]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/block_dev.c
Merge tag 'devicetree-fixes-for-5.0-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214
215 if ((pos | iov_iter_alignment(iter)) &
216 (bdev_logical_block_size(bdev) - 1))
217 return -EINVAL;
218
219 if (nr_pages <= DIO_INLINE_BIO_VECS)
220 vecs = inline_vecs;
221 else {
222 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
223 GFP_KERNEL);
224 if (!vecs)
225 return -ENOMEM;
226 }
227
228 bio_init(&bio, vecs, nr_pages);
229 bio_set_dev(&bio, bdev);
230 bio.bi_iter.bi_sector = pos >> 9;
231 bio.bi_write_hint = iocb->ki_hint;
232 bio.bi_private = current;
233 bio.bi_end_io = blkdev_bio_end_io_simple;
234 bio.bi_ioprio = iocb->ki_ioprio;
235
236 ret = bio_iov_iter_get_pages(&bio, iter);
237 if (unlikely(ret))
238 goto out;
239 ret = bio.bi_iter.bi_size;
240
241 if (iov_iter_rw(iter) == READ) {
242 bio.bi_opf = REQ_OP_READ;
243 if (iter_is_iovec(iter))
244 should_dirty = true;
245 } else {
246 bio.bi_opf = dio_bio_write_op(iocb);
247 task_io_account_write(ret);
248 }
249 if (iocb->ki_flags & IOCB_HIPRI)
250 bio.bi_opf |= REQ_HIPRI;
251
252 qc = submit_bio(&bio);
253 for (;;) {
254 set_current_state(TASK_UNINTERRUPTIBLE);
255 if (!READ_ONCE(bio.bi_private))
256 break;
257 if (!(iocb->ki_flags & IOCB_HIPRI) ||
258 !blk_poll(bdev_get_queue(bdev), qc, true))
259 io_schedule();
260 }
261 __set_current_state(TASK_RUNNING);
262
263 bio_for_each_segment_all(bvec, &bio, i) {
264 if (should_dirty && !PageCompound(bvec->bv_page))
265 set_page_dirty_lock(bvec->bv_page);
266 put_page(bvec->bv_page);
267 }
268
269 if (unlikely(bio.bi_status))
270 ret = blk_status_to_errno(bio.bi_status);
271
272 out:
273 if (vecs != inline_vecs)
274 kfree(vecs);
275
276 bio_uninit(&bio);
277
278 return ret;
279 }
280
281 struct blkdev_dio {
282 union {
283 struct kiocb *iocb;
284 struct task_struct *waiter;
285 };
286 size_t size;
287 atomic_t ref;
288 bool multi_bio : 1;
289 bool should_dirty : 1;
290 bool is_sync : 1;
291 struct bio bio;
292 };
293
294 static struct bio_set blkdev_dio_pool;
295
296 static void blkdev_bio_end_io(struct bio *bio)
297 {
298 struct blkdev_dio *dio = bio->bi_private;
299 bool should_dirty = dio->should_dirty;
300
301 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
302 if (bio->bi_status && !dio->bio.bi_status)
303 dio->bio.bi_status = bio->bi_status;
304 } else {
305 if (!dio->is_sync) {
306 struct kiocb *iocb = dio->iocb;
307 ssize_t ret;
308
309 if (likely(!dio->bio.bi_status)) {
310 ret = dio->size;
311 iocb->ki_pos += ret;
312 } else {
313 ret = blk_status_to_errno(dio->bio.bi_status);
314 }
315
316 dio->iocb->ki_complete(iocb, ret, 0);
317 if (dio->multi_bio)
318 bio_put(&dio->bio);
319 } else {
320 struct task_struct *waiter = dio->waiter;
321
322 WRITE_ONCE(dio->waiter, NULL);
323 blk_wake_io_task(waiter);
324 }
325 }
326
327 if (should_dirty) {
328 bio_check_pages_dirty(bio);
329 } else {
330 struct bio_vec *bvec;
331 int i;
332
333 bio_for_each_segment_all(bvec, bio, i)
334 put_page(bvec->bv_page);
335 bio_put(bio);
336 }
337 }
338
339 static ssize_t
340 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
341 {
342 struct file *file = iocb->ki_filp;
343 struct inode *inode = bdev_file_inode(file);
344 struct block_device *bdev = I_BDEV(inode);
345 struct blk_plug plug;
346 struct blkdev_dio *dio;
347 struct bio *bio;
348 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
349 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
350 loff_t pos = iocb->ki_pos;
351 blk_qc_t qc = BLK_QC_T_NONE;
352 int ret = 0;
353
354 if ((pos | iov_iter_alignment(iter)) &
355 (bdev_logical_block_size(bdev) - 1))
356 return -EINVAL;
357
358 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
359
360 dio = container_of(bio, struct blkdev_dio, bio);
361 dio->is_sync = is_sync = is_sync_kiocb(iocb);
362 if (dio->is_sync) {
363 dio->waiter = current;
364 bio_get(bio);
365 } else {
366 dio->iocb = iocb;
367 }
368
369 dio->size = 0;
370 dio->multi_bio = false;
371 dio->should_dirty = is_read && iter_is_iovec(iter);
372
373 /*
374 * Don't plug for HIPRI/polled IO, as those should go straight
375 * to issue
376 */
377 if (!is_poll)
378 blk_start_plug(&plug);
379
380 for (;;) {
381 bio_set_dev(bio, bdev);
382 bio->bi_iter.bi_sector = pos >> 9;
383 bio->bi_write_hint = iocb->ki_hint;
384 bio->bi_private = dio;
385 bio->bi_end_io = blkdev_bio_end_io;
386 bio->bi_ioprio = iocb->ki_ioprio;
387
388 ret = bio_iov_iter_get_pages(bio, iter);
389 if (unlikely(ret)) {
390 bio->bi_status = BLK_STS_IOERR;
391 bio_endio(bio);
392 break;
393 }
394
395 if (is_read) {
396 bio->bi_opf = REQ_OP_READ;
397 if (dio->should_dirty)
398 bio_set_pages_dirty(bio);
399 } else {
400 bio->bi_opf = dio_bio_write_op(iocb);
401 task_io_account_write(bio->bi_iter.bi_size);
402 }
403
404 dio->size += bio->bi_iter.bi_size;
405 pos += bio->bi_iter.bi_size;
406
407 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
408 if (!nr_pages) {
409 if (iocb->ki_flags & IOCB_HIPRI)
410 bio->bi_opf |= REQ_HIPRI;
411
412 qc = submit_bio(bio);
413 break;
414 }
415
416 if (!dio->multi_bio) {
417 /*
418 * AIO needs an extra reference to ensure the dio
419 * structure which is embedded into the first bio
420 * stays around.
421 */
422 if (!is_sync)
423 bio_get(bio);
424 dio->multi_bio = true;
425 atomic_set(&dio->ref, 2);
426 } else {
427 atomic_inc(&dio->ref);
428 }
429
430 submit_bio(bio);
431 bio = bio_alloc(GFP_KERNEL, nr_pages);
432 }
433
434 if (!is_poll)
435 blk_finish_plug(&plug);
436
437 if (!is_sync)
438 return -EIOCBQUEUED;
439
440 for (;;) {
441 set_current_state(TASK_UNINTERRUPTIBLE);
442 if (!READ_ONCE(dio->waiter))
443 break;
444
445 if (!(iocb->ki_flags & IOCB_HIPRI) ||
446 !blk_poll(bdev_get_queue(bdev), qc, true))
447 io_schedule();
448 }
449 __set_current_state(TASK_RUNNING);
450
451 if (!ret)
452 ret = blk_status_to_errno(dio->bio.bi_status);
453 if (likely(!ret))
454 ret = dio->size;
455
456 bio_put(&dio->bio);
457 return ret;
458 }
459
460 static ssize_t
461 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
462 {
463 int nr_pages;
464
465 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
466 if (!nr_pages)
467 return 0;
468 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
469 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
470
471 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
472 }
473
474 static __init int blkdev_init(void)
475 {
476 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
477 }
478 module_init(blkdev_init);
479
480 int __sync_blockdev(struct block_device *bdev, int wait)
481 {
482 if (!bdev)
483 return 0;
484 if (!wait)
485 return filemap_flush(bdev->bd_inode->i_mapping);
486 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
487 }
488
489 /*
490 * Write out and wait upon all the dirty data associated with a block
491 * device via its mapping. Does not take the superblock lock.
