]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63 vaf.fmt = fmt;
64 vaf.va = &args;
65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 va_end(args);
67 }
68
69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 struct inode *inode = bdev->bd_inode;
72 int ret;
73
74 spin_lock(&inode->i_lock);
75 while (inode->i_state & I_DIRTY) {
76 spin_unlock(&inode->i_lock);
77 ret = write_inode_now(inode, true);
78 if (ret) {
79 char name[BDEVNAME_SIZE];
80 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 "for block device %s (err=%d).\n",
82 bdevname(bdev, name), ret);
83 }
84 spin_lock(&inode->i_lock);
85 }
86 spin_unlock(&inode->i_lock);
87 }
88
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
90 void kill_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 return;
96
97 invalidate_bh_lrus();
98 truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101
102 /* Invalidate clean unused buffers and pagecache. */
103 void invalidate_bdev(struct block_device *bdev)
104 {
105 struct address_space *mapping = bdev->bd_inode->i_mapping;
106
107 if (mapping->nrpages) {
108 invalidate_bh_lrus();
109 lru_add_drain_all(); /* make sure all lru add caches are flushed */
110 invalidate_mapping_pages(mapping, 0, -1);
111 }
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
230
231 ret = bio_iov_iter_get_pages(&bio, iter);
232 if (unlikely(ret))
233 return ret;
234 ret = bio.bi_iter.bi_size;
235
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
239 should_dirty = true;
240 } else {
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
243 }
244
245 qc = submit_bio(&bio);
246 for (;;) {
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
249 break;
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
252 io_schedule();
253 }
254 __set_current_state(TASK_RUNNING);
255
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
260 }
261
262 if (vecs != inline_vecs)
263 kfree(vecs);
264
265 if (unlikely(bio.bi_error))
266 return bio.bi_error;
267 return ret;
268 }
269
270 struct blkdev_dio {
271 union {
272 struct kiocb *iocb;
273 struct task_struct *waiter;
274 };
275 size_t size;
276 atomic_t ref;
277 bool multi_bio : 1;
278 bool should_dirty : 1;
279 bool is_sync : 1;
280 struct bio bio;
281 };
282
283 static struct bio_set *blkdev_dio_pool __read_mostly;
284
285 static void blkdev_bio_end_io(struct bio *bio)
286 {
287 struct blkdev_dio *dio = bio->bi_private;
288 bool should_dirty = dio->should_dirty;
289
290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
291 if (bio->bi_error && !dio->bio.bi_error)
292 dio->bio.bi_error = bio->bi_error;
293 } else {
294 if (!dio->is_sync) {
295 struct kiocb *iocb = dio->iocb;
296 ssize_t ret = dio->bio.bi_error;
297
298 if (likely(!ret)) {
299 ret = dio->size;
300 iocb->ki_pos += ret;
301 }
302
303 dio->iocb->ki_complete(iocb, ret, 0);
304 bio_put(&dio->bio);
305 } else {
306 struct task_struct *waiter = dio->waiter;
307
308 WRITE_ONCE(dio->waiter, NULL);
309 wake_up_process(waiter);
310 }
311 }
312
313 if (should_dirty) {
314 bio_check_pages_dirty(bio);
315 } else {
316 struct bio_vec *bvec;
317 int i;
318
319 bio_for_each_segment_all(bvec, bio, i)
320 put_page(bvec->bv_page);
321 bio_put(bio);
322 }
323 }
324
325 static ssize_t
326 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
327 {
328 struct file *file = iocb->ki_filp;
329 struct inode *inode = bdev_file_inode(file);
330 struct block_device *bdev = I_BDEV(inode);
331 struct blk_plug plug;
332 struct blkdev_dio *dio;
333 struct bio *bio;
334 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
335 loff_t pos = iocb->ki_pos;
336 blk_qc_t qc = BLK_QC_T_NONE;
337 int ret;
338
339 if ((pos | iov_iter_alignment(iter)) &
340 (bdev_logical_block_size(bdev) - 1))
341 return -EINVAL;
342
343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
344 bio_get(bio); /* extra ref for the completion handler */
345
346 dio = container_of(bio, struct blkdev_dio, bio);
347 dio->is_sync = is_sync = is_sync_kiocb(iocb);
348 if (dio->is_sync)
349 dio->waiter = current;
350 else
351 dio->iocb = iocb;
352
353 dio->size = 0;
354 dio->multi_bio = false;
355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
356
357 blk_start_plug(&plug);
358 for (;;) {
359 bio->bi_bdev = bdev;
360 bio->bi_iter.bi_sector = pos >> 9;
361 bio->bi_private = dio;
362 bio->bi_end_io = blkdev_bio_end_io;
363
364 ret = bio_iov_iter_get_pages(bio, iter);
365 if (unlikely(ret)) {
366 bio->bi_error = ret;
367 bio_endio(bio);
368 break;
369 }
370
371 if (is_read) {
372 bio->bi_opf = REQ_OP_READ;
373 if (dio->should_dirty)
374 bio_set_pages_dirty(bio);
375 } else {
376 bio->bi_opf = dio_bio_write_op(iocb);
377 task_io_account_write(bio->bi_iter.bi_size);
378 }
379
380 dio->size += bio->bi_iter.bi_size;
381 pos += bio->bi_iter.bi_size;
382
383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
384 if (!nr_pages) {
385 qc = submit_bio(bio);
386 break;
387 }
388
389 if (!dio->multi_bio) {
390 dio->multi_bio = true;
391 atomic_set(&dio->ref, 2);
392 } else {
393 atomic_inc(&dio->ref);
394 }
395
396 submit_bio(bio);
397 bio = bio_alloc(GFP_KERNEL, nr_pages);
398 }
399 blk_finish_plug(&plug);
400
401 if (!is_sync)
402 return -EIOCBQUEUED;
403
404 for (;;) {
405 set_current_state(TASK_UNINTERRUPTIBLE);
406 if (!READ_ONCE(dio->waiter))
407 break;
408
409 if (!(iocb->ki_flags & IOCB_HIPRI) ||
410 !blk_mq_poll(bdev_get_queue(bdev), qc))
411 io_schedule();
412 }
413 __set_current_state(TASK_RUNNING);
414
415 ret = dio->bio.bi_error;
416 if (likely(!ret))
417 ret = dio->size;
418
419 bio_put(&dio->bio);
420 return ret;
421 }
422
423 static ssize_t
424 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
425 {
426 int nr_pages;
427
428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
429 if (!nr_pages)
430 return 0;
431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
433
434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
435 }
436
437 static __init int blkdev_init(void)
438 {
439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
440 if (!blkdev_dio_pool)
441 return -ENOMEM;
442 return 0;
443 }
444 module_init(blkdev_init);
445
446 int __sync_blockdev(struct block_device *bdev, int wait)
447 {
448 if (!bdev)
449 return 0;
450 if (!wait)
451 return filemap_flush(bdev->bd_inode->i_mapping);
452 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
453 }
454
455 /*
456 * Write out and wait upon all the dirty data associated with a block
457 * device via its mapping. Does not take the superblock lock.
458 */
459 int sync_blockdev(struct block_device *bdev)
460 {
461 return __sync_blockdev(bdev, 1);
462 }
463 EXPORT_SYMBOL(sync_blockdev);
464
465 /*
466 * Write out and wait upon all dirty data associated with this
467 * device. Filesystem data as well as the underlying block
468 * device. Takes the superblock lock.
