]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
dax: bdev_direct_access() may sleep
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <asm/uaccess.h>
31 #include "internal.h"
32
33 struct bdev_inode {
34 struct block_device bdev;
35 struct inode vfs_inode;
36 };
37
38 static const struct address_space_operations def_blk_aops;
39
40 static inline struct bdev_inode *BDEV_I(struct inode *inode)
41 {
42 return container_of(inode, struct bdev_inode, vfs_inode);
43 }
44
45 inline struct block_device *I_BDEV(struct inode *inode)
46 {
47 return &BDEV_I(inode)->bdev;
48 }
49 EXPORT_SYMBOL(I_BDEV);
50
51 static void bdev_write_inode(struct inode *inode)
52 {
53 spin_lock(&inode->i_lock);
54 while (inode->i_state & I_DIRTY) {
55 spin_unlock(&inode->i_lock);
56 WARN_ON_ONCE(write_inode_now(inode, true));
57 spin_lock(&inode->i_lock);
58 }
59 spin_unlock(&inode->i_lock);
60 }
61
62 /* Kill _all_ buffers and pagecache , dirty or not.. */
63 void kill_bdev(struct block_device *bdev)
64 {
65 struct address_space *mapping = bdev->bd_inode->i_mapping;
66
67 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
68 return;
69
70 invalidate_bh_lrus();
71 truncate_inode_pages(mapping, 0);
72 }
73 EXPORT_SYMBOL(kill_bdev);
74
75 /* Invalidate clean unused buffers and pagecache. */
76 void invalidate_bdev(struct block_device *bdev)
77 {
78 struct address_space *mapping = bdev->bd_inode->i_mapping;
79
80 if (mapping->nrpages == 0)
81 return;
82
83 invalidate_bh_lrus();
84 lru_add_drain_all(); /* make sure all lru add caches are flushed */
85 invalidate_mapping_pages(mapping, 0, -1);
86 /* 99% of the time, we don't need to flush the cleancache on the bdev.
87 * But, for the strange corners, lets be cautious
88 */
89 cleancache_invalidate_inode(mapping);
90 }
91 EXPORT_SYMBOL(invalidate_bdev);
92
93 int set_blocksize(struct block_device *bdev, int size)
94 {
95 /* Size must be a power of two, and between 512 and PAGE_SIZE */
96 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
97 return -EINVAL;
98
99 /* Size cannot be smaller than the size supported by the device */
100 if (size < bdev_logical_block_size(bdev))
101 return -EINVAL;
102
103 /* Don't change the size if it is same as current */
104 if (bdev->bd_block_size != size) {
105 sync_blockdev(bdev);
106 bdev->bd_block_size = size;
107 bdev->bd_inode->i_blkbits = blksize_bits(size);
108 kill_bdev(bdev);
109 }
110 return 0;
111 }
112
113 EXPORT_SYMBOL(set_blocksize);
114
115 int sb_set_blocksize(struct super_block *sb, int size)
116 {
117 if (set_blocksize(sb->s_bdev, size))
118 return 0;
119 /* If we get here, we know size is power of two
120 * and it's value is between 512 and PAGE_SIZE */
121 sb->s_blocksize = size;
122 sb->s_blocksize_bits = blksize_bits(size);
123 return sb->s_blocksize;
124 }
125
126 EXPORT_SYMBOL(sb_set_blocksize);
127
128 int sb_min_blocksize(struct super_block *sb, int size)
129 {
130 int minsize = bdev_logical_block_size(sb->s_bdev);
131 if (size < minsize)
132 size = minsize;
133 return sb_set_blocksize(sb, size);
134 }
135
136 EXPORT_SYMBOL(sb_min_blocksize);
137
138 static int
139 blkdev_get_block(struct inode *inode, sector_t iblock,
140 struct buffer_head *bh, int create)
141 {
142 bh->b_bdev = I_BDEV(inode);
143 bh->b_blocknr = iblock;
144 set_buffer_mapped(bh);
145 return 0;
146 }
147
148 static ssize_t
149 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
150 {
151 struct file *file = iocb->ki_filp;
152 struct inode *inode = file->f_mapping->host;
153
154 if (IS_DAX(inode))
155 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
156 NULL, DIO_SKIP_DIO_COUNT);
157 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
158 blkdev_get_block, NULL, NULL,
159 DIO_SKIP_DIO_COUNT);
160 }
161
162 int __sync_blockdev(struct block_device *bdev, int wait)
163 {
164 if (!bdev)
165 return 0;
166 if (!wait)
167 return filemap_flush(bdev->bd_inode->i_mapping);
168 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
169 }
170
171 /*
172 * Write out and wait upon all the dirty data associated with a block
173 * device via its mapping. Does not take the superblock lock.
174 */
175 int sync_blockdev(struct block_device *bdev)
176 {
177 return __sync_blockdev(bdev, 1);
178 }
179 EXPORT_SYMBOL(sync_blockdev);
180
181 /*
182 * Write out and wait upon all dirty data associated with this
183 * device. Filesystem data as well as the underlying block
184 * device. Takes the superblock lock.
185 */
186 int fsync_bdev(struct block_device *bdev)
187 {
188 struct super_block *sb = get_super(bdev);
189 if (sb) {
190 int res = sync_filesystem(sb);
191 drop_super(sb);
192 return res;
193 }
194 return sync_blockdev(bdev);
195 }
196 EXPORT_SYMBOL(fsync_bdev);
197
198 /**
199 * freeze_bdev -- lock a filesystem and force it into a consistent state
200 * @bdev: blockdevice to lock
201 *
202 * If a superblock is found on this device, we take the s_umount semaphore
203 * on it to make sure nobody unmounts until the snapshot creation is done.
204 * The reference counter (bd_fsfreeze_count) guarantees that only the last
205 * unfreeze process can unfreeze the frozen filesystem actually when multiple
206 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
207 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
208 * actually.
209 */
210 struct super_block *freeze_bdev(struct block_device *bdev)
211 {
212 struct super_block *sb;
213 int error = 0;
214
215 mutex_lock(&bdev->bd_fsfreeze_mutex);
216 if (++bdev->bd_fsfreeze_count > 1) {
217 /*
218 * We don't even need to grab a reference - the first call
219 * to freeze_bdev grab an active reference and only the last
220 * thaw_bdev drops it.
