]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
init: initialize jump labels before command line option parsing
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 wake_up_process(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214
215 if ((pos | iov_iter_alignment(iter)) &
216 (bdev_logical_block_size(bdev) - 1))
217 return -EINVAL;
218
219 if (nr_pages <= DIO_INLINE_BIO_VECS)
220 vecs = inline_vecs;
221 else {
222 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
223 if (!vecs)
224 return -ENOMEM;
225 }
226
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233
234 ret = bio_iov_iter_get_pages(&bio, iter);
235 if (unlikely(ret))
236 goto out;
237 ret = bio.bi_iter.bi_size;
238
239 if (iov_iter_rw(iter) == READ) {
240 bio.bi_opf = REQ_OP_READ;
241 if (iter_is_iovec(iter))
242 should_dirty = true;
243 } else {
244 bio.bi_opf = dio_bio_write_op(iocb);
245 task_io_account_write(ret);
246 }
247
248 qc = submit_bio(&bio);
249 for (;;) {
250 set_current_state(TASK_UNINTERRUPTIBLE);
251 if (!READ_ONCE(bio.bi_private))
252 break;
253 if (!(iocb->ki_flags & IOCB_HIPRI) ||
254 !blk_poll(bdev_get_queue(bdev), qc))
255 io_schedule();
256 }
257 __set_current_state(TASK_RUNNING);
258
259 bio_for_each_segment_all(bvec, &bio, i) {
260 if (should_dirty && !PageCompound(bvec->bv_page))
261 set_page_dirty_lock(bvec->bv_page);
262 put_page(bvec->bv_page);
263 }
264
265 if (unlikely(bio.bi_status))
266 ret = blk_status_to_errno(bio.bi_status);
267
268 out:
269 if (vecs != inline_vecs)
270 kfree(vecs);
271
272 bio_uninit(&bio);
273
274 return ret;
275 }
276
277 struct blkdev_dio {
278 union {
279 struct kiocb *iocb;
280 struct task_struct *waiter;
281 };
282 size_t size;
283 atomic_t ref;
284 bool multi_bio : 1;
285 bool should_dirty : 1;
286 bool is_sync : 1;
287 struct bio bio;
288 };
289
290 static struct bio_set *blkdev_dio_pool __read_mostly;
291
292 static void blkdev_bio_end_io(struct bio *bio)
293 {
294 struct blkdev_dio *dio = bio->bi_private;
295 bool should_dirty = dio->should_dirty;
296
297 if (bio->bi_status && !dio->bio.bi_status)
298 dio->bio.bi_status = bio->bi_status;
299
300 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
301 if (!dio->is_sync) {
302 struct kiocb *iocb = dio->iocb;
303 ssize_t ret;
304
305 if (likely(!dio->bio.bi_status)) {
306 ret = dio->size;
307 iocb->ki_pos += ret;
308 } else {
309 ret = blk_status_to_errno(dio->bio.bi_status);
310 }
311
312 dio->iocb->ki_complete(iocb, ret, 0);
313 bio_put(&dio->bio);
314 } else {
315 struct task_struct *waiter = dio->waiter;
316
317 WRITE_ONCE(dio->waiter, NULL);
318 wake_up_process(waiter);
319 }
320 }
321
322 if (should_dirty) {
323 bio_check_pages_dirty(bio);
324 } else {
325 struct bio_vec *bvec;
326 int i;
327
328 bio_for_each_segment_all(bvec, bio, i)
329 put_page(bvec->bv_page);
330 bio_put(bio);
331 }
332 }
333
334 static ssize_t
335 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
336 {
337 struct file *file = iocb->ki_filp;
338 struct inode *inode = bdev_file_inode(file);
339 struct block_device *bdev = I_BDEV(inode);
340 struct blk_plug plug;
341 struct blkdev_dio *dio;
342 struct bio *bio;
343 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
344 loff_t pos = iocb->ki_pos;
345 blk_qc_t qc = BLK_QC_T_NONE;
346 int ret = 0;
347
348 if ((pos | iov_iter_alignment(iter)) &
349 (bdev_logical_block_size(bdev) - 1))
350 return -EINVAL;
351
352 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
353 bio_get(bio); /* extra ref for the completion handler */
354
355 dio = container_of(bio, struct blkdev_dio, bio);