469 */
470 int fsync_bdev(struct block_device *bdev)
471 {
472 struct super_block *sb = get_super(bdev);
473 if (sb) {
474 int res = sync_filesystem(sb);
475 drop_super(sb);
476 return res;
477 }
478 return sync_blockdev(bdev);
479 }
480 EXPORT_SYMBOL(fsync_bdev);
481
482 /**
483 * freeze_bdev -- lock a filesystem and force it into a consistent state
484 * @bdev: blockdevice to lock
485 *
486 * If a superblock is found on this device, we take the s_umount semaphore
487 * on it to make sure nobody unmounts until the snapshot creation is done.
488 * The reference counter (bd_fsfreeze_count) guarantees that only the last
489 * unfreeze process can unfreeze the frozen filesystem actually when multiple
490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
492 * actually.
493 */
494 struct super_block *freeze_bdev(struct block_device *bdev)
495 {
496 struct super_block *sb;
497 int error = 0;
498
499 mutex_lock(&bdev->bd_fsfreeze_mutex);
500 if (++bdev->bd_fsfreeze_count > 1) {
501 /*
502 * We don't even need to grab a reference - the first call
503 * to freeze_bdev grab an active reference and only the last
504 * thaw_bdev drops it.
505 */
506 sb = get_super(bdev);
507 if (sb)
508 drop_super(sb);
509 mutex_unlock(&bdev->bd_fsfreeze_mutex);
510 return sb;
511 }
512
513 sb = get_active_super(bdev);
514 if (!sb)
515 goto out;
516 if (sb->s_op->freeze_super)
517 error = sb->s_op->freeze_super(sb);
518 else
519 error = freeze_super(sb);
520 if (error) {
521 deactivate_super(sb);
522 bdev->bd_fsfreeze_count--;
523 mutex_unlock(&bdev->bd_fsfreeze_mutex);
524 return ERR_PTR(error);
525 }
526 deactivate_super(sb);
527 out:
528 sync_blockdev(bdev);
529 mutex_unlock(&bdev->bd_fsfreeze_mutex);
530 return sb; /* thaw_bdev releases s->s_umount */
531 }
532 EXPORT_SYMBOL(freeze_bdev);
533
534 /**
535 * thaw_bdev -- unlock filesystem
536 * @bdev: blockdevice to unlock
537 * @sb: associated superblock
538 *
539 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
540 */
541 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
542 {
543 int error = -EINVAL;
544
545 mutex_lock(&bdev->bd_fsfreeze_mutex);
546 if (!bdev->bd_fsfreeze_count)
547 goto out;
548
549 error = 0;
550 if (--bdev->bd_fsfreeze_count > 0)
551 goto out;
552
553 if (!sb)
554 goto out;
555
556 if (sb->s_op->thaw_super)
557 error = sb->s_op->thaw_super(sb);
558 else
559 error = thaw_super(sb);
560 if (error)
561 bdev->bd_fsfreeze_count++;
562 out:
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return error;
565 }
566 EXPORT_SYMBOL(thaw_bdev);
567
568 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
569 {
570 return block_write_full_page(page, blkdev_get_block, wbc);
571 }
572
573 static int blkdev_readpage(struct file * file, struct page * page)
574 {
575 return block_read_full_page(page, blkdev_get_block);
576 }
577
578 static int blkdev_readpages(struct file *file, struct address_space *mapping,
579 struct list_head *pages, unsigned nr_pages)
580 {
581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
582 }
583
584 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
585 loff_t pos, unsigned len, unsigned flags,
586 struct page **pagep, void **fsdata)
587 {
588 return block_write_begin(mapping, pos, len, flags, pagep,
589 blkdev_get_block);
590 }
591
592 static int blkdev_write_end(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned copied,
594 struct page *page, void *fsdata)
595 {
596 int ret;
597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
598
599 unlock_page(page);
600 put_page(page);
601
602 return ret;
603 }
604
605 /*
606 * private llseek:
607 * for a block special file file_inode(file)->i_size is zero
608 * so we compute the size by hand (just as in block_read/write above)
609 */
610 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
611 {
612 struct inode *bd_inode = bdev_file_inode(file);
613 loff_t retval;
614
615 inode_lock(bd_inode);
616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
617 inode_unlock(bd_inode);
618 return retval;
619 }
620
621 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
622 {
623 struct inode *bd_inode = bdev_file_inode(filp);
624 struct block_device *bdev = I_BDEV(bd_inode);
625 int error;
626
627 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
628 if (error)
629 return error;
630
631 /*
632 * There is no need to serialise calls to blkdev_issue_flush with
633 * i_mutex and doing so causes performance issues with concurrent
634 * O_SYNC writers to a block device.
635 */
636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
637 if (error == -EOPNOTSUPP)
638 error = 0;
639
640 return error;
641 }
642 EXPORT_SYMBOL(blkdev_fsync);
643
644 /**
645 * bdev_read_page() - Start reading a page from a block device
646 * @bdev: The device to read the page from
647 * @sector: The offset on the device to read the page to (need not be aligned)
648 * @page: The page to read
649 *
650 * On entry, the page should be locked. It will be unlocked when the page
651 * has been read. If the block driver implements rw_page synchronously,
652 * that will be true on exit from this function, but it need not be.
653 *
654 * Errors returned by this function are usually "soft", eg out of memory, or
655 * queue full; callers should try a different route to read this page rather
656 * than propagate an error back up the stack.
657 *
658 * Return: negative errno if an error occurs, 0 if submission was successful.
659 */
660 int bdev_read_page(struct block_device *bdev, sector_t sector,
661 struct page *page)
662 {
663 const struct block_device_operations *ops = bdev->bd_disk->fops;
664 int result = -EOPNOTSUPP;
665
666 if (!ops->rw_page || bdev_get_integrity(bdev))
667 return result;
668
669 result = blk_queue_enter(bdev->bd_queue, false);
670 if (result)
671 return result;
672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
673 blk_queue_exit(bdev->bd_queue);
674 return result;
675 }
676 EXPORT_SYMBOL_GPL(bdev_read_page);
677
678 /**
679 * bdev_write_page() - Start writing a page to a block device
680 * @bdev: The device to write the page to
681 * @sector: The offset on the device to write the page to (need not be aligned)
682 * @page: The page to write
683 * @wbc: The writeback_control for the write
684 *
685 * On entry, the page should be locked and not currently under writeback.
686 * On exit, if the write started successfully, the page will be unlocked and
687 * under writeback. If the write failed already (eg the driver failed to
688 * queue the page to the device), the page will still be locked. If the
689 * caller is a ->writepage implementation, it will need to unlock the page.
690 *
691 * Errors returned by this function are usually "soft", eg out of memory, or
692 * queue full; callers should try a different route to write this page rather
693 * than propagate an error back up the stack.
694 *
695 * Return: negative errno if an error occurs, 0 if submission was successful.