221 */
222 sb = get_super(bdev);
223 drop_super(sb);
224 mutex_unlock(&bdev->bd_fsfreeze_mutex);
225 return sb;
226 }
227
228 sb = get_active_super(bdev);
229 if (!sb)
230 goto out;
231 if (sb->s_op->freeze_super)
232 error = sb->s_op->freeze_super(sb);
233 else
234 error = freeze_super(sb);
235 if (error) {
236 deactivate_super(sb);
237 bdev->bd_fsfreeze_count--;
238 mutex_unlock(&bdev->bd_fsfreeze_mutex);
239 return ERR_PTR(error);
240 }
241 deactivate_super(sb);
242 out:
243 sync_blockdev(bdev);
244 mutex_unlock(&bdev->bd_fsfreeze_mutex);
245 return sb; /* thaw_bdev releases s->s_umount */
246 }
247 EXPORT_SYMBOL(freeze_bdev);
248
249 /**
250 * thaw_bdev -- unlock filesystem
251 * @bdev: blockdevice to unlock
252 * @sb: associated superblock
253 *
254 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
255 */
256 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
257 {
258 int error = -EINVAL;
259
260 mutex_lock(&bdev->bd_fsfreeze_mutex);
261 if (!bdev->bd_fsfreeze_count)
262 goto out;
263
264 error = 0;
265 if (--bdev->bd_fsfreeze_count > 0)
266 goto out;
267
268 if (!sb)
269 goto out;
270
271 if (sb->s_op->thaw_super)
272 error = sb->s_op->thaw_super(sb);
273 else
274 error = thaw_super(sb);
275 if (error) {
276 bdev->bd_fsfreeze_count++;
277 mutex_unlock(&bdev->bd_fsfreeze_mutex);
278 return error;
279 }
280 out:
281 mutex_unlock(&bdev->bd_fsfreeze_mutex);
282 return 0;
283 }
284 EXPORT_SYMBOL(thaw_bdev);
285
286 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
287 {
288 return block_write_full_page(page, blkdev_get_block, wbc);
289 }
290
291 static int blkdev_readpage(struct file * file, struct page * page)
292 {
293 return block_read_full_page(page, blkdev_get_block);
294 }
295
296 static int blkdev_readpages(struct file *file, struct address_space *mapping,
297 struct list_head *pages, unsigned nr_pages)
298 {
299 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
300 }
301
302 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
303 loff_t pos, unsigned len, unsigned flags,
304 struct page **pagep, void **fsdata)
305 {
306 return block_write_begin(mapping, pos, len, flags, pagep,
307 blkdev_get_block);
308 }
309
310 static int blkdev_write_end(struct file *file, struct address_space *mapping,
311 loff_t pos, unsigned len, unsigned copied,
312 struct page *page, void *fsdata)
313 {
314 int ret;
315 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
316
317 unlock_page(page);
318 page_cache_release(page);
319
320 return ret;
321 }
322
323 /*
324 * private llseek:
325 * for a block special file file_inode(file)->i_size is zero
326 * so we compute the size by hand (just as in block_read/write above)
327 */
328 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
329 {
330 struct inode *bd_inode = file->f_mapping->host;
331 loff_t retval;
332
333 mutex_lock(&bd_inode->i_mutex);
334 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
335 mutex_unlock(&bd_inode->i_mutex);
336 return retval;
337 }
338
339 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
340 {
341 struct inode *bd_inode = filp->f_mapping->host;
342 struct block_device *bdev = I_BDEV(bd_inode);
343 int error;
344
345 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
346 if (error)
347 return error;
348
349 /*
350 * There is no need to serialise calls to blkdev_issue_flush with
351 * i_mutex and doing so causes performance issues with concurrent
352 * O_SYNC writers to a block device.
353 */
354 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
355 if (error == -EOPNOTSUPP)
356 error = 0;
357
358 return error;
359 }
360 EXPORT_SYMBOL(blkdev_fsync);
361
362 /**
363 * bdev_read_page() - Start reading a page from a block device
364 * @bdev: The device to read the page from
365 * @sector: The offset on the device to read the page to (need not be aligned)
366 * @page: The page to read
367 *
368 * On entry, the page should be locked. It will be unlocked when the page
369 * has been read. If the block driver implements rw_page synchronously,
370 * that will be true on exit from this function, but it need not be.
371 *
372 * Errors returned by this function are usually "soft", eg out of memory, or
373 * queue full; callers should try a different route to read this page rather
374 * than propagate an error back up the stack.
375 *
376 * Return: negative errno if an error occurs, 0 if submission was successful.
377 */
378 int bdev_read_page(struct block_device *bdev, sector_t sector,
379 struct page *page)
380 {
381 const struct block_device_operations *ops = bdev->bd_disk->fops;
382 if (!ops->rw_page)
383 return -EOPNOTSUPP;
384 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
385 }
386 EXPORT_SYMBOL_GPL(bdev_read_page);
387
388 /**
389 * bdev_write_page() - Start writing a page to a block device
390 * @bdev: The device to write the page to
391 * @sector: The offset on the device to write the page to (need not be aligned)
392 * @page: The page to write
393 * @wbc: The writeback_control for the write
394 *
395 * On entry, the page should be locked and not currently under writeback.
396 * On exit, if the write started successfully, the page will be unlocked and
397 * under writeback. If the write failed already (eg the driver failed to
398 * queue the page to the device), the page will still be locked. If the
399 * caller is a ->writepage implementation, it will need to unlock the page.
400 *
401 * Errors returned by this function are usually "soft", eg out of memory, or
402 * queue full; callers should try a different route to write this page rather
403 * than propagate an error back up the stack.
404 *
405 * Return: negative errno if an error occurs, 0 if submission was successful.
406 */
407 int bdev_write_page(struct block_device *bdev, sector_t sector,
408 struct page *page, struct writeback_control *wbc)
409 {
410 int result;
411 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
412 const struct block_device_operations *ops = bdev->bd_disk->fops;
413 if (!ops->rw_page)
414 return -EOPNOTSUPP;
415 set_page_writeback(page);
416 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
417 if (result)
418 end_page_writeback(page);
419 else
420 unlock_page(page);
421 return result;
422 }
423 EXPORT_SYMBOL_GPL(bdev_write_page);
424
425 /**
426 * bdev_direct_access() - Get the address for directly-accessibly memory
427 * @bdev: The device containing the memory
428 * @sector: The offset within the device
429 * @addr: Where to put the address of the memory
430 * @pfn: The Page Frame Number for the memory
431 * @size: The number of bytes requested
432 *
433 * If a block device is made up of directly addressable memory, this function
434 * will tell the caller the PFN and the address of the memory. The address
435 * may be directly dereferenced within the kernel without the need to call
436 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
437 * page tables.
438 *
439 * Return: negative errno if an error occurs, otherwise the number of bytes
440 * accessible at this address.
441 */
442 long bdev_direct_access(struct block_device *bdev, sector_t sector,
443 void **addr, unsigned long *pfn, long size)
444 {
445 long avail;
446 const struct block_device_operations *ops = bdev->bd_disk->fops;
447
448 /*
449 * The device driver is allowed to sleep, in order to make the
450 * memory directly accessible.