356 dio->is_sync = is_sync = is_sync_kiocb(iocb);
357 if (dio->is_sync)
358 dio->waiter = current;
359 else
360 dio->iocb = iocb;
361
362 dio->size = 0;
363 dio->multi_bio = false;
364 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
365
366 blk_start_plug(&plug);
367 for (;;) {
368 bio_set_dev(bio, bdev);
369 bio->bi_iter.bi_sector = pos >> 9;
370 bio->bi_write_hint = iocb->ki_hint;
371 bio->bi_private = dio;
372 bio->bi_end_io = blkdev_bio_end_io;
373
374 ret = bio_iov_iter_get_pages(bio, iter);
375 if (unlikely(ret)) {
376 bio->bi_status = BLK_STS_IOERR;
377 bio_endio(bio);
378 break;
379 }
380
381 if (is_read) {
382 bio->bi_opf = REQ_OP_READ;
383 if (dio->should_dirty)
384 bio_set_pages_dirty(bio);
385 } else {
386 bio->bi_opf = dio_bio_write_op(iocb);
387 task_io_account_write(bio->bi_iter.bi_size);
388 }
389
390 dio->size += bio->bi_iter.bi_size;
391 pos += bio->bi_iter.bi_size;
392
393 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
394 if (!nr_pages) {
395 qc = submit_bio(bio);
396 break;
397 }
398
399 if (!dio->multi_bio) {
400 dio->multi_bio = true;
401 atomic_set(&dio->ref, 2);
402 } else {
403 atomic_inc(&dio->ref);
404 }
405
406 submit_bio(bio);
407 bio = bio_alloc(GFP_KERNEL, nr_pages);
408 }
409 blk_finish_plug(&plug);
410
411 if (!is_sync)
412 return -EIOCBQUEUED;
413
414 for (;;) {
415 set_current_state(TASK_UNINTERRUPTIBLE);
416 if (!READ_ONCE(dio->waiter))
417 break;
418
419 if (!(iocb->ki_flags & IOCB_HIPRI) ||
420 !blk_poll(bdev_get_queue(bdev), qc))
421 io_schedule();
422 }
423 __set_current_state(TASK_RUNNING);
424
425 if (!ret)
426 ret = blk_status_to_errno(dio->bio.bi_status);
427 if (likely(!ret))
428 ret = dio->size;
429
430 bio_put(&dio->bio);
431 return ret;
432 }
433
434 static ssize_t
435 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
436 {
437 int nr_pages;
438
439 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
440 if (!nr_pages)
441 return 0;
442 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
443 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
444
445 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
446 }
447
448 static __init int blkdev_init(void)
449 {
450 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
451 if (!blkdev_dio_pool)
452 return -ENOMEM;
453 return 0;
454 }
455 module_init(blkdev_init);
456
457 int __sync_blockdev(struct block_device *bdev, int wait)
458 {
459 if (!bdev)
460 return 0;
461 if (!wait)
462 return filemap_flush(bdev->bd_inode->i_mapping);
463 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
464 }
465
466 /*
467 * Write out and wait upon all the dirty data associated with a block
468 * device via its mapping. Does not take the superblock lock.
469 */
470 int sync_blockdev(struct block_device *bdev)
471 {
472 return __sync_blockdev(bdev, 1);
473 }
474 EXPORT_SYMBOL(sync_blockdev);
475
476 /*
477 * Write out and wait upon all dirty data associated with this
478 * device. Filesystem data as well as the underlying block
479 * device. Takes the superblock lock.
480 */
481 int fsync_bdev(struct block_device *bdev)
482 {
483 struct super_block *sb = get_super(bdev);
484 if (sb) {
485 int res = sync_filesystem(sb);
486 drop_super(sb);
487 return res;
488 }
489 return sync_blockdev(bdev);
490 }
491 EXPORT_SYMBOL(fsync_bdev);
492
493 /**
494 * freeze_bdev -- lock a filesystem and force it into a consistent state
495 * @bdev: blockdevice to lock
496 *
497 * If a superblock is found on this device, we take the s_umount semaphore
498 * on it to make sure nobody unmounts until the snapshot creation is done.