696 */
697 int bdev_write_page(struct block_device *bdev, sector_t sector,
698 struct page *page, struct writeback_control *wbc)
699 {
700 int result;
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702
703 if (!ops->rw_page || bdev_get_integrity(bdev))
704 return -EOPNOTSUPP;
705 result = blk_queue_enter(bdev->bd_queue, false);
706 if (result)
707 return result;
708
709 set_page_writeback(page);
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
711 if (result)
712 end_page_writeback(page);
713 else
714 unlock_page(page);
715 blk_queue_exit(bdev->bd_queue);
716 return result;
717 }
718 EXPORT_SYMBOL_GPL(bdev_write_page);
719
720 /*
721 * pseudo-fs
722 */
723
724 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
725 static struct kmem_cache * bdev_cachep __read_mostly;
726
727 static struct inode *bdev_alloc_inode(struct super_block *sb)
728 {
729 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
730 if (!ei)
731 return NULL;
732 return &ei->vfs_inode;
733 }
734
735 static void bdev_i_callback(struct rcu_head *head)
736 {
737 struct inode *inode = container_of(head, struct inode, i_rcu);
738 struct bdev_inode *bdi = BDEV_I(inode);
739
740 kmem_cache_free(bdev_cachep, bdi);
741 }
742
743 static void bdev_destroy_inode(struct inode *inode)
744 {
745 call_rcu(&inode->i_rcu, bdev_i_callback);
746 }
747
748 static void init_once(void *foo)
749 {
750 struct bdev_inode *ei = (struct bdev_inode *) foo;
751 struct block_device *bdev = &ei->bdev;
752
753 memset(bdev, 0, sizeof(*bdev));
754 mutex_init(&bdev->bd_mutex);
755 INIT_LIST_HEAD(&bdev->bd_list);
756 #ifdef CONFIG_SYSFS
757 INIT_LIST_HEAD(&bdev->bd_holder_disks);
758 #endif
759 bdev->bd_bdi = &noop_backing_dev_info;
760 inode_init_once(&ei->vfs_inode);
761 /* Initialize mutex for freeze. */
762 mutex_init(&bdev->bd_fsfreeze_mutex);
763 }
764
765 static void bdev_evict_inode(struct inode *inode)
766 {
767 struct block_device *bdev = &BDEV_I(inode)->bdev;
768 truncate_inode_pages_final(&inode->i_data);
769 invalidate_inode_buffers(inode); /* is it needed here? */
770 clear_inode(inode);
771 spin_lock(&bdev_lock);
772 list_del_init(&bdev->bd_list);
773 spin_unlock(&bdev_lock);
774 /* Detach inode from wb early as bdi_put() may free bdi->wb */
775 inode_detach_wb(inode);
776 if (bdev->bd_bdi != &noop_backing_dev_info) {
777 bdi_put(bdev->bd_bdi);
778 bdev->bd_bdi = &noop_backing_dev_info;
779 }
780 }
781
782 static const struct super_operations bdev_sops = {
783 .statfs = simple_statfs,
784 .alloc_inode = bdev_alloc_inode,
785 .destroy_inode = bdev_destroy_inode,
786 .drop_inode = generic_delete_inode,
787 .evict_inode = bdev_evict_inode,
788 };
789
790 static struct dentry *bd_mount(struct file_system_type *fs_type,
791 int flags, const char *dev_name, void *data)
792 {
793 struct dentry *dent;
794 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
795 if (!IS_ERR(dent))
796 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
797 return dent;
798 }
799
800 static struct file_system_type bd_type = {
801 .name = "bdev",
802 .mount = bd_mount,
803 .kill_sb = kill_anon_super,
804 };
805
806 struct super_block *blockdev_superblock __read_mostly;
807 EXPORT_SYMBOL_GPL(blockdev_superblock);
808
809 void __init bdev_cache_init(void)
810 {
811 int err;
812 static struct vfsmount *bd_mnt;
813
814 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
815 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
816 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
817 init_once);
818 err = register_filesystem(&bd_type);
819 if (err)
820 panic("Cannot register bdev pseudo-fs");
821 bd_mnt = kern_mount(&bd_type);
822 if (IS_ERR(bd_mnt))
823 panic("Cannot create bdev pseudo-fs");
824 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
825 }
826
827 /*
828 * Most likely _very_ bad one - but then it's hardly critical for small
829 * /dev and can be fixed when somebody will need really large one.
830 * Keep in mind that it will be fed through icache hash function too.
831 */
832 static inline unsigned long hash(dev_t dev)
833 {
834 return MAJOR(dev)+MINOR(dev);
835 }
836
837 static int bdev_test(struct inode *inode, void *data)
838 {
839 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
840 }
841
842 static int bdev_set(struct inode *inode, void *data)
843 {
844 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
845 return 0;
846 }
847
848 static LIST_HEAD(all_bdevs);
849
850 /*
851 * If there is a bdev inode for this device, unhash it so that it gets evicted
852 * as soon as last inode reference is dropped.
853 */
854 void bdev_unhash_inode(dev_t dev)
855 {
856 struct inode *inode;
857
858 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
859 if (inode) {
860 remove_inode_hash(inode);
861 iput(inode);
862 }
863 }
864
865 struct block_device *bdget(dev_t dev)
866 {
867 struct block_device *bdev;
868 struct inode *inode;
869
870 inode = iget5_locked(blockdev_superblock, hash(dev),
871 bdev_test, bdev_set, &dev);
872
873 if (!inode)
874 return NULL;
875
876 bdev = &BDEV_I(inode)->bdev;
877
878 if (inode->i_state & I_NEW) {
879 bdev->bd_contains = NULL;
880 bdev->bd_super = NULL;
881 bdev->bd_inode = inode;
882 bdev->bd_block_size = i_blocksize(inode);
883 bdev->bd_part_count = 0;
884 bdev->bd_invalidated = 0;
885 inode->i_mode = S_IFBLK;
886 inode->i_rdev = dev;
887 inode->i_bdev = bdev;
888 inode->i_data.a_ops = &def_blk_aops;
889 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
890 spin_lock(&bdev_lock);
891 list_add(&bdev->bd_list, &all_bdevs);
892 spin_unlock(&bdev_lock);
893 unlock_new_inode(inode);
894 }
895 return bdev;
896 }
897
898 EXPORT_SYMBOL(bdget);
899
900 /**
901 * bdgrab -- Grab a reference to an already referenced block device
902 * @bdev: Block device to grab a reference to.
903 */
904 struct block_device *bdgrab(struct block_device *bdev)
905 {
906 ihold(bdev->bd_inode);
907 return bdev;
908 }
909 EXPORT_SYMBOL(bdgrab);
910
911 long nr_blockdev_pages(void)
912 {
913 struct block_device *bdev;
914 long ret = 0;
915 spin_lock(&bdev_lock);
916 list_for_each_entry(bdev, &all_bdevs, bd_list) {
917 ret += bdev->bd_inode->i_mapping->nrpages;
918 }
919 spin_unlock(&bdev_lock);
920 return ret;
921 }
922
923 void bdput(struct block_device *bdev)
924 {
925 iput(bdev->bd_inode);
926 }
927
928 EXPORT_SYMBOL(bdput);
929
930 static struct block_device *bd_acquire(struct inode *inode)
931 {
932 struct block_device *bdev;
933
934 spin_lock(&bdev_lock);
935 bdev = inode->i_bdev;
936 if (bdev && !inode_unhashed(bdev->bd_inode)) {
937 bdgrab(bdev);
938 spin_unlock(&bdev_lock);
939 return bdev;
940 }
941 spin_unlock(&bdev_lock);
942
943 /*
944 * i_bdev references block device inode that was already shut down
945 * (corresponding device got removed). Remove the reference and look
946 * up block device inode again just in case new device got
947 * reestablished under the same device number.
948 */
949 if (bdev)
950 bd_forget(inode);
951
952 bdev = bdget(inode->i_rdev);
953 if (bdev) {
954 spin_lock(&bdev_lock);
955 if (!inode->i_bdev) {
956 /*
957 * We take an additional reference to bd_inode,
958 * and it's released in clear_inode() of inode.
