]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages) {
92 invalidate_bh_lrus();
93 lru_add_drain_all(); /* make sure all lru add caches are flushed */
94 invalidate_mapping_pages(mapping, 0, -1);
95 }
96 /* 99% of the time, we don't need to flush the cleancache on the bdev.
97 * But, for the strange corners, lets be cautious
98 */
99 cleancache_invalidate_inode(mapping);
100 }
101 EXPORT_SYMBOL(invalidate_bdev);
102
103 int set_blocksize(struct block_device *bdev, int size)
104 {
105 /* Size must be a power of two, and between 512 and PAGE_SIZE */
106 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
107 return -EINVAL;
108
109 /* Size cannot be smaller than the size supported by the device */
110 if (size < bdev_logical_block_size(bdev))
111 return -EINVAL;
112
113 /* Don't change the size if it is same as current */
114 if (bdev->bd_block_size != size) {
115 sync_blockdev(bdev);
116 bdev->bd_block_size = size;
117 bdev->bd_inode->i_blkbits = blksize_bits(size);
118 kill_bdev(bdev);
119 }
120 return 0;
121 }
122
123 EXPORT_SYMBOL(set_blocksize);
124
125 int sb_set_blocksize(struct super_block *sb, int size)
126 {
127 if (set_blocksize(sb->s_bdev, size))
128 return 0;
129 /* If we get here, we know size is power of two
130 * and it's value is between 512 and PAGE_SIZE */
131 sb->s_blocksize = size;
132 sb->s_blocksize_bits = blksize_bits(size);
133 return sb->s_blocksize;
134 }
135
136 EXPORT_SYMBOL(sb_set_blocksize);
137
138 int sb_min_blocksize(struct super_block *sb, int size)
139 {
140 int minsize = bdev_logical_block_size(sb->s_bdev);
141 if (size < minsize)
142 size = minsize;
143 return sb_set_blocksize(sb, size);
144 }
145
146 EXPORT_SYMBOL(sb_min_blocksize);
147
148 static int
149 blkdev_get_block(struct inode *inode, sector_t iblock,
150 struct buffer_head *bh, int create)
151 {
152 bh->b_bdev = I_BDEV(inode);
153 bh->b_blocknr = iblock;
154 set_buffer_mapped(bh);
155 return 0;
156 }
157
158 static ssize_t
159 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
160 {
161 struct file *file = iocb->ki_filp;
162 struct inode *inode = file->f_mapping->host;
163
164 if (IS_DAX(inode))
165 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
166 NULL, DIO_SKIP_DIO_COUNT);
167 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
168 blkdev_get_block, NULL, NULL,
169 DIO_SKIP_DIO_COUNT);
170 }
171
172 int __sync_blockdev(struct block_device *bdev, int wait)
173 {
174 if (!bdev)
175 return 0;
176 if (!wait)
177 return filemap_flush(bdev->bd_inode->i_mapping);
178 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
179 }
180
181 /*
182 * Write out and wait upon all the dirty data associated with a block
183 * device via its mapping. Does not take the superblock lock.
184 */
185 int sync_blockdev(struct block_device *bdev)
186 {
187 return __sync_blockdev(bdev, 1);
188 }
189 EXPORT_SYMBOL(sync_blockdev);
190
191 /*
192 * Write out and wait upon all dirty data associated with this
193 * device. Filesystem data as well as the underlying block
194 * device. Takes the superblock lock.
195 */
196 int fsync_bdev(struct block_device *bdev)
197 {
198 struct super_block *sb = get_super(bdev);
199 if (sb) {
200 int res = sync_filesystem(sb);
201 drop_super(sb);
202 return res;
203 }
204 return sync_blockdev(bdev);
205 }
206 EXPORT_SYMBOL(fsync_bdev);
207
208 /**
209 * freeze_bdev -- lock a filesystem and force it into a consistent state
210 * @bdev: blockdevice to lock
211 *
212 * If a superblock is found on this device, we take the s_umount semaphore
213 * on it to make sure nobody unmounts until the snapshot creation is done.
214 * The reference counter (bd_fsfreeze_count) guarantees that only the last
215 * unfreeze process can unfreeze the frozen filesystem actually when multiple
216 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
217 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
218 * actually.
219 */
220 struct super_block *freeze_bdev(struct block_device *bdev)
221 {
222 struct super_block *sb;
223 int error = 0;
224
225 mutex_lock(&bdev->bd_fsfreeze_mutex);
226 if (++bdev->bd_fsfreeze_count > 1) {
227 /*
228 * We don't even need to grab a reference - the first call
229 * to freeze_bdev grab an active reference and only the last
230 * thaw_bdev drops it.
231 */
232 sb = get_super(bdev);
233 drop_super(sb);
234 mutex_unlock(&bdev->bd_fsfreeze_mutex);
235 return sb;
236 }
237
238 sb = get_active_super(bdev);
239 if (!sb)
240 goto out;
241 if (sb->s_op->freeze_super)
242 error = sb->s_op->freeze_super(sb);
243 else
244 error = freeze_super(sb);
245 if (error) {
246 deactivate_super(sb);
247 bdev->bd_fsfreeze_count--;
248 mutex_unlock(&bdev->bd_fsfreeze_mutex);
249 return ERR_PTR(error);
250 }
251 deactivate_super(sb);
252 out:
253 sync_blockdev(bdev);
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return sb; /* thaw_bdev releases s->s_umount */
256 }
257 EXPORT_SYMBOL(freeze_bdev);
258
259 /**
260 * thaw_bdev -- unlock filesystem
261 * @bdev: blockdevice to unlock
262 * @sb: associated superblock
263 *
264 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
265 */
266 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
267 {
268 int error = -EINVAL;
269
270 mutex_lock(&bdev->bd_fsfreeze_mutex);
271 if (!bdev->bd_fsfreeze_count)
272 goto out;
273
274 error = 0;
275 if (--bdev->bd_fsfreeze_count > 0)
276 goto out;
277
278 if (!sb)
279 goto out;
280
281 if (sb->s_op->thaw_super)
282 error = sb->s_op->thaw_super(sb);
283 else
284 error = thaw_super(sb);
285 if (error) {
286 bdev->bd_fsfreeze_count++;
287 mutex_unlock(&bdev->bd_fsfreeze_mutex);
288 return error;
289 }
290 out:
291 mutex_unlock(&bdev->bd_fsfreeze_mutex);
292 return 0;
293 }
294 EXPORT_SYMBOL(thaw_bdev);
295
296 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
297 {
298 return block_write_full_page(page, blkdev_get_block, wbc);
299 }
300
301 static int blkdev_readpage(struct file * file, struct page * page)
302 {
303 return block_read_full_page(page, blkdev_get_block);
304 }
305
306 static int blkdev_readpages(struct file *file, struct address_space *mapping,
307 struct list_head *pages, unsigned nr_pages)
308 {
309 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
310 }
311
312 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned flags,
314 struct page **pagep, void **fsdata)
315 {
316 return block_write_begin(mapping, pos, len, flags, pagep,
317 blkdev_get_block);
318 }
319
320 static int blkdev_write_end(struct file *file, struct address_space *mapping,
321 loff_t pos, unsigned len, unsigned copied,
322 struct page *page, void *fsdata)
323 {
324 int ret;
325 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
326
327 unlock_page(page);
328 page_cache_release(page);
329
330 return ret;
331 }
332
333 /*
334 * private llseek:
335 * for a block special file file_inode(file)->i_size is zero
336 * so we compute the size by hand (just as in block_read/write above)
337 */
338 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
339 {
340 struct inode *bd_inode = file->f_mapping->host;
341 loff_t retval;
342
343 mutex_lock(&bd_inode->i_mutex);
344 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
345 mutex_unlock(&bd_inode->i_mutex);
346 return retval;
347 }
348
349 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
350 {
351 struct inode *bd_inode = filp->f_mapping->host;
352 struct block_device *bdev = I_BDEV(bd_inode);
353 int error;
354
355 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
356 if (error)
357 return error;
358
359 /*
360 * There is no need to serialise calls to blkdev_issue_flush with
361 * i_mutex and doing so causes performance issues with concurrent
362 * O_SYNC writers to a block device.