451 */
452 might_sleep();
453
454 if (size < 0)
455 return size;
456 if (!ops->direct_access)
457 return -EOPNOTSUPP;
458 if ((sector + DIV_ROUND_UP(size, 512)) >
459 part_nr_sects_read(bdev->bd_part))
460 return -ERANGE;
461 sector += get_start_sect(bdev);
462 if (sector % (PAGE_SIZE / 512))
463 return -EINVAL;
464 avail = ops->direct_access(bdev, sector, addr, pfn, size);
465 if (!avail)
466 return -ERANGE;
467 return min(avail, size);
468 }
469 EXPORT_SYMBOL_GPL(bdev_direct_access);
470
471 /*
472 * pseudo-fs
473 */
474
475 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
476 static struct kmem_cache * bdev_cachep __read_mostly;
477
478 static struct inode *bdev_alloc_inode(struct super_block *sb)
479 {
480 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
481 if (!ei)
482 return NULL;
483 return &ei->vfs_inode;
484 }
485
486 static void bdev_i_callback(struct rcu_head *head)
487 {
488 struct inode *inode = container_of(head, struct inode, i_rcu);
489 struct bdev_inode *bdi = BDEV_I(inode);
490
491 kmem_cache_free(bdev_cachep, bdi);
492 }
493
494 static void bdev_destroy_inode(struct inode *inode)
495 {
496 call_rcu(&inode->i_rcu, bdev_i_callback);
497 }
498
499 static void init_once(void *foo)
500 {
501 struct bdev_inode *ei = (struct bdev_inode *) foo;
502 struct block_device *bdev = &ei->bdev;
503
504 memset(bdev, 0, sizeof(*bdev));
505 mutex_init(&bdev->bd_mutex);
506 INIT_LIST_HEAD(&bdev->bd_inodes);
507 INIT_LIST_HEAD(&bdev->bd_list);
508 #ifdef CONFIG_SYSFS
509 INIT_LIST_HEAD(&bdev->bd_holder_disks);
510 #endif
511 inode_init_once(&ei->vfs_inode);
512 /* Initialize mutex for freeze. */
513 mutex_init(&bdev->bd_fsfreeze_mutex);
514 }
515
516 static inline void __bd_forget(struct inode *inode)
517 {
518 list_del_init(&inode->i_devices);
519 inode->i_bdev = NULL;
520 inode->i_mapping = &inode->i_data;
521 }
522
523 static void bdev_evict_inode(struct inode *inode)
524 {
525 struct block_device *bdev = &BDEV_I(inode)->bdev;
526 struct list_head *p;
527 truncate_inode_pages_final(&inode->i_data);
528 invalidate_inode_buffers(inode); /* is it needed here? */
529 clear_inode(inode);
530 spin_lock(&bdev_lock);
531 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
532 __bd_forget(list_entry(p, struct inode, i_devices));
533 }
534 list_del_init(&bdev->bd_list);
535 spin_unlock(&bdev_lock);
536 }
537
538 static const struct super_operations bdev_sops = {
539 .statfs = simple_statfs,
540 .alloc_inode = bdev_alloc_inode,
541 .destroy_inode = bdev_destroy_inode,
542 .drop_inode = generic_delete_inode,
543 .evict_inode = bdev_evict_inode,
544 };
545
546 static struct dentry *bd_mount(struct file_system_type *fs_type,
547 int flags, const char *dev_name, void *data)
548 {
549 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
550 }
551
552 static struct file_system_type bd_type = {
553 .name = "bdev",
554 .mount = bd_mount,
555 .kill_sb = kill_anon_super,
556 };
557
558 static struct super_block *blockdev_superblock __read_mostly;
559
560 void __init bdev_cache_init(void)
561 {
562 int err;
563 static struct vfsmount *bd_mnt;
564
565 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
566 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
567 SLAB_MEM_SPREAD|SLAB_PANIC),
568 init_once);
569 err = register_filesystem(&bd_type);
570 if (err)
571 panic("Cannot register bdev pseudo-fs");
572 bd_mnt = kern_mount(&bd_type);
573 if (IS_ERR(bd_mnt))
574 panic("Cannot create bdev pseudo-fs");
575 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
576 }
577
578 /*
579 * Most likely _very_ bad one - but then it's hardly critical for small
580 * /dev and can be fixed when somebody will need really large one.
581 * Keep in mind that it will be fed through icache hash function too.
582 */
583 static inline unsigned long hash(dev_t dev)
584 {
585 return MAJOR(dev)+MINOR(dev);
586 }
587
588 static int bdev_test(struct inode *inode, void *data)
589 {
590 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
591 }
592
593 static int bdev_set(struct inode *inode, void *data)
594 {
595 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
596 return 0;
597 }
598
599 static LIST_HEAD(all_bdevs);
600
601 struct block_device *bdget(dev_t dev)
602 {
603 struct block_device *bdev;
604 struct inode *inode;
605
606 inode = iget5_locked(blockdev_superblock, hash(dev),
607 bdev_test, bdev_set, &dev);
608
609 if (!inode)
610 return NULL;
611
612 bdev = &BDEV_I(inode)->bdev;
613
614 if (inode->i_state & I_NEW) {
615 bdev->bd_contains = NULL;
616 bdev->bd_super = NULL;
617 bdev->bd_inode = inode;
618 bdev->bd_block_size = (1 << inode->i_blkbits);
619 bdev->bd_part_count = 0;
620 bdev->bd_invalidated = 0;
621 inode->i_mode = S_IFBLK;
622 inode->i_rdev = dev;
623 inode->i_bdev = bdev;
624 inode->i_data.a_ops = &def_blk_aops;
625 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
626 spin_lock(&bdev_lock);
627 list_add(&bdev->bd_list, &all_bdevs);
628 spin_unlock(&bdev_lock);
629 unlock_new_inode(inode);
630 }
631 return bdev;
632 }
633
634 EXPORT_SYMBOL(bdget);
635
636 /**
637 * bdgrab -- Grab a reference to an already referenced block device
638 * @bdev: Block device to grab a reference to.
639 */
640 struct block_device *bdgrab(struct block_device *bdev)
641 {
642 ihold(bdev->bd_inode);
643 return bdev;
644 }
645 EXPORT_SYMBOL(bdgrab);
646
647 long nr_blockdev_pages(void)
648 {
649 struct block_device *bdev;
650 long ret = 0;
651 spin_lock(&bdev_lock);
652 list_for_each_entry(bdev, &all_bdevs, bd_list) {
653 ret += bdev->bd_inode->i_mapping->nrpages;
654 }
655 spin_unlock(&bdev_lock);
656 return ret;
657 }
658
659 void bdput(struct block_device *bdev)
660 {
661 iput(bdev->bd_inode);
662 }
663
664 EXPORT_SYMBOL(bdput);
665
666 static struct block_device *bd_acquire(struct inode *inode)
667 {
668 struct block_device *bdev;
669
670 spin_lock(&bdev_lock);
671 bdev = inode->i_bdev;
672 if (bdev) {
673 ihold(bdev->bd_inode);
674 spin_unlock(&bdev_lock);
675 return bdev;
676 }
677 spin_unlock(&bdev_lock);
678
679 bdev = bdget(inode->i_rdev);
680 if (bdev) {
681 spin_lock(&bdev_lock);
682 if (!inode->i_bdev) {
683 /*
684 * We take an additional reference to bd_inode,
685 * and it's released in clear_inode() of inode.