959 * So, we can access it via ->i_mapping always
960 * without igrab().
961 */
962 bdgrab(bdev);
963 inode->i_bdev = bdev;
964 inode->i_mapping = bdev->bd_inode->i_mapping;
965 }
966 spin_unlock(&bdev_lock);
967 }
968 return bdev;
969 }
970
971 /* Call when you free inode */
972
973 void bd_forget(struct inode *inode)
974 {
975 struct block_device *bdev = NULL;
976
977 spin_lock(&bdev_lock);
978 if (!sb_is_blkdev_sb(inode->i_sb))
979 bdev = inode->i_bdev;
980 inode->i_bdev = NULL;
981 inode->i_mapping = &inode->i_data;
982 spin_unlock(&bdev_lock);
983
984 if (bdev)
985 bdput(bdev);
986 }
987
988 /**
989 * bd_may_claim - test whether a block device can be claimed
990 * @bdev: block device of interest
991 * @whole: whole block device containing @bdev, may equal @bdev
992 * @holder: holder trying to claim @bdev
993 *
994 * Test whether @bdev can be claimed by @holder.
995 *
996 * CONTEXT:
997 * spin_lock(&bdev_lock).
998 *
999 * RETURNS:
1000 * %true if @bdev can be claimed, %false otherwise.
1001 */
1002 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1003 void *holder)
1004 {
1005 if (bdev->bd_holder == holder)
1006 return true; /* already a holder */
1007 else if (bdev->bd_holder != NULL)
1008 return false; /* held by someone else */
1009 else if (whole == bdev)
1010 return true; /* is a whole device which isn't held */
1011
1012 else if (whole->bd_holder == bd_may_claim)
1013 return true; /* is a partition of a device that is being partitioned */
1014 else if (whole->bd_holder != NULL)
1015 return false; /* is a partition of a held device */
1016 else
1017 return true; /* is a partition of an un-held device */
1018 }
1019
1020 /**
1021 * bd_prepare_to_claim - prepare to claim a block device
1022 * @bdev: block device of interest
1023 * @whole: the whole device containing @bdev, may equal @bdev
1024 * @holder: holder trying to claim @bdev
1025 *
1026 * Prepare to claim @bdev. This function fails if @bdev is already
1027 * claimed by another holder and waits if another claiming is in
1028 * progress. This function doesn't actually claim. On successful
1029 * return, the caller has ownership of bd_claiming and bd_holder[s].
1030 *
1031 * CONTEXT:
1032 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1033 * it multiple times.
1034 *
1035 * RETURNS:
1036 * 0 if @bdev can be claimed, -EBUSY otherwise.
1037 */
1038 static int bd_prepare_to_claim(struct block_device *bdev,
1039 struct block_device *whole, void *holder)
1040 {
1041 retry:
1042 /* if someone else claimed, fail */
1043 if (!bd_may_claim(bdev, whole, holder))
1044 return -EBUSY;
1045
1046 /* if claiming is already in progress, wait for it to finish */
1047 if (whole->bd_claiming) {
1048 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1049 DEFINE_WAIT(wait);
1050
1051 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1052 spin_unlock(&bdev_lock);
1053 schedule();
1054 finish_wait(wq, &wait);
1055 spin_lock(&bdev_lock);
1056 goto retry;
1057 }
1058
1059 /* yay, all mine */
1060 return 0;
1061 }
1062
1063 /**
1064 * bd_start_claiming - start claiming a block device
1065 * @bdev: block device of interest
1066 * @holder: holder trying to claim @bdev
1067 *
1068 * @bdev is about to be opened exclusively. Check @bdev can be opened
1069 * exclusively and mark that an exclusive open is in progress. Each
1070 * successful call to this function must be matched with a call to
1071 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1072 * fail).
1073 *
1074 * This function is used to gain exclusive access to the block device
1075 * without actually causing other exclusive open attempts to fail. It
1076 * should be used when the open sequence itself requires exclusive
1077 * access but may subsequently fail.
1078 *
1079 * CONTEXT:
1080 * Might sleep.
1081 *
1082 * RETURNS:
1083 * Pointer to the block device containing @bdev on success, ERR_PTR()
1084 * value on failure.
1085 */
1086 static struct block_device *bd_start_claiming(struct block_device *bdev,
1087 void *holder)
1088 {
1089 struct gendisk *disk;
1090 struct block_device *whole;
1091 int partno, err;
1092
1093 might_sleep();
1094
1095 /*
1096 * @bdev might not have been initialized properly yet, look up
1097 * and grab the outer block device the hard way.
1098 */
1099 disk = get_gendisk(bdev->bd_dev, &partno);
1100 if (!disk)
1101 return ERR_PTR(-ENXIO);
1102
1103 /*
1104 * Normally, @bdev should equal what's returned from bdget_disk()
1105 * if partno is 0; however, some drivers (floppy) use multiple
1106 * bdev's for the same physical device and @bdev may be one of the
1107 * aliases. Keep @bdev if partno is 0. This means claimer
1108 * tracking is broken for those devices but it has always been that
1109 * way.
1110 */
1111 if (partno)
1112 whole = bdget_disk(disk, 0);
1113 else
1114 whole = bdgrab(bdev);
1115
1116 module_put(disk->fops->owner);
1117 put_disk(disk);
1118 if (!whole)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* prepare to claim, if successful, mark claiming in progress */
1122 spin_lock(&bdev_lock);
1123
1124 err = bd_prepare_to_claim(bdev, whole, holder);
1125 if (err == 0) {
1126 whole->bd_claiming = holder;
1127 spin_unlock(&bdev_lock);
1128 return whole;
1129 } else {
1130 spin_unlock(&bdev_lock);
1131 bdput(whole);
1132 return ERR_PTR(err);
1133 }
1134 }
1135
1136 #ifdef CONFIG_SYSFS
1137 struct bd_holder_disk {
1138 struct list_head list;
1139 struct gendisk *disk;
1140 int refcnt;
1141 };
1142
1143 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1144 struct gendisk *disk)
1145 {
1146 struct bd_holder_disk *holder;
1147
1148 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1149 if (holder->disk == disk)
1150 return holder;
1151 return NULL;
1152 }
1153
1154 static int add_symlink(struct kobject *from, struct kobject *to)
1155 {
1156 return sysfs_create_link(from, to, kobject_name(to));
1157 }
1158
1159 static void del_symlink(struct kobject *from, struct kobject *to)
1160 {
1161 sysfs_remove_link(from, kobject_name(to));
1162 }
1163
1164 /**
1165 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1166 * @bdev: the claimed slave bdev
1167 * @disk: the holding disk
1168 *
1169 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1170 *
1171 * This functions creates the following sysfs symlinks.
1172 *
1173 * - from "slaves" directory of the holder @disk to the claimed @bdev
1174 * - from "holders" directory of the @bdev to the holder @disk
1175 *
1176 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1177 * passed to bd_link_disk_holder(), then:
1178 *
1179 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1180 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1181 *
1182 * The caller must have claimed @bdev before calling this function and
1183 * ensure that both @bdev and @disk are valid during the creation and
1184 * lifetime of these symlinks.
1185 *
1186 * CONTEXT:
1187 * Might sleep.
1188 *
1189 * RETURNS:
1190 * 0 on success, -errno on failure.