363 */
364 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
365 if (error == -EOPNOTSUPP)
366 error = 0;
367
368 return error;
369 }
370 EXPORT_SYMBOL(blkdev_fsync);
371
372 /**
373 * bdev_read_page() - Start reading a page from a block device
374 * @bdev: The device to read the page from
375 * @sector: The offset on the device to read the page to (need not be aligned)
376 * @page: The page to read
377 *
378 * On entry, the page should be locked. It will be unlocked when the page
379 * has been read. If the block driver implements rw_page synchronously,
380 * that will be true on exit from this function, but it need not be.
381 *
382 * Errors returned by this function are usually "soft", eg out of memory, or
383 * queue full; callers should try a different route to read this page rather
384 * than propagate an error back up the stack.
385 *
386 * Return: negative errno if an error occurs, 0 if submission was successful.
387 */
388 int bdev_read_page(struct block_device *bdev, sector_t sector,
389 struct page *page)
390 {
391 const struct block_device_operations *ops = bdev->bd_disk->fops;
392 int result = -EOPNOTSUPP;
393
394 if (!ops->rw_page || bdev_get_integrity(bdev))
395 return result;
396
397 result = blk_queue_enter(bdev->bd_queue, false);
398 if (result)
399 return result;
400 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
401 blk_queue_exit(bdev->bd_queue);
402 return result;
403 }
404 EXPORT_SYMBOL_GPL(bdev_read_page);
405
406 /**
407 * bdev_write_page() - Start writing a page to a block device
408 * @bdev: The device to write the page to
409 * @sector: The offset on the device to write the page to (need not be aligned)
410 * @page: The page to write
411 * @wbc: The writeback_control for the write
412 *
413 * On entry, the page should be locked and not currently under writeback.
414 * On exit, if the write started successfully, the page will be unlocked and
415 * under writeback. If the write failed already (eg the driver failed to
416 * queue the page to the device), the page will still be locked. If the
417 * caller is a ->writepage implementation, it will need to unlock the page.
418 *
419 * Errors returned by this function are usually "soft", eg out of memory, or
420 * queue full; callers should try a different route to write this page rather
421 * than propagate an error back up the stack.
422 *
423 * Return: negative errno if an error occurs, 0 if submission was successful.
424 */
425 int bdev_write_page(struct block_device *bdev, sector_t sector,
426 struct page *page, struct writeback_control *wbc)
427 {
428 int result;
429 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
430 const struct block_device_operations *ops = bdev->bd_disk->fops;
431
432 if (!ops->rw_page || bdev_get_integrity(bdev))
433 return -EOPNOTSUPP;
434 result = blk_queue_enter(bdev->bd_queue, false);
435 if (result)
436 return result;
437
438 set_page_writeback(page);
439 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
440 if (result)
441 end_page_writeback(page);
442 else
443 unlock_page(page);
444 blk_queue_exit(bdev->bd_queue);
445 return result;
446 }
447 EXPORT_SYMBOL_GPL(bdev_write_page);
448
449 /**
450 * bdev_direct_access() - Get the address for directly-accessibly memory
451 * @bdev: The device containing the memory
452 * @sector: The offset within the device
453 * @addr: Where to put the address of the memory
454 * @pfn: The Page Frame Number for the memory
455 * @size: The number of bytes requested
456 *
457 * If a block device is made up of directly addressable memory, this function
458 * will tell the caller the PFN and the address of the memory. The address
459 * may be directly dereferenced within the kernel without the need to call
460 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
461 * page tables.
462 *
463 * Return: negative errno if an error occurs, otherwise the number of bytes
464 * accessible at this address.
465 */
466 long bdev_direct_access(struct block_device *bdev, sector_t sector,
467 void __pmem **addr, unsigned long *pfn, long size)
468 {
469 long avail;
470 const struct block_device_operations *ops = bdev->bd_disk->fops;
471
472 /*
473 * The device driver is allowed to sleep, in order to make the
474 * memory directly accessible.