499 * The reference counter (bd_fsfreeze_count) guarantees that only the last
500 * unfreeze process can unfreeze the frozen filesystem actually when multiple
501 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
502 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
503 * actually.
504 */
505 struct super_block *freeze_bdev(struct block_device *bdev)
506 {
507 struct super_block *sb;
508 int error = 0;
509
510 mutex_lock(&bdev->bd_fsfreeze_mutex);
511 if (++bdev->bd_fsfreeze_count > 1) {
512 /*
513 * We don't even need to grab a reference - the first call
514 * to freeze_bdev grab an active reference and only the last
515 * thaw_bdev drops it.
516 */
517 sb = get_super(bdev);
518 if (sb)
519 drop_super(sb);
520 mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 return sb;
522 }
523
524 sb = get_active_super(bdev);
525 if (!sb)
526 goto out;
527 if (sb->s_op->freeze_super)
528 error = sb->s_op->freeze_super(sb);
529 else
530 error = freeze_super(sb);
531 if (error) {
532 deactivate_super(sb);
533 bdev->bd_fsfreeze_count--;
534 mutex_unlock(&bdev->bd_fsfreeze_mutex);
535 return ERR_PTR(error);
536 }
537 deactivate_super(sb);
538 out:
539 sync_blockdev(bdev);
540 mutex_unlock(&bdev->bd_fsfreeze_mutex);
541 return sb; /* thaw_bdev releases s->s_umount */
542 }
543 EXPORT_SYMBOL(freeze_bdev);
544
545 /**
546 * thaw_bdev -- unlock filesystem
547 * @bdev: blockdevice to unlock
548 * @sb: associated superblock
549 *
550 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
551 */
552 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
553 {
554 int error = -EINVAL;
555
556 mutex_lock(&bdev->bd_fsfreeze_mutex);
557 if (!bdev->bd_fsfreeze_count)
558 goto out;
559
560 error = 0;
561 if (--bdev->bd_fsfreeze_count > 0)
562 goto out;
563
564 if (!sb)
565 goto out;
566
567 if (sb->s_op->thaw_super)
568 error = sb->s_op->thaw_super(sb);
569 else
570 error = thaw_super(sb);
571 if (error)
572 bdev->bd_fsfreeze_count++;
573 out:
574 mutex_unlock(&bdev->bd_fsfreeze_mutex);
575 return error;
576 }
577 EXPORT_SYMBOL(thaw_bdev);
578
579 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
580 {
581 return block_write_full_page(page, blkdev_get_block, wbc);
582 }
583
584 static int blkdev_readpage(struct file * file, struct page * page)
585 {
586 return block_read_full_page(page, blkdev_get_block);
587 }
588
589 static int blkdev_readpages(struct file *file, struct address_space *mapping,
590 struct list_head *pages, unsigned nr_pages)
591 {
592 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
593 }
594
595 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
596 loff_t pos, unsigned len, unsigned flags,
597 struct page **pagep, void **fsdata)
598 {
599 return block_write_begin(mapping, pos, len, flags, pagep,
600 blkdev_get_block);
601 }
602
603 static int blkdev_write_end(struct file *file, struct address_space *mapping,
604 loff_t pos, unsigned len, unsigned copied,
605 struct page *page, void *fsdata)
606 {
607 int ret;
608 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
609
610 unlock_page(page);
611 put_page(page);
612
613 return ret;
614 }
615
616 /*
617 * private llseek:
618 * for a block special file file_inode(file)->i_size is zero
619 * so we compute the size by hand (just as in block_read/write above)
620 */
621 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
622 {
623 struct inode *bd_inode = bdev_file_inode(file);
624 loff_t retval;
625
626 inode_lock(bd_inode);
627 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
628 inode_unlock(bd_inode);
629 return retval;
630 }
631
632 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
633 {
634 struct inode *bd_inode = bdev_file_inode(filp);
635 struct block_device *bdev = I_BDEV(bd_inode);
636 int error;
637
638 error = file_write_and_wait_range(filp, start, end);
639 if (error)
640 return error;
641
642 /*
643 * There is no need to serialise calls to blkdev_issue_flush with
644 * i_mutex and doing so causes performance issues with concurrent
645 * O_SYNC writers to a block device.
