
1778 bdev->bd_disk = NULL;
1779 if (bdev != bdev->bd_contains)
1780 victim = bdev->bd_contains;
1781 bdev->bd_contains = NULL;
1782
1783 put_disk(disk);
1784 module_put(owner);
1785 }
1786 mutex_unlock(&bdev->bd_mutex);
1787 bdput(bdev);
1788 if (victim)
1789 __blkdev_put(victim, mode, 1);
1790 }
1791
1792 void blkdev_put(struct block_device *bdev, fmode_t mode)
1793 {
1794 mutex_lock(&bdev->bd_mutex);
1795
1796 if (mode & FMODE_EXCL) {
1797 bool bdev_free;
1798
1799 /*
1800 * Release a claim on the device. The holder fields
1801 * are protected with bdev_lock. bd_mutex is to
1802 * synchronize disk_holder unlinking.
1803 */
1804 spin_lock(&bdev_lock);
1805
1806 WARN_ON_ONCE(--bdev->bd_holders < 0);
1807 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1808
1809 /* bd_contains might point to self, check in a separate step */
1810 if ((bdev_free = !bdev->bd_holders))
1811 bdev->bd_holder = NULL;
1812 if (!bdev->bd_contains->bd_holders)
1813 bdev->bd_contains->bd_holder = NULL;
1814
1815 spin_unlock(&bdev_lock);
1816
1817 /*
1818 * If this was the last claim, remove holder link and
1819 * unblock evpoll if it was a write holder.
1820 */
1821 if (bdev_free && bdev->bd_write_holder) {
1822 disk_unblock_events(bdev->bd_disk);
1823 bdev->bd_write_holder = false;
1824 }
1825 }
1826
1827 /*
1828 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1829 * event. This is to ensure detection of media removal commanded
1830 * from userland - e.g. eject(1).
1831 */
1832 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1833
1834 mutex_unlock(&bdev->bd_mutex);
1835
1836 __blkdev_put(bdev, mode, 0);
1837 }
1838 EXPORT_SYMBOL(blkdev_put);
1839
1840 static int blkdev_close(struct inode * inode, struct file * filp)
1841 {
1842 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1843 blkdev_put(bdev, filp->f_mode);
1844 return 0;
1845 }
1846
1847 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1848 {
1849 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1850 fmode_t mode = file->f_mode;
1851
1852 /*
1853 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1854 * to updated it before every ioctl.
1855 */
1856 if (file->f_flags & O_NDELAY)
1857 mode |= FMODE_NDELAY;
1858 else
1859 mode &= ~FMODE_NDELAY;
1860
1861 return blkdev_ioctl(bdev, mode, cmd, arg);
1862 }
1863
1864 /*
1865 * Write data to the block device. Only intended for the block device itself
1866 * and the raw driver which basically is a fake block device.
1867 *
1868 * Does not take i_mutex for the write and thus is not for general purpose
1869 * use.
1870 */
1871 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1872 {
1873 struct file *file = iocb->ki_filp;
1874 struct inode *bd_inode = bdev_file_inode(file);
1875 loff_t size = i_size_read(bd_inode);
1876 struct blk_plug plug;
1877 ssize_t ret;
1878
1879 if (bdev_read_only(I_BDEV(bd_inode)))
1880 return -EPERM;
1881
1882 if (!iov_iter_count(from))
1883 return 0;
1884
1885 if (iocb->ki_pos >= size)
1886 return -ENOSPC;
1887
1888 iov_iter_truncate(from, size - iocb->ki_pos);
1889
1890 blk_start_plug(&plug);
1891 ret = __generic_file_write_iter(iocb, from);
1892 if (ret > 0)
1893 ret = generic_write_sync(iocb, ret);
1894 blk_finish_plug(&plug);
1895 return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1898
1899 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1900 {
1901 struct file *file = iocb->ki_filp;
1902 struct inode *bd_inode = bdev_file_inode(file);
1903 loff_t size = i_size_read(bd_inode);
1904 loff_t pos = iocb->ki_pos;
1905
1906 if (pos >= size)
1907 return 0;
1908
1909 size -= pos;
1910 iov_iter_truncate(to, size);
1911 return generic_file_read_iter(iocb, to);
1912 }
1913 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1914
1915 /*
1916 * Try to release a page associated with block device when the system
1917 * is under memory pressure.