475 */
476 might_sleep();
477
478 if (size < 0)
479 return size;
480 if (!ops->direct_access)
481 return -EOPNOTSUPP;
482 if ((sector + DIV_ROUND_UP(size, 512)) >
483 part_nr_sects_read(bdev->bd_part))
484 return -ERANGE;
485 sector += get_start_sect(bdev);
486 if (sector % (PAGE_SIZE / 512))
487 return -EINVAL;
488 avail = ops->direct_access(bdev, sector, addr, pfn);
489 if (!avail)
490 return -ERANGE;
491 return min(avail, size);
492 }
493 EXPORT_SYMBOL_GPL(bdev_direct_access);
494
495 /*
496 * pseudo-fs
497 */
498
499 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
500 static struct kmem_cache * bdev_cachep __read_mostly;
501
502 static struct inode *bdev_alloc_inode(struct super_block *sb)
503 {
504 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
505 if (!ei)
506 return NULL;
507 return &ei->vfs_inode;
508 }
509
510 static void bdev_i_callback(struct rcu_head *head)
511 {
512 struct inode *inode = container_of(head, struct inode, i_rcu);
513 struct bdev_inode *bdi = BDEV_I(inode);
514
515 kmem_cache_free(bdev_cachep, bdi);
516 }
517
518 static void bdev_destroy_inode(struct inode *inode)
519 {
520 call_rcu(&inode->i_rcu, bdev_i_callback);
521 }
522
523 static void init_once(void *foo)
524 {
525 struct bdev_inode *ei = (struct bdev_inode *) foo;
526 struct block_device *bdev = &ei->bdev;
527
528 memset(bdev, 0, sizeof(*bdev));
529 mutex_init(&bdev->bd_mutex);
530 INIT_LIST_HEAD(&bdev->bd_inodes);
531 INIT_LIST_HEAD(&bdev->bd_list);
532 #ifdef CONFIG_SYSFS
533 INIT_LIST_HEAD(&bdev->bd_holder_disks);
534 #endif
535 bdev->bd_bdi = &noop_backing_dev_info;
536 inode_init_once(&ei->vfs_inode);
537 /* Initialize mutex for freeze. */
538 mutex_init(&bdev->bd_fsfreeze_mutex);
539 }
540
541 static inline void __bd_forget(struct inode *inode)
542 {
543 list_del_init(&inode->i_devices);
544 inode->i_bdev = NULL;
545 inode->i_mapping = &inode->i_data;
546 }
547
548 static void bdev_evict_inode(struct inode *inode)
549 {
550 struct block_device *bdev = &BDEV_I(inode)->bdev;
551 struct list_head *p;
552 truncate_inode_pages_final(&inode->i_data);
553 invalidate_inode_buffers(inode); /* is it needed here? */
554 clear_inode(inode);
555 spin_lock(&bdev_lock);
556 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
557 __bd_forget(list_entry(p, struct inode, i_devices));
558 }
559 list_del_init(&bdev->bd_list);
560 spin_unlock(&bdev_lock);
561 /* Detach inode from wb early as bdi_put() may free bdi->wb */
562 inode_detach_wb(inode);
563 if (bdev->bd_bdi != &noop_backing_dev_info) {
564 bdi_put(bdev->bd_bdi);
565 bdev->bd_bdi = &noop_backing_dev_info;
566 }
567 }
568
569 static const struct super_operations bdev_sops = {
570 .statfs = simple_statfs,
571 .alloc_inode = bdev_alloc_inode,
572 .destroy_inode = bdev_destroy_inode,
573 .drop_inode = generic_delete_inode,
574 .evict_inode = bdev_evict_inode,
575 };
576
577 static struct dentry *bd_mount(struct file_system_type *fs_type,
578 int flags, const char *dev_name, void *data)
579 {
580 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
581 }
582
583 static struct file_system_type bd_type = {
584 .name = "bdev",
585 .mount = bd_mount,
586 .kill_sb = kill_anon_super,
587 };
588
589 struct super_block *blockdev_superblock __read_mostly;
590 EXPORT_SYMBOL_GPL(blockdev_superblock);
591
592 void __init bdev_cache_init(void)
593 {
594 int err;
595 static struct vfsmount *bd_mnt;
596
597 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
598 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
599 SLAB_MEM_SPREAD|SLAB_PANIC),
600 init_once);
601 err = register_filesystem(&bd_type);
602 if (err)
603 panic("Cannot register bdev pseudo-fs");
604 bd_mnt = kern_mount(&bd_type);
605 if (IS_ERR(bd_mnt))
606 panic("Cannot create bdev pseudo-fs");
607 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
608 }
609
610 /*
611 * Most likely _very_ bad one - but then it's hardly critical for small
612 * /dev and can be fixed when somebody will need really large one.
613 * Keep in mind that it will be fed through icache hash function too.
614 */
615 static inline unsigned long hash(dev_t dev)
616 {
617 return MAJOR(dev)+MINOR(dev);
618 }
619
620 static int bdev_test(struct inode *inode, void *data)
621 {
622 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
623 }
624
625 static int bdev_set(struct inode *inode, void *data)
626 {
627 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
628 return 0;
629 }
630
631 static LIST_HEAD(all_bdevs);
632
633 /*
634 * If there is a bdev inode for this device, unhash it so that it gets evicted
635 * as soon as last inode reference is dropped.
636 */
637 void bdev_unhash_inode(dev_t dev)
638 {
639 struct inode *inode;
640
641 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
642 if (inode) {
643 remove_inode_hash(inode);
644 iput(inode);
645 }
646 }
647
648 struct block_device *bdget(dev_t dev)
649 {
650 struct block_device *bdev;
651 struct inode *inode;
652
653 inode = iget5_locked(blockdev_superblock, hash(dev),
654 bdev_test, bdev_set, &dev);
655
656 if (!inode)
657 return NULL;
658
659 bdev = &BDEV_I(inode)->bdev;
660
661 if (inode->i_state & I_NEW) {
662 bdev->bd_contains = NULL;
663 bdev->bd_super = NULL;
664 bdev->bd_inode = inode;
665 bdev->bd_block_size = (1 << inode->i_blkbits);
666 bdev->bd_part_count = 0;
667 bdev->bd_invalidated = 0;
668 inode->i_mode = S_IFBLK;
669 inode->i_rdev = dev;
670 inode->i_bdev = bdev;
671 inode->i_data.a_ops = &def_blk_aops;
672 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
673 spin_lock(&bdev_lock);
674 list_add(&bdev->bd_list, &all_bdevs);
675 spin_unlock(&bdev_lock);
676 unlock_new_inode(inode);
677 }
678 return bdev;
679 }
680
681 EXPORT_SYMBOL(bdget);
682
683 /**
684 * bdgrab -- Grab a reference to an already referenced block device
685 * @bdev: Block device to grab a reference to.
686 */
687 struct block_device *bdgrab(struct block_device *bdev)
688 {
689 ihold(bdev->bd_inode);
690 return bdev;
691 }
692 EXPORT_SYMBOL(bdgrab);
693
694 long nr_blockdev_pages(void)
695 {
696 struct block_device *bdev;
697 long ret = 0;
698 spin_lock(&bdev_lock);
699 list_for_each_entry(bdev, &all_bdevs, bd_list) {
700 ret += bdev->bd_inode->i_mapping->nrpages;
701 }
702 spin_unlock(&bdev_lock);
703 return ret;
704 }
705
706 void bdput(struct block_device *bdev)
707 {
708 iput(bdev->bd_inode);
709 }
710
711 EXPORT_SYMBOL(bdput);
712
713 static struct block_device *bd_acquire(struct inode *inode)
714 {
715 struct block_device *bdev;
716
717 spin_lock(&bdev_lock);
718 bdev = inode->i_bdev;
719 if (bdev && !inode_unhashed(bdev->bd_inode)) {
720 ihold(bdev->bd_inode);
721 spin_unlock(&bdev_lock);
722 return bdev;
723 }
724 spin_unlock(&bdev_lock);
725
726 /*
727 * i_bdev references block device inode that was already shut down
728 * (corresponding device got removed). Remove the reference and look
729 * up block device inode again just in case new device got
730 * reestablished under the same device number.
731 */
732 if (bdev)
733 bd_forget(inode);
734
735 bdev = bdget(inode->i_rdev);
736 if (bdev) {
737 spin_lock(&bdev_lock);
738 if (!inode->i_bdev) {
739 /*
740 * We take an additional reference to bd_inode,
741 * and it's released in clear_inode() of inode.
742 * So, we can access it via ->i_mapping always
743 * without igrab().
744 */
745 ihold(bdev->bd_inode);
746 inode->i_bdev = bdev;
747 inode->i_mapping = bdev->bd_inode->i_mapping;
748 list_add(&inode->i_devices, &bdev->bd_inodes);
749 }
750 spin_unlock(&bdev_lock);
751 }
752 return bdev;
753 }
754
755 /* Call when you free inode */
756
757 void bd_forget(struct inode *inode)
758 {
759 struct block_device *bdev = NULL;
760
761 spin_lock(&bdev_lock);
762 if (!sb_is_blkdev_sb(inode->i_sb))
763 bdev = inode->i_bdev;
764 __bd_forget(inode);
765 spin_unlock(&bdev_lock);
766
767 if (bdev)
768 iput(bdev->bd_inode);
769 }
770
771 /**
772 * bd_may_claim - test whether a block device can be claimed
773 * @bdev: block device of interest
774 * @whole: whole block device containing @bdev, may equal @bdev
775 * @holder: holder trying to claim @bdev
776 *
777 * Test whether @bdev can be claimed by @holder.