646 */
647 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
648 if (error == -EOPNOTSUPP)
649 error = 0;
650
651 return error;
652 }
653 EXPORT_SYMBOL(blkdev_fsync);
654
655 /**
656 * bdev_read_page() - Start reading a page from a block device
657 * @bdev: The device to read the page from
658 * @sector: The offset on the device to read the page to (need not be aligned)
659 * @page: The page to read
660 *
661 * On entry, the page should be locked. It will be unlocked when the page
662 * has been read. If the block driver implements rw_page synchronously,
663 * that will be true on exit from this function, but it need not be.
664 *
665 * Errors returned by this function are usually "soft", eg out of memory, or
666 * queue full; callers should try a different route to read this page rather
667 * than propagate an error back up the stack.
668 *
669 * Return: negative errno if an error occurs, 0 if submission was successful.
670 */
671 int bdev_read_page(struct block_device *bdev, sector_t sector,
672 struct page *page)
673 {
674 const struct block_device_operations *ops = bdev->bd_disk->fops;
675 int result = -EOPNOTSUPP;
676
677 if (!ops->rw_page || bdev_get_integrity(bdev))
678 return result;
679
680 result = blk_queue_enter(bdev->bd_queue, 0);
681 if (result)
682 return result;
683 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
684 blk_queue_exit(bdev->bd_queue);
685 return result;
686 }
687 EXPORT_SYMBOL_GPL(bdev_read_page);
688
689 /**
690 * bdev_write_page() - Start writing a page to a block device
691 * @bdev: The device to write the page to
692 * @sector: The offset on the device to write the page to (need not be aligned)
693 * @page: The page to write
694 * @wbc: The writeback_control for the write
695 *
696 * On entry, the page should be locked and not currently under writeback.
697 * On exit, if the write started successfully, the page will be unlocked and
698 * under writeback. If the write failed already (eg the driver failed to
699 * queue the page to the device), the page will still be locked. If the
700 * caller is a ->writepage implementation, it will need to unlock the page.
701 *
702 * Errors returned by this function are usually "soft", eg out of memory, or
703 * queue full; callers should try a different route to write this page rather
704 * than propagate an error back up the stack.
705 *
706 * Return: negative errno if an error occurs, 0 if submission was successful.
707 */
708 int bdev_write_page(struct block_device *bdev, sector_t sector,
709 struct page *page, struct writeback_control *wbc)
710 {
711 int result;
712 const struct block_device_operations *ops = bdev->bd_disk->fops;
713
714 if (!ops->rw_page || bdev_get_integrity(bdev))
715 return -EOPNOTSUPP;
716 result = blk_queue_enter(bdev->bd_queue, 0);
717 if (result)
718 return result;
719
720 set_page_writeback(page);
721 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
722 if (result) {
723 end_page_writeback(page);
724 } else {
725 clean_page_buffers(page);
726 unlock_page(page);
727 }
728 blk_queue_exit(bdev->bd_queue);
729 return result;
730 }
731 EXPORT_SYMBOL_GPL(bdev_write_page);
732
733 /*
734 * pseudo-fs
735 */
736
737 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
738 static struct kmem_cache * bdev_cachep __read_mostly;
739
740 static struct inode *bdev_alloc_inode(struct super_block *sb)
741 {
742 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
743 if (!ei)
744 return NULL;
745 return &ei->vfs_inode;
746 }
747
748 static void bdev_i_callback(struct rcu_head *head)
