]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
implement in-kernel gendisk events handling
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/smp_lock.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/buffer_head.h>
21 #include <linux/pagevec.h>
22 #include <linux/writeback.h>
23 #include <linux/mpage.h>
24 #include <linux/mount.h>
25 #include <linux/uio.h>
26 #include <linux/namei.h>
27 #include <linux/log2.h>
28 #include <linux/kmemleak.h>
29 #include <asm/uaccess.h>
30 #include "internal.h"
31
32 struct bdev_inode {
33 struct block_device bdev;
34 struct inode vfs_inode;
35 };
36
37 static const struct address_space_operations def_blk_aops;
38
39 static inline struct bdev_inode *BDEV_I(struct inode *inode)
40 {
41 return container_of(inode, struct bdev_inode, vfs_inode);
42 }
43
44 inline struct block_device *I_BDEV(struct inode *inode)
45 {
46 return &BDEV_I(inode)->bdev;
47 }
48
49 EXPORT_SYMBOL(I_BDEV);
50
51 /*
52 * move the inode from it's current bdi to the a new bdi. if the inode is dirty
53 * we need to move it onto the dirty list of @dst so that the inode is always
54 * on the right list.
55 */
56 static void bdev_inode_switch_bdi(struct inode *inode,
57 struct backing_dev_info *dst)
58 {
59 spin_lock(&inode_lock);
60 inode->i_data.backing_dev_info = dst;
61 if (inode->i_state & I_DIRTY)
62 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
63 spin_unlock(&inode_lock);
64 }
65
66 static sector_t max_block(struct block_device *bdev)
67 {
68 sector_t retval = ~((sector_t)0);
69 loff_t sz = i_size_read(bdev->bd_inode);
70
71 if (sz) {
72 unsigned int size = block_size(bdev);
73 unsigned int sizebits = blksize_bits(size);
74 retval = (sz >> sizebits);
75 }
76 return retval;
77 }
78
79 /* Kill _all_ buffers and pagecache , dirty or not.. */
80 static void kill_bdev(struct block_device *bdev)
81 {
82 if (bdev->bd_inode->i_mapping->nrpages == 0)
83 return;
84 invalidate_bh_lrus();
85 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
86 }
87
88 int set_blocksize(struct block_device *bdev, int size)
89 {
90 /* Size must be a power of two, and between 512 and PAGE_SIZE */
91 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
92 return -EINVAL;
93
94 /* Size cannot be smaller than the size supported by the device */
95 if (size < bdev_logical_block_size(bdev))
96 return -EINVAL;
97
98 /* Don't change the size if it is same as current */
99 if (bdev->bd_block_size != size) {
100 sync_blockdev(bdev);
101 bdev->bd_block_size = size;
102 bdev->bd_inode->i_blkbits = blksize_bits(size);
103 kill_bdev(bdev);
104 }
105 return 0;
106 }
107
108 EXPORT_SYMBOL(set_blocksize);
109
110 int sb_set_blocksize(struct super_block *sb, int size)
111 {
112 if (set_blocksize(sb->s_bdev, size))
113 return 0;
114 /* If we get here, we know size is power of two
115 * and it's value is between 512 and PAGE_SIZE */
116 sb->s_blocksize = size;
117 sb->s_blocksize_bits = blksize_bits(size);
118 return sb->s_blocksize;
119 }
120
121 EXPORT_SYMBOL(sb_set_blocksize);
122
123 int sb_min_blocksize(struct super_block *sb, int size)
124 {
125 int minsize = bdev_logical_block_size(sb->s_bdev);
126 if (size < minsize)
127 size = minsize;
128 return sb_set_blocksize(sb, size);
129 }
130
131 EXPORT_SYMBOL(sb_min_blocksize);
132
133 static int
134 blkdev_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh, int create)
136 {
137 if (iblock >= max_block(I_BDEV(inode))) {
138 if (create)
139 return -EIO;
140
141 /*
142 * for reads, we're just trying to fill a partial page.
143 * return a hole, they will have to call get_block again
144 * before they can fill it, and they will get -EIO at that
145 * time
146 */
147 return 0;
148 }
149 bh->b_bdev = I_BDEV(inode);
150 bh->b_blocknr = iblock;
151 set_buffer_mapped(bh);
152 return 0;
153 }
154
155 static int
156 blkdev_get_blocks(struct inode *inode, sector_t iblock,
157 struct buffer_head *bh, int create)
158 {
159 sector_t end_block = max_block(I_BDEV(inode));
160 unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
161
162 if ((iblock + max_blocks) > end_block) {
163 max_blocks = end_block - iblock;
164 if ((long)max_blocks <= 0) {
165 if (create)
166 return -EIO; /* write fully beyond EOF */
167 /*
168 * It is a read which is fully beyond EOF. We return
169 * a !buffer_mapped buffer
170 */
171 max_blocks = 0;
172 }
173 }
174
175 bh->b_bdev = I_BDEV(inode);
176 bh->b_blocknr = iblock;
177 bh->b_size = max_blocks << inode->i_blkbits;
178 if (max_blocks)
179 set_buffer_mapped(bh);
180 return 0;
181 }
182
183 static ssize_t
184 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
185 loff_t offset, unsigned long nr_segs)
186 {
187 struct file *file = iocb->ki_filp;
188 struct inode *inode = file->f_mapping->host;
189
190 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
191 nr_segs, blkdev_get_blocks, NULL, NULL, 0);
192 }
193
194 int __sync_blockdev(struct block_device *bdev, int wait)
195 {
196 if (!bdev)
197 return 0;
198 if (!wait)
199 return filemap_flush(bdev->bd_inode->i_mapping);
200 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
201 }
202
203 /*
204 * Write out and wait upon all the dirty data associated with a block
205 * device via its mapping. Does not take the superblock lock.
206 */
207 int sync_blockdev(struct block_device *bdev)
208 {
209 return __sync_blockdev(bdev, 1);
210 }
211 EXPORT_SYMBOL(sync_blockdev);
212
213 /*
214 * Write out and wait upon all dirty data associated with this
215 * device. Filesystem data as well as the underlying block
216 * device. Takes the superblock lock.