1918 */
1919 static int blkdev_releasepage(struct page *page, gfp_t wait)
1920 {
1921 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1922
1923 if (super && super->s_op->bdev_try_to_free_page)
1924 return super->s_op->bdev_try_to_free_page(super, page, wait);
1925
1926 return try_to_free_buffers(page);
1927 }
1928
1929 static int blkdev_writepages(struct address_space *mapping,
1930 struct writeback_control *wbc)
1931 {
1932 if (dax_mapping(mapping)) {
1933 struct block_device *bdev = I_BDEV(mapping->host);
1934
1935 return dax_writeback_mapping_range(mapping, bdev, wbc);
1936 }
1937 return generic_writepages(mapping, wbc);
1938 }
1939
1940 static const struct address_space_operations def_blk_aops = {
1941 .readpage = blkdev_readpage,
1942 .readpages = blkdev_readpages,
1943 .writepage = blkdev_writepage,
1944 .write_begin = blkdev_write_begin,
1945 .write_end = blkdev_write_end,
1946 .writepages = blkdev_writepages,
1947 .releasepage = blkdev_releasepage,
1948 .direct_IO = blkdev_direct_IO,
1949 .is_dirty_writeback = buffer_check_dirty_writeback,
1950 };
1951
1952 #define BLKDEV_FALLOC_FL_SUPPORTED \
1953 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1954 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1955
1956 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1957 loff_t len)
1958 {
1959 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1960 struct address_space *mapping;
1961 loff_t end = start + len - 1;
1962 loff_t isize;
1963 int error;
1964
1965 /* Fail if we don't recognize the flags. */
1966 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1967 return -EOPNOTSUPP;
1968
1969 /* Don't go off the end of the device. */
1970 isize = i_size_read(bdev->bd_inode);
1971 if (start >= isize)
1972 return -EINVAL;
1973 if (end >= isize) {
1974 if (mode & FALLOC_FL_KEEP_SIZE) {
1975 len = isize - start;
1976 end = start + len - 1;
1977 } else
1978 return -EINVAL;
1979 }
1980
1981 /*
1982 * Don't allow IO that isn't aligned to logical block size.
1983 */
1984 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1985 return -EINVAL;
1986
1987 /* Invalidate the page cache, including dirty pages. */
1988 mapping = bdev->bd_inode->i_mapping;
1989 truncate_inode_pages_range(mapping, start, end);
1990
1991 switch (mode) {
1992 case FALLOC_FL_ZERO_RANGE:
1993 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1994 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1995 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
1996 break;
1997 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1998 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1999 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2000 break;
2001 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2002 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2003 GFP_KERNEL, 0);
2004 break;
2005 default:
2006 return -EOPNOTSUPP;
2007 }
2008 if (error)
2009 return error;
2010
2011 /*
2012 * Invalidate again; if someone wandered in and dirtied a page,
2013 * the caller will be given -EBUSY. The third argument is
2014 * inclusive, so the rounding here is safe.