749 {
750 struct inode *inode = container_of(head, struct inode, i_rcu);
751 struct bdev_inode *bdi = BDEV_I(inode);
752
753 kmem_cache_free(bdev_cachep, bdi);
754 }
755
756 static void bdev_destroy_inode(struct inode *inode)
757 {
758 call_rcu(&inode->i_rcu, bdev_i_callback);
759 }
760
761 static void init_once(void *foo)
762 {
763 struct bdev_inode *ei = (struct bdev_inode *) foo;
764 struct block_device *bdev = &ei->bdev;
765
766 memset(bdev, 0, sizeof(*bdev));
767 mutex_init(&bdev->bd_mutex);
768 INIT_LIST_HEAD(&bdev->bd_list);
769 #ifdef CONFIG_SYSFS
770 INIT_LIST_HEAD(&bdev->bd_holder_disks);
771 #endif
772 bdev->bd_bdi = &noop_backing_dev_info;
773 inode_init_once(&ei->vfs_inode);
774 /* Initialize mutex for freeze. */
775 mutex_init(&bdev->bd_fsfreeze_mutex);
776 }
777
778 static void bdev_evict_inode(struct inode *inode)
779 {
780 struct block_device *bdev = &BDEV_I(inode)->bdev;
781 truncate_inode_pages_final(&inode->i_data);
782 invalidate_inode_buffers(inode); /* is it needed here? */
783 clear_inode(inode);
784 spin_lock(&bdev_lock);
785 list_del_init(&bdev->bd_list);
786 spin_unlock(&bdev_lock);
787 /* Detach inode from wb early as bdi_put() may free bdi->wb */
788 inode_detach_wb(inode);
789 if (bdev->bd_bdi != &noop_backing_dev_info) {
790 bdi_put(bdev->bd_bdi);
791 bdev->bd_bdi = &noop_backing_dev_info;
792 }
793 }
794
795 static const struct super_operations bdev_sops = {
796 .statfs = simple_statfs,
797 .alloc_inode = bdev_alloc_inode,
798 .destroy_inode = bdev_destroy_inode,
799 .drop_inode = generic_delete_inode,
800 .evict_inode = bdev_evict_inode,
801 };
802
803 static struct dentry *bd_mount(struct file_system_type *fs_type,
804 int flags, const char *dev_name, void *data)
805 {
806 struct dentry *dent;
807 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
808 if (!IS_ERR(dent))
809 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
810 return dent;
811 }
812
813 static struct file_system_type bd_type = {
814 .name = "bdev",
815 .mount = bd_mount,
816 .kill_sb = kill_anon_super,
817 };
818
819 struct super_block *blockdev_superblock __read_mostly;
820 EXPORT_SYMBOL_GPL(blockdev_superblock);
821
822 void __init bdev_cache_init(void)
823 {
824 int err;
825 static struct vfsmount *bd_mnt;
826
827 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
828 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
829 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
830 init_once);
831 err = register_filesystem(&bd_type);
832 if (err)
833 panic("Cannot register bdev pseudo-fs");
834 bd_mnt = kern_mount(&bd_type);
835 if (IS_ERR(bd_mnt))
836 panic("Cannot create bdev pseudo-fs");
837 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
838 }
839
840 /*
841 * Most likely _very_ bad one - but then it's hardly critical for small
842 * /dev and can be fixed when somebody will need really large one.
843 * Keep in mind that it will be fed through icache hash function too.
844 */
845 static inline unsigned long hash(dev_t dev)
846 {
847 return MAJOR(dev)+MINOR(dev);
848 }
849
850 static int bdev_test(struct inode *inode, void *data)
851 {
852 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
853 }
854
855 static int bdev_set(struct inode *inode, void *data)
856 {
857 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
858 return 0;
859 }
860
861 static LIST_HEAD(all_bdevs);
862
863 /*
864 * If there is a bdev inode for this device, unhash it so that it gets evicted
865 * as soon as last inode reference is dropped.