686 * So, we can access it via ->i_mapping always
687 * without igrab().
688 */
689 ihold(bdev->bd_inode);
690 inode->i_bdev = bdev;
691 inode->i_mapping = bdev->bd_inode->i_mapping;
692 list_add(&inode->i_devices, &bdev->bd_inodes);
693 }
694 spin_unlock(&bdev_lock);
695 }
696 return bdev;
697 }
698
699 int sb_is_blkdev_sb(struct super_block *sb)
700 {
701 return sb == blockdev_superblock;
702 }
703
704 /* Call when you free inode */
705
706 void bd_forget(struct inode *inode)
707 {
708 struct block_device *bdev = NULL;
709
710 spin_lock(&bdev_lock);
711 if (!sb_is_blkdev_sb(inode->i_sb))
712 bdev = inode->i_bdev;
713 __bd_forget(inode);
714 spin_unlock(&bdev_lock);
715
716 if (bdev)
717 iput(bdev->bd_inode);
718 }
719
720 /**
721 * bd_may_claim - test whether a block device can be claimed
722 * @bdev: block device of interest
723 * @whole: whole block device containing @bdev, may equal @bdev
724 * @holder: holder trying to claim @bdev
725 *
726 * Test whether @bdev can be claimed by @holder.
727 *
728 * CONTEXT:
729 * spin_lock(&bdev_lock).
730 *
731 * RETURNS:
732 * %true if @bdev can be claimed, %false otherwise.
733 */
734 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
735 void *holder)
736 {
737 if (bdev->bd_holder == holder)
738 return true; /* already a holder */
739 else if (bdev->bd_holder != NULL)
740 return false; /* held by someone else */
741 else if (bdev->bd_contains == bdev)
742 return true; /* is a whole device which isn't held */
743
744 else if (whole->bd_holder == bd_may_claim)
745 return true; /* is a partition of a device that is being partitioned */
746 else if (whole->bd_holder != NULL)
747 return false; /* is a partition of a held device */
748 else
749 return true; /* is a partition of an un-held device */
750 }
751
752 /**
753 * bd_prepare_to_claim - prepare to claim a block device
754 * @bdev: block device of interest
755 * @whole: the whole device containing @bdev, may equal @bdev
756 * @holder: holder trying to claim @bdev
757 *
758 * Prepare to claim @bdev. This function fails if @bdev is already
759 * claimed by another holder and waits if another claiming is in
760 * progress. This function doesn't actually claim. On successful
761 * return, the caller has ownership of bd_claiming and bd_holder[s].
762 *
763 * CONTEXT:
764 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
765 * it multiple times.
766 *
767 * RETURNS:
768 * 0 if @bdev can be claimed, -EBUSY otherwise.
769 */
770 static int bd_prepare_to_claim(struct block_device *bdev,
771 struct block_device *whole, void *holder)
772 {
773 retry:
774 /* if someone else claimed, fail */
775 if (!bd_may_claim(bdev, whole, holder))
776 return -EBUSY;
777
778 /* if claiming is already in progress, wait for it to finish */
779 if (whole->bd_claiming) {
780 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
781 DEFINE_WAIT(wait);
782
783 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
784 spin_unlock(&bdev_lock);
785 schedule();
786 finish_wait(wq, &wait);
787 spin_lock(&bdev_lock);
788 goto retry;
789 }
790
791 /* yay, all mine */
792 return 0;
793 }
794
795 /**
796 * bd_start_claiming - start claiming a block device
797 * @bdev: block device of interest
798 * @holder: holder trying to claim @bdev
799 *
800 * @bdev is about to be opened exclusively. Check @bdev can be opened
801 * exclusively and mark that an exclusive open is in progress. Each
802 * successful call to this function must be matched with a call to
803 * either bd_finish_claiming() or bd_abort_claiming() (which do not
804 * fail).
805 *
806 * This function is used to gain exclusive access to the block device
807 * without actually causing other exclusive open attempts to fail. It
808 * should be used when the open sequence itself requires exclusive
809 * access but may subsequently fail.
810 *
811 * CONTEXT:
812 * Might sleep.
813 *
814 * RETURNS:
815 * Pointer to the block device containing @bdev on success, ERR_PTR()
816 * value on failure.
817 */
818 static struct block_device *bd_start_claiming(struct block_device *bdev,
819 void *holder)
820 {
821 struct gendisk *disk;
822 struct block_device *whole;
823 int partno, err;
824
825 might_sleep();
826
827 /*
828 * @bdev might not have been initialized properly yet, look up
829 * and grab the outer block device the hard way.
830 */
831 disk = get_gendisk(bdev->bd_dev, &partno);
832 if (!disk)
833 return ERR_PTR(-ENXIO);
834
835 /*
836 * Normally, @bdev should equal what's returned from bdget_disk()
837 * if partno is 0; however, some drivers (floppy) use multiple
838 * bdev's for the same physical device and @bdev may be one of the
839 * aliases. Keep @bdev if partno is 0. This means claimer
840 * tracking is broken for those devices but it has always been that
841 * way.
842 */
843 if (partno)
844 whole = bdget_disk(disk, 0);
845 else
846 whole = bdgrab(bdev);
847
848 module_put(disk->fops->owner);
849 put_disk(disk);
850 if (!whole)
851 return ERR_PTR(-ENOMEM);
852
853 /* prepare to claim, if successful, mark claiming in progress */
854 spin_lock(&bdev_lock);
855
856 err = bd_prepare_to_claim(bdev, whole, holder);
857 if (err == 0) {
858 whole->bd_claiming = holder;
859 spin_unlock(&bdev_lock);
860 return whole;
861 } else {
862 spin_unlock(&bdev_lock);
863 bdput(whole);
864 return ERR_PTR(err);
865 }
866 }
867
868 #ifdef CONFIG_SYSFS
869 struct bd_holder_disk {
870 struct list_head list;
871 struct gendisk *disk;
872 int refcnt;
873 };
874
875 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
876 struct gendisk *disk)
877 {
878 struct bd_holder_disk *holder;
879
880 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
881 if (holder->disk == disk)
882 return holder;
883 return NULL;
884 }
885
886 static int add_symlink(struct kobject *from, struct kobject *to)
887 {
888 return sysfs_create_link(from, to, kobject_name(to));
889 }
890
891 static void del_symlink(struct kobject *from, struct kobject *to)
892 {
893 sysfs_remove_link(from, kobject_name(to));
894 }
895
896 /**
897 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
898 * @bdev: the claimed slave bdev
899 * @disk: the holding disk
900 *
901 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
902 *
903 * This functions creates the following sysfs symlinks.
904 *
905 * - from "slaves" directory of the holder @disk to the claimed @bdev
906 * - from "holders" directory of the @bdev to the holder @disk
907 *
908 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
909 * passed to bd_link_disk_holder(), then:
910 *
911 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
912 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
913 *
914 * The caller must have claimed @bdev before calling this function and
915 * ensure that both @bdev and @disk are valid during the creation and
916 * lifetime of these symlinks.