492 */
493 int sync_blockdev(struct block_device *bdev)
494 {
495 return __sync_blockdev(bdev, 1);
496 }
497 EXPORT_SYMBOL(sync_blockdev);
498
499 /*
500 * Write out and wait upon all dirty data associated with this
501 * device. Filesystem data as well as the underlying block
502 * device. Takes the superblock lock.
503 */
504 int fsync_bdev(struct block_device *bdev)
505 {
506 struct super_block *sb = get_super(bdev);
507 if (sb) {
508 int res = sync_filesystem(sb);
509 drop_super(sb);
510 return res;
511 }
512 return sync_blockdev(bdev);
513 }
514 EXPORT_SYMBOL(fsync_bdev);
515
516 /**
517 * freeze_bdev -- lock a filesystem and force it into a consistent state
518 * @bdev: blockdevice to lock
519 *
520 * If a superblock is found on this device, we take the s_umount semaphore
521 * on it to make sure nobody unmounts until the snapshot creation is done.
522 * The reference counter (bd_fsfreeze_count) guarantees that only the last
523 * unfreeze process can unfreeze the frozen filesystem actually when multiple
524 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
525 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
526 * actually.
527 */
528 struct super_block *freeze_bdev(struct block_device *bdev)
529 {
530 struct super_block *sb;
531 int error = 0;
532
533 mutex_lock(&bdev->bd_fsfreeze_mutex);
534 if (++bdev->bd_fsfreeze_count > 1) {
535 /*
536 * We don't even need to grab a reference - the first call
537 * to freeze_bdev grab an active reference and only the last
538 * thaw_bdev drops it.
539 */
540 sb = get_super(bdev);
541 if (sb)
542 drop_super(sb);
543 mutex_unlock(&bdev->bd_fsfreeze_mutex);
544 return sb;
545 }
546
547 sb = get_active_super(bdev);
548 if (!sb)
549 goto out;
550 if (sb->s_op->freeze_super)
551 error = sb->s_op->freeze_super(sb);
552 else
553 error = freeze_super(sb);
554 if (error) {
555 deactivate_super(sb);
556 bdev->bd_fsfreeze_count--;
557 mutex_unlock(&bdev->bd_fsfreeze_mutex);
558 return ERR_PTR(error);
559 }
560 deactivate_super(sb);
561 out:
562 sync_blockdev(bdev);
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return sb; /* thaw_bdev releases s->s_umount */
565 }
566 EXPORT_SYMBOL(freeze_bdev);
567
568 /**
569 * thaw_bdev -- unlock filesystem
570 * @bdev: blockdevice to unlock
571 * @sb: associated superblock
572 *
573 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
574 */
575 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
576 {
577 int error = -EINVAL;
578
579 mutex_lock(&bdev->bd_fsfreeze_mutex);
580 if (!bdev->bd_fsfreeze_count)
581 goto out;
582
583 error = 0;
584 if (--bdev->bd_fsfreeze_count > 0)
585 goto out;
586
587 if (!sb)
588 goto out;
589
590 if (sb->s_op->thaw_super)
591 error = sb->s_op->thaw_super(sb);
592 else
593 error = thaw_super(sb);
594 if (error)
595 bdev->bd_fsfreeze_count++;
596 out:
597 mutex_unlock(&bdev->bd_fsfreeze_mutex);
598 return error;
599 }
600 EXPORT_SYMBOL(thaw_bdev);
601
602 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
603 {
604 return block_write_full_page(page, blkdev_get_block, wbc);
605 }
606
607 static int blkdev_readpage(struct file * file, struct page * page)
608 {
609 return block_read_full_page(page, blkdev_get_block);
610 }
611
612 static int blkdev_readpages(struct file *file, struct address_space *mapping,
613 struct list_head *pages, unsigned nr_pages)
614 {
615 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
616 }
617
618 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
619 loff_t pos, unsigned len, unsigned flags,
620 struct page **pagep, void **fsdata)
621 {
622 return block_write_begin(mapping, pos, len, flags, pagep,
623 blkdev_get_block);
624 }
625
626 static int blkdev_write_end(struct file *file, struct address_space *mapping,
627 loff_t pos, unsigned len, unsigned copied,
628 struct page *page, void *fsdata)
629 {
630 int ret;
631 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
632
633 unlock_page(page);
634 put_page(page);
635
636 return ret;
637 }
638
639 /*
640 * private llseek:
641 * for a block special file file_inode(file)->i_size is zero
642 * so we compute the size by hand (just as in block_read/write above)
643 */
644 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
645 {
646 struct inode *bd_inode = bdev_file_inode(file);
647 loff_t retval;
648
649 inode_lock(bd_inode);
650 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
651 inode_unlock(bd_inode);
652 return retval;
653 }
654
655 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
656 {
657 struct inode *bd_inode = bdev_file_inode(filp);
658 struct block_device *bdev = I_BDEV(bd_inode);
659 int error;
660
661 error = file_write_and_wait_range(filp, start, end);
662 if (error)
663 return error;
664
665 /*
666 * There is no need to serialise calls to blkdev_issue_flush with
667 * i_mutex and doing so causes performance issues with concurrent
668 * O_SYNC writers to a block device.
669 */
670 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
671 if (error == -EOPNOTSUPP)
672 error = 0;
673
674 return error;
675 }
676 EXPORT_SYMBOL(blkdev_fsync);
677
678 /**
679 * bdev_read_page() - Start reading a page from a block device
680 * @bdev: The device to read the page from
681 * @sector: The offset on the device to read the page to (need not be aligned)
682 * @page: The page to read
683 *
684 * On entry, the page should be locked. It will be unlocked when the page
685 * has been read. If the block driver implements rw_page synchronously,
686 * that will be true on exit from this function, but it need not be.
687 *
688 * Errors returned by this function are usually "soft", eg out of memory, or
689 * queue full; callers should try a different route to read this page rather
690 * than propagate an error back up the stack.
691 *
692 * Return: negative errno if an error occurs, 0 if submission was successful.
693 */
694 int bdev_read_page(struct block_device *bdev, sector_t sector,
695 struct page *page)
696 {
697 const struct block_device_operations *ops = bdev->bd_disk->fops;
698 int result = -EOPNOTSUPP;
699
700 if (!ops->rw_page || bdev_get_integrity(bdev))
701 return result;
702
703 result = blk_queue_enter(bdev->bd_queue, 0);
704 if (result)
705 return result;
706 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
707 REQ_OP_READ);
708 blk_queue_exit(bdev->bd_queue);
709 return result;
710 }
711 EXPORT_SYMBOL_GPL(bdev_read_page);
712
713 /**
714 * bdev_write_page() - Start writing a page to a block device
715 * @bdev: The device to write the page to
716 * @sector: The offset on the device to write the page to (need not be aligned)
717 * @page: The page to write
718 * @wbc: The writeback_control for the write
719 *
720 * On entry, the page should be locked and not currently under writeback.
721 * On exit, if the write started successfully, the page will be unlocked and
722 * under writeback. If the write failed already (eg the driver failed to
723 * queue the page to the device), the page will still be locked. If the
724 * caller is a ->writepage implementation, it will need to unlock the page.