866 */
867 void bdev_unhash_inode(dev_t dev)
868 {
869 struct inode *inode;
870
871 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
872 if (inode) {
873 remove_inode_hash(inode);
874 iput(inode);
875 }
876 }
877
878 struct block_device *bdget(dev_t dev)
879 {
880 struct block_device *bdev;
881 struct inode *inode;
882
883 inode = iget5_locked(blockdev_superblock, hash(dev),
884 bdev_test, bdev_set, &dev);
885
886 if (!inode)
887 return NULL;
888
889 bdev = &BDEV_I(inode)->bdev;
890
891 if (inode->i_state & I_NEW) {
892 bdev->bd_contains = NULL;
893 bdev->bd_super = NULL;
894 bdev->bd_inode = inode;
895 bdev->bd_block_size = i_blocksize(inode);
896 bdev->bd_part_count = 0;
897 bdev->bd_invalidated = 0;
898 inode->i_mode = S_IFBLK;
899 inode->i_rdev = dev;
900 inode->i_bdev = bdev;
901 inode->i_data.a_ops = &def_blk_aops;
902 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
903 spin_lock(&bdev_lock);
904 list_add(&bdev->bd_list, &all_bdevs);
905 spin_unlock(&bdev_lock);
906 unlock_new_inode(inode);
907 }
908 return bdev;
909 }
910
911 EXPORT_SYMBOL(bdget);
912
913 /**
914 * bdgrab -- Grab a reference to an already referenced block device
915 * @bdev: Block device to grab a reference to.
916 */
917 struct block_device *bdgrab(struct block_device *bdev)
918 {
919 ihold(bdev->bd_inode);
920 return bdev;
921 }
922 EXPORT_SYMBOL(bdgrab);
923
924 long nr_blockdev_pages(void)
925 {
926 struct block_device *bdev;
927 long ret = 0;
928 spin_lock(&bdev_lock);
929 list_for_each_entry(bdev, &all_bdevs, bd_list) {
930 ret += bdev->bd_inode->i_mapping->nrpages;
931 }
932 spin_unlock(&bdev_lock);
933 return ret;
934 }
935
936 void bdput(struct block_device *bdev)
937 {
938 iput(bdev->bd_inode);
939 }
940
941 EXPORT_SYMBOL(bdput);
942
943 static struct block_device *bd_acquire(struct inode *inode)
944 {
945 struct block_device *bdev;
946
947 spin_lock(&bdev_lock);
948 bdev = inode->i_bdev;
949 if (bdev && !inode_unhashed(bdev->bd_inode)) {
950 bdgrab(bdev);
951 spin_unlock(&bdev_lock);
952 return bdev;
953 }
954 spin_unlock(&bdev_lock);
955
956 /*
957 * i_bdev references block device inode that was already shut down
958 * (corresponding device got removed). Remove the reference and look
959 * up block device inode again just in case new device got
960 * reestablished under the same device number.
961 */
962 if (bdev)
963 bd_forget(inode);
964
965 bdev = bdget(inode->i_rdev);
966 if (bdev) {
967 spin_lock(&bdev_lock);
968 if (!inode->i_bdev) {
969 /*
970 * We take an additional reference to bd_inode,
971 * and it's released in clear_inode() of inode.
972 * So, we can access it via ->i_mapping always
973 * without igrab().
974 */
975 bdgrab(bdev);
976 inode->i_bdev = bdev;
977 inode->i_mapping = bdev->bd_inode->i_mapping;
978 }
979 spin_unlock(&bdev_lock);
980 }
981 return bdev;
982 }
983
984 /* Call when you free inode */
985
986 void bd_forget(struct inode *inode)
987 {
988 struct block_device *bdev = NULL;
989
990 spin_lock(&bdev_lock);
991 if (!sb_is_blkdev_sb(inode->i_sb))
992 bdev = inode->i_bdev;
993 inode->i_bdev = NULL;
994 inode->i_mapping = &inode->i_data;
995 spin_unlock(&bdev_lock);
996
997 if (bdev)
998 bdput(bdev);
999 }
1000
1001 /**
1002 * bd_may_claim - test whether a block device can be claimed
1003 * @bdev: block device of interest
1004 * @whole: whole block device containing @bdev, may equal @bdev
1005 * @holder: holder trying to claim @bdev
1006 *
1007 * Test whether @bdev can be claimed by @holder.