917 *
918 * CONTEXT:
919 * Might sleep.
920 *
921 * RETURNS:
922 * 0 on success, -errno on failure.
923 */
924 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
925 {
926 struct bd_holder_disk *holder;
927 int ret = 0;
928
929 mutex_lock(&bdev->bd_mutex);
930
931 WARN_ON_ONCE(!bdev->bd_holder);
932
933 /* FIXME: remove the following once add_disk() handles errors */
934 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
935 goto out_unlock;
936
937 holder = bd_find_holder_disk(bdev, disk);
938 if (holder) {
939 holder->refcnt++;
940 goto out_unlock;
941 }
942
943 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
944 if (!holder) {
945 ret = -ENOMEM;
946 goto out_unlock;
947 }
948
949 INIT_LIST_HEAD(&holder->list);
950 holder->disk = disk;
951 holder->refcnt = 1;
952
953 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
954 if (ret)
955 goto out_free;
956
957 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
958 if (ret)
959 goto out_del;
960 /*
961 * bdev could be deleted beneath us which would implicitly destroy
962 * the holder directory. Hold on to it.
963 */
964 kobject_get(bdev->bd_part->holder_dir);
965
966 list_add(&holder->list, &bdev->bd_holder_disks);
967 goto out_unlock;
968
969 out_del:
970 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
971 out_free:
972 kfree(holder);
973 out_unlock:
974 mutex_unlock(&bdev->bd_mutex);
975 return ret;
976 }
977 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
978
979 /**
980 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
981 * @bdev: the calimed slave bdev
982 * @disk: the holding disk
983 *
984 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
985 *
986 * CONTEXT:
987 * Might sleep.
988 */
989 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
990 {
991 struct bd_holder_disk *holder;
992
993 mutex_lock(&bdev->bd_mutex);
994
995 holder = bd_find_holder_disk(bdev, disk);
996
997 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
998 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
999 del_symlink(bdev->bd_part->holder_dir,
1000 &disk_to_dev(disk)->kobj);
1001 kobject_put(bdev->bd_part->holder_dir);
1002 list_del_init(&holder->list);
1003 kfree(holder);
1004 }
1005
1006 mutex_unlock(&bdev->bd_mutex);
1007 }
1008 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1009 #endif
1010
1011 /**
1012 * flush_disk - invalidates all buffer-cache entries on a disk
1013 *
1014 * @bdev: struct block device to be flushed
1015 * @kill_dirty: flag to guide handling of dirty inodes
1016 *
1017 * Invalidates all buffer-cache entries on a disk. It should be called
1018 * when a disk has been changed -- either by a media change or online
1019 * resize.
1020 */
1021 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1022 {
1023 if (__invalidate_device(bdev, kill_dirty)) {
1024 char name[BDEVNAME_SIZE] = "";
1025
1026 if (bdev->bd_disk)
1027 disk_name(bdev->bd_disk, 0, name);
1028 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1029 "resized disk %s\n", name);
1030 }
1031
1032 if (!bdev->bd_disk)
1033 return;
1034 if (disk_part_scan_enabled(bdev->bd_disk))
1035 bdev->bd_invalidated = 1;
1036 }
1037
1038 /**
1039 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1040 * @disk: struct gendisk to check
1041 * @bdev: struct bdev to adjust.
1042 *
1043 * This routine checks to see if the bdev size does not match the disk size
1044 * and adjusts it if it differs.
1045 */
1046 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1047 {
1048 loff_t disk_size, bdev_size;
1049
1050 disk_size = (loff_t)get_capacity(disk) << 9;
1051 bdev_size = i_size_read(bdev->bd_inode);
1052 if (disk_size != bdev_size) {
1053 char name[BDEVNAME_SIZE];
1054
1055 disk_name(disk, 0, name);
1056 printk(KERN_INFO
1057 "%s: detected capacity change from %lld to %lld\n",
1058 name, bdev_size, disk_size);
1059 i_size_write(bdev->bd_inode, disk_size);
1060 flush_disk(bdev, false);
1061 }
1062 }
1063 EXPORT_SYMBOL(check_disk_size_change);
1064
1065 /**
1066 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1067 * @disk: struct gendisk to be revalidated
1068 *
1069 * This routine is a wrapper for lower-level driver's revalidate_disk
1070 * call-backs. It is used to do common pre and post operations needed
1071 * for all revalidate_disk operations.
1072 */
1073 int revalidate_disk(struct gendisk *disk)
1074 {
1075 struct block_device *bdev;
1076 int ret = 0;
1077
1078 if (disk->fops->revalidate_disk)
1079 ret = disk->fops->revalidate_disk(disk);
1080
1081 bdev = bdget_disk(disk, 0);
1082 if (!bdev)
1083 return ret;
1084
1085 mutex_lock(&bdev->bd_mutex);
1086 check_disk_size_change(disk, bdev);
1087 bdev->bd_invalidated = 0;
1088 mutex_unlock(&bdev->bd_mutex);
1089 bdput(bdev);
1090 return ret;
1091 }
1092 EXPORT_SYMBOL(revalidate_disk);
1093
1094 /*
1095 * This routine checks whether a removable media has been changed,
1096 * and invalidates all buffer-cache-entries in that case. This
1097 * is a relatively slow routine, so we have to try to minimize using
1098 * it. Thus it is called only upon a 'mount' or 'open'. This
1099 * is the best way of combining speed and utility, I think.
1100 * People changing diskettes in the middle of an operation deserve
1101 * to lose :-)
1102 */
1103 int check_disk_change(struct block_device *bdev)
1104 {
1105 struct gendisk *disk = bdev->bd_disk;
1106 const struct block_device_operations *bdops = disk->fops;
1107 unsigned int events;
1108
1109 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1110 DISK_EVENT_EJECT_REQUEST);
1111 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1112 return 0;
1113
1114 flush_disk(bdev, true);
1115 if (bdops->revalidate_disk)
1116 bdops->revalidate_disk(bdev->bd_disk);
1117 return 1;
1118 }
1119
1120 EXPORT_SYMBOL(check_disk_change);
1121
1122 void bd_set_size(struct block_device *bdev, loff_t size)
1123 {
1124 unsigned bsize = bdev_logical_block_size(bdev);
1125
1126 mutex_lock(&bdev->bd_inode->i_mutex);
1127 i_size_write(bdev->bd_inode, size);
1128 mutex_unlock(&bdev->bd_inode->i_mutex);
1129 while (bsize < PAGE_CACHE_SIZE) {
1130 if (size & bsize)
1131 break;
1132 bsize <<= 1;
1133 }
1134 bdev->bd_block_size = bsize;
1135 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1136 }
1137 EXPORT_SYMBOL(bd_set_size);
1138
1139 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1140
1141 /*
1142 * bd_mutex locking:
1143 *
1144 * mutex_lock(part->bd_mutex)
1145 * mutex_lock_nested(whole->bd_mutex, 1)
1146 */
1147
1148 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1149 {
1150 struct gendisk *disk;
1151 struct module *owner;
1152 int ret;
1153 int partno;
1154 int perm = 0;
1155
1156 if (mode & FMODE_READ)
1157 perm |= MAY_READ;
1158 if (mode & FMODE_WRITE)
1159 perm |= MAY_WRITE;
1160 /*
1161 * hooks: /n/, see "layering violations".