725 *
726 * Errors returned by this function are usually "soft", eg out of memory, or
727 * queue full; callers should try a different route to write this page rather
728 * than propagate an error back up the stack.
729 *
730 * Return: negative errno if an error occurs, 0 if submission was successful.
731 */
732 int bdev_write_page(struct block_device *bdev, sector_t sector,
733 struct page *page, struct writeback_control *wbc)
734 {
735 int result;
736 const struct block_device_operations *ops = bdev->bd_disk->fops;
737
738 if (!ops->rw_page || bdev_get_integrity(bdev))
739 return -EOPNOTSUPP;
740 result = blk_queue_enter(bdev->bd_queue, 0);
741 if (result)
742 return result;
743
744 set_page_writeback(page);
745 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
746 REQ_OP_WRITE);
747 if (result) {
748 end_page_writeback(page);
749 } else {
750 clean_page_buffers(page);
751 unlock_page(page);
752 }
753 blk_queue_exit(bdev->bd_queue);
754 return result;
755 }
756 EXPORT_SYMBOL_GPL(bdev_write_page);
757
758 /*
759 * pseudo-fs
760 */
761
762 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
763 static struct kmem_cache * bdev_cachep __read_mostly;
764
765 static struct inode *bdev_alloc_inode(struct super_block *sb)
766 {
767 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
768 if (!ei)
769 return NULL;
770 return &ei->vfs_inode;
771 }
772
773 static void bdev_i_callback(struct rcu_head *head)
774 {
775 struct inode *inode = container_of(head, struct inode, i_rcu);
776 struct bdev_inode *bdi = BDEV_I(inode);
777
778 kmem_cache_free(bdev_cachep, bdi);
779 }
780
781 static void bdev_destroy_inode(struct inode *inode)
782 {
783 call_rcu(&inode->i_rcu, bdev_i_callback);
784 }
785
786 static void init_once(void *foo)
787 {
788 struct bdev_inode *ei = (struct bdev_inode *) foo;
789 struct block_device *bdev = &ei->bdev;
790
791 memset(bdev, 0, sizeof(*bdev));
792 mutex_init(&bdev->bd_mutex);
793 INIT_LIST_HEAD(&bdev->bd_list);
794 #ifdef CONFIG_SYSFS
795 INIT_LIST_HEAD(&bdev->bd_holder_disks);
796 #endif
797 bdev->bd_bdi = &noop_backing_dev_info;
798 inode_init_once(&ei->vfs_inode);
799 /* Initialize mutex for freeze. */
800 mutex_init(&bdev->bd_fsfreeze_mutex);
801 }
802
803 static void bdev_evict_inode(struct inode *inode)
804 {
805 struct block_device *bdev = &BDEV_I(inode)->bdev;
806 truncate_inode_pages_final(&inode->i_data);
807 invalidate_inode_buffers(inode); /* is it needed here? */
808 clear_inode(inode);
809 spin_lock(&bdev_lock);
810 list_del_init(&bdev->bd_list);
811 spin_unlock(&bdev_lock);
812 /* Detach inode from wb early as bdi_put() may free bdi->wb */
813 inode_detach_wb(inode);
814 if (bdev->bd_bdi != &noop_backing_dev_info) {
815 bdi_put(bdev->bd_bdi);
816 bdev->bd_bdi = &noop_backing_dev_info;
817 }
818 }
819
820 static const struct super_operations bdev_sops = {
821 .statfs = simple_statfs,
822 .alloc_inode = bdev_alloc_inode,
823 .destroy_inode = bdev_destroy_inode,
824 .drop_inode = generic_delete_inode,
825 .evict_inode = bdev_evict_inode,
826 };
827
828 static struct dentry *bd_mount(struct file_system_type *fs_type,
829 int flags, const char *dev_name, void *data)
830 {
831 struct dentry *dent;
832 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
833 if (!IS_ERR(dent))
834 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
835 return dent;
836 }
837
838 static struct file_system_type bd_type = {
839 .name = "bdev",
840 .mount = bd_mount,
841 .kill_sb = kill_anon_super,
842 };
843
844 struct super_block *blockdev_superblock __read_mostly;
845 EXPORT_SYMBOL_GPL(blockdev_superblock);
846
847 void __init bdev_cache_init(void)
848 {
849 int err;
850 static struct vfsmount *bd_mnt;
851
852 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
853 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
854 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
855 init_once);
856 err = register_filesystem(&bd_type);
857 if (err)
858 panic("Cannot register bdev pseudo-fs");
859 bd_mnt = kern_mount(&bd_type);
860 if (IS_ERR(bd_mnt))
861 panic("Cannot create bdev pseudo-fs");
862 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
863 }
864
865 /*
866 * Most likely _very_ bad one - but then it's hardly critical for small
867 * /dev and can be fixed when somebody will need really large one.
868 * Keep in mind that it will be fed through icache hash function too.
869 */
870 static inline unsigned long hash(dev_t dev)
871 {
872 return MAJOR(dev)+MINOR(dev);
873 }
874
875 static int bdev_test(struct inode *inode, void *data)
876 {
877 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
878 }
879
880 static int bdev_set(struct inode *inode, void *data)
881 {
882 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
883 return 0;
884 }
885
886 static LIST_HEAD(all_bdevs);
887
888 /*
889 * If there is a bdev inode for this device, unhash it so that it gets evicted
890 * as soon as last inode reference is dropped.
891 */
892 void bdev_unhash_inode(dev_t dev)
893 {
894 struct inode *inode;
895
896 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
897 if (inode) {
898 remove_inode_hash(inode);
899 iput(inode);
900 }
901 }
902
903 struct block_device *bdget(dev_t dev)
904 {
905 struct block_device *bdev;
906 struct inode *inode;
907
908 inode = iget5_locked(blockdev_superblock, hash(dev),
909 bdev_test, bdev_set, &dev);
910
911 if (!inode)
912 return NULL;
913
914 bdev = &BDEV_I(inode)->bdev;
915
916 if (inode->i_state & I_NEW) {
917 bdev->bd_contains = NULL;
918 bdev->bd_super = NULL;
919 bdev->bd_inode = inode;
920 bdev->bd_block_size = i_blocksize(inode);
921 bdev->bd_part_count = 0;
922 bdev->bd_invalidated = 0;
923 inode->i_mode = S_IFBLK;
924 inode->i_rdev = dev;
925 inode->i_bdev = bdev;
926 inode->i_data.a_ops = &def_blk_aops;
927 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
928 spin_lock(&bdev_lock);
929 list_add(&bdev->bd_list, &all_bdevs);
930 spin_unlock(&bdev_lock);
931 unlock_new_inode(inode);
932 }
933 return bdev;
934 }
935
936 EXPORT_SYMBOL(bdget);
937
938 /**
939 * bdgrab -- Grab a reference to an already referenced block device
940 * @bdev: Block device to grab a reference to.
941 */
942 struct block_device *bdgrab(struct block_device *bdev)
943 {
944 ihold(bdev->bd_inode);
945 return bdev;
946 }
947 EXPORT_SYMBOL(bdgrab);
948
949 long nr_blockdev_pages(void)
950 {
951 struct block_device *bdev;
952 long ret = 0;
953 spin_lock(&bdev_lock);
954 list_for_each_entry(bdev, &all_bdevs, bd_list) {
955 ret += bdev->bd_inode->i_mapping->nrpages;
956 }
957 spin_unlock(&bdev_lock);
958 return ret;
959 }
960
961 void bdput(struct block_device *bdev)
962 {
963 iput(bdev->bd_inode);
964 }
965
966 EXPORT_SYMBOL(bdput);
967
968 static struct block_device *bd_acquire(struct inode *inode)
969 {
970 struct block_device *bdev;
971
972 spin_lock(&bdev_lock);
973 bdev = inode->i_bdev;
974 if (bdev && !inode_unhashed(bdev->bd_inode)) {
975 bdgrab(bdev);
976 spin_unlock(&bdev_lock);
977 return bdev;
978 }
979 spin_unlock(&bdev_lock);
980
981 /*
982 * i_bdev references block device inode that was already shut down
983 * (corresponding device got removed). Remove the reference and look
984 * up block device inode again just in case new device got
985 * reestablished under the same device number.