778 *
779 * CONTEXT:
780 * spin_lock(&bdev_lock).
781 *
782 * RETURNS:
783 * %true if @bdev can be claimed, %false otherwise.
784 */
785 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
786 void *holder)
787 {
788 if (bdev->bd_holder == holder)
789 return true; /* already a holder */
790 else if (bdev->bd_holder != NULL)
791 return false; /* held by someone else */
792 else if (whole == bdev)
793 return true; /* is a whole device which isn't held */
794
795 else if (whole->bd_holder == bd_may_claim)
796 return true; /* is a partition of a device that is being partitioned */
797 else if (whole->bd_holder != NULL)
798 return false; /* is a partition of a held device */
799 else
800 return true; /* is a partition of an un-held device */
801 }
802
803 /**
804 * bd_prepare_to_claim - prepare to claim a block device
805 * @bdev: block device of interest
806 * @whole: the whole device containing @bdev, may equal @bdev
807 * @holder: holder trying to claim @bdev
808 *
809 * Prepare to claim @bdev. This function fails if @bdev is already
810 * claimed by another holder and waits if another claiming is in
811 * progress. This function doesn't actually claim. On successful
812 * return, the caller has ownership of bd_claiming and bd_holder[s].
813 *
814 * CONTEXT:
815 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
816 * it multiple times.
817 *
818 * RETURNS:
819 * 0 if @bdev can be claimed, -EBUSY otherwise.
820 */
821 static int bd_prepare_to_claim(struct block_device *bdev,
822 struct block_device *whole, void *holder)
823 {
824 retry:
825 /* if someone else claimed, fail */
826 if (!bd_may_claim(bdev, whole, holder))
827 return -EBUSY;
828
829 /* if claiming is already in progress, wait for it to finish */
830 if (whole->bd_claiming) {
831 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
832 DEFINE_WAIT(wait);
833
834 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
835 spin_unlock(&bdev_lock);
836 schedule();
837 finish_wait(wq, &wait);
838 spin_lock(&bdev_lock);
839 goto retry;
840 }
841
842 /* yay, all mine */
843 return 0;
844 }
845
846 /**
847 * bd_start_claiming - start claiming a block device
848 * @bdev: block device of interest
849 * @holder: holder trying to claim @bdev
850 *
851 * @bdev is about to be opened exclusively. Check @bdev can be opened
852 * exclusively and mark that an exclusive open is in progress. Each
853 * successful call to this function must be matched with a call to
854 * either bd_finish_claiming() or bd_abort_claiming() (which do not
855 * fail).
856 *
857 * This function is used to gain exclusive access to the block device
858 * without actually causing other exclusive open attempts to fail. It
859 * should be used when the open sequence itself requires exclusive
860 * access but may subsequently fail.
861 *
862 * CONTEXT:
863 * Might sleep.
864 *
865 * RETURNS:
866 * Pointer to the block device containing @bdev on success, ERR_PTR()
867 * value on failure.
868 */
869 static struct block_device *bd_start_claiming(struct block_device *bdev,
870 void *holder)
871 {
872 struct gendisk *disk;
873 struct block_device *whole;
874 int partno, err;
875
876 might_sleep();
877
878 /*
879 * @bdev might not have been initialized properly yet, look up
880 * and grab the outer block device the hard way.
881 */
882 disk = get_gendisk(bdev->bd_dev, &partno);
883 if (!disk)
884 return ERR_PTR(-ENXIO);
885
886 /*
887 * Normally, @bdev should equal what's returned from bdget_disk()
888 * if partno is 0; however, some drivers (floppy) use multiple
889 * bdev's for the same physical device and @bdev may be one of the
890 * aliases. Keep @bdev if partno is 0. This means claimer
891 * tracking is broken for those devices but it has always been that
892 * way.
893 */
894 if (partno)
895 whole = bdget_disk(disk, 0);
896 else
897 whole = bdgrab(bdev);
898
899 module_put(disk->fops->owner);
900 put_disk(disk);
901 if (!whole)
902 return ERR_PTR(-ENOMEM);
903
904 /* prepare to claim, if successful, mark claiming in progress */
905 spin_lock(&bdev_lock);
906
907 err = bd_prepare_to_claim(bdev, whole, holder);
908 if (err == 0) {
909 whole->bd_claiming = holder;
910 spin_unlock(&bdev_lock);
911 return whole;
912 } else {
913 spin_unlock(&bdev_lock);
914 bdput(whole);
915 return ERR_PTR(err);
916 }
917 }
918
919 #ifdef CONFIG_SYSFS
920 struct bd_holder_disk {
921 struct list_head list;
922 struct gendisk *disk;
923 int refcnt;
924 };
925
926 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
927 struct gendisk *disk)
928 {
929 struct bd_holder_disk *holder;
930
931 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
932 if (holder->disk == disk)
933 return holder;
934 return NULL;
935 }
936
937 static int add_symlink(struct kobject *from, struct kobject *to)
938 {
939 return sysfs_create_link(from, to, kobject_name(to));
940 }
941
942 static void del_symlink(struct kobject *from, struct kobject *to)
943 {
944 sysfs_remove_link(from, kobject_name(to));
945 }
946
947 /**
948 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
949 * @bdev: the claimed slave bdev
950 * @disk: the holding disk
951 *
952 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
953 *
954 * This functions creates the following sysfs symlinks.
955 *
956 * - from "slaves" directory of the holder @disk to the claimed @bdev
957 * - from "holders" directory of the @bdev to the holder @disk
958 *
959 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
960 * passed to bd_link_disk_holder(), then:
961 *
962 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
963 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
964 *
965 * The caller must have claimed @bdev before calling this function and
966 * ensure that both @bdev and @disk are valid during the creation and
967 * lifetime of these symlinks.
968 *
969 * CONTEXT:
970 * Might sleep.
971 *
972 * RETURNS:
973 * 0 on success, -errno on failure.
974 */
975 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
976 {
977 struct bd_holder_disk *holder;
978 int ret = 0;
979
980 mutex_lock(&bdev->bd_mutex);
981
982 WARN_ON_ONCE(!bdev->bd_holder);
983
984 /* FIXME: remove the following once add_disk() handles errors */
985 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
986 goto out_unlock;
987
988 holder = bd_find_holder_disk(bdev, disk);
989 if (holder) {
990 holder->refcnt++;
991 goto out_unlock;
992 }
993
994 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
995 if (!holder) {
996 ret = -ENOMEM;
997 goto out_unlock;
998 }
999
1000 INIT_LIST_HEAD(&holder->list);
1001 holder->disk = disk;
1002 holder->refcnt = 1;
1003
1004 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1005 if (ret)
1006 goto out_free;
1007
1008 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1009 if (ret)
1010 goto out_del;
1011 /*
1012 * bdev could be deleted beneath us which would implicitly destroy
1013 * the holder directory. Hold on to it.