1162 */
1163 if (!for_part) {
1164 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1165 if (ret != 0) {
1166 bdput(bdev);
1167 return ret;
1168 }
1169 }
1170
1171 restart:
1172
1173 ret = -ENXIO;
1174 disk = get_gendisk(bdev->bd_dev, &partno);
1175 if (!disk)
1176 goto out;
1177 owner = disk->fops->owner;
1178
1179 disk_block_events(disk);
1180 mutex_lock_nested(&bdev->bd_mutex, for_part);
1181 if (!bdev->bd_openers) {
1182 bdev->bd_disk = disk;
1183 bdev->bd_queue = disk->queue;
1184 bdev->bd_contains = bdev;
1185 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1186 if (!partno) {
1187 ret = -ENXIO;
1188 bdev->bd_part = disk_get_part(disk, partno);
1189 if (!bdev->bd_part)
1190 goto out_clear;
1191
1192 ret = 0;
1193 if (disk->fops->open) {
1194 ret = disk->fops->open(bdev, mode);
1195 if (ret == -ERESTARTSYS) {
1196 /* Lost a race with 'disk' being
1197 * deleted, try again.
1198 * See md.c
1199 */
1200 disk_put_part(bdev->bd_part);
1201 bdev->bd_part = NULL;
1202 bdev->bd_disk = NULL;
1203 bdev->bd_queue = NULL;
1204 mutex_unlock(&bdev->bd_mutex);
1205 disk_unblock_events(disk);
1206 put_disk(disk);
1207 module_put(owner);
1208 goto restart;
1209 }
1210 }
1211
1212 if (!ret)
1213 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1214
1215 /*
1216 * If the device is invalidated, rescan partition
1217 * if open succeeded or failed with -ENOMEDIUM.
1218 * The latter is necessary to prevent ghost
1219 * partitions on a removed medium.
1220 */
1221 if (bdev->bd_invalidated) {
1222 if (!ret)
1223 rescan_partitions(disk, bdev);
1224 else if (ret == -ENOMEDIUM)
1225 invalidate_partitions(disk, bdev);
1226 }
1227 if (ret)
1228 goto out_clear;
1229 } else {
1230 struct block_device *whole;
1231 whole = bdget_disk(disk, 0);
1232 ret = -ENOMEM;
1233 if (!whole)
1234 goto out_clear;
1235 BUG_ON(for_part);
1236 ret = __blkdev_get(whole, mode, 1);
1237 if (ret)
1238 goto out_clear;
1239 bdev->bd_contains = whole;
1240 bdev->bd_part = disk_get_part(disk, partno);
1241 if (!(disk->flags & GENHD_FL_UP) ||
1242 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1243 ret = -ENXIO;
1244 goto out_clear;
1245 }
1246 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1247 }
1248 } else {
1249 if (bdev->bd_contains == bdev) {
1250 ret = 0;
1251 if (bdev->bd_disk->fops->open)
1252 ret = bdev->bd_disk->fops->open(bdev, mode);
1253 /* the same as first opener case, read comment there */
1254 if (bdev->bd_invalidated) {
1255 if (!ret)
1256 rescan_partitions(bdev->bd_disk, bdev);
1257 else if (ret == -ENOMEDIUM)
1258 invalidate_partitions(bdev->bd_disk, bdev);
1259 }
1260 if (ret)
1261 goto out_unlock_bdev;
1262 }
1263 /* only one opener holds refs to the module and disk */
1264 put_disk(disk);
1265 module_put(owner);
1266 }
1267 bdev->bd_openers++;
1268 if (for_part)
1269 bdev->bd_part_count++;
1270 mutex_unlock(&bdev->bd_mutex);
1271 disk_unblock_events(disk);
1272 return 0;
1273
1274 out_clear:
1275 disk_put_part(bdev->bd_part);
1276 bdev->bd_disk = NULL;
1277 bdev->bd_part = NULL;
1278 bdev->bd_queue = NULL;
1279 if (bdev != bdev->bd_contains)
1280 __blkdev_put(bdev->bd_contains, mode, 1);
1281 bdev->bd_contains = NULL;
1282 out_unlock_bdev:
1283 mutex_unlock(&bdev->bd_mutex);
1284 disk_unblock_events(disk);
1285 put_disk(disk);
1286 module_put(owner);
1287 out:
1288 bdput(bdev);
1289
1290 return ret;
1291 }
1292
1293 /**
1294 * blkdev_get - open a block device
1295 * @bdev: block_device to open
1296 * @mode: FMODE_* mask
1297 * @holder: exclusive holder identifier
1298 *
1299 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1300 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1301 * @holder is invalid. Exclusive opens may nest for the same @holder.
1302 *
1303 * On success, the reference count of @bdev is unchanged. On failure,
1304 * @bdev is put.
1305 *
1306 * CONTEXT:
1307 * Might sleep.
1308 *
1309 * RETURNS:
1310 * 0 on success, -errno on failure.
1311 */
1312 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1313 {
1314 struct block_device *whole = NULL;
1315 int res;
1316
1317 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1318
1319 if ((mode & FMODE_EXCL) && holder) {
1320 whole = bd_start_claiming(bdev, holder);
1321 if (IS_ERR(whole)) {
1322 bdput(bdev);
1323 return PTR_ERR(whole);
1324 }
1325 }
1326
1327 res = __blkdev_get(bdev, mode, 0);
1328
1329 if (whole) {
1330 struct gendisk *disk = whole->bd_disk;
1331
1332 /* finish claiming */
1333 mutex_lock(&bdev->bd_mutex);
1334 spin_lock(&bdev_lock);
1335
1336 if (!res) {
1337 BUG_ON(!bd_may_claim(bdev, whole, holder));
1338 /*
1339 * Note that for a whole device bd_holders
1340 * will be incremented twice, and bd_holder
1341 * will be set to bd_may_claim before being
1342 * set to holder
1343 */
1344 whole->bd_holders++;
1345 whole->bd_holder = bd_may_claim;
1346 bdev->bd_holders++;
1347 bdev->bd_holder = holder;
1348 }
1349
1350 /* tell others that we're done */
1351 BUG_ON(whole->bd_claiming != holder);
1352 whole->bd_claiming = NULL;
1353 wake_up_bit(&whole->bd_claiming, 0);
1354
1355 spin_unlock(&bdev_lock);
1356
1357 /*
1358 * Block event polling for write claims if requested. Any
1359 * write holder makes the write_holder state stick until
1360 * all are released. This is good enough and tracking
1361 * individual writeable reference is too fragile given the
1362 * way @mode is used in blkdev_get/put().