1191 */
1192 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1193 {
1194 struct bd_holder_disk *holder;
1195 int ret = 0;
1196
1197 mutex_lock(&bdev->bd_mutex);
1198
1199 WARN_ON_ONCE(!bdev->bd_holder);
1200
1201 /* FIXME: remove the following once add_disk() handles errors */
1202 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1203 goto out_unlock;
1204
1205 holder = bd_find_holder_disk(bdev, disk);
1206 if (holder) {
1207 holder->refcnt++;
1208 goto out_unlock;
1209 }
1210
1211 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1212 if (!holder) {
1213 ret = -ENOMEM;
1214 goto out_unlock;
1215 }
1216
1217 INIT_LIST_HEAD(&holder->list);
1218 holder->disk = disk;
1219 holder->refcnt = 1;
1220
1221 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1222 if (ret)
1223 goto out_free;
1224
1225 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1226 if (ret)
1227 goto out_del;
1228 /*
1229 * bdev could be deleted beneath us which would implicitly destroy
1230 * the holder directory. Hold on to it.
1231 */
1232 kobject_get(bdev->bd_part->holder_dir);
1233
1234 list_add(&holder->list, &bdev->bd_holder_disks);
1235 goto out_unlock;
1236
1237 out_del:
1238 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1239 out_free:
1240 kfree(holder);
1241 out_unlock:
1242 mutex_unlock(&bdev->bd_mutex);
1243 return ret;
1244 }
1245 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1246
1247 /**
1248 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1249 * @bdev: the calimed slave bdev
1250 * @disk: the holding disk
1251 *
1252 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1253 *
1254 * CONTEXT:
1255 * Might sleep.
1256 */
1257 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1258 {
1259 struct bd_holder_disk *holder;
1260
1261 mutex_lock(&bdev->bd_mutex);
1262
1263 holder = bd_find_holder_disk(bdev, disk);
1264
1265 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1266 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1267 del_symlink(bdev->bd_part->holder_dir,
1268 &disk_to_dev(disk)->kobj);
1269 kobject_put(bdev->bd_part->holder_dir);
1270 list_del_init(&holder->list);
1271 kfree(holder);
1272 }
1273
1274 mutex_unlock(&bdev->bd_mutex);
1275 }
1276 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1277 #endif
1278
1279 /**
1280 * flush_disk - invalidates all buffer-cache entries on a disk
1281 *
1282 * @bdev: struct block device to be flushed
1283 * @kill_dirty: flag to guide handling of dirty inodes
1284 *
1285 * Invalidates all buffer-cache entries on a disk. It should be called
1286 * when a disk has been changed -- either by a media change or online
1287 * resize.
1288 */
1289 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1290 {
1291 if (__invalidate_device(bdev, kill_dirty)) {
1292 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1293 "resized disk %s\n",
1294 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1295 }
1296
1297 if (!bdev->bd_disk)
1298 return;
1299 if (disk_part_scan_enabled(bdev->bd_disk))
1300 bdev->bd_invalidated = 1;
1301 }
1302
1303 /**
1304 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1305 * @disk: struct gendisk to check
1306 * @bdev: struct bdev to adjust.
1307 *
1308 * This routine checks to see if the bdev size does not match the disk size
1309 * and adjusts it if it differs.
1310 */
1311 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1312 {
1313 loff_t disk_size, bdev_size;
1314
1315 disk_size = (loff_t)get_capacity(disk) << 9;
1316 bdev_size = i_size_read(bdev->bd_inode);
1317 if (disk_size != bdev_size) {
1318 printk(KERN_INFO
1319 "%s: detected capacity change from %lld to %lld\n",
1320 disk->disk_name, bdev_size, disk_size);
1321 i_size_write(bdev->bd_inode, disk_size);
1322 flush_disk(bdev, false);
1323 }
1324 }
1325 EXPORT_SYMBOL(check_disk_size_change);
1326
1327 /**
1328 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1329 * @disk: struct gendisk to be revalidated
1330 *
1331 * This routine is a wrapper for lower-level driver's revalidate_disk
1332 * call-backs. It is used to do common pre and post operations needed
1333 * for all revalidate_disk operations.
1334 */
1335 int revalidate_disk(struct gendisk *disk)
1336 {
1337 struct block_device *bdev;
1338 int ret = 0;
1339
1340 if (disk->fops->revalidate_disk)
1341 ret = disk->fops->revalidate_disk(disk);
1342 bdev = bdget_disk(disk, 0);
1343 if (!bdev)
1344 return ret;
1345
1346 mutex_lock(&bdev->bd_mutex);
1347 check_disk_size_change(disk, bdev);
1348 bdev->bd_invalidated = 0;
1349 mutex_unlock(&bdev->bd_mutex);
1350 bdput(bdev);
1351 return ret;
1352 }
1353 EXPORT_SYMBOL(revalidate_disk);
1354
1355 /*
1356 * This routine checks whether a removable media has been changed,
1357 * and invalidates all buffer-cache-entries in that case. This
1358 * is a relatively slow routine, so we have to try to minimize using
1359 * it. Thus it is called only upon a 'mount' or 'open'. This
1360 * is the best way of combining speed and utility, I think.
1361 * People changing diskettes in the middle of an operation deserve
1362 * to lose :-)
1363 */
1364 int check_disk_change(struct block_device *bdev)
1365 {
1366 struct gendisk *disk = bdev->bd_disk;
1367 const struct block_device_operations *bdops = disk->fops;
1368 unsigned int events;
1369
1370 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1371 DISK_EVENT_EJECT_REQUEST);
1372 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1373 return 0;
1374
1375 flush_disk(bdev, true);
1376 if (bdops->revalidate_disk)
1377 bdops->revalidate_disk(bdev->bd_disk);
1378 return 1;
1379 }
1380
1381 EXPORT_SYMBOL(check_disk_change);
1382
1383 void bd_set_size(struct block_device *bdev, loff_t size)
1384 {
1385 unsigned bsize = bdev_logical_block_size(bdev);
1386
1387 inode_lock(bdev->bd_inode);
1388 i_size_write(bdev->bd_inode, size);
1389 inode_unlock(bdev->bd_inode);
1390 while (bsize < PAGE_SIZE) {
1391 if (size & bsize)
1392 break;
1393 bsize <<= 1;
1394 }
1395 bdev->bd_block_size = bsize;
1396 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1397 }
1398 EXPORT_SYMBOL(bd_set_size);
1399
1400 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1401
1402 /*
1403 * bd_mutex locking:
1404 *
1405 * mutex_lock(part->bd_mutex)
1406 * mutex_lock_nested(whole->bd_mutex, 1)
1407 */
1408
1409 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1410 {
1411 struct gendisk *disk;
1412 struct module *owner;
1413 int ret;
1414 int partno;
1415 int perm = 0;
1416
1417 if (mode & FMODE_READ)
1418 perm |= MAY_READ;
1419 if (mode & FMODE_WRITE)
1420 perm |= MAY_WRITE;
1421 /*
1422 * hooks: /n/, see "layering violations".