1014 */
1015 kobject_get(bdev->bd_part->holder_dir);
1016
1017 list_add(&holder->list, &bdev->bd_holder_disks);
1018 goto out_unlock;
1019
1020 out_del:
1021 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1022 out_free:
1023 kfree(holder);
1024 out_unlock:
1025 mutex_unlock(&bdev->bd_mutex);
1026 return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1029
1030 /**
1031 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1032 * @bdev: the calimed slave bdev
1033 * @disk: the holding disk
1034 *
1035 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1036 *
1037 * CONTEXT:
1038 * Might sleep.
1039 */
1040 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1041 {
1042 struct bd_holder_disk *holder;
1043
1044 mutex_lock(&bdev->bd_mutex);
1045
1046 holder = bd_find_holder_disk(bdev, disk);
1047
1048 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1049 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1050 del_symlink(bdev->bd_part->holder_dir,
1051 &disk_to_dev(disk)->kobj);
1052 kobject_put(bdev->bd_part->holder_dir);
1053 list_del_init(&holder->list);
1054 kfree(holder);
1055 }
1056
1057 mutex_unlock(&bdev->bd_mutex);
1058 }
1059 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1060 #endif
1061
1062 /**
1063 * flush_disk - invalidates all buffer-cache entries on a disk
1064 *
1065 * @bdev: struct block device to be flushed
1066 * @kill_dirty: flag to guide handling of dirty inodes
1067 *
1068 * Invalidates all buffer-cache entries on a disk. It should be called
1069 * when a disk has been changed -- either by a media change or online
1070 * resize.
1071 */
1072 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1073 {
1074 if (__invalidate_device(bdev, kill_dirty)) {
1075 char name[BDEVNAME_SIZE] = "";
1076
1077 if (bdev->bd_disk)
1078 disk_name(bdev->bd_disk, 0, name);
1079 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1080 "resized disk %s\n", name);
1081 }
1082
1083 if (!bdev->bd_disk)
1084 return;
1085 if (disk_part_scan_enabled(bdev->bd_disk))
1086 bdev->bd_invalidated = 1;
1087 }
1088
1089 /**
1090 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1091 * @disk: struct gendisk to check
1092 * @bdev: struct bdev to adjust.
1093 *
1094 * This routine checks to see if the bdev size does not match the disk size
1095 * and adjusts it if it differs.
1096 */
1097 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1098 {
1099 loff_t disk_size, bdev_size;
1100
1101 disk_size = (loff_t)get_capacity(disk) << 9;
1102 bdev_size = i_size_read(bdev->bd_inode);
1103 if (disk_size != bdev_size) {
1104 char name[BDEVNAME_SIZE];
1105
1106 disk_name(disk, 0, name);
1107 printk(KERN_INFO
1108 "%s: detected capacity change from %lld to %lld\n",
1109 name, bdev_size, disk_size);
1110 i_size_write(bdev->bd_inode, disk_size);
1111 flush_disk(bdev, false);
1112 }
1113 }
1114 EXPORT_SYMBOL(check_disk_size_change);
1115
1116 /**
1117 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1118 * @disk: struct gendisk to be revalidated
1119 *
1120 * This routine is a wrapper for lower-level driver's revalidate_disk
1121 * call-backs. It is used to do common pre and post operations needed
1122 * for all revalidate_disk operations.
1123 */
1124 int revalidate_disk(struct gendisk *disk)
1125 {
1126 struct block_device *bdev;
1127 int ret = 0;
1128
1129 if (disk->fops->revalidate_disk)
1130 ret = disk->fops->revalidate_disk(disk);
1131 bdev = bdget_disk(disk, 0);
1132 if (!bdev)
1133 return ret;
1134
1135 mutex_lock(&bdev->bd_mutex);
1136 check_disk_size_change(disk, bdev);
1137 bdev->bd_invalidated = 0;
1138 mutex_unlock(&bdev->bd_mutex);
1139 bdput(bdev);
1140 return ret;
1141 }
1142 EXPORT_SYMBOL(revalidate_disk);
1143
1144 /*
1145 * This routine checks whether a removable media has been changed,
1146 * and invalidates all buffer-cache-entries in that case. This
1147 * is a relatively slow routine, so we have to try to minimize using
1148 * it. Thus it is called only upon a 'mount' or 'open'. This
1149 * is the best way of combining speed and utility, I think.
1150 * People changing diskettes in the middle of an operation deserve
1151 * to lose :-)
1152 */
1153 int check_disk_change(struct block_device *bdev)
1154 {
1155 struct gendisk *disk = bdev->bd_disk;
1156 const struct block_device_operations *bdops = disk->fops;
1157 unsigned int events;
1158
1159 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1160 DISK_EVENT_EJECT_REQUEST);
1161 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1162 return 0;
1163
1164 flush_disk(bdev, true);
1165 if (bdops->revalidate_disk)
1166 bdops->revalidate_disk(bdev->bd_disk);
1167 return 1;
1168 }
1169
1170 EXPORT_SYMBOL(check_disk_change);
1171
1172 void bd_set_size(struct block_device *bdev, loff_t size)
1173 {
1174 unsigned bsize = bdev_logical_block_size(bdev);
1175
1176 mutex_lock(&bdev->bd_inode->i_mutex);
1177 i_size_write(bdev->bd_inode, size);
1178 mutex_unlock(&bdev->bd_inode->i_mutex);
1179 while (bsize < PAGE_CACHE_SIZE) {
1180 if (size & bsize)
1181 break;
1182 bsize <<= 1;
1183 }
1184 bdev->bd_block_size = bsize;
1185 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1186 }
1187 EXPORT_SYMBOL(bd_set_size);
1188
1189 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1190
1191 /*
1192 * bd_mutex locking:
1193 *
1194 * mutex_lock(part->bd_mutex)
1195 * mutex_lock_nested(whole->bd_mutex, 1)
1196 */
1197
1198 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1199 {
1200 struct gendisk *disk;
1201 struct module *owner;
1202 int ret;
1203 int partno;
1204 int perm = 0;
1205
1206 if (mode & FMODE_READ)
1207 perm |= MAY_READ;
1208 if (mode & FMODE_WRITE)
1209 perm |= MAY_WRITE;
1210 /*
1211 * hooks: /n/, see "layering violations".
1212 */
1213 if (!for_part) {
1214 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1215 if (ret != 0) {
1216 bdput(bdev);
1217 return ret;
1218 }
1219 }
1220
1221 restart:
1222
1223 ret = -ENXIO;
1224 disk = get_gendisk(bdev->bd_dev, &partno);
1225 if (!disk)
1226 goto out;
1227 owner = disk->fops->owner;
1228
1229 disk_block_events(disk);
1230 mutex_lock_nested(&bdev->bd_mutex, for_part);
1231 if (!bdev->bd_openers) {
1232 bdev->bd_disk = disk;
1233 bdev->bd_queue = disk->queue;
1234 bdev->bd_contains = bdev;
1235 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1236
1237 if (!partno) {
1238 ret = -ENXIO;
1239 bdev->bd_part = disk_get_part(disk, partno);
1240 if (!bdev->bd_part)
1241 goto out_clear;
1242
1243 ret = 0;
1244 if (disk->fops->open) {
1245 ret = disk->fops->open(bdev, mode);
1246 if (ret == -ERESTARTSYS) {
1247 /* Lost a race with 'disk' being
1248 * deleted, try again.