217 */
218 int fsync_bdev(struct block_device *bdev)
219 {
220 struct super_block *sb = get_super(bdev);
221 if (sb) {
222 int res = sync_filesystem(sb);
223 drop_super(sb);
224 return res;
225 }
226 return sync_blockdev(bdev);
227 }
228 EXPORT_SYMBOL(fsync_bdev);
229
230 /**
231 * freeze_bdev -- lock a filesystem and force it into a consistent state
232 * @bdev: blockdevice to lock
233 *
234 * If a superblock is found on this device, we take the s_umount semaphore
235 * on it to make sure nobody unmounts until the snapshot creation is done.
236 * The reference counter (bd_fsfreeze_count) guarantees that only the last
237 * unfreeze process can unfreeze the frozen filesystem actually when multiple
238 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
239 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
240 * actually.
241 */
242 struct super_block *freeze_bdev(struct block_device *bdev)
243 {
244 struct super_block *sb;
245 int error = 0;
246
247 mutex_lock(&bdev->bd_fsfreeze_mutex);
248 if (++bdev->bd_fsfreeze_count > 1) {
249 /*
250 * We don't even need to grab a reference - the first call
251 * to freeze_bdev grab an active reference and only the last
252 * thaw_bdev drops it.
253 */
254 sb = get_super(bdev);
255 drop_super(sb);
256 mutex_unlock(&bdev->bd_fsfreeze_mutex);
257 return sb;
258 }
259
260 sb = get_active_super(bdev);
261 if (!sb)
262 goto out;
263 error = freeze_super(sb);
264 if (error) {
265 deactivate_super(sb);
266 bdev->bd_fsfreeze_count--;
267 mutex_unlock(&bdev->bd_fsfreeze_mutex);
268 return ERR_PTR(error);
269 }
270 deactivate_super(sb);
271 out:
272 sync_blockdev(bdev);
273 mutex_unlock(&bdev->bd_fsfreeze_mutex);
274 return sb; /* thaw_bdev releases s->s_umount */
275 }
276 EXPORT_SYMBOL(freeze_bdev);
277
278 /**
279 * thaw_bdev -- unlock filesystem
280 * @bdev: blockdevice to unlock
281 * @sb: associated superblock
282 *
283 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
284 */
285 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
286 {
287 int error = -EINVAL;
288
289 mutex_lock(&bdev->bd_fsfreeze_mutex);
290 if (!bdev->bd_fsfreeze_count)
291 goto out;
292
293 error = 0;
294 if (--bdev->bd_fsfreeze_count > 0)
295 goto out;
296
297 if (!sb)
298 goto out;
299
300 error = thaw_super(sb);
301 if (error) {
302 bdev->bd_fsfreeze_count++;
303 mutex_unlock(&bdev->bd_fsfreeze_mutex);
304 return error;
305 }
306 out:
307 mutex_unlock(&bdev->bd_fsfreeze_mutex);
308 return 0;
309 }
310 EXPORT_SYMBOL(thaw_bdev);
311
312 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
313 {
314 return block_write_full_page(page, blkdev_get_block, wbc);
315 }
316
317 static int blkdev_readpage(struct file * file, struct page * page)
318 {
319 return block_read_full_page(page, blkdev_get_block);
320 }
321
322 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
323 loff_t pos, unsigned len, unsigned flags,
324 struct page **pagep, void **fsdata)
325 {
326 return block_write_begin(mapping, pos, len, flags, pagep,
327 blkdev_get_block);
328 }
329
330 static int blkdev_write_end(struct file *file, struct address_space *mapping,
331 loff_t pos, unsigned len, unsigned copied,
332 struct page *page, void *fsdata)
333 {
334 int ret;
335 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
336
337 unlock_page(page);
338 page_cache_release(page);
339
340 return ret;
341 }
342
343 /*
344 * private llseek:
345 * for a block special file file->f_path.dentry->d_inode->i_size is zero
346 * so we compute the size by hand (just as in block_read/write above)
347 */
348 static loff_t block_llseek(struct file *file, loff_t offset, int origin)
349 {
350 struct inode *bd_inode = file->f_mapping->host;
351 loff_t size;
352 loff_t retval;
353
354 mutex_lock(&bd_inode->i_mutex);
355 size = i_size_read(bd_inode);
356
357 switch (origin) {
358 case 2:
359 offset += size;
360 break;
361 case 1:
362 offset += file->f_pos;
363 }
364 retval = -EINVAL;
365 if (offset >= 0 && offset <= size) {
366 if (offset != file->f_pos) {
367 file->f_pos = offset;
368 }
369 retval = offset;
370 }
371 mutex_unlock(&bd_inode->i_mutex);
372 return retval;
373 }
374
375 int blkdev_fsync(struct file *filp, int datasync)
376 {
377 struct inode *bd_inode = filp->f_mapping->host;
378 struct block_device *bdev = I_BDEV(bd_inode);
379 int error;
380
381 /*
382 * There is no need to serialise calls to blkdev_issue_flush with
383 * i_mutex and doing so causes performance issues with concurrent
384 * O_SYNC writers to a block device.