1423 */
1424 if (!for_part) {
1425 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1426 if (ret != 0) {
1427 bdput(bdev);
1428 return ret;
1429 }
1430 }
1431
1432 restart:
1433
1434 ret = -ENXIO;
1435 disk = get_gendisk(bdev->bd_dev, &partno);
1436 if (!disk)
1437 goto out;
1438 owner = disk->fops->owner;
1439
1440 disk_block_events(disk);
1441 mutex_lock_nested(&bdev->bd_mutex, for_part);
1442 if (!bdev->bd_openers) {
1443 bdev->bd_disk = disk;
1444 bdev->bd_queue = disk->queue;
1445 bdev->bd_contains = bdev;
1446
1447 if (!partno) {
1448 ret = -ENXIO;
1449 bdev->bd_part = disk_get_part(disk, partno);
1450 if (!bdev->bd_part)
1451 goto out_clear;
1452
1453 ret = 0;
1454 if (disk->fops->open) {
1455 ret = disk->fops->open(bdev, mode);
1456 if (ret == -ERESTARTSYS) {
1457 /* Lost a race with 'disk' being
1458 * deleted, try again.
1459 * See md.c
1460 */
1461 disk_put_part(bdev->bd_part);
1462 bdev->bd_part = NULL;
1463 bdev->bd_disk = NULL;
1464 bdev->bd_queue = NULL;
1465 mutex_unlock(&bdev->bd_mutex);
1466 disk_unblock_events(disk);
1467 put_disk(disk);
1468 module_put(owner);
1469 goto restart;
1470 }
1471 }
1472
1473 if (!ret)
1474 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1475
1476 /*
1477 * If the device is invalidated, rescan partition
1478 * if open succeeded or failed with -ENOMEDIUM.
1479 * The latter is necessary to prevent ghost
1480 * partitions on a removed medium.
1481 */
1482 if (bdev->bd_invalidated) {
1483 if (!ret)
1484 rescan_partitions(disk, bdev);
1485 else if (ret == -ENOMEDIUM)
1486 invalidate_partitions(disk, bdev);
1487 }
1488
1489 if (ret)
1490 goto out_clear;
1491 } else {
1492 struct block_device *whole;
1493 whole = bdget_disk(disk, 0);
1494 ret = -ENOMEM;
1495 if (!whole)
1496 goto out_clear;
1497 BUG_ON(for_part);
1498 ret = __blkdev_get(whole, mode, 1);
1499 if (ret)
1500 goto out_clear;
1501 bdev->bd_contains = whole;
1502 bdev->bd_part = disk_get_part(disk, partno);
1503 if (!(disk->flags & GENHD_FL_UP) ||
1504 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1505 ret = -ENXIO;
1506 goto out_clear;
1507 }
1508 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1509 }
1510
1511 if (bdev->bd_bdi == &noop_backing_dev_info)
1512 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1513 } else {
1514 if (bdev->bd_contains == bdev) {
1515 ret = 0;
1516 if (bdev->bd_disk->fops->open)
1517 ret = bdev->bd_disk->fops->open(bdev, mode);
1518 /* the same as first opener case, read comment there */
1519 if (bdev->bd_invalidated) {
1520 if (!ret)
1521 rescan_partitions(bdev->bd_disk, bdev);
1522 else if (ret == -ENOMEDIUM)
1523 invalidate_partitions(bdev->bd_disk, bdev);
1524 }
1525 if (ret)
1526 goto out_unlock_bdev;
1527 }
1528 /* only one opener holds refs to the module and disk */
1529 put_disk(disk);
1530 module_put(owner);
1531 }
1532 bdev->bd_openers++;
1533 if (for_part)
1534 bdev->bd_part_count++;
1535 mutex_unlock(&bdev->bd_mutex);
1536 disk_unblock_events(disk);
1537 return 0;
1538
1539 out_clear:
1540 disk_put_part(bdev->bd_part);
1541 bdev->bd_disk = NULL;
1542 bdev->bd_part = NULL;
1543 bdev->bd_queue = NULL;
1544 if (bdev != bdev->bd_contains)
1545 __blkdev_put(bdev->bd_contains, mode, 1);
1546 bdev->bd_contains = NULL;
1547 out_unlock_bdev:
1548 mutex_unlock(&bdev->bd_mutex);
1549 disk_unblock_events(disk);
1550 put_disk(disk);
1551 module_put(owner);
1552 out:
1553 bdput(bdev);
1554
1555 return ret;
1556 }
1557
1558 /**
1559 * blkdev_get - open a block device
1560 * @bdev: block_device to open
1561 * @mode: FMODE_* mask
1562 * @holder: exclusive holder identifier
1563 *
1564 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1565 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1566 * @holder is invalid. Exclusive opens may nest for the same @holder.
1567 *
1568 * On success, the reference count of @bdev is unchanged. On failure,
1569 * @bdev is put.
1570 *
1571 * CONTEXT:
1572 * Might sleep.
1573 *
1574 * RETURNS:
1575 * 0 on success, -errno on failure.
1576 */
1577 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1578 {
1579 struct block_device *whole = NULL;
1580 int res;
1581
1582 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1583
1584 if ((mode & FMODE_EXCL) && holder) {
1585 whole = bd_start_claiming(bdev, holder);
1586 if (IS_ERR(whole)) {
1587 bdput(bdev);
1588 return PTR_ERR(whole);
1589 }
1590 }
1591
1592 res = __blkdev_get(bdev, mode, 0);
1593
1594 if (whole) {
1595 struct gendisk *disk = whole->bd_disk;
1596
1597 /* finish claiming */
1598 mutex_lock(&bdev->bd_mutex);
1599 spin_lock(&bdev_lock);
1600
1601 if (!res) {
1602 BUG_ON(!bd_may_claim(bdev, whole, holder));
1603 /*
1604 * Note that for a whole device bd_holders
1605 * will be incremented twice, and bd_holder
1606 * will be set to bd_may_claim before being
1607 * set to holder
1608 */
1609 whole->bd_holders++;
1610 whole->bd_holder = bd_may_claim;
1611 bdev->bd_holders++;
1612 bdev->bd_holder = holder;
1613 }
1614
1615 /* tell others that we're done */
1616 BUG_ON(whole->bd_claiming != holder);
1617 whole->bd_claiming = NULL;
1618 wake_up_bit(&whole->bd_claiming, 0);
1619
1620 spin_unlock(&bdev_lock);
1621
1622 /*
1623 * Block event polling for write claims if requested. Any
1624 * write holder makes the write_holder state stick until
1625 * all are released. This is good enough and tracking
1626 * individual writeable reference is too fragile given the
1627 * way @mode is used in blkdev_get/put().
1628 */
1629 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1630 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1631 bdev->bd_write_holder = true;
1632 disk_block_events(disk);
1633 }
1634
1635 mutex_unlock(&bdev->bd_mutex);
1636 bdput(whole);
1637 }
1638
1639 return res;
1640 }
1641 EXPORT_SYMBOL(blkdev_get);
1642
1643 /**
1644 * blkdev_get_by_path - open a block device by name
1645 * @path: path to the block device to open
1646 * @mode: FMODE_* mask
1647 * @holder: exclusive holder identifier
1648 *
1649 * Open the blockdevice described by the device file at @path. @mode
1650 * and @holder are identical to blkdev_get().
1651 *
1652 * On success, the returned block_device has reference count of one.
1653 *
1654 * CONTEXT:
1655 * Might sleep.
1656 *
1657 * RETURNS:
1658 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1659 */
1660 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1661 void *holder)
1662 {
1663 struct block_device *bdev;
1664 int err;
1665
1666 bdev = lookup_bdev(path);
1667 if (IS_ERR(bdev))
1668 return bdev;
1669
1670 err = blkdev_get(bdev, mode, holder);
1671 if (err)
1672 return ERR_PTR(err);
1673
1674 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1675 blkdev_put(bdev, mode);
1676 return ERR_PTR(-EACCES);
1677 }
1678
1679 return bdev;
1680 }
1681 EXPORT_SYMBOL(blkdev_get_by_path);
1682
1683 /**
1684 * blkdev_get_by_dev - open a block device by device number
1685 * @dev: device number of block device to open
1686 * @mode: FMODE_* mask
1687 * @holder: exclusive holder identifier
1688 *
1689 * Open the blockdevice described by device number @dev. @mode and
1690 * @holder are identical to blkdev_get().