1249 * See md.c
1250 */
1251 disk_put_part(bdev->bd_part);
1252 bdev->bd_part = NULL;
1253 bdev->bd_disk = NULL;
1254 bdev->bd_queue = NULL;
1255 mutex_unlock(&bdev->bd_mutex);
1256 disk_unblock_events(disk);
1257 put_disk(disk);
1258 module_put(owner);
1259 goto restart;
1260 }
1261 }
1262
1263 if (!ret)
1264 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1265
1266 /*
1267 * If the device is invalidated, rescan partition
1268 * if open succeeded or failed with -ENOMEDIUM.
1269 * The latter is necessary to prevent ghost
1270 * partitions on a removed medium.
1271 */
1272 if (bdev->bd_invalidated) {
1273 if (!ret)
1274 rescan_partitions(disk, bdev);
1275 else if (ret == -ENOMEDIUM)
1276 invalidate_partitions(disk, bdev);
1277 }
1278 if (ret)
1279 goto out_clear;
1280 } else {
1281 struct block_device *whole;
1282 whole = bdget_disk(disk, 0);
1283 ret = -ENOMEM;
1284 if (!whole)
1285 goto out_clear;
1286 BUG_ON(for_part);
1287 ret = __blkdev_get(whole, mode, 1);
1288 if (ret)
1289 goto out_clear;
1290 bdev->bd_contains = whole;
1291 bdev->bd_part = disk_get_part(disk, partno);
1292 if (!(disk->flags & GENHD_FL_UP) ||
1293 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1294 ret = -ENXIO;
1295 goto out_clear;
1296 }
1297 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1298 /*
1299 * If the partition is not aligned on a page
1300 * boundary, we can't do dax I/O to it.
1301 */
1302 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1303 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1304 bdev->bd_inode->i_flags &= ~S_DAX;
1305 }
1306
1307 if (bdev->bd_bdi == &noop_backing_dev_info)
1308 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1309 } else {
1310 if (bdev->bd_contains == bdev) {
1311 ret = 0;
1312 if (bdev->bd_disk->fops->open)
1313 ret = bdev->bd_disk->fops->open(bdev, mode);
1314 /* the same as first opener case, read comment there */
1315 if (bdev->bd_invalidated) {
1316 if (!ret)
1317 rescan_partitions(bdev->bd_disk, bdev);
1318 else if (ret == -ENOMEDIUM)
1319 invalidate_partitions(bdev->bd_disk, bdev);
1320 }
1321 if (ret)
1322 goto out_unlock_bdev;
1323 }
1324 /* only one opener holds refs to the module and disk */
1325 put_disk(disk);
1326 module_put(owner);
1327 }
1328 bdev->bd_openers++;
1329 if (for_part)
1330 bdev->bd_part_count++;
1331 mutex_unlock(&bdev->bd_mutex);
1332 disk_unblock_events(disk);
1333 return 0;
1334
1335 out_clear:
1336 disk_put_part(bdev->bd_part);
1337 bdev->bd_disk = NULL;
1338 bdev->bd_part = NULL;
1339 bdev->bd_queue = NULL;
1340 if (bdev != bdev->bd_contains)
1341 __blkdev_put(bdev->bd_contains, mode, 1);
1342 bdev->bd_contains = NULL;
1343 out_unlock_bdev:
1344 mutex_unlock(&bdev->bd_mutex);
1345 disk_unblock_events(disk);
1346 put_disk(disk);
1347 module_put(owner);
1348 out:
1349 bdput(bdev);
1350
1351 return ret;
1352 }
1353
1354 /**
1355 * blkdev_get - open a block device
1356 * @bdev: block_device to open
1357 * @mode: FMODE_* mask
1358 * @holder: exclusive holder identifier
1359 *
1360 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1361 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1362 * @holder is invalid. Exclusive opens may nest for the same @holder.
1363 *
1364 * On success, the reference count of @bdev is unchanged. On failure,
1365 * @bdev is put.
1366 *
1367 * CONTEXT:
1368 * Might sleep.
1369 *
1370 * RETURNS:
1371 * 0 on success, -errno on failure.
1372 */
1373 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1374 {
1375 struct block_device *whole = NULL;
1376 int res;
1377
1378 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1379
1380 if ((mode & FMODE_EXCL) && holder) {
1381 whole = bd_start_claiming(bdev, holder);
1382 if (IS_ERR(whole)) {
1383 bdput(bdev);
1384 return PTR_ERR(whole);
1385 }
1386 }
1387
1388 res = __blkdev_get(bdev, mode, 0);
1389
1390 if (whole) {
1391 struct gendisk *disk = whole->bd_disk;
1392
1393 /* finish claiming */
1394 mutex_lock(&bdev->bd_mutex);
1395 spin_lock(&bdev_lock);
1396
1397 if (!res) {
1398 BUG_ON(!bd_may_claim(bdev, whole, holder));
1399 /*
1400 * Note that for a whole device bd_holders
1401 * will be incremented twice, and bd_holder
1402 * will be set to bd_may_claim before being
1403 * set to holder
1404 */
1405 whole->bd_holders++;
1406 whole->bd_holder = bd_may_claim;
1407 bdev->bd_holders++;
1408 bdev->bd_holder = holder;
1409 }
1410
1411 /* tell others that we're done */
1412 BUG_ON(whole->bd_claiming != holder);
1413 whole->bd_claiming = NULL;
1414 wake_up_bit(&whole->bd_claiming, 0);
1415
1416 spin_unlock(&bdev_lock);
1417
1418 /*
1419 * Block event polling for write claims if requested. Any
1420 * write holder makes the write_holder state stick until
1421 * all are released. This is good enough and tracking
1422 * individual writeable reference is too fragile given the
1423 * way @mode is used in blkdev_get/put().
1424 */
1425 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1426 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1427 bdev->bd_write_holder = true;
1428 disk_block_events(disk);
1429 }
1430
1431 mutex_unlock(&bdev->bd_mutex);
1432 bdput(whole);
1433 }
1434
1435 return res;
1436 }
1437 EXPORT_SYMBOL(blkdev_get);
1438
1439 /**
1440 * blkdev_get_by_path - open a block device by name
1441 * @path: path to the block device to open
1442 * @mode: FMODE_* mask
1443 * @holder: exclusive holder identifier
1444 *
1445 * Open the blockdevice described by the device file at @path. @mode
1446 * and @holder are identical to blkdev_get().
1447 *
1448 * On success, the returned block_device has reference count of one.
1449 *
1450 * CONTEXT:
1451 * Might sleep.