1008 *
1009 * CONTEXT:
1010 * spin_lock(&bdev_lock).
1011 *
1012 * RETURNS:
1013 * %true if @bdev can be claimed, %false otherwise.
1014 */
1015 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1016 void *holder)
1017 {
1018 if (bdev->bd_holder == holder)
1019 return true; /* already a holder */
1020 else if (bdev->bd_holder != NULL)
1021 return false; /* held by someone else */
1022 else if (whole == bdev)
1023 return true; /* is a whole device which isn't held */
1024
1025 else if (whole->bd_holder == bd_may_claim)
1026 return true; /* is a partition of a device that is being partitioned */
1027 else if (whole->bd_holder != NULL)
1028 return false; /* is a partition of a held device */
1029 else
1030 return true; /* is a partition of an un-held device */
1031 }
1032
1033 /**
1034 * bd_prepare_to_claim - prepare to claim a block device
1035 * @bdev: block device of interest
1036 * @whole: the whole device containing @bdev, may equal @bdev
1037 * @holder: holder trying to claim @bdev
1038 *
1039 * Prepare to claim @bdev. This function fails if @bdev is already
1040 * claimed by another holder and waits if another claiming is in
1041 * progress. This function doesn't actually claim. On successful
1042 * return, the caller has ownership of bd_claiming and bd_holder[s].
1043 *
1044 * CONTEXT:
1045 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1046 * it multiple times.
1047 *
1048 * RETURNS:
1049 * 0 if @bdev can be claimed, -EBUSY otherwise.
1050 */
1051 static int bd_prepare_to_claim(struct block_device *bdev,
1052 struct block_device *whole, void *holder)
1053 {
1054 retry:
1055 /* if someone else claimed, fail */
1056 if (!bd_may_claim(bdev, whole, holder))
1057 return -EBUSY;
1058
1059 /* if claiming is already in progress, wait for it to finish */
1060 if (whole->bd_claiming) {
1061 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1062 DEFINE_WAIT(wait);
1063
1064 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1065 spin_unlock(&bdev_lock);
1066 schedule();
1067 finish_wait(wq, &wait);
1068 spin_lock(&bdev_lock);
1069 goto retry;
1070 }
1071
1072 /* yay, all mine */
1073 return 0;
1074 }
1075
1076 /**
1077 * bd_start_claiming - start claiming a block device
1078 * @bdev: block device of interest
1079 * @holder: holder trying to claim @bdev
1080 *
1081 * @bdev is about to be opened exclusively. Check @bdev can be opened
1082 * exclusively and mark that an exclusive open is in progress. Each
1083 * successful call to this function must be matched with a call to
1084 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1085 * fail).
1086 *
1087 * This function is used to gain exclusive access to the block device
1088 * without actually causing other exclusive open attempts to fail. It
1089 * should be used when the open sequence itself requires exclusive
1090 * access but may subsequently fail.
1091 *
1092 * CONTEXT:
1093 * Might sleep.
1094 *
1095 * RETURNS:
1096 * Pointer to the block device containing @bdev on success, ERR_PTR()
1097 * value on failure.
1098 */
1099 static struct block_device *bd_start_claiming(struct block_device *bdev,
1100 void *holder)
1101 {
1102 struct gendisk *disk;
1103 struct block_device *whole;
1104 int partno, err;
1105
1106 might_sleep();
1107
1108 /*
1109 * @bdev might not have been initialized properly yet, look up
1110 * and grab the outer block device the hard way.
1111 */
1112 disk = get_gendisk(bdev->bd_dev, &partno);
1113 if (!disk)
1114 return ERR_PTR(-ENXIO);
1115
1116 /*
1117 * Normally, @bdev should equal what's returned from bdget_disk()
1118 * if partno is 0; however, some drivers (floppy) use multiple
1119 * bdev's for the same physical device and @bdev may be one of the
1120 * aliases. Keep @bdev if partno is 0. This means claimer
1121 * tracking is broken for those devices but it has always been that
1122 * way.