1691 *
1692 * Use it ONLY if you really do not have anything better - i.e. when
1693 * you are behind a truly sucky interface and all you are given is a
1694 * device number. _Never_ to be used for internal purposes. If you
1695 * ever need it - reconsider your API.
1696 *
1697 * On success, the returned block_device has reference count of one.
1698 *
1699 * CONTEXT:
1700 * Might sleep.
1701 *
1702 * RETURNS:
1703 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1704 */
1705 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1706 {
1707 struct block_device *bdev;
1708 int err;
1709
1710 bdev = bdget(dev);
1711 if (!bdev)
1712 return ERR_PTR(-ENOMEM);
1713
1714 err = blkdev_get(bdev, mode, holder);
1715 if (err)
1716 return ERR_PTR(err);
1717
1718 return bdev;
1719 }
1720 EXPORT_SYMBOL(blkdev_get_by_dev);
1721
1722 static int blkdev_open(struct inode * inode, struct file * filp)
1723 {
1724 struct block_device *bdev;
1725
1726 /*
1727 * Preserve backwards compatibility and allow large file access
1728 * even if userspace doesn't ask for it explicitly. Some mkfs
1729 * binary needs it. We might want to drop this workaround
1730 * during an unstable branch.
1731 */
1732 filp->f_flags |= O_LARGEFILE;
1733
1734 if (filp->f_flags & O_NDELAY)
1735 filp->f_mode |= FMODE_NDELAY;
1736 if (filp->f_flags & O_EXCL)
1737 filp->f_mode |= FMODE_EXCL;
1738 if ((filp->f_flags & O_ACCMODE) == 3)
1739 filp->f_mode |= FMODE_WRITE_IOCTL;
1740
1741 bdev = bd_acquire(inode);
1742 if (bdev == NULL)
1743 return -ENOMEM;
1744
1745 filp->f_mapping = bdev->bd_inode->i_mapping;
1746
1747 return blkdev_get(bdev, filp->f_mode, filp);
1748 }
1749
1750 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1751 {
1752 struct gendisk *disk = bdev->bd_disk;
1753 struct block_device *victim = NULL;
1754
1755 mutex_lock_nested(&bdev->bd_mutex, for_part);
1756 if (for_part)
1757 bdev->bd_part_count--;
1758
1759 if (!--bdev->bd_openers) {
1760 WARN_ON_ONCE(bdev->bd_holders);
1761 sync_blockdev(bdev);
1762 kill_bdev(bdev);
1763
1764 bdev_write_inode(bdev);
1765 }
1766 if (bdev->bd_contains == bdev) {
1767 if (disk->fops->release)
1768 disk->fops->release(disk, mode);
1769 }
1770 if (!bdev->bd_openers) {
1771 struct module *owner = disk->fops->owner;
1772
1773 disk_put_part(bdev->bd_part);
1774 bdev->bd_part = NULL;
1775 bdev->bd_disk = NULL;
1776 if (bdev != bdev->bd_contains)
1777 victim = bdev->bd_contains;
1778 bdev->bd_contains = NULL;
1779
1780 put_disk(disk);
1781 module_put(owner);
1782 }
1783 mutex_unlock(&bdev->bd_mutex);
1784 bdput(bdev);
1785 if (victim)
1786 __blkdev_put(victim, mode, 1);
1787 }
1788
1789 void blkdev_put(struct block_device *bdev, fmode_t mode)
1790 {
1791 mutex_lock(&bdev->bd_mutex);
1792
1793 if (mode & FMODE_EXCL) {
1794 bool bdev_free;
1795
1796 /*
1797 * Release a claim on the device. The holder fields
1798 * are protected with bdev_lock. bd_mutex is to
1799 * synchronize disk_holder unlinking.
1800 */
1801 spin_lock(&bdev_lock);
1802
1803 WARN_ON_ONCE(--bdev->bd_holders < 0);
1804 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1805
1806 /* bd_contains might point to self, check in a separate step */
1807 if ((bdev_free = !bdev->bd_holders))
1808 bdev->bd_holder = NULL;
1809 if (!bdev->bd_contains->bd_holders)
1810 bdev->bd_contains->bd_holder = NULL;
1811
1812 spin_unlock(&bdev_lock);
1813
1814 /*
1815 * If this was the last claim, remove holder link and
1816 * unblock evpoll if it was a write holder.
1817 */
1818 if (bdev_free && bdev->bd_write_holder) {
1819 disk_unblock_events(bdev->bd_disk);
1820 bdev->bd_write_holder = false;
1821 }
1822 }
1823
1824 /*
1825 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1826 * event. This is to ensure detection of media removal commanded
1827 * from userland - e.g. eject(1).
1828 */
1829 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1830
1831 mutex_unlock(&bdev->bd_mutex);
1832
1833 __blkdev_put(bdev, mode, 0);
1834 }
1835 EXPORT_SYMBOL(blkdev_put);
1836
1837 static int blkdev_close(struct inode * inode, struct file * filp)
1838 {
1839 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1840 blkdev_put(bdev, filp->f_mode);
1841 return 0;
1842 }
1843
1844 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1845 {
1846 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1847 fmode_t mode = file->f_mode;
1848
1849 /*
1850 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1851 * to updated it before every ioctl.
1852 */
1853 if (file->f_flags & O_NDELAY)
1854 mode |= FMODE_NDELAY;
1855 else
1856 mode &= ~FMODE_NDELAY;
1857
1858 return blkdev_ioctl(bdev, mode, cmd, arg);
1859 }
1860
1861 /*
1862 * Write data to the block device. Only intended for the block device itself
1863 * and the raw driver which basically is a fake block device.
1864 *
1865 * Does not take i_mutex for the write and thus is not for general purpose
1866 * use.
1867 */
1868 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1869 {
1870 struct file *file = iocb->ki_filp;
1871 struct inode *bd_inode = bdev_file_inode(file);
1872 loff_t size = i_size_read(bd_inode);
1873 struct blk_plug plug;
1874 ssize_t ret;
1875
1876 if (bdev_read_only(I_BDEV(bd_inode)))
1877 return -EPERM;
1878
1879 if (!iov_iter_count(from))
1880 return 0;
1881
1882 if (iocb->ki_pos >= size)
1883 return -ENOSPC;
1884
1885 iov_iter_truncate(from, size - iocb->ki_pos);
1886
1887 blk_start_plug(&plug);
1888 ret = __generic_file_write_iter(iocb, from);
1889 if (ret > 0)
1890 ret = generic_write_sync(iocb, ret);
1891 blk_finish_plug(&plug);
1892 return ret;
1893 }
1894 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1895
1896 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1897 {
1898 struct file *file = iocb->ki_filp;
1899 struct inode *bd_inode = bdev_file_inode(file);
1900 loff_t size = i_size_read(bd_inode);
1901 loff_t pos = iocb->ki_pos;
1902
1903 if (pos >= size)
1904 return 0;
1905
1906 size -= pos;
1907 iov_iter_truncate(to, size);
1908 return generic_file_read_iter(iocb, to);
1909 }
1910 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1911
1912 /*
1913 * Try to release a page associated with block device when the system
1914 * is under memory pressure.