1452 *
1453 * RETURNS:
1454 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1455 */
1456 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1457 void *holder)
1458 {
1459 struct block_device *bdev;
1460 int perm = 0;
1461 int err;
1462
1463 if (mode & FMODE_READ)
1464 perm |= MAY_READ;
1465 if (mode & FMODE_WRITE)
1466 perm |= MAY_WRITE;
1467 bdev = lookup_bdev(path, perm);
1468 if (IS_ERR(bdev))
1469 return bdev;
1470
1471 err = blkdev_get(bdev, mode, holder);
1472 if (err)
1473 return ERR_PTR(err);
1474
1475 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1476 blkdev_put(bdev, mode);
1477 return ERR_PTR(-EACCES);
1478 }
1479
1480 return bdev;
1481 }
1482 EXPORT_SYMBOL(blkdev_get_by_path);
1483
1484 /**
1485 * blkdev_get_by_dev - open a block device by device number
1486 * @dev: device number of block device to open
1487 * @mode: FMODE_* mask
1488 * @holder: exclusive holder identifier
1489 *
1490 * Open the blockdevice described by device number @dev. @mode and
1491 * @holder are identical to blkdev_get().
1492 *
1493 * Use it ONLY if you really do not have anything better - i.e. when
1494 * you are behind a truly sucky interface and all you are given is a
1495 * device number. _Never_ to be used for internal purposes. If you
1496 * ever need it - reconsider your API.
1497 *
1498 * On success, the returned block_device has reference count of one.
1499 *
1500 * CONTEXT:
1501 * Might sleep.
1502 *
1503 * RETURNS:
1504 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1505 */
1506 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1507 {
1508 struct block_device *bdev;
1509 int err;
1510
1511 bdev = bdget(dev);
1512 if (!bdev)
1513 return ERR_PTR(-ENOMEM);
1514
1515 err = blkdev_get(bdev, mode, holder);
1516 if (err)
1517 return ERR_PTR(err);
1518
1519 return bdev;
1520 }
1521 EXPORT_SYMBOL(blkdev_get_by_dev);
1522
1523 static int blkdev_open(struct inode * inode, struct file * filp)
1524 {
1525 struct block_device *bdev;
1526
1527 /*
1528 * Preserve backwards compatibility and allow large file access
1529 * even if userspace doesn't ask for it explicitly. Some mkfs
1530 * binary needs it. We might want to drop this workaround
1531 * during an unstable branch.
1532 */
1533 filp->f_flags |= O_LARGEFILE;
1534
1535 if (filp->f_flags & O_NDELAY)
1536 filp->f_mode |= FMODE_NDELAY;
1537 if (filp->f_flags & O_EXCL)
1538 filp->f_mode |= FMODE_EXCL;
1539 if ((filp->f_flags & O_ACCMODE) == 3)
1540 filp->f_mode |= FMODE_WRITE_IOCTL;
1541
1542 bdev = bd_acquire(inode);
1543 if (bdev == NULL)
1544 return -ENOMEM;
1545
1546 /*
1547 * A negative i_writecount for bdev->bd_inode means that the bdev
1548 * or one of its paritions is mounted in a user namespace. Deny
1549 * writing for non-root in this case, otherwise an unprivileged
1550 * user can attack the kernel by modifying the backing store of a
1551 * mounted filesystem.
1552 */
1553 if ((filp->f_mode & FMODE_WRITE) &&
1554 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1555 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1556 bdput(bdev);
1557 return -EBUSY;
1558 }
1559
1560 filp->f_mapping = bdev->bd_inode->i_mapping;
1561
1562 return blkdev_get(bdev, filp->f_mode, filp);
1563 }
1564
1565 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1566 {
1567 struct gendisk *disk = bdev->bd_disk;
1568 struct block_device *victim = NULL;
1569
1570 mutex_lock_nested(&bdev->bd_mutex, for_part);
1571 if (for_part)
1572 bdev->bd_part_count--;
1573
1574 if (!--bdev->bd_openers) {
1575 WARN_ON_ONCE(bdev->bd_holders);
1576 sync_blockdev(bdev);
1577 kill_bdev(bdev);
1578
1579 bdev_write_inode(bdev);
1580 }
1581 if (bdev->bd_contains == bdev) {
1582 if (disk->fops->release)
1583 disk->fops->release(disk, mode);
1584 }
1585 if (!bdev->bd_openers) {
1586 struct module *owner = disk->fops->owner;
1587
1588 disk_put_part(bdev->bd_part);
1589 bdev->bd_part = NULL;
1590 bdev->bd_disk = NULL;
1591 if (bdev != bdev->bd_contains)
1592 victim = bdev->bd_contains;
1593 bdev->bd_contains = NULL;
1594
1595 put_disk(disk);
1596 module_put(owner);
1597 }
1598 mutex_unlock(&bdev->bd_mutex);
1599 bdput(bdev);
1600 if (victim)
1601 __blkdev_put(victim, mode, 1);
1602 }
1603
1604 void blkdev_put(struct block_device *bdev, fmode_t mode)
1605 {
1606 mutex_lock(&bdev->bd_mutex);
1607
1608 if (mode & FMODE_EXCL) {
1609 bool bdev_free;
1610
1611 /*
1612 * Release a claim on the device. The holder fields
1613 * are protected with bdev_lock. bd_mutex is to
1614 * synchronize disk_holder unlinking.
1615 */
1616 spin_lock(&bdev_lock);
1617
1618 WARN_ON_ONCE(--bdev->bd_holders < 0);
1619 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1620
1621 /* bd_contains might point to self, check in a separate step */
1622 if ((bdev_free = !bdev->bd_holders))
1623 bdev->bd_holder = NULL;
1624 if (!bdev->bd_contains->bd_holders)
1625 bdev->bd_contains->bd_holder = NULL;
1626
1627 spin_unlock(&bdev_lock);
1628
1629 /*
1630 * If this was the last claim, remove holder link and
1631 * unblock evpoll if it was a write holder.
1632 */
1633 if (bdev_free && bdev->bd_write_holder) {
1634 disk_unblock_events(bdev->bd_disk);
1635 bdev->bd_write_holder = false;
1636 }
1637 }
1638
1639 /*
1640 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1641 * event. This is to ensure detection of media removal commanded
1642 * from userland - e.g. eject(1).
1643 */
1644 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1645
1646 mutex_unlock(&bdev->bd_mutex);
1647
1648 __blkdev_put(bdev, mode, 0);
1649 }
1650 EXPORT_SYMBOL(blkdev_put);
1651
1652 static int blkdev_close(struct inode * inode, struct file * filp)
1653 {
1654 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1655 if (filp->f_mode & FMODE_WRITE &&
1656 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1657 atomic_dec(&bdev->bd_inode->i_writecount);
1658 blkdev_put(bdev, filp->f_mode);
1659 return 0;
1660 }
1661
1662 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1663 {
1664 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1665 fmode_t mode = file->f_mode;
1666
1667 /*
1668 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1669 * to updated it before every ioctl.