385 */
386 mutex_unlock(&bd_inode->i_mutex);
387
388 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
389 if (error == -EOPNOTSUPP)
390 error = 0;
391
392 mutex_lock(&bd_inode->i_mutex);
393
394 return error;
395 }
396 EXPORT_SYMBOL(blkdev_fsync);
397
398 /*
399 * pseudo-fs
400 */
401
402 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
403 static struct kmem_cache * bdev_cachep __read_mostly;
404
405 static struct inode *bdev_alloc_inode(struct super_block *sb)
406 {
407 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
408 if (!ei)
409 return NULL;
410 return &ei->vfs_inode;
411 }
412
413 static void bdev_destroy_inode(struct inode *inode)
414 {
415 struct bdev_inode *bdi = BDEV_I(inode);
416
417 kmem_cache_free(bdev_cachep, bdi);
418 }
419
420 static void init_once(void *foo)
421 {
422 struct bdev_inode *ei = (struct bdev_inode *) foo;
423 struct block_device *bdev = &ei->bdev;
424
425 memset(bdev, 0, sizeof(*bdev));
426 mutex_init(&bdev->bd_mutex);
427 INIT_LIST_HEAD(&bdev->bd_inodes);
428 INIT_LIST_HEAD(&bdev->bd_list);
429 inode_init_once(&ei->vfs_inode);
430 /* Initialize mutex for freeze. */
431 mutex_init(&bdev->bd_fsfreeze_mutex);
432 }
433
434 static inline void __bd_forget(struct inode *inode)
435 {
436 list_del_init(&inode->i_devices);
437 inode->i_bdev = NULL;
438 inode->i_mapping = &inode->i_data;
439 }
440
441 static void bdev_evict_inode(struct inode *inode)
442 {
443 struct block_device *bdev = &BDEV_I(inode)->bdev;
444 struct list_head *p;
445 truncate_inode_pages(&inode->i_data, 0);
446 invalidate_inode_buffers(inode); /* is it needed here? */
447 end_writeback(inode);
448 spin_lock(&bdev_lock);
449 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
450 __bd_forget(list_entry(p, struct inode, i_devices));
451 }
452 list_del_init(&bdev->bd_list);
453 spin_unlock(&bdev_lock);
454 }
455
456 static const struct super_operations bdev_sops = {
457 .statfs = simple_statfs,
458 .alloc_inode = bdev_alloc_inode,
459 .destroy_inode = bdev_destroy_inode,
460 .drop_inode = generic_delete_inode,
461 .evict_inode = bdev_evict_inode,
462 };
463
464 static struct dentry *bd_mount(struct file_system_type *fs_type,
465 int flags, const char *dev_name, void *data)
466 {
467 return mount_pseudo(fs_type, "bdev:", &bdev_sops, 0x62646576);
468 }
469
470 static struct file_system_type bd_type = {
471 .name = "bdev",
472 .mount = bd_mount,
473 .kill_sb = kill_anon_super,
474 };
475
476 struct super_block *blockdev_superblock __read_mostly;
477
478 void __init bdev_cache_init(void)
479 {
480 int err;
481 struct vfsmount *bd_mnt;
482
483 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
484 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
485 SLAB_MEM_SPREAD|SLAB_PANIC),
486 init_once);
487 err = register_filesystem(&bd_type);
488 if (err)
489 panic("Cannot register bdev pseudo-fs");
490 bd_mnt = kern_mount(&bd_type);
491 if (IS_ERR(bd_mnt))
492 panic("Cannot create bdev pseudo-fs");
493 /*
494 * This vfsmount structure is only used to obtain the
495 * blockdev_superblock, so tell kmemleak not to report it.
496 */
497 kmemleak_not_leak(bd_mnt);
498 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
499 }
500
501 /*
502 * Most likely _very_ bad one - but then it's hardly critical for small
503 * /dev and can be fixed when somebody will need really large one.
504 * Keep in mind that it will be fed through icache hash function too.
505 */
506 static inline unsigned long hash(dev_t dev)
507 {
508 return MAJOR(dev)+MINOR(dev);
509 }
510
511 static int bdev_test(struct inode *inode, void *data)
512 {
513 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
514 }
515
516 static int bdev_set(struct inode *inode, void *data)
517 {
518 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
519 return 0;
520 }
521
522 static LIST_HEAD(all_bdevs);
523
524 struct block_device *bdget(dev_t dev)
525 {
526 struct block_device *bdev;
527 struct inode *inode;
528
529 inode = iget5_locked(blockdev_superblock, hash(dev),
530 bdev_test, bdev_set, &dev);
531
532 if (!inode)
533 return NULL;
534
535 bdev = &BDEV_I(inode)->bdev;
536
537 if (inode->i_state & I_NEW) {
538 bdev->bd_contains = NULL;
539 bdev->bd_inode = inode;
540 bdev->bd_block_size = (1 << inode->i_blkbits);
541 bdev->bd_part_count = 0;
542 bdev->bd_invalidated = 0;
543 inode->i_mode = S_IFBLK;
544 inode->i_rdev = dev;
545 inode->i_bdev = bdev;
546 inode->i_data.a_ops = &def_blk_aops;
547 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
548 inode->i_data.backing_dev_info = &default_backing_dev_info;
549 spin_lock(&bdev_lock);
550 list_add(&bdev->bd_list, &all_bdevs);
551 spin_unlock(&bdev_lock);
552 unlock_new_inode(inode);
553 }
554 return bdev;
555 }
556
557 EXPORT_SYMBOL(bdget);
558
559 /**
560 * bdgrab -- Grab a reference to an already referenced block device
561 * @bdev: Block device to grab a reference to.
562 */
563 struct block_device *bdgrab(struct block_device *bdev)
564 {
565 ihold(bdev->bd_inode);
566 return bdev;
567 }
568
569 long nr_blockdev_pages(void)
570 {
571 struct block_device *bdev;
572 long ret = 0;
573 spin_lock(&bdev_lock);
574 list_for_each_entry(bdev, &all_bdevs, bd_list) {
575 ret += bdev->bd_inode->i_mapping->nrpages;
576 }
577 spin_unlock(&bdev_lock);
578 return ret;
579 }
580
581 void bdput(struct block_device *bdev)
582 {
583 iput(bdev->bd_inode);
584 }
585
586 EXPORT_SYMBOL(bdput);
587
588 static struct block_device *bd_acquire(struct inode *inode)
589 {
590 struct block_device *bdev;
591
592 spin_lock(&bdev_lock);
593 bdev = inode->i_bdev;
594 if (bdev) {
595 ihold(bdev->bd_inode);
596 spin_unlock(&bdev_lock);
597 return bdev;
598 }
599 spin_unlock(&bdev_lock);
600
601 bdev = bdget(inode->i_rdev);
602 if (bdev) {
603 spin_lock(&bdev_lock);
604 if (!inode->i_bdev) {
605 /*
606 * We take an additional reference to bd_inode,
607 * and it's released in clear_inode() of inode.