2015 */
2016 return invalidate_inode_pages2_range(mapping,
2017 start >> PAGE_SHIFT,
2018 end >> PAGE_SHIFT);
2019 }
2020
2021 const struct file_operations def_blk_fops = {
2022 .open = blkdev_open,
2023 .release = blkdev_close,
2024 .llseek = block_llseek,
2025 .read_iter = blkdev_read_iter,
2026 .write_iter = blkdev_write_iter,
2027 .mmap = generic_file_mmap,
2028 .fsync = blkdev_fsync,
2029 .unlocked_ioctl = block_ioctl,
2030 #ifdef CONFIG_COMPAT
2031 .compat_ioctl = compat_blkdev_ioctl,
2032 #endif
2033 .splice_read = generic_file_splice_read,
2034 .splice_write = iter_file_splice_write,
2035 .fallocate = blkdev_fallocate,
2036 };
2037
2038 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2039 {
2040 int res;
2041 mm_segment_t old_fs = get_fs();
2042 set_fs(KERNEL_DS);
2043 res = blkdev_ioctl(bdev, 0, cmd, arg);
2044 set_fs(old_fs);
2045 return res;
2046 }
2047
2048 EXPORT_SYMBOL(ioctl_by_bdev);
2049
2050 /**
2051 * lookup_bdev - lookup a struct block_device by name
2052 * @pathname: special file representing the block device
2053 *
2054 * Get a reference to the blockdevice at @pathname in the current
2055 * namespace if possible and return it. Return ERR_PTR(error)
2056 * otherwise.
2057 */
2058 struct block_device *lookup_bdev(const char *pathname)
2059 {
2060 struct block_device *bdev;
2061 struct inode *inode;
2062 struct path path;
2063 int error;
2064
2065 if (!pathname || !*pathname)
2066 return ERR_PTR(-EINVAL);
2067
2068 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2069 if (error)
2070 return ERR_PTR(error);
2071
2072 inode = d_backing_inode(path.dentry);
2073 error = -ENOTBLK;
2074 if (!S_ISBLK(inode->i_mode))
2075 goto fail;
2076 error = -EACCES;
2077 if (!may_open_dev(&path))
2078 goto fail;
2079 error = -ENOMEM;
2080 bdev = bd_acquire(inode);
2081 if (!bdev)
2082 goto fail;
2083 out:
2084 path_put(&path);
2085 return bdev;
2086 fail:
2087 bdev = ERR_PTR(error);
2088 goto out;
2089 }
2090 EXPORT_SYMBOL(lookup_bdev);
2091
2092 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2093 {
2094 struct super_block *sb = get_super(bdev);
2095 int res = 0;
2096
2097 if (sb) {
2098 /*
2099 * no need to lock the super, get_super holds the
2100 * read mutex so the filesystem cannot go away
2101 * under us (->put_super runs with the write lock
2102 * hold).
2103 */
2104 shrink_dcache_sb(sb);
2105 res = invalidate_inodes(sb, kill_dirty);
2106 drop_super(sb);
2107 }
2108 invalidate_bdev(bdev);
2109 return res;
2110 }
2111 EXPORT_SYMBOL(__invalidate_device);
2112
2113 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2114 {
2115 struct inode *inode, *old_inode = NULL;
2116
2117 spin_lock(&blockdev_superblock->s_inode_list_lock);
2118 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2119 struct address_space *mapping = inode->i_mapping;
2120 struct block_device *bdev;
2121
2122 spin_lock(&inode->i_lock);
2123 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2124 mapping->nrpages == 0) {
2125 spin_unlock(&inode->i_lock);
2126 continue;
2127 }
2128 __iget(inode);
2129 spin_unlock(&inode->i_lock);
2130 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2131 /*
2132 * We hold a reference to 'inode' so it couldn't have been
2133 * removed from s_inodes list while we dropped the
2134 * s_inode_list_lock We cannot iput the inode now as we can
2135 * be holding the last reference and we cannot iput it under
2136 * s_inode_list_lock. So we keep the reference and iput it
2137 * later.
2138 */
2139 iput(old_inode);
2140 old_inode = inode;
2141 bdev = I_BDEV(inode);
2142
2143 mutex_lock(&bdev->bd_mutex);
2144 if (bdev->bd_openers)
2145 func(bdev, arg);
2146 mutex_unlock(&bdev->bd_mutex);
2147
2148 spin_lock(&blockdev_superblock->s_inode_list_lock);
2149 }
2150 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2151 iput(old_inode);
2152 }