1670 */
1671 if (file->f_flags & O_NDELAY)
1672 mode |= FMODE_NDELAY;
1673 else
1674 mode &= ~FMODE_NDELAY;
1675
1676 return blkdev_ioctl(bdev, mode, cmd, arg);
1677 }
1678
1679 /*
1680 * Write data to the block device. Only intended for the block device itself
1681 * and the raw driver which basically is a fake block device.
1682 *
1683 * Does not take i_mutex for the write and thus is not for general purpose
1684 * use.
1685 */
1686 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1687 {
1688 struct file *file = iocb->ki_filp;
1689 struct inode *bd_inode = file->f_mapping->host;
1690 loff_t size = i_size_read(bd_inode);
1691 struct blk_plug plug;
1692 ssize_t ret;
1693
1694 if (bdev_read_only(I_BDEV(bd_inode)))
1695 return -EPERM;
1696
1697 if (!iov_iter_count(from))
1698 return 0;
1699
1700 if (iocb->ki_pos >= size)
1701 return -ENOSPC;
1702
1703 iov_iter_truncate(from, size - iocb->ki_pos);
1704
1705 blk_start_plug(&plug);
1706 ret = __generic_file_write_iter(iocb, from);
1707 if (ret > 0) {
1708 ssize_t err;
1709 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1710 if (err < 0)
1711 ret = err;
1712 }
1713 blk_finish_plug(&plug);
1714 return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1717
1718 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1719 {
1720 struct file *file = iocb->ki_filp;
1721 struct inode *bd_inode = file->f_mapping->host;
1722 loff_t size = i_size_read(bd_inode);
1723 loff_t pos = iocb->ki_pos;
1724
1725 if (pos >= size)
1726 return 0;
1727
1728 size -= pos;
1729 iov_iter_truncate(to, size);
1730 return generic_file_read_iter(iocb, to);
1731 }
1732 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1733
1734 /*
1735 * Try to release a page associated with block device when the system
1736 * is under memory pressure.
1737 */
1738 static int blkdev_releasepage(struct page *page, gfp_t wait)
1739 {
1740 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1741
1742 if (super && super->s_op->bdev_try_to_free_page)
1743 return super->s_op->bdev_try_to_free_page(super, page, wait);
1744
1745 return try_to_free_buffers(page);
1746 }
1747
1748 static const struct address_space_operations def_blk_aops = {
1749 .readpage = blkdev_readpage,
1750 .readpages = blkdev_readpages,
1751 .writepage = blkdev_writepage,
1752 .write_begin = blkdev_write_begin,
1753 .write_end = blkdev_write_end,
1754 .writepages = generic_writepages,
1755 .releasepage = blkdev_releasepage,
1756 .direct_IO = blkdev_direct_IO,
1757 .is_dirty_writeback = buffer_check_dirty_writeback,
1758 };
1759
1760 const struct file_operations def_blk_fops = {
1761 .open = blkdev_open,
1762 .release = blkdev_close,
1763 .llseek = block_llseek,
1764 .read_iter = blkdev_read_iter,
1765 .write_iter = blkdev_write_iter,
1766 .mmap = generic_file_mmap,
1767 .fsync = blkdev_fsync,
1768 .unlocked_ioctl = block_ioctl,
1769 #ifdef CONFIG_COMPAT
1770 .compat_ioctl = compat_blkdev_ioctl,
1771 #endif
1772 .splice_read = generic_file_splice_read,
1773 .splice_write = iter_file_splice_write,
1774 };
1775
1776 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1777 {
1778 int res;
1779 mm_segment_t old_fs = get_fs();
1780 set_fs(KERNEL_DS);
1781 res = blkdev_ioctl(bdev, 0, cmd, arg);
1782 set_fs(old_fs);
1783 return res;
1784 }
1785
1786 EXPORT_SYMBOL(ioctl_by_bdev);
1787
1788 /**
1789 * lookup_bdev - lookup a struct block_device by name
1790 * @pathname: special file representing the block device
1791 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
1792 *
1793 * Get a reference to the blockdevice at @pathname in the current
1794 * namespace if possible and return it. Return ERR_PTR(error)
1795 * otherwise. If @mask is non-zero, check for access rights to the
1796 * inode at @pathname.
1797 */
1798 struct block_device *lookup_bdev(const char *pathname, int mask)
1799 {
1800 struct block_device *bdev;
1801 struct inode *inode;
1802 struct path path;
1803 int error;
1804
1805 if (!pathname || !*pathname)
1806 return ERR_PTR(-EINVAL);
1807
1808 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1809 if (error)
1810 return ERR_PTR(error);
1811
1812 inode = d_backing_inode(path.dentry);
1813 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
1814 error = __inode_permission(inode, mask);
1815 if (error)
1816 goto fail;
1817 }
1818 error = -ENOTBLK;
1819 if (!S_ISBLK(inode->i_mode))
1820 goto fail;
1821 error = -EACCES;
1822 if (path.mnt->mnt_flags & MNT_NODEV)
1823 goto fail;
1824 error = -ENOMEM;
1825 bdev = bd_acquire(inode);
1826 if (!bdev)
1827 goto fail;
1828 out:
1829 path_put(&path);
1830 return bdev;
1831 fail:
1832 bdev = ERR_PTR(error);
1833 goto out;
1834 }
1835 EXPORT_SYMBOL(lookup_bdev);
1836
1837 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1838 {
1839 struct super_block *sb = get_super(bdev);
1840 int res = 0;
1841
1842 if (sb) {
1843 /*
1844 * no need to lock the super, get_super holds the
1845 * read mutex so the filesystem cannot go away
1846 * under us (->put_super runs with the write lock
1847 * hold).
1848 */
1849 shrink_dcache_sb(sb);
1850 res = invalidate_inodes(sb, kill_dirty);
1851 drop_super(sb);
1852 }
1853 invalidate_bdev(bdev);
1854 return res;
1855 }
1856 EXPORT_SYMBOL(__invalidate_device);
1857
1858 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1859 {
1860 struct inode *inode, *old_inode = NULL;
1861
1862 spin_lock(&blockdev_superblock->s_inode_list_lock);
1863 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1864 struct address_space *mapping = inode->i_mapping;
1865 struct block_device *bdev;
1866
1867 spin_lock(&inode->i_lock);
1868 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1869 mapping->nrpages == 0) {
1870 spin_unlock(&inode->i_lock);
1871 continue;
1872 }
1873 __iget(inode);
1874 spin_unlock(&inode->i_lock);
1875 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1876 /*
1877 * We hold a reference to 'inode' so it couldn't have been
1878 * removed from s_inodes list while we dropped the
1879 * s_inode_list_lock We cannot iput the inode now as we can
1880 * be holding the last reference and we cannot iput it under
1881 * s_inode_list_lock. So we keep the reference and iput it
1882 * later.
1883 */
1884 iput(old_inode);
1885 old_inode = inode;
1886 bdev = I_BDEV(inode);
1887
1888 mutex_lock(&bdev->bd_mutex);
1889 if (bdev->bd_openers)
1890 func(bdev, arg);
1891 mutex_unlock(&bdev->bd_mutex);
1892
1893 spin_lock(&blockdev_superblock->s_inode_list_lock);
1894 }
1895 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1896 iput(old_inode);
1897 }