608 * So, we can access it via ->i_mapping always
609 * without igrab().
610 */
611 ihold(bdev->bd_inode);
612 inode->i_bdev = bdev;
613 inode->i_mapping = bdev->bd_inode->i_mapping;
614 list_add(&inode->i_devices, &bdev->bd_inodes);
615 }
616 spin_unlock(&bdev_lock);
617 }
618 return bdev;
619 }
620
621 /* Call when you free inode */
622
623 void bd_forget(struct inode *inode)
624 {
625 struct block_device *bdev = NULL;
626
627 spin_lock(&bdev_lock);
628 if (inode->i_bdev) {
629 if (!sb_is_blkdev_sb(inode->i_sb))
630 bdev = inode->i_bdev;
631 __bd_forget(inode);
632 }
633 spin_unlock(&bdev_lock);
634
635 if (bdev)
636 iput(bdev->bd_inode);
637 }
638
639 /**
640 * bd_may_claim - test whether a block device can be claimed
641 * @bdev: block device of interest
642 * @whole: whole block device containing @bdev, may equal @bdev
643 * @holder: holder trying to claim @bdev
644 *
645 * Test whther @bdev can be claimed by @holder.
646 *
647 * CONTEXT:
648 * spin_lock(&bdev_lock).
649 *
650 * RETURNS:
651 * %true if @bdev can be claimed, %false otherwise.
652 */
653 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
654 void *holder)
655 {
656 if (bdev->bd_holder == holder)
657 return true; /* already a holder */
658 else if (bdev->bd_holder != NULL)
659 return false; /* held by someone else */
660 else if (bdev->bd_contains == bdev)
661 return true; /* is a whole device which isn't held */
662
663 else if (whole->bd_holder == bd_may_claim)
664 return true; /* is a partition of a device that is being partitioned */
665 else if (whole->bd_holder != NULL)
666 return false; /* is a partition of a held device */
667 else
668 return true; /* is a partition of an un-held device */
669 }
670
671 /**
672 * bd_prepare_to_claim - prepare to claim a block device
673 * @bdev: block device of interest
674 * @whole: the whole device containing @bdev, may equal @bdev
675 * @holder: holder trying to claim @bdev
676 *
677 * Prepare to claim @bdev. This function fails if @bdev is already
678 * claimed by another holder and waits if another claiming is in
679 * progress. This function doesn't actually claim. On successful
680 * return, the caller has ownership of bd_claiming and bd_holder[s].
681 *
682 * CONTEXT:
683 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
684 * it multiple times.
685 *
686 * RETURNS:
687 * 0 if @bdev can be claimed, -EBUSY otherwise.
688 */
689 static int bd_prepare_to_claim(struct block_device *bdev,
690 struct block_device *whole, void *holder)
691 {
692 retry:
693 /* if someone else claimed, fail */
694 if (!bd_may_claim(bdev, whole, holder))
695 return -EBUSY;
696
697 /* if claiming is already in progress, wait for it to finish */
698 if (whole->bd_claiming) {
699 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
700 DEFINE_WAIT(wait);
701
702 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
703 spin_unlock(&bdev_lock);
704 schedule();
705 finish_wait(wq, &wait);
706 spin_lock(&bdev_lock);
707 goto retry;
708 }
709
710 /* yay, all mine */
711 return 0;
712 }
713
714 /**
715 * bd_start_claiming - start claiming a block device
716 * @bdev: block device of interest
717 * @holder: holder trying to claim @bdev
718 *
719 * @bdev is about to be opened exclusively. Check @bdev can be opened
720 * exclusively and mark that an exclusive open is in progress. Each
721 * successful call to this function must be matched with a call to
722 * either bd_finish_claiming() or bd_abort_claiming() (which do not
723 * fail).
724 *
725 * This function is used to gain exclusive access to the block device
726 * without actually causing other exclusive open attempts to fail. It
727 * should be used when the open sequence itself requires exclusive
728 * access but may subsequently fail.
729 *
730 * CONTEXT:
731 * Might sleep.
732 *
733 * RETURNS:
734 * Pointer to the block device containing @bdev on success, ERR_PTR()
735 * value on failure.
736 */
737 static struct block_device *bd_start_claiming(struct block_device *bdev,
738 void *holder)
739 {
740 struct gendisk *disk;
741 struct block_device *whole;
742 int partno, err;
743
744 might_sleep();
745
746 /*
747 * @bdev might not have been initialized properly yet, look up
748 * and grab the outer block device the hard way.
749 */
750 disk = get_gendisk(bdev->bd_dev, &partno);
751 if (!disk)
752 return ERR_PTR(-ENXIO);
753
754 whole = bdget_disk(disk, 0);
755 module_put(disk->fops->owner);
756 put_disk(disk);
757 if (!whole)
758 return ERR_PTR(-ENOMEM);
759
760 /* prepare to claim, if successful, mark claiming in progress */
761 spin_lock(&bdev_lock);
762
763 err = bd_prepare_to_claim(bdev, whole, holder);
764 if (err == 0) {
765 whole->bd_claiming = holder;
766 spin_unlock(&bdev_lock);
767 return whole;
768 } else {
769 spin_unlock(&bdev_lock);
770 bdput(whole);
771 return ERR_PTR(err);
772 }
773 }
774
775 #ifdef CONFIG_SYSFS
776 static int add_symlink(struct kobject *from, struct kobject *to)
777 {
778 return sysfs_create_link(from, to, kobject_name(to));
779 }
780
781 static void del_symlink(struct kobject *from, struct kobject *to)
782 {
783 sysfs_remove_link(from, kobject_name(to));
784 }
785
786 /**
787 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
788 * @bdev: the claimed slave bdev
789 * @disk: the holding disk
790 *
791 * This functions creates the following sysfs symlinks.