986 */
987 if (bdev)
988 bd_forget(inode);
989
990 bdev = bdget(inode->i_rdev);
991 if (bdev) {
992 spin_lock(&bdev_lock);
993 if (!inode->i_bdev) {
994 /*
995 * We take an additional reference to bd_inode,
996 * and it's released in clear_inode() of inode.
997 * So, we can access it via ->i_mapping always
998 * without igrab().
999 */
1000 bdgrab(bdev);
1001 inode->i_bdev = bdev;
1002 inode->i_mapping = bdev->bd_inode->i_mapping;
1003 }
1004 spin_unlock(&bdev_lock);
1005 }
1006 return bdev;
1007 }
1008
1009 /* Call when you free inode */
1010
1011 void bd_forget(struct inode *inode)
1012 {
1013 struct block_device *bdev = NULL;
1014
1015 spin_lock(&bdev_lock);
1016 if (!sb_is_blkdev_sb(inode->i_sb))
1017 bdev = inode->i_bdev;
1018 inode->i_bdev = NULL;
1019 inode->i_mapping = &inode->i_data;
1020 spin_unlock(&bdev_lock);
1021
1022 if (bdev)
1023 bdput(bdev);
1024 }
1025
1026 /**
1027 * bd_may_claim - test whether a block device can be claimed
1028 * @bdev: block device of interest
1029 * @whole: whole block device containing @bdev, may equal @bdev
1030 * @holder: holder trying to claim @bdev
1031 *
1032 * Test whether @bdev can be claimed by @holder.
1033 *
1034 * CONTEXT:
1035 * spin_lock(&bdev_lock).
1036 *
1037 * RETURNS:
1038 * %true if @bdev can be claimed, %false otherwise.
1039 */
1040 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1041 void *holder)
1042 {
1043 if (bdev->bd_holder == holder)
1044 return true; /* already a holder */
1045 else if (bdev->bd_holder != NULL)
1046 return false; /* held by someone else */
1047 else if (whole == bdev)
1048 return true; /* is a whole device which isn't held */
1049
1050 else if (whole->bd_holder == bd_may_claim)
1051 return true; /* is a partition of a device that is being partitioned */
1052 else if (whole->bd_holder != NULL)
1053 return false; /* is a partition of a held device */
1054 else
1055 return true; /* is a partition of an un-held device */
1056 }
1057
1058 /**
1059 * bd_prepare_to_claim - prepare to claim a block device
1060 * @bdev: block device of interest
1061 * @whole: the whole device containing @bdev, may equal @bdev
1062 * @holder: holder trying to claim @bdev
1063 *
1064 * Prepare to claim @bdev. This function fails if @bdev is already
1065 * claimed by another holder and waits if another claiming is in
1066 * progress. This function doesn't actually claim. On successful
1067 * return, the caller has ownership of bd_claiming and bd_holder[s].
1068 *
1069 * CONTEXT:
1070 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1071 * it multiple times.
1072 *
1073 * RETURNS:
1074 * 0 if @bdev can be claimed, -EBUSY otherwise.
1075 */
1076 static int bd_prepare_to_claim(struct block_device *bdev,
1077 struct block_device *whole, void *holder)
1078 {
1079 retry:
1080 /* if someone else claimed, fail */
1081 if (!bd_may_claim(bdev, whole, holder))
1082 return -EBUSY;
1083
1084 /* if claiming is already in progress, wait for it to finish */
1085 if (whole->bd_claiming) {
1086 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1087 DEFINE_WAIT(wait);
1088
1089 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1090 spin_unlock(&bdev_lock);
1091 schedule();
1092 finish_wait(wq, &wait);
1093 spin_lock(&bdev_lock);
1094 goto retry;
1095 }
1096
1097 /* yay, all mine */
1098 return 0;
1099 }
1100
1101 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1102 {
1103 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1104
1105 if (!disk)
1106 return NULL;
1107 /*
1108 * Now that we hold gendisk reference we make sure bdev we looked up is
1109 * not stale. If it is, it means device got removed and created before
1110 * we looked up gendisk and we fail open in such case. Associating
1111 * unhashed bdev with newly created gendisk could lead to two bdevs
1112 * (and thus two independent caches) being associated with one device
1113 * which is bad.
1114 */
1115 if (inode_unhashed(bdev->bd_inode)) {
1116 put_disk_and_module(disk);
1117 return NULL;
1118 }
1119 return disk;
1120 }
1121
1122 /**
1123 * bd_start_claiming - start claiming a block device
1124 * @bdev: block device of interest
1125 * @holder: holder trying to claim @bdev
1126 *
1127 * @bdev is about to be opened exclusively. Check @bdev can be opened
1128 * exclusively and mark that an exclusive open is in progress. Each
1129 * successful call to this function must be matched with a call to
1130 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1131 * fail).
1132 *
1133 * This function is used to gain exclusive access to the block device
1134 * without actually causing other exclusive open attempts to fail. It
1135 * should be used when the open sequence itself requires exclusive
1136 * access but may subsequently fail.
1137 *
1138 * CONTEXT:
1139 * Might sleep.
1140 *
1141 * RETURNS:
1142 * Pointer to the block device containing @bdev on success, ERR_PTR()
1143 * value on failure.
1144 */
1145 static struct block_device *bd_start_claiming(struct block_device *bdev,
1146 void *holder)
1147 {
1148 struct gendisk *disk;
1149 struct block_device *whole;
1150 int partno, err;
1151
1152 might_sleep();
1153
1154 /*
1155 * @bdev might not have been initialized properly yet, look up
1156 * and grab the outer block device the hard way.
1157 */
1158 disk = bdev_get_gendisk(bdev, &partno);
1159 if (!disk)
1160 return ERR_PTR(-ENXIO);
1161
1162 /*
1163 * Normally, @bdev should equal what's returned from bdget_disk()
1164 * if partno is 0; however, some drivers (floppy) use multiple
1165 * bdev's for the same physical device and @bdev may be one of the
1166 * aliases. Keep @bdev if partno is 0. This means claimer
1167 * tracking is broken for those devices but it has always been that
1168 * way.
1169 */
1170 if (partno)
1171 whole = bdget_disk(disk, 0);
1172 else
1173 whole = bdgrab(bdev);
1174
1175 put_disk_and_module(disk);
1176 if (!whole)
1177 return ERR_PTR(-ENOMEM);
1178
1179 /* prepare to claim, if successful, mark claiming in progress */
1180 spin_lock(&bdev_lock);
1181
1182 err = bd_prepare_to_claim(bdev, whole, holder);
1183 if (err == 0) {
1184 whole->bd_claiming = holder;
1185 spin_unlock(&bdev_lock);
1186 return whole;
1187 } else {
1188 spin_unlock(&bdev_lock);
1189 bdput(whole);
1190 return ERR_PTR(err);
1191 }
1192 }
1193
1194 #ifdef CONFIG_SYSFS
1195 struct bd_holder_disk {
1196 struct list_head list;
1197 struct gendisk *disk;
1198 int refcnt;
1199 };
1200
1201 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1202 struct gendisk *disk)
1203 {
1204 struct bd_holder_disk *holder;
1205
1206 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1207 if (holder->disk == disk)
1208 return holder;
1209 return NULL;
1210 }
1211
1212 static int add_symlink(struct kobject *from, struct kobject *to)
1213 {
1214 return sysfs_create_link(from, to, kobject_name(to));
1215 }
1216
1217 static void del_symlink(struct kobject *from, struct kobject *to)
1218 {
1219 sysfs_remove_link(from, kobject_name(to));
1220 }
1221
1222 /**
1223 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1224 * @bdev: the claimed slave bdev
1225 * @disk: the holding disk
1226 *
1227 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1228 *
1229 * This functions creates the following sysfs symlinks.