1363 */
1364 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1365 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1366 bdev->bd_write_holder = true;
1367 disk_block_events(disk);
1368 }
1369
1370 mutex_unlock(&bdev->bd_mutex);
1371 bdput(whole);
1372 }
1373
1374 return res;
1375 }
1376 EXPORT_SYMBOL(blkdev_get);
1377
1378 /**
1379 * blkdev_get_by_path - open a block device by name
1380 * @path: path to the block device to open
1381 * @mode: FMODE_* mask
1382 * @holder: exclusive holder identifier
1383 *
1384 * Open the blockdevice described by the device file at @path. @mode
1385 * and @holder are identical to blkdev_get().
1386 *
1387 * On success, the returned block_device has reference count of one.
1388 *
1389 * CONTEXT:
1390 * Might sleep.
1391 *
1392 * RETURNS:
1393 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1394 */
1395 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1396 void *holder)
1397 {
1398 struct block_device *bdev;
1399 int err;
1400
1401 bdev = lookup_bdev(path);
1402 if (IS_ERR(bdev))
1403 return bdev;
1404
1405 err = blkdev_get(bdev, mode, holder);
1406 if (err)
1407 return ERR_PTR(err);
1408
1409 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1410 blkdev_put(bdev, mode);
1411 return ERR_PTR(-EACCES);
1412 }
1413
1414 return bdev;
1415 }
1416 EXPORT_SYMBOL(blkdev_get_by_path);
1417
1418 /**
1419 * blkdev_get_by_dev - open a block device by device number
1420 * @dev: device number of block device to open
1421 * @mode: FMODE_* mask
1422 * @holder: exclusive holder identifier
1423 *
1424 * Open the blockdevice described by device number @dev. @mode and
1425 * @holder are identical to blkdev_get().
1426 *
1427 * Use it ONLY if you really do not have anything better - i.e. when
1428 * you are behind a truly sucky interface and all you are given is a
1429 * device number. _Never_ to be used for internal purposes. If you
1430 * ever need it - reconsider your API.
1431 *
1432 * On success, the returned block_device has reference count of one.
1433 *
1434 * CONTEXT:
1435 * Might sleep.
1436 *
1437 * RETURNS:
1438 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1439 */
1440 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1441 {
1442 struct block_device *bdev;
1443 int err;
1444
1445 bdev = bdget(dev);
1446 if (!bdev)
1447 return ERR_PTR(-ENOMEM);
1448
1449 err = blkdev_get(bdev, mode, holder);
1450 if (err)
1451 return ERR_PTR(err);
1452
1453 return bdev;
1454 }
1455 EXPORT_SYMBOL(blkdev_get_by_dev);
1456
1457 static int blkdev_open(struct inode * inode, struct file * filp)
1458 {
1459 struct block_device *bdev;
1460
1461 /*
1462 * Preserve backwards compatibility and allow large file access
1463 * even if userspace doesn't ask for it explicitly. Some mkfs
1464 * binary needs it. We might want to drop this workaround
1465 * during an unstable branch.
1466 */
1467 filp->f_flags |= O_LARGEFILE;
1468
1469 if (filp->f_flags & O_NDELAY)
1470 filp->f_mode |= FMODE_NDELAY;
1471 if (filp->f_flags & O_EXCL)
1472 filp->f_mode |= FMODE_EXCL;
1473 if ((filp->f_flags & O_ACCMODE) == 3)
1474 filp->f_mode |= FMODE_WRITE_IOCTL;
1475
1476 bdev = bd_acquire(inode);
1477 if (bdev == NULL)
1478 return -ENOMEM;
1479
1480 filp->f_mapping = bdev->bd_inode->i_mapping;
1481
1482 return blkdev_get(bdev, filp->f_mode, filp);
1483 }
1484
1485 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1486 {
1487 struct gendisk *disk = bdev->bd_disk;
1488 struct block_device *victim = NULL;
1489
1490 mutex_lock_nested(&bdev->bd_mutex, for_part);
1491 if (for_part)
1492 bdev->bd_part_count--;
1493
1494 if (!--bdev->bd_openers) {
1495 WARN_ON_ONCE(bdev->bd_holders);
1496 sync_blockdev(bdev);
1497 kill_bdev(bdev);
1498 /*
1499 * ->release can cause the queue to disappear, so flush all
1500 * dirty data before.
1501 */
1502 bdev_write_inode(bdev->bd_inode);
1503 }
1504 if (bdev->bd_contains == bdev) {
1505 if (disk->fops->release)
1506 disk->fops->release(disk, mode);
1507 }
1508 if (!bdev->bd_openers) {
1509 struct module *owner = disk->fops->owner;
1510
1511 disk_put_part(bdev->bd_part);
1512 bdev->bd_part = NULL;
1513 bdev->bd_disk = NULL;
1514 if (bdev != bdev->bd_contains)
1515 victim = bdev->bd_contains;
1516 bdev->bd_contains = NULL;
1517
1518 put_disk(disk);
1519 module_put(owner);
1520 }
1521 mutex_unlock(&bdev->bd_mutex);
1522 bdput(bdev);
1523 if (victim)
1524 __blkdev_put(victim, mode, 1);
1525 }
1526
1527 void blkdev_put(struct block_device *bdev, fmode_t mode)
1528 {
1529 mutex_lock(&bdev->bd_mutex);
1530
1531 if (mode & FMODE_EXCL) {
1532 bool bdev_free;
1533
1534 /*
1535 * Release a claim on the device. The holder fields
1536 * are protected with bdev_lock. bd_mutex is to
1537 * synchronize disk_holder unlinking.
1538 */
1539 spin_lock(&bdev_lock);
1540
1541 WARN_ON_ONCE(--bdev->bd_holders < 0);
1542 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1543
1544 /* bd_contains might point to self, check in a separate step */
1545 if ((bdev_free = !bdev->bd_holders))
1546 bdev->bd_holder = NULL;
1547 if (!bdev->bd_contains->bd_holders)
1548 bdev->bd_contains->bd_holder = NULL;
1549
1550 spin_unlock(&bdev_lock);
1551
1552 /*
1553 * If this was the last claim, remove holder link and
1554 * unblock evpoll if it was a write holder.
1555 */
1556 if (bdev_free && bdev->bd_write_holder) {
1557 disk_unblock_events(bdev->bd_disk);
1558 bdev->bd_write_holder = false;
1559 }
1560 }
1561
1562 /*
1563 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1564 * event. This is to ensure detection of media removal commanded
1565 * from userland - e.g. eject(1).
1566 */
1567 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1568
1569 mutex_unlock(&bdev->bd_mutex);
1570
1571 __blkdev_put(bdev, mode, 0);
1572 }
1573 EXPORT_SYMBOL(blkdev_put);
1574
1575 static int blkdev_close(struct inode * inode, struct file * filp)
1576 {
1577 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1578 blkdev_put(bdev, filp->f_mode);
1579 return 0;
1580 }
1581
1582 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1583 {
1584 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1585 fmode_t mode = file->f_mode;
1586
1587 /*
1588 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1589 * to updated it before every ioctl.