792 *
793 * - from "slaves" directory of the holder @disk to the claimed @bdev
794 * - from "holders" directory of the @bdev to the holder @disk
795 *
796 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
797 * passed to bd_link_disk_holder(), then:
798 *
799 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
800 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
801 *
802 * The caller must have claimed @bdev before calling this function and
803 * ensure that both @bdev and @disk are valid during the creation and
804 * lifetime of these symlinks.
805 *
806 * CONTEXT:
807 * Might sleep.
808 *
809 * RETURNS:
810 * 0 on success, -errno on failure.
811 */
812 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
813 {
814 int ret = 0;
815
816 mutex_lock(&bdev->bd_mutex);
817
818 WARN_ON_ONCE(!bdev->bd_holder || bdev->bd_holder_disk);
819
820 /* FIXME: remove the following once add_disk() handles errors */
821 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
822 goto out_unlock;
823
824 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
825 if (ret)
826 goto out_unlock;
827
828 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
829 if (ret) {
830 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
831 goto out_unlock;
832 }
833
834 bdev->bd_holder_disk = disk;
835 out_unlock:
836 mutex_unlock(&bdev->bd_mutex);
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
840
841 static void bd_unlink_disk_holder(struct block_device *bdev)
842 {
843 struct gendisk *disk = bdev->bd_holder_disk;
844
845 bdev->bd_holder_disk = NULL;
846 if (!disk)
847 return;
848
849 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
850 del_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
851 }
852 #else
853 static inline void bd_unlink_disk_holder(struct block_device *bdev)
854 { }
855 #endif
856
857 /**
858 * flush_disk - invalidates all buffer-cache entries on a disk
859 *
860 * @bdev: struct block device to be flushed
861 *
862 * Invalidates all buffer-cache entries on a disk. It should be called
863 * when a disk has been changed -- either by a media change or online
864 * resize.
865 */
866 static void flush_disk(struct block_device *bdev)
867 {
868 if (__invalidate_device(bdev)) {
869 char name[BDEVNAME_SIZE] = "";
870
871 if (bdev->bd_disk)
872 disk_name(bdev->bd_disk, 0, name);
873 printk(KERN_WARNING "VFS: busy inodes on changed media or "
874 "resized disk %s\n", name);
875 }
876
877 if (!bdev->bd_disk)
878 return;
879 if (disk_partitionable(bdev->bd_disk))
880 bdev->bd_invalidated = 1;
881 }
882
883 /**
884 * check_disk_size_change - checks for disk size change and adjusts bdev size.
885 * @disk: struct gendisk to check
886 * @bdev: struct bdev to adjust.
887 *
888 * This routine checks to see if the bdev size does not match the disk size
889 * and adjusts it if it differs.
890 */
891 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
892 {
893 loff_t disk_size, bdev_size;
894
895 disk_size = (loff_t)get_capacity(disk) << 9;
896 bdev_size = i_size_read(bdev->bd_inode);
897 if (disk_size != bdev_size) {
898 char name[BDEVNAME_SIZE];
899
900 disk_name(disk, 0, name);
901 printk(KERN_INFO
902 "%s: detected capacity change from %lld to %lld\n",
903 name, bdev_size, disk_size);
904 i_size_write(bdev->bd_inode, disk_size);
905 flush_disk(bdev);
906 }
907 }
908 EXPORT_SYMBOL(check_disk_size_change);
909
910 /**
911 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
912 * @disk: struct gendisk to be revalidated
913 *
914 * This routine is a wrapper for lower-level driver's revalidate_disk
915 * call-backs. It is used to do common pre and post operations needed
916 * for all revalidate_disk operations.
917 */
918 int revalidate_disk(struct gendisk *disk)
919 {
920 struct block_device *bdev;
921 int ret = 0;
922
923 if (disk->fops->revalidate_disk)
924 ret = disk->fops->revalidate_disk(disk);
925
926 bdev = bdget_disk(disk, 0);
927 if (!bdev)
928 return ret;
929
930 mutex_lock(&bdev->bd_mutex);
931 check_disk_size_change(disk, bdev);
932 mutex_unlock(&bdev->bd_mutex);
933 bdput(bdev);
934 return ret;
935 }
936 EXPORT_SYMBOL(revalidate_disk);
937
938 /*
939 * This routine checks whether a removable media has been changed,
940 * and invalidates all buffer-cache-entries in that case. This
941 * is a relatively slow routine, so we have to try to minimize using
942 * it. Thus it is called only upon a 'mount' or 'open'. This
943 * is the best way of combining speed and utility, I think.
944 * People changing diskettes in the middle of an operation deserve
945 * to lose :-)
946 */
947 int check_disk_change(struct block_device *bdev)
948 {
949 struct gendisk *disk = bdev->bd_disk;
950 const struct block_device_operations *bdops = disk->fops;
951 unsigned int events;
952
953 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
954 DISK_EVENT_EJECT_REQUEST);
955 if (!(events & DISK_EVENT_MEDIA_CHANGE))
956 return 0;
957
958 flush_disk(bdev);
959 if (bdops->revalidate_disk)
960 bdops->revalidate_disk(bdev->bd_disk);
961 return 1;
962 }
963
964 EXPORT_SYMBOL(check_disk_change);
965
966 void bd_set_size(struct block_device *bdev, loff_t size)
967 {
968 unsigned bsize = bdev_logical_block_size(bdev);
969
970 bdev->bd_inode->i_size = size;
971 while (bsize < PAGE_CACHE_SIZE) {
972 if (size & bsize)
973 break;
974 bsize <<= 1;
975 }
976 bdev->bd_block_size = bsize;
977 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
978 }
979 EXPORT_SYMBOL(bd_set_size);
980
981 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
982
983 /*
984 * bd_mutex locking:
985 *
986 * mutex_lock(part->bd_mutex)
987 * mutex_lock_nested(whole->bd_mutex, 1)
988 */
989
990 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
991 {
992 struct gendisk *disk;
993 int ret;
994 int partno;
995 int perm = 0;
996
997 if (mode & FMODE_READ)
998 perm |= MAY_READ;
999 if (mode & FMODE_WRITE)
1000 perm |= MAY_WRITE;
1001 /*
1002 * hooks: /n/, see "layering violations".