1230 *
1231 * - from "slaves" directory of the holder @disk to the claimed @bdev
1232 * - from "holders" directory of the @bdev to the holder @disk
1233 *
1234 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1235 * passed to bd_link_disk_holder(), then:
1236 *
1237 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1238 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1239 *
1240 * The caller must have claimed @bdev before calling this function and
1241 * ensure that both @bdev and @disk are valid during the creation and
1242 * lifetime of these symlinks.
1243 *
1244 * CONTEXT:
1245 * Might sleep.
1246 *
1247 * RETURNS:
1248 * 0 on success, -errno on failure.
1249 */
1250 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1251 {
1252 struct bd_holder_disk *holder;
1253 int ret = 0;
1254
1255 mutex_lock(&bdev->bd_mutex);
1256
1257 WARN_ON_ONCE(!bdev->bd_holder);
1258
1259 /* FIXME: remove the following once add_disk() handles errors */
1260 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1261 goto out_unlock;
1262
1263 holder = bd_find_holder_disk(bdev, disk);
1264 if (holder) {
1265 holder->refcnt++;
1266 goto out_unlock;
1267 }
1268
1269 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1270 if (!holder) {
1271 ret = -ENOMEM;
1272 goto out_unlock;
1273 }
1274
1275 INIT_LIST_HEAD(&holder->list);
1276 holder->disk = disk;
1277 holder->refcnt = 1;
1278
1279 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1280 if (ret)
1281 goto out_free;
1282
1283 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1284 if (ret)
1285 goto out_del;
1286 /*
1287 * bdev could be deleted beneath us which would implicitly destroy
1288 * the holder directory. Hold on to it.
1289 */
1290 kobject_get(bdev->bd_part->holder_dir);
1291
1292 list_add(&holder->list, &bdev->bd_holder_disks);
1293 goto out_unlock;
1294
1295 out_del:
1296 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1297 out_free:
1298 kfree(holder);
1299 out_unlock:
1300 mutex_unlock(&bdev->bd_mutex);
1301 return ret;
1302 }
1303 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1304
1305 /**
1306 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1307 * @bdev: the calimed slave bdev
1308 * @disk: the holding disk
1309 *
1310 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1311 *
1312 * CONTEXT:
1313 * Might sleep.
1314 */
1315 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1316 {
1317 struct bd_holder_disk *holder;
1318
1319 mutex_lock(&bdev->bd_mutex);
1320
1321 holder = bd_find_holder_disk(bdev, disk);
1322
1323 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1324 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1325 del_symlink(bdev->bd_part->holder_dir,
1326 &disk_to_dev(disk)->kobj);
1327 kobject_put(bdev->bd_part->holder_dir);
1328 list_del_init(&holder->list);
1329 kfree(holder);
1330 }
1331
1332 mutex_unlock(&bdev->bd_mutex);
1333 }
1334 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1335 #endif
1336
1337 /**
1338 * flush_disk - invalidates all buffer-cache entries on a disk
1339 *
1340 * @bdev: struct block device to be flushed
1341 * @kill_dirty: flag to guide handling of dirty inodes
1342 *
1343 * Invalidates all buffer-cache entries on a disk. It should be called
1344 * when a disk has been changed -- either by a media change or online
1345 * resize.
1346 */
1347 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1348 {
1349 if (__invalidate_device(bdev, kill_dirty)) {
1350 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1351 "resized disk %s\n",
1352 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1353 }
1354
1355 if (!bdev->bd_disk)
1356 return;
1357 if (disk_part_scan_enabled(bdev->bd_disk))
1358 bdev->bd_invalidated = 1;
1359 }
1360
1361 /**
1362 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1363 * @disk: struct gendisk to check
1364 * @bdev: struct bdev to adjust.
1365 * @verbose: if %true log a message about a size change if there is any
1366 *
1367 * This routine checks to see if the bdev size does not match the disk size
1368 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1369 * are freed.
1370 */
1371 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1372 bool verbose)
1373 {
1374 loff_t disk_size, bdev_size;
1375
1376 disk_size = (loff_t)get_capacity(disk) << 9;
1377 bdev_size = i_size_read(bdev->bd_inode);
1378 if (disk_size != bdev_size) {
1379 if (verbose) {
1380 printk(KERN_INFO
1381 "%s: detected capacity change from %lld to %lld\n",
1382 disk->disk_name, bdev_size, disk_size);
1383 }
1384 i_size_write(bdev->bd_inode, disk_size);
1385 if (bdev_size > disk_size)
1386 flush_disk(bdev, false);
1387 }
1388 }
1389
1390 /**
1391 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1392 * @disk: struct gendisk to be revalidated
1393 *
1394 * This routine is a wrapper for lower-level driver's revalidate_disk
1395 * call-backs. It is used to do common pre and post operations needed
1396 * for all revalidate_disk operations.
1397 */
1398 int revalidate_disk(struct gendisk *disk)
1399 {
1400 struct block_device *bdev;
1401 int ret = 0;
1402
1403 if (disk->fops->revalidate_disk)
1404 ret = disk->fops->revalidate_disk(disk);
1405 bdev = bdget_disk(disk, 0);
1406 if (!bdev)
1407 return ret;
1408
1409 mutex_lock(&bdev->bd_mutex);
1410 check_disk_size_change(disk, bdev, ret == 0);
1411 bdev->bd_invalidated = 0;
1412 mutex_unlock(&bdev->bd_mutex);
1413 bdput(bdev);
1414 return ret;
1415 }
1416 EXPORT_SYMBOL(revalidate_disk);
1417
1418 /*
1419 * This routine checks whether a removable media has been changed,
1420 * and invalidates all buffer-cache-entries in that case. This
1421 * is a relatively slow routine, so we have to try to minimize using
1422 * it. Thus it is called only upon a 'mount' or 'open'. This
1423 * is the best way of combining speed and utility, I think.
1424 * People changing diskettes in the middle of an operation deserve
1425 * to lose :-)
1426 */
1427 int check_disk_change(struct block_device *bdev)
1428 {
1429 struct gendisk *disk = bdev->bd_disk;
1430 const struct block_device_operations *bdops = disk->fops;
1431 unsigned int events;
1432
1433 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1434 DISK_EVENT_EJECT_REQUEST);
1435 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1436 return 0;
1437
1438 flush_disk(bdev, true);
1439 if (bdops->revalidate_disk)
1440 bdops->revalidate_disk(bdev->bd_disk);
1441 return 1;
1442 }
1443
1444 EXPORT_SYMBOL(check_disk_change);
1445
1446 void bd_set_size(struct block_device *bdev, loff_t size)
1447 {
1448 inode_lock(bdev->bd_inode);
1449 i_size_write(bdev->bd_inode, size);
1450 inode_unlock(bdev->bd_inode);
1451 }
1452 EXPORT_SYMBOL(bd_set_size);
1453
1454 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1455
1456 /*
1457 * bd_mutex locking:
1458 *
1459 * mutex_lock(part->bd_mutex)
1460 * mutex_lock_nested(whole->bd_mutex, 1)
1461 */
1462
1463 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1464 {
1465 struct gendisk *disk;
1466 int ret;
1467 int partno;
1468 int perm = 0;
1469 bool first_open = false;
1470
1471 if (mode & FMODE_READ)
1472 perm |= MAY_READ;
1473 if (mode & FMODE_WRITE)
1474 perm |= MAY_WRITE;
1475 /*
1476 * hooks: /n/, see "layering violations".