1590 */
1591 if (file->f_flags & O_NDELAY)
1592 mode |= FMODE_NDELAY;
1593 else
1594 mode &= ~FMODE_NDELAY;
1595
1596 return blkdev_ioctl(bdev, mode, cmd, arg);
1597 }
1598
1599 /*
1600 * Write data to the block device. Only intended for the block device itself
1601 * and the raw driver which basically is a fake block device.
1602 *
1603 * Does not take i_mutex for the write and thus is not for general purpose
1604 * use.
1605 */
1606 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1607 {
1608 struct file *file = iocb->ki_filp;
1609 struct inode *bd_inode = file->f_mapping->host;
1610 loff_t size = i_size_read(bd_inode);
1611 struct blk_plug plug;
1612 ssize_t ret;
1613
1614 if (bdev_read_only(I_BDEV(bd_inode)))
1615 return -EPERM;
1616
1617 if (!iov_iter_count(from))
1618 return 0;
1619
1620 if (iocb->ki_pos >= size)
1621 return -ENOSPC;
1622
1623 iov_iter_truncate(from, size - iocb->ki_pos);
1624
1625 blk_start_plug(&plug);
1626 ret = __generic_file_write_iter(iocb, from);
1627 if (ret > 0) {
1628 ssize_t err;
1629 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1630 if (err < 0)
1631 ret = err;
1632 }
1633 blk_finish_plug(&plug);
1634 return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1637
1638 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1639 {
1640 struct file *file = iocb->ki_filp;
1641 struct inode *bd_inode = file->f_mapping->host;
1642 loff_t size = i_size_read(bd_inode);
1643 loff_t pos = iocb->ki_pos;
1644
1645 if (pos >= size)
1646 return 0;
1647
1648 size -= pos;
1649 iov_iter_truncate(to, size);
1650 return generic_file_read_iter(iocb, to);
1651 }
1652 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1653
1654 /*
1655 * Try to release a page associated with block device when the system
1656 * is under memory pressure.
1657 */
1658 static int blkdev_releasepage(struct page *page, gfp_t wait)
1659 {
1660 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1661
1662 if (super && super->s_op->bdev_try_to_free_page)
1663 return super->s_op->bdev_try_to_free_page(super, page, wait);
1664
1665 return try_to_free_buffers(page);
1666 }
1667
1668 static const struct address_space_operations def_blk_aops = {
1669 .readpage = blkdev_readpage,
1670 .readpages = blkdev_readpages,
1671 .writepage = blkdev_writepage,
1672 .write_begin = blkdev_write_begin,
1673 .write_end = blkdev_write_end,
1674 .writepages = generic_writepages,
1675 .releasepage = blkdev_releasepage,
1676 .direct_IO = blkdev_direct_IO,
1677 .is_dirty_writeback = buffer_check_dirty_writeback,
1678 };
1679
1680 const struct file_operations def_blk_fops = {
1681 .open = blkdev_open,
1682 .release = blkdev_close,
1683 .llseek = block_llseek,
1684 .read_iter = blkdev_read_iter,
1685 .write_iter = blkdev_write_iter,
1686 .mmap = generic_file_mmap,
1687 .fsync = blkdev_fsync,
1688 .unlocked_ioctl = block_ioctl,
1689 #ifdef CONFIG_COMPAT
1690 .compat_ioctl = compat_blkdev_ioctl,
1691 #endif
1692 .splice_read = generic_file_splice_read,
1693 .splice_write = iter_file_splice_write,
1694 };
1695
1696 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1697 {
1698 int res;
1699 mm_segment_t old_fs = get_fs();
1700 set_fs(KERNEL_DS);
1701 res = blkdev_ioctl(bdev, 0, cmd, arg);
1702 set_fs(old_fs);
1703 return res;
1704 }
1705
1706 EXPORT_SYMBOL(ioctl_by_bdev);
1707
1708 /**
1709 * lookup_bdev - lookup a struct block_device by name
1710 * @pathname: special file representing the block device
1711 *
1712 * Get a reference to the blockdevice at @pathname in the current
1713 * namespace if possible and return it. Return ERR_PTR(error)
1714 * otherwise.
1715 */
1716 struct block_device *lookup_bdev(const char *pathname)
1717 {
1718 struct block_device *bdev;
1719 struct inode *inode;
1720 struct path path;
1721 int error;
1722
1723 if (!pathname || !*pathname)
1724 return ERR_PTR(-EINVAL);
1725
1726 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1727 if (error)
1728 return ERR_PTR(error);
1729
1730 inode = d_backing_inode(path.dentry);
1731 error = -ENOTBLK;
1732 if (!S_ISBLK(inode->i_mode))
1733 goto fail;
1734 error = -EACCES;
1735 if (path.mnt->mnt_flags & MNT_NODEV)
1736 goto fail;
1737 error = -ENOMEM;
1738 bdev = bd_acquire(inode);
1739 if (!bdev)
1740 goto fail;
1741 out:
1742 path_put(&path);
1743 return bdev;
1744 fail:
1745 bdev = ERR_PTR(error);
1746 goto out;
1747 }
1748 EXPORT_SYMBOL(lookup_bdev);
1749
1750 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1751 {
1752 struct super_block *sb = get_super(bdev);
1753 int res = 0;
1754
1755 if (sb) {
1756 /*
1757 * no need to lock the super, get_super holds the
1758 * read mutex so the filesystem cannot go away
1759 * under us (->put_super runs with the write lock
1760 * hold).
1761 */
1762 shrink_dcache_sb(sb);
1763 res = invalidate_inodes(sb, kill_dirty);
1764 drop_super(sb);
1765 }
1766 invalidate_bdev(bdev);
1767 return res;
1768 }
1769 EXPORT_SYMBOL(__invalidate_device);
1770
1771 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1772 {
1773 struct inode *inode, *old_inode = NULL;
1774
1775 spin_lock(&inode_sb_list_lock);
1776 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1777 struct address_space *mapping = inode->i_mapping;
1778
1779 spin_lock(&inode->i_lock);
1780 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1781 mapping->nrpages == 0) {
1782 spin_unlock(&inode->i_lock);
1783 continue;
1784 }
1785 __iget(inode);
1786 spin_unlock(&inode->i_lock);
1787 spin_unlock(&inode_sb_list_lock);
1788 /*
1789 * We hold a reference to 'inode' so it couldn't have been
1790 * removed from s_inodes list while we dropped the
1791 * inode_sb_list_lock. We cannot iput the inode now as we can
1792 * be holding the last reference and we cannot iput it under
1793 * inode_sb_list_lock. So we keep the reference and iput it
1794 * later.
1795 */
1796 iput(old_inode);
1797 old_inode = inode;
1798
1799 func(I_BDEV(inode), arg);
1800
1801 spin_lock(&inode_sb_list_lock);
1802 }
1803 spin_unlock(&inode_sb_list_lock);
1804 iput(old_inode);
1805 }