1003 */
1004 if (!for_part) {
1005 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1006 if (ret != 0) {
1007 bdput(bdev);
1008 return ret;
1009 }
1010 }
1011
1012 restart:
1013
1014 ret = -ENXIO;
1015 disk = get_gendisk(bdev->bd_dev, &partno);
1016 if (!disk)
1017 goto out;
1018
1019 mutex_lock_nested(&bdev->bd_mutex, for_part);
1020 if (!bdev->bd_openers) {
1021 bdev->bd_disk = disk;
1022 bdev->bd_contains = bdev;
1023 if (!partno) {
1024 struct backing_dev_info *bdi;
1025
1026 ret = -ENXIO;
1027 bdev->bd_part = disk_get_part(disk, partno);
1028 if (!bdev->bd_part)
1029 goto out_clear;
1030
1031 if (disk->fops->open) {
1032 ret = disk->fops->open(bdev, mode);
1033 if (ret == -ERESTARTSYS) {
1034 /* Lost a race with 'disk' being
1035 * deleted, try again.
1036 * See md.c
1037 */
1038 disk_put_part(bdev->bd_part);
1039 bdev->bd_part = NULL;
1040 module_put(disk->fops->owner);
1041 put_disk(disk);
1042 bdev->bd_disk = NULL;
1043 mutex_unlock(&bdev->bd_mutex);
1044 goto restart;
1045 }
1046 if (ret)
1047 goto out_clear;
1048 }
1049 if (!bdev->bd_openers) {
1050 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1051 bdi = blk_get_backing_dev_info(bdev);
1052 if (bdi == NULL)
1053 bdi = &default_backing_dev_info;
1054 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1055 }
1056 if (bdev->bd_invalidated)
1057 rescan_partitions(disk, bdev);
1058 } else {
1059 struct block_device *whole;
1060 whole = bdget_disk(disk, 0);
1061 ret = -ENOMEM;
1062 if (!whole)
1063 goto out_clear;
1064 BUG_ON(for_part);
1065 ret = __blkdev_get(whole, mode, 1);
1066 if (ret)
1067 goto out_clear;
1068 bdev->bd_contains = whole;
1069 bdev_inode_switch_bdi(bdev->bd_inode,
1070 whole->bd_inode->i_data.backing_dev_info);
1071 bdev->bd_part = disk_get_part(disk, partno);
1072 if (!(disk->flags & GENHD_FL_UP) ||
1073 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1074 ret = -ENXIO;
1075 goto out_clear;
1076 }
1077 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1078 }
1079 } else {
1080 module_put(disk->fops->owner);
1081 put_disk(disk);
1082 disk = NULL;
1083 if (bdev->bd_contains == bdev) {
1084 if (bdev->bd_disk->fops->open) {
1085 ret = bdev->bd_disk->fops->open(bdev, mode);
1086 if (ret)
1087 goto out_unlock_bdev;
1088 }
1089 if (bdev->bd_invalidated)
1090 rescan_partitions(bdev->bd_disk, bdev);
1091 }
1092 }
1093 bdev->bd_openers++;
1094 if (for_part)
1095 bdev->bd_part_count++;
1096 mutex_unlock(&bdev->bd_mutex);
1097 return 0;
1098
1099 out_clear:
1100 disk_put_part(bdev->bd_part);
1101 bdev->bd_disk = NULL;
1102 bdev->bd_part = NULL;
1103 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1104 if (bdev != bdev->bd_contains)
1105 __blkdev_put(bdev->bd_contains, mode, 1);
1106 bdev->bd_contains = NULL;
1107 out_unlock_bdev:
1108 mutex_unlock(&bdev->bd_mutex);
1109 out:
1110 if (disk)
1111 module_put(disk->fops->owner);
1112 put_disk(disk);
1113 bdput(bdev);
1114
1115 return ret;
1116 }
1117
1118 /**
1119 * blkdev_get - open a block device
1120 * @bdev: block_device to open
1121 * @mode: FMODE_* mask
1122 * @holder: exclusive holder identifier
1123 *
1124 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1125 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1126 * @holder is invalid. Exclusive opens may nest for the same @holder.
1127 *
1128 * On success, the reference count of @bdev is unchanged. On failure,
1129 * @bdev is put.
1130 *
1131 * CONTEXT:
1132 * Might sleep.
1133 *
1134 * RETURNS:
1135 * 0 on success, -errno on failure.
1136 */
1137 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1138 {
1139 struct block_device *whole = NULL;
1140 int res;
1141
1142 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1143
1144 if ((mode & FMODE_EXCL) && holder) {
1145 whole = bd_start_claiming(bdev, holder);
1146 if (IS_ERR(whole)) {
1147 bdput(bdev);
1148 return PTR_ERR(whole);
1149 }
1150 }
1151
1152 res = __blkdev_get(bdev, mode, 0);
1153
1154 /* __blkdev_get() may alter read only status, check it afterwards */
1155 if (!res && (mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1156 __blkdev_put(bdev, mode, 0);
1157 res = -EACCES;
1158 }
1159
1160 if (whole) {
1161 /* finish claiming */
1162 mutex_lock(&bdev->bd_mutex);
1163 spin_lock(&bdev_lock);
1164
1165 if (!res) {
1166 BUG_ON(!bd_may_claim(bdev, whole, holder));
1167 /*
1168 * Note that for a whole device bd_holders
1169 * will be incremented twice, and bd_holder
1170 * will be set to bd_may_claim before being
1171 * set to holder
1172 */
1173 whole->bd_holders++;
1174 whole->bd_holder = bd_may_claim;
1175 bdev->bd_holders++;
1176 bdev->bd_holder = holder;
1177 }
1178
1179 /* tell others that we're done */
1180 BUG_ON(whole->bd_claiming != holder);
1181 whole->bd_claiming = NULL;
1182 wake_up_bit(&whole->bd_claiming, 0);
1183
1184 spin_unlock(&bdev_lock);
1185
1186 /*
1187 * Block event polling for write claims. Any write
1188 * holder makes the write_holder state stick until all
1189 * are released. This is good enough and tracking
1190 * individual writeable reference is too fragile given
1191 * the way @mode is used in blkdev_get/put().