1915 */
1916 static int blkdev_releasepage(struct page *page, gfp_t wait)
1917 {
1918 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1919
1920 if (super && super->s_op->bdev_try_to_free_page)
1921 return super->s_op->bdev_try_to_free_page(super, page, wait);
1922
1923 return try_to_free_buffers(page);
1924 }
1925
1926 static int blkdev_writepages(struct address_space *mapping,
1927 struct writeback_control *wbc)
1928 {
1929 if (dax_mapping(mapping)) {
1930 struct block_device *bdev = I_BDEV(mapping->host);
1931
1932 return dax_writeback_mapping_range(mapping, bdev, wbc);
1933 }
1934 return generic_writepages(mapping, wbc);
1935 }
1936
1937 static const struct address_space_operations def_blk_aops = {
1938 .readpage = blkdev_readpage,
1939 .readpages = blkdev_readpages,
1940 .writepage = blkdev_writepage,
1941 .write_begin = blkdev_write_begin,
1942 .write_end = blkdev_write_end,
1943 .writepages = blkdev_writepages,
1944 .releasepage = blkdev_releasepage,
1945 .direct_IO = blkdev_direct_IO,
1946 .is_dirty_writeback = buffer_check_dirty_writeback,
1947 };
1948
1949 #define BLKDEV_FALLOC_FL_SUPPORTED \
1950 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1951 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1952
1953 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1954 loff_t len)
1955 {
1956 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1957 struct address_space *mapping;
1958 loff_t end = start + len - 1;
1959 loff_t isize;
1960 int error;
1961
1962 /* Fail if we don't recognize the flags. */
1963 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1964 return -EOPNOTSUPP;
1965
1966 /* Don't go off the end of the device. */
1967 isize = i_size_read(bdev->bd_inode);
1968 if (start >= isize)
1969 return -EINVAL;
1970 if (end >= isize) {
1971 if (mode & FALLOC_FL_KEEP_SIZE) {
1972 len = isize - start;
1973 end = start + len - 1;
1974 } else
1975 return -EINVAL;
1976 }
1977
1978 /*
1979 * Don't allow IO that isn't aligned to logical block size.
1980 */
1981 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1982 return -EINVAL;
1983
1984 /* Invalidate the page cache, including dirty pages. */
1985 mapping = bdev->bd_inode->i_mapping;
1986 truncate_inode_pages_range(mapping, start, end);
1987
1988 switch (mode) {
1989 case FALLOC_FL_ZERO_RANGE:
1990 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1991 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1992 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
1993 break;
1994 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1995 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1996 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
1997 break;
1998 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1999 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2000 GFP_KERNEL, 0);
2001 break;
2002 default:
2003 return -EOPNOTSUPP;
2004 }
2005 if (error)
2006 return error;
2007
2008 /*
2009 * Invalidate again; if someone wandered in and dirtied a page,
2010 * the caller will be given -EBUSY. The third argument is
2011 * inclusive, so the rounding here is safe.
2012 */
2013 return invalidate_inode_pages2_range(mapping,
2014 start >> PAGE_SHIFT,
2015 end >> PAGE_SHIFT);
2016 }
2017
2018 const struct file_operations def_blk_fops = {
2019 .open = blkdev_open,
2020 .release = blkdev_close,
2021 .llseek = block_llseek,
2022 .read_iter = blkdev_read_iter,
2023 .write_iter = blkdev_write_iter,
2024 .mmap = generic_file_mmap,
2025 .fsync = blkdev_fsync,
2026 .unlocked_ioctl = block_ioctl,
2027 #ifdef CONFIG_COMPAT
2028 .compat_ioctl = compat_blkdev_ioctl,
2029 #endif
2030 .splice_read = generic_file_splice_read,
2031 .splice_write = iter_file_splice_write,
2032 .fallocate = blkdev_fallocate,
2033 };
2034
2035 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2036 {
2037 int res;
2038 mm_segment_t old_fs = get_fs();
2039 set_fs(KERNEL_DS);
2040 res = blkdev_ioctl(bdev, 0, cmd, arg);
2041 set_fs(old_fs);
2042 return res;
2043 }
2044
2045 EXPORT_SYMBOL(ioctl_by_bdev);
2046
2047 /**
2048 * lookup_bdev - lookup a struct block_device by name
2049 * @pathname: special file representing the block device
2050 *
2051 * Get a reference to the blockdevice at @pathname in the current
2052 * namespace if possible and return it. Return ERR_PTR(error)
2053 * otherwise.
2054 */
2055 struct block_device *lookup_bdev(const char *pathname)
2056 {
2057 struct block_device *bdev;
2058 struct inode *inode;
2059 struct path path;
2060 int error;
2061
2062 if (!pathname || !*pathname)
2063 return ERR_PTR(-EINVAL);
2064
2065 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2066 if (error)
2067 return ERR_PTR(error);
2068
2069 inode = d_backing_inode(path.dentry);
2070 error = -ENOTBLK;
2071 if (!S_ISBLK(inode->i_mode))
2072 goto fail;
2073 error = -EACCES;
2074 if (!may_open_dev(&path))
2075 goto fail;
2076 error = -ENOMEM;
2077 bdev = bd_acquire(inode);
2078 if (!bdev)
2079 goto fail;
2080 out:
2081 path_put(&path);
2082 return bdev;
2083 fail:
2084 bdev = ERR_PTR(error);
2085 goto out;
2086 }
2087 EXPORT_SYMBOL(lookup_bdev);
2088
2089 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2090 {
2091 struct super_block *sb = get_super(bdev);
2092 int res = 0;
2093
2094 if (sb) {
2095 /*
2096 * no need to lock the super, get_super holds the
2097 * read mutex so the filesystem cannot go away
2098 * under us (->put_super runs with the write lock
2099 * hold).
2100 */
2101 shrink_dcache_sb(sb);
2102 res = invalidate_inodes(sb, kill_dirty);
2103 drop_super(sb);
2104 }
2105 invalidate_bdev(bdev);
2106 return res;
2107 }
2108 EXPORT_SYMBOL(__invalidate_device);
2109
2110 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2111 {
2112 struct inode *inode, *old_inode = NULL;
2113
2114 spin_lock(&blockdev_superblock->s_inode_list_lock);
2115 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2116 struct address_space *mapping = inode->i_mapping;
2117 struct block_device *bdev;
2118
2119 spin_lock(&inode->i_lock);
2120 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2121 mapping->nrpages == 0) {
2122 spin_unlock(&inode->i_lock);
2123 continue;
2124 }
2125 __iget(inode);
2126 spin_unlock(&inode->i_lock);
2127 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2128 /*
2129 * We hold a reference to 'inode' so it couldn't have been
2130 * removed from s_inodes list while we dropped the
2131 * s_inode_list_lock We cannot iput the inode now as we can
2132 * be holding the last reference and we cannot iput it under
2133 * s_inode_list_lock. So we keep the reference and iput it
2134 * later.
2135 */
2136 iput(old_inode);
2137 old_inode = inode;
2138 bdev = I_BDEV(inode);
2139
2140 mutex_lock(&bdev->bd_mutex);
2141 if (bdev->bd_openers)
2142 func(bdev, arg);
2143 mutex_unlock(&bdev->bd_mutex);
2144
2145 spin_lock(&blockdev_superblock->s_inode_list_lock);
2146 }
2147 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2148 iput(old_inode);
2149 }