1477 */
1478 if (!for_part) {
1479 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1480 if (ret != 0) {
1481 bdput(bdev);
1482 return ret;
1483 }
1484 }
1485
1486 restart:
1487
1488 ret = -ENXIO;
1489 disk = bdev_get_gendisk(bdev, &partno);
1490 if (!disk)
1491 goto out;
1492
1493 disk_block_events(disk);
1494 mutex_lock_nested(&bdev->bd_mutex, for_part);
1495 if (!bdev->bd_openers) {
1496 first_open = true;
1497 bdev->bd_disk = disk;
1498 bdev->bd_queue = disk->queue;
1499 bdev->bd_contains = bdev;
1500 bdev->bd_partno = partno;
1501
1502 if (!partno) {
1503 ret = -ENXIO;
1504 bdev->bd_part = disk_get_part(disk, partno);
1505 if (!bdev->bd_part)
1506 goto out_clear;
1507
1508 ret = 0;
1509 if (disk->fops->open) {
1510 ret = disk->fops->open(bdev, mode);
1511 if (ret == -ERESTARTSYS) {
1512 /* Lost a race with 'disk' being
1513 * deleted, try again.
1514 * See md.c
1515 */
1516 disk_put_part(bdev->bd_part);
1517 bdev->bd_part = NULL;
1518 bdev->bd_disk = NULL;
1519 bdev->bd_queue = NULL;
1520 mutex_unlock(&bdev->bd_mutex);
1521 disk_unblock_events(disk);
1522 put_disk_and_module(disk);
1523 goto restart;
1524 }
1525 }
1526
1527 if (!ret) {
1528 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1529 set_init_blocksize(bdev);
1530 }
1531
1532 /*
1533 * If the device is invalidated, rescan partition
1534 * if open succeeded or failed with -ENOMEDIUM.
1535 * The latter is necessary to prevent ghost
1536 * partitions on a removed medium.
1537 */
1538 if (bdev->bd_invalidated) {
1539 if (!ret)
1540 rescan_partitions(disk, bdev);
1541 else if (ret == -ENOMEDIUM)
1542 invalidate_partitions(disk, bdev);
1543 }
1544
1545 if (ret)
1546 goto out_clear;
1547 } else {
1548 struct block_device *whole;
1549 whole = bdget_disk(disk, 0);
1550 ret = -ENOMEM;
1551 if (!whole)
1552 goto out_clear;
1553 BUG_ON(for_part);
1554 ret = __blkdev_get(whole, mode, 1);
1555 if (ret)
1556 goto out_clear;
1557 bdev->bd_contains = whole;
1558 bdev->bd_part = disk_get_part(disk, partno);
1559 if (!(disk->flags & GENHD_FL_UP) ||
1560 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1561 ret = -ENXIO;
1562 goto out_clear;
1563 }
1564 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1565 set_init_blocksize(bdev);
1566 }
1567
1568 if (bdev->bd_bdi == &noop_backing_dev_info)
1569 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1570 } else {
1571 if (bdev->bd_contains == bdev) {
1572 ret = 0;
1573 if (bdev->bd_disk->fops->open)
1574 ret = bdev->bd_disk->fops->open(bdev, mode);
1575 /* the same as first opener case, read comment there */
1576 if (bdev->bd_invalidated) {
1577 if (!ret)
1578 rescan_partitions(bdev->bd_disk, bdev);
1579 else if (ret == -ENOMEDIUM)
1580 invalidate_partitions(bdev->bd_disk, bdev);
1581 }
1582 if (ret)
1583 goto out_unlock_bdev;
1584 }
1585 }
1586 bdev->bd_openers++;
1587 if (for_part)
1588 bdev->bd_part_count++;
1589 mutex_unlock(&bdev->bd_mutex);
1590 disk_unblock_events(disk);
1591 /* only one opener holds refs to the module and disk */
1592 if (!first_open)
1593 put_disk_and_module(disk);
1594 return 0;
1595
1596 out_clear:
1597 disk_put_part(bdev->bd_part);
1598 bdev->bd_disk = NULL;
1599 bdev->bd_part = NULL;
1600 bdev->bd_queue = NULL;
1601 if (bdev != bdev->bd_contains)
1602 __blkdev_put(bdev->bd_contains, mode, 1);
1603 bdev->bd_contains = NULL;
1604 out_unlock_bdev:
1605 mutex_unlock(&bdev->bd_mutex);
1606 disk_unblock_events(disk);
1607 put_disk_and_module(disk);
1608 out:
1609 bdput(bdev);
1610
1611 return ret;
1612 }
1613
1614 /**
1615 * blkdev_get - open a block device
1616 * @bdev: block_device to open
1617 * @mode: FMODE_* mask
1618 * @holder: exclusive holder identifier
1619 *
1620 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1621 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1622 * @holder is invalid. Exclusive opens may nest for the same @holder.
1623 *
1624 * On success, the reference count of @bdev is unchanged. On failure,
1625 * @bdev is put.
1626 *
1627 * CONTEXT:
1628 * Might sleep.
1629 *
1630 * RETURNS:
1631 * 0 on success, -errno on failure.
1632 */
1633 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1634 {
1635 struct block_device *whole = NULL;
1636 int res;
1637
1638 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1639
1640 if ((mode & FMODE_EXCL) && holder) {
1641 whole = bd_start_claiming(bdev, holder);
1642 if (IS_ERR(whole)) {
1643 bdput(bdev);
1644 return PTR_ERR(whole);
1645 }
1646 }
1647
1648 res = __blkdev_get(bdev, mode, 0);
1649
1650 if (whole) {
1651 struct gendisk *disk = whole->bd_disk;
1652
1653 /* finish claiming */
1654 mutex_lock(&bdev->bd_mutex);
1655 spin_lock(&bdev_lock);
1656
1657 if (!res) {
1658 BUG_ON(!bd_may_claim(bdev, whole, holder));
1659 /*
1660 * Note that for a whole device bd_holders
1661 * will be incremented twice, and bd_holder
1662 * will be set to bd_may_claim before being
1663 * set to holder
1664 */
1665 whole->bd_holders++;
1666 whole->bd_holder = bd_may_claim;
1667 bdev->bd_holders++;
1668 bdev->bd_holder = holder;
1669 }
1670
1671 /* tell others that we're done */
1672 BUG_ON(whole->bd_claiming != holder);
1673 whole->bd_claiming = NULL;
1674 wake_up_bit(&whole->bd_claiming, 0);
1675
1676 spin_unlock(&bdev_lock);
1677
1678 /*
1679 * Block event polling for write claims if requested. Any
1680 * write holder makes the write_holder state stick until
1681 * all are released. This is good enough and tracking
1682 * individual writeable reference is too fragile given the
1683 * way @mode is used in blkdev_get/put().
1684 */
1685 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1686 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1687 bdev->bd_write_holder = true;
1688 disk_block_events(disk);
1689 }
1690
1691 mutex_unlock(&bdev->bd_mutex);
1692 bdput(whole);
1693 }
1694
1695 return res;
1696 }
1697 EXPORT_SYMBOL(blkdev_get);
1698
1699 /**
1700 * blkdev_get_by_path - open a block device by name
1701 * @path: path to the block device to open
1702 * @mode: FMODE_* mask
1703 * @holder: exclusive holder identifier
1704 *
1705 * Open the blockdevice described by the device file at @path. @mode
1706 * and @holder are identical to blkdev_get().