1192 */
1193 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder) {
1194 bdev->bd_write_holder = true;
1195 disk_block_events(bdev->bd_disk);
1196 }
1197
1198 mutex_unlock(&bdev->bd_mutex);
1199 bdput(whole);
1200 }
1201
1202 return res;
1203 }
1204 EXPORT_SYMBOL(blkdev_get);
1205
1206 /**
1207 * blkdev_get_by_path - open a block device by name
1208 * @path: path to the block device to open
1209 * @mode: FMODE_* mask
1210 * @holder: exclusive holder identifier
1211 *
1212 * Open the blockdevice described by the device file at @path. @mode
1213 * and @holder are identical to blkdev_get().
1214 *
1215 * On success, the returned block_device has reference count of one.
1216 *
1217 * CONTEXT:
1218 * Might sleep.
1219 *
1220 * RETURNS:
1221 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1222 */
1223 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1224 void *holder)
1225 {
1226 struct block_device *bdev;
1227 int err;
1228
1229 bdev = lookup_bdev(path);
1230 if (IS_ERR(bdev))
1231 return bdev;
1232
1233 err = blkdev_get(bdev, mode, holder);
1234 if (err)
1235 return ERR_PTR(err);
1236
1237 return bdev;
1238 }
1239 EXPORT_SYMBOL(blkdev_get_by_path);
1240
1241 /**
1242 * blkdev_get_by_dev - open a block device by device number
1243 * @dev: device number of block device to open
1244 * @mode: FMODE_* mask
1245 * @holder: exclusive holder identifier
1246 *
1247 * Open the blockdevice described by device number @dev. @mode and
1248 * @holder are identical to blkdev_get().
1249 *
1250 * Use it ONLY if you really do not have anything better - i.e. when
1251 * you are behind a truly sucky interface and all you are given is a
1252 * device number. _Never_ to be used for internal purposes. If you
1253 * ever need it - reconsider your API.
1254 *
1255 * On success, the returned block_device has reference count of one.
1256 *
1257 * CONTEXT:
1258 * Might sleep.
1259 *
1260 * RETURNS:
1261 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1262 */
1263 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1264 {
1265 struct block_device *bdev;
1266 int err;
1267
1268 bdev = bdget(dev);
1269 if (!bdev)
1270 return ERR_PTR(-ENOMEM);
1271
1272 err = blkdev_get(bdev, mode, holder);
1273 if (err)
1274 return ERR_PTR(err);
1275
1276 return bdev;
1277 }
1278 EXPORT_SYMBOL(blkdev_get_by_dev);
1279
1280 static int blkdev_open(struct inode * inode, struct file * filp)
1281 {
1282 struct block_device *bdev;
1283
1284 /*
1285 * Preserve backwards compatibility and allow large file access
1286 * even if userspace doesn't ask for it explicitly. Some mkfs
1287 * binary needs it. We might want to drop this workaround
1288 * during an unstable branch.
1289 */
1290 filp->f_flags |= O_LARGEFILE;
1291
1292 if (filp->f_flags & O_NDELAY)
1293 filp->f_mode |= FMODE_NDELAY;
1294 if (filp->f_flags & O_EXCL)
1295 filp->f_mode |= FMODE_EXCL;
1296 if ((filp->f_flags & O_ACCMODE) == 3)
1297 filp->f_mode |= FMODE_WRITE_IOCTL;
1298
1299 bdev = bd_acquire(inode);
1300 if (bdev == NULL)
1301 return -ENOMEM;
1302
1303 filp->f_mapping = bdev->bd_inode->i_mapping;
1304
1305 return blkdev_get(bdev, filp->f_mode, filp);
1306 }
1307
1308 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1309 {
1310 int ret = 0;
1311 struct gendisk *disk = bdev->bd_disk;
1312 struct block_device *victim = NULL;
1313
1314 mutex_lock_nested(&bdev->bd_mutex, for_part);
1315 if (for_part)
1316 bdev->bd_part_count--;
1317
1318 if (!--bdev->bd_openers) {
1319 WARN_ON_ONCE(bdev->bd_holders);
1320 sync_blockdev(bdev);
1321 kill_bdev(bdev);
1322 }
1323 if (bdev->bd_contains == bdev) {
1324 if (disk->fops->release)
1325 ret = disk->fops->release(disk, mode);
1326 }
1327 if (!bdev->bd_openers) {
1328 struct module *owner = disk->fops->owner;
1329
1330 put_disk(disk);
1331 module_put(owner);
1332 disk_put_part(bdev->bd_part);
1333 bdev->bd_part = NULL;
1334 bdev->bd_disk = NULL;
1335 bdev_inode_switch_bdi(bdev->bd_inode,
1336 &default_backing_dev_info);
1337 if (bdev != bdev->bd_contains)
1338 victim = bdev->bd_contains;
1339 bdev->bd_contains = NULL;
1340 }
1341 mutex_unlock(&bdev->bd_mutex);
1342 bdput(bdev);
1343 if (victim)
1344 __blkdev_put(victim, mode, 1);
1345 return ret;
1346 }
1347
1348 int blkdev_put(struct block_device *bdev, fmode_t mode)
1349 {
1350 if (mode & FMODE_EXCL) {
1351 bool bdev_free;
1352
1353 /*
1354 * Release a claim on the device. The holder fields
1355 * are protected with bdev_lock. bd_mutex is to
1356 * synchronize disk_holder unlinking.
1357 */
1358 mutex_lock(&bdev->bd_mutex);
1359 spin_lock(&bdev_lock);
1360
1361 WARN_ON_ONCE(--bdev->bd_holders < 0);
1362 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1363
1364 /* bd_contains might point to self, check in a separate step */
1365 if ((bdev_free = !bdev->bd_holders))
1366 bdev->bd_holder = NULL;
1367 if (!bdev->bd_contains->bd_holders)
1368 bdev->bd_contains->bd_holder = NULL;
1369
1370 spin_unlock(&bdev_lock);
1371
1372 /*
1373 * If this was the last claim, remove holder link and
1374 * unblock evpoll if it was a write holder.