1707 *
1708 * On success, the returned block_device has reference count of one.
1709 *
1710 * CONTEXT:
1711 * Might sleep.
1712 *
1713 * RETURNS:
1714 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1715 */
1716 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1717 void *holder)
1718 {
1719 struct block_device *bdev;
1720 int err;
1721
1722 bdev = lookup_bdev(path);
1723 if (IS_ERR(bdev))
1724 return bdev;
1725
1726 err = blkdev_get(bdev, mode, holder);
1727 if (err)
1728 return ERR_PTR(err);
1729
1730 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1731 blkdev_put(bdev, mode);
1732 return ERR_PTR(-EACCES);
1733 }
1734
1735 return bdev;
1736 }
1737 EXPORT_SYMBOL(blkdev_get_by_path);
1738
1739 /**
1740 * blkdev_get_by_dev - open a block device by device number
1741 * @dev: device number of block device to open
1742 * @mode: FMODE_* mask
1743 * @holder: exclusive holder identifier
1744 *
1745 * Open the blockdevice described by device number @dev. @mode and
1746 * @holder are identical to blkdev_get().
1747 *
1748 * Use it ONLY if you really do not have anything better - i.e. when
1749 * you are behind a truly sucky interface and all you are given is a
1750 * device number. _Never_ to be used for internal purposes. If you
1751 * ever need it - reconsider your API.
1752 *
1753 * On success, the returned block_device has reference count of one.
1754 *
1755 * CONTEXT:
1756 * Might sleep.
1757 *
1758 * RETURNS:
1759 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1760 */
1761 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1762 {
1763 struct block_device *bdev;
1764 int err;
1765
1766 bdev = bdget(dev);
1767 if (!bdev)
1768 return ERR_PTR(-ENOMEM);
1769
1770 err = blkdev_get(bdev, mode, holder);
1771 if (err)
1772 return ERR_PTR(err);
1773
1774 return bdev;
1775 }
1776 EXPORT_SYMBOL(blkdev_get_by_dev);
1777
1778 static int blkdev_open(struct inode * inode, struct file * filp)
1779 {
1780 struct block_device *bdev;
1781
1782 /*
1783 * Preserve backwards compatibility and allow large file access
1784 * even if userspace doesn't ask for it explicitly. Some mkfs
1785 * binary needs it. We might want to drop this workaround
1786 * during an unstable branch.
1787 */
1788 filp->f_flags |= O_LARGEFILE;
1789
1790 filp->f_mode |= FMODE_NOWAIT;
1791
1792 if (filp->f_flags & O_NDELAY)
1793 filp->f_mode |= FMODE_NDELAY;
1794 if (filp->f_flags & O_EXCL)
1795 filp->f_mode |= FMODE_EXCL;
1796 if ((filp->f_flags & O_ACCMODE) == 3)
1797 filp->f_mode |= FMODE_WRITE_IOCTL;
1798
1799 bdev = bd_acquire(inode);
1800 if (bdev == NULL)
1801 return -ENOMEM;
1802
1803 filp->f_mapping = bdev->bd_inode->i_mapping;
1804 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1805
1806 return blkdev_get(bdev, filp->f_mode, filp);
1807 }
1808
1809 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1810 {
1811 struct gendisk *disk = bdev->bd_disk;
1812 struct block_device *victim = NULL;
1813
1814 mutex_lock_nested(&bdev->bd_mutex, for_part);
1815 if (for_part)
1816 bdev->bd_part_count--;
1817
1818 if (!--bdev->bd_openers) {
1819 WARN_ON_ONCE(bdev->bd_holders);
1820 sync_blockdev(bdev);
1821 kill_bdev(bdev);
1822
1823 bdev_write_inode(bdev);
1824 }
1825 if (bdev->bd_contains == bdev) {
1826 if (disk->fops->release)
1827 disk->fops->release(disk, mode);
1828 }
1829 if (!bdev->bd_openers) {
1830 disk_put_part(bdev->bd_part);
1831 bdev->bd_part = NULL;
1832 bdev->bd_disk = NULL;
1833 if (bdev != bdev->bd_contains)
1834 victim = bdev->bd_contains;
1835 bdev->bd_contains = NULL;
1836
1837 put_disk_and_module(disk);
1838 }
1839 mutex_unlock(&bdev->bd_mutex);
1840 bdput(bdev);
1841 if (victim)
1842 __blkdev_put(victim, mode, 1);
1843 }
1844
1845 void blkdev_put(struct block_device *bdev, fmode_t mode)
1846 {
1847 mutex_lock(&bdev->bd_mutex);
1848
1849 if (mode & FMODE_EXCL) {
1850 bool bdev_free;
1851
1852 /*
1853 * Release a claim on the device. The holder fields
1854 * are protected with bdev_lock. bd_mutex is to
1855 * synchronize disk_holder unlinking.
1856 */
1857 spin_lock(&bdev_lock);
1858
1859 WARN_ON_ONCE(--bdev->bd_holders < 0);
1860 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1861
1862 /* bd_contains might point to self, check in a separate step */
1863 if ((bdev_free = !bdev->bd_holders))
1864 bdev->bd_holder = NULL;
1865 if (!bdev->bd_contains->bd_holders)
1866 bdev->bd_contains->bd_holder = NULL;
1867
1868 spin_unlock(&bdev_lock);
1869
1870 /*
1871 * If this was the last claim, remove holder link and
1872 * unblock evpoll if it was a write holder.
1873 */
1874 if (bdev_free && bdev->bd_write_holder) {
1875 disk_unblock_events(bdev->bd_disk);
1876 bdev->bd_write_holder = false;
1877 }
1878 }
1879
1880 /*
1881 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1882 * event. This is to ensure detection of media removal commanded
1883 * from userland - e.g. eject(1).
1884 */
1885 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1886
1887 mutex_unlock(&bdev->bd_mutex);
1888
1889 __blkdev_put(bdev, mode, 0);
1890 }
1891 EXPORT_SYMBOL(blkdev_put);
1892
1893 static int blkdev_close(struct inode * inode, struct file * filp)
1894 {
1895 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1896 blkdev_put(bdev, filp->f_mode);
1897 return 0;
1898 }
1899
1900 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1901 {
1902 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1903 fmode_t mode = file->f_mode;
1904
1905 /*
1906 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1907 * to updated it before every ioctl.
1908 */
1909 if (file->f_flags & O_NDELAY)
1910 mode |= FMODE_NDELAY;
1911 else
1912 mode &= ~FMODE_NDELAY;
1913
1914 return blkdev_ioctl(bdev, mode, cmd, arg);
1915 }
1916
1917 /*
1918 * Write data to the block device. Only intended for the block device itself
1919 * and the raw driver which basically is a fake block device.
1920 *
1921 * Does not take i_mutex for the write and thus is not for general purpose
1922 * use.
1923 */
1924 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1925 {
1926 struct file *file = iocb->ki_filp;
1927 struct inode *bd_inode = bdev_file_inode(file);
1928 loff_t size = i_size_read(bd_inode);
1929 struct blk_plug plug;
1930 ssize_t ret;
1931
1932 if (bdev_read_only(I_BDEV(bd_inode)))
1933 return -EPERM;
1934
1935 if (!iov_iter_count(from))
1936 return 0;
1937
1938 if (iocb->ki_pos >= size)
1939 return -ENOSPC;
1940
1941 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1942 return -EOPNOTSUPP;
1943
1944 iov_iter_truncate(from, size - iocb->ki_pos);
1945
1946 blk_start_plug(&plug);
1947 ret = __generic_file_write_iter(iocb, from);
1948 if (ret > 0)
1949 ret = generic_write_sync(iocb, ret);
1950 blk_finish_plug(&plug);
1951 return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1954
1955 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1956 {
1957 struct file *file = iocb->ki_filp;
1958 struct inode *bd_inode = bdev_file_inode(file);
1959 loff_t size = i_size_read(bd_inode);
1960 loff_t pos = iocb->ki_pos;
1961
1962 if (pos >= size)
1963 return 0;
1964
1965 size -= pos;
1966 iov_iter_truncate(to, size);
1967 return generic_file_read_iter(iocb, to);
1968 }
1969 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1970
1971 /*
1972 * Try to release a page associated with block device when the system
1973 * is under memory pressure.
1974 */
1975 static int blkdev_releasepage(struct page *page, gfp_t wait)
1976 {
1977 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1978
1979 if (super && super->s_op->bdev_try_to_free_page)
1980 return super->s_op->bdev_try_to_free_page(super, page, wait);
1981
1982 return try_to_free_buffers(page);
1983 }
1984
1985 static int blkdev_writepages(struct address_space *mapping,
1986 struct writeback_control *wbc)
1987 {
1988 return generic_writepages(mapping, wbc);
1989 }
1990
1991 static const struct address_space_operations def_blk_aops = {
1992 .readpage = blkdev_readpage,
1993 .readpages = blkdev_readpages,
1994 .writepage = blkdev_writepage,
1995 .write_begin = blkdev_write_begin,
1996 .write_end = blkdev_write_end,
1997 .writepages = blkdev_writepages,
1998 .releasepage = blkdev_releasepage,
1999 .direct_IO = blkdev_direct_IO,
2000 .migratepage = buffer_migrate_page_norefs,
2001 .is_dirty_writeback = buffer_check_dirty_writeback,
2002 };
2003
2004 #define BLKDEV_FALLOC_FL_SUPPORTED \
2005 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2006 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2007
2008 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2009 loff_t len)
2010 {
2011 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2012 struct address_space *mapping;
2013 loff_t end = start + len - 1;
2014 loff_t isize;
2015 int error;
2016
2017 /* Fail if we don't recognize the flags. */
2018 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2019 return -EOPNOTSUPP;
2020
2021 /* Don't go off the end of the device. */
2022 isize = i_size_read(bdev->bd_inode);
2023 if (start >= isize)
2024 return -EINVAL;
2025 if (end >= isize) {
2026 if (mode & FALLOC_FL_KEEP_SIZE) {
2027 len = isize - start;
2028 end = start + len - 1;
2029 } else
2030 return -EINVAL;
2031 }
2032
2033 /*
2034 * Don't allow IO that isn't aligned to logical block size.
2035 */
2036 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2037 return -EINVAL;
2038
2039 /* Invalidate the page cache, including dirty pages. */
2040 mapping = bdev->bd_inode->i_mapping;
2041 truncate_inode_pages_range(mapping, start, end);
2042
2043 switch (mode) {
2044 case FALLOC_FL_ZERO_RANGE:
2045 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2046 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2047 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2048 break;
2049 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2050 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2051 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2052 break;
2053 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2054 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2055 GFP_KERNEL, 0);
2056 break;
2057 default:
2058 return -EOPNOTSUPP;
2059 }
2060 if (error)
2061 return error;
2062
2063 /*
2064 * Invalidate again; if someone wandered in and dirtied a page,
2065 * the caller will be given -EBUSY. The third argument is
2066 * inclusive, so the rounding here is safe.
2067 */
2068 return invalidate_inode_pages2_range(mapping,
2069 start >> PAGE_SHIFT,
2070 end >> PAGE_SHIFT);
2071 }
2072
2073 const struct file_operations def_blk_fops = {
2074 .open = blkdev_open,
2075 .release = blkdev_close,
2076 .llseek = block_llseek,
2077 .read_iter = blkdev_read_iter,
2078 .write_iter = blkdev_write_iter,
2079 .mmap = generic_file_mmap,
2080 .fsync = blkdev_fsync,
2081 .unlocked_ioctl = block_ioctl,
2082 #ifdef CONFIG_COMPAT
2083 .compat_ioctl = compat_blkdev_ioctl,
2084 #endif
2085 .splice_read = generic_file_splice_read,
2086 .splice_write = iter_file_splice_write,
2087 .fallocate = blkdev_fallocate,
2088 };
2089
2090 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2091 {
2092 int res;
2093 mm_segment_t old_fs = get_fs();
2094 set_fs(KERNEL_DS);
2095 res = blkdev_ioctl(bdev, 0, cmd, arg);
2096 set_fs(old_fs);
2097 return res;
2098 }
2099
2100 EXPORT_SYMBOL(ioctl_by_bdev);
2101
2102 /**
2103 * lookup_bdev - lookup a struct block_device by name
2104 * @pathname: special file representing the block device
2105 *
2106 * Get a reference to the blockdevice at @pathname in the current
2107 * namespace if possible and return it. Return ERR_PTR(error)
2108 * otherwise.
2109 */
2110 struct block_device *lookup_bdev(const char *pathname)
2111 {
2112 struct block_device *bdev;
2113 struct inode *inode;
2114 struct path path;
2115 int error;
2116
2117 if (!pathname || !*pathname)
2118 return ERR_PTR(-EINVAL);
2119
2120 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2121 if (error)
2122 return ERR_PTR(error);
2123
2124 inode = d_backing_inode(path.dentry);
2125 error = -ENOTBLK;
2126 if (!S_ISBLK(inode->i_mode))
2127 goto fail;
2128 error = -EACCES;
2129 if (!may_open_dev(&path))
2130 goto fail;
2131 error = -ENOMEM;
2132 bdev = bd_acquire(inode);
2133 if (!bdev)
2134 goto fail;
2135 out:
2136 path_put(&path);
2137 return bdev;
2138 fail:
2139 bdev = ERR_PTR(error);
2140 goto out;
2141 }
2142 EXPORT_SYMBOL(lookup_bdev);
2143
2144 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2145 {
2146 struct super_block *sb = get_super(bdev);
2147 int res = 0;
2148
2149 if (sb) {
2150 /*
2151 * no need to lock the super, get_super holds the
2152 * read mutex so the filesystem cannot go away
2153 * under us (->put_super runs with the write lock
2154 * hold).
2155 */
2156 shrink_dcache_sb(sb);
2157 res = invalidate_inodes(sb, kill_dirty);
2158 drop_super(sb);
2159 }
2160 invalidate_bdev(bdev);
2161 return res;
2162 }
2163 EXPORT_SYMBOL(__invalidate_device);
2164
2165 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2166 {
2167 struct inode *inode, *old_inode = NULL;
2168
2169 spin_lock(&blockdev_superblock->s_inode_list_lock);
2170 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2171 struct address_space *mapping = inode->i_mapping;
2172 struct block_device *bdev;
2173
2174 spin_lock(&inode->i_lock);
2175 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2176 mapping->nrpages == 0) {
2177 spin_unlock(&inode->i_lock);
2178 continue;
2179 }
2180 __iget(inode);
2181 spin_unlock(&inode->i_lock);
2182 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2183 /*
2184 * We hold a reference to 'inode' so it couldn't have been
2185 * removed from s_inodes list while we dropped the
2186 * s_inode_list_lock We cannot iput the inode now as we can
2187 * be holding the last reference and we cannot iput it under
2188 * s_inode_list_lock. So we keep the reference and iput it
2189 * later.
2190 */
2191 iput(old_inode);
2192 old_inode = inode;
2193 bdev = I_BDEV(inode);
2194
2195 mutex_lock(&bdev->bd_mutex);
2196 if (bdev->bd_openers)
2197 func(bdev, arg);
2198 mutex_unlock(&bdev->bd_mutex);
2199
2200 spin_lock(&blockdev_superblock->s_inode_list_lock);
2201 }
2202 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2203 iput(old_inode);
2204 }