1375 */
1376 if (bdev_free) {
1377 bd_unlink_disk_holder(bdev);
1378 if (bdev->bd_write_holder) {
1379 disk_unblock_events(bdev->bd_disk);
1380 bdev->bd_write_holder = false;
1381 } else
1382 disk_check_events(bdev->bd_disk);
1383 }
1384
1385 mutex_unlock(&bdev->bd_mutex);
1386 } else
1387 disk_check_events(bdev->bd_disk);
1388
1389 return __blkdev_put(bdev, mode, 0);
1390 }
1391 EXPORT_SYMBOL(blkdev_put);
1392
1393 static int blkdev_close(struct inode * inode, struct file * filp)
1394 {
1395 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1396
1397 return blkdev_put(bdev, filp->f_mode);
1398 }
1399
1400 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1401 {
1402 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1403 fmode_t mode = file->f_mode;
1404
1405 /*
1406 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1407 * to updated it before every ioctl.
1408 */
1409 if (file->f_flags & O_NDELAY)
1410 mode |= FMODE_NDELAY;
1411 else
1412 mode &= ~FMODE_NDELAY;
1413
1414 return blkdev_ioctl(bdev, mode, cmd, arg);
1415 }
1416
1417 /*
1418 * Write data to the block device. Only intended for the block device itself
1419 * and the raw driver which basically is a fake block device.
1420 *
1421 * Does not take i_mutex for the write and thus is not for general purpose
1422 * use.
1423 */
1424 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1425 unsigned long nr_segs, loff_t pos)
1426 {
1427 struct file *file = iocb->ki_filp;
1428 ssize_t ret;
1429
1430 BUG_ON(iocb->ki_pos != pos);
1431
1432 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1433 if (ret > 0 || ret == -EIOCBQUEUED) {
1434 ssize_t err;
1435
1436 err = generic_write_sync(file, pos, ret);
1437 if (err < 0 && ret > 0)
1438 ret = err;
1439 }
1440 return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1443
1444 /*
1445 * Try to release a page associated with block device when the system
1446 * is under memory pressure.
1447 */
1448 static int blkdev_releasepage(struct page *page, gfp_t wait)
1449 {
1450 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1451
1452 if (super && super->s_op->bdev_try_to_free_page)
1453 return super->s_op->bdev_try_to_free_page(super, page, wait);
1454
1455 return try_to_free_buffers(page);
1456 }
1457
1458 static const struct address_space_operations def_blk_aops = {
1459 .readpage = blkdev_readpage,
1460 .writepage = blkdev_writepage,
1461 .sync_page = block_sync_page,
1462 .write_begin = blkdev_write_begin,
1463 .write_end = blkdev_write_end,
1464 .writepages = generic_writepages,
1465 .releasepage = blkdev_releasepage,
1466 .direct_IO = blkdev_direct_IO,
1467 };
1468
1469 const struct file_operations def_blk_fops = {
1470 .open = blkdev_open,
1471 .release = blkdev_close,
1472 .llseek = block_llseek,
1473 .read = do_sync_read,
1474 .write = do_sync_write,
1475 .aio_read = generic_file_aio_read,
1476 .aio_write = blkdev_aio_write,
1477 .mmap = generic_file_mmap,
1478 .fsync = blkdev_fsync,
1479 .unlocked_ioctl = block_ioctl,
1480 #ifdef CONFIG_COMPAT
1481 .compat_ioctl = compat_blkdev_ioctl,
1482 #endif
1483 .splice_read = generic_file_splice_read,
1484 .splice_write = generic_file_splice_write,
1485 };
1486
1487 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1488 {
1489 int res;
1490 mm_segment_t old_fs = get_fs();
1491 set_fs(KERNEL_DS);
1492 res = blkdev_ioctl(bdev, 0, cmd, arg);
1493 set_fs(old_fs);
1494 return res;
1495 }
1496
1497 EXPORT_SYMBOL(ioctl_by_bdev);
1498
1499 /**
1500 * lookup_bdev - lookup a struct block_device by name
1501 * @pathname: special file representing the block device
1502 *
1503 * Get a reference to the blockdevice at @pathname in the current
1504 * namespace if possible and return it. Return ERR_PTR(error)
1505 * otherwise.
1506 */
1507 struct block_device *lookup_bdev(const char *pathname)
1508 {
1509 struct block_device *bdev;
1510 struct inode *inode;
1511 struct path path;
1512 int error;
1513
1514 if (!pathname || !*pathname)
1515 return ERR_PTR(-EINVAL);
1516
1517 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1518 if (error)
1519 return ERR_PTR(error);
1520
1521 inode = path.dentry->d_inode;
1522 error = -ENOTBLK;
1523 if (!S_ISBLK(inode->i_mode))
1524 goto fail;
1525 error = -EACCES;
1526 if (path.mnt->mnt_flags & MNT_NODEV)
1527 goto fail;
1528 error = -ENOMEM;
1529 bdev = bd_acquire(inode);
1530 if (!bdev)
1531 goto fail;
1532 out:
1533 path_put(&path);
1534 return bdev;
1535 fail:
1536 bdev = ERR_PTR(error);
1537 goto out;
1538 }
1539 EXPORT_SYMBOL(lookup_bdev);
1540
1541 int __invalidate_device(struct block_device *bdev)
1542 {
1543 struct super_block *sb = get_super(bdev);
1544 int res = 0;
1545
1546 if (sb) {
1547 /*
1548 * no need to lock the super, get_super holds the
1549 * read mutex so the filesystem cannot go away
1550 * under us (->put_super runs with the write lock
1551 * hold).
1552 */
1553 shrink_dcache_sb(sb);
1554 res = invalidate_inodes(sb);
1555 drop_super(sb);
1556 }
1557 invalidate_bdev(bdev);
1558 return res;
1559 }
1560 EXPORT_SYMBOL(__invalidate_device);