1123 */
1124 if (partno)
1125 whole = bdget_disk(disk, 0);
1126 else
1127 whole = bdgrab(bdev);
1128
1129 module_put(disk->fops->owner);
1130 put_disk(disk);
1131 if (!whole)
1132 return ERR_PTR(-ENOMEM);
1133
1134 /* prepare to claim, if successful, mark claiming in progress */
1135 spin_lock(&bdev_lock);
1136
1137 err = bd_prepare_to_claim(bdev, whole, holder);
1138 if (err == 0) {
1139 whole->bd_claiming = holder;
1140 spin_unlock(&bdev_lock);
1141 return whole;
1142 } else {
1143 spin_unlock(&bdev_lock);
1144 bdput(whole);
1145 return ERR_PTR(err);
1146 }
1147 }
1148
1149 #ifdef CONFIG_SYSFS
1150 struct bd_holder_disk {
1151 struct list_head list;
1152 struct gendisk *disk;
1153 int refcnt;
1154 };
1155
1156 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1157 struct gendisk *disk)
1158 {
1159 struct bd_holder_disk *holder;
1160
1161 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1162 if (holder->disk == disk)
1163 return holder;
1164 return NULL;
1165 }
1166
1167 static int add_symlink(struct kobject *from, struct kobject *to)
1168 {
1169 return sysfs_create_link(from, to, kobject_name(to));
1170 }
1171
1172 static void del_symlink(struct kobject *from, struct kobject *to)
1173 {
1174 sysfs_remove_link(from, kobject_name(to));
1175 }
1176
1177 /**
1178 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1179 * @bdev: the claimed slave bdev
1180 * @disk: the holding disk
1181 *
1182 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1183 *
1184 * This functions creates the following sysfs symlinks.
1185 *
1186 * - from "slaves" directory of the holder @disk to the claimed @bdev
1187 * - from "holders" directory of the @bdev to the holder @disk
1188 *
1189 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1190 * passed to bd_link_disk_holder(), then:
1191 *
1192 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1193 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1194 *
1195 * The caller must have claimed @bdev before calling this function and
1196 * ensure that both @bdev and @disk are valid during the creation and
1197 * lifetime of these symlinks.
1198 *
1199 * CONTEXT:
1200 * Might sleep.
1201 *
1202 * RETURNS:
1203 * 0 on success, -errno on failure.
1204 */
1205 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1206 {
1207 struct bd_holder_disk *holder;
1208 int ret = 0;
1209
1210 mutex_lock(&bdev->bd_mutex);
1211
1212 WARN_ON_ONCE(!bdev->bd_holder);
1213
1214 /* FIXME: remove the following once add_disk() handles errors */
1215 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1216 goto out_unlock;
1217
1218 holder = bd_find_holder_disk(bdev, disk);
1219 if (holder) {
1220 holder->refcnt++;
1221 goto out_unlock;
1222 }
1223
1224 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1225 if (!holder) {
1226 ret = -ENOMEM;
1227 goto out_unlock;
1228 }
1229
1230 INIT_LIST_HEAD(&holder->list);
1231 holder->disk = disk;
1232 holder->refcnt = 1;
1233
1234 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1235 if (ret)
1236 goto out_free;
1237
1238 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1239 if (ret)
1240 goto out_del;
1241 /*
1242 * bdev could be deleted beneath us which would implicitly destroy
1243 * the holder directory. Hold on to it.
1244 */
1245 kobject_get(bdev->bd_part->holder_dir);
1246
1247 list_add(&holder->list, &bdev->bd_holder_disks);
1248 goto out_unlock;
1249
1250 out_del:
1251 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1252 out_free:
1253 kfree(holder);
1254 out_unlock:
1255 mutex_unlock(&bdev->bd_mutex);
1256 return ret;
1257 }
1258 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1259
1260 /**
1261 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1262 * @bdev: the calimed slave bdev
1263 * @disk: the holding disk
1264 *
1265 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1266 *
1267 * CONTEXT:
1268 * Might sleep.
1269 */
1270 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1271 {
1272 struct bd_holder_disk *holder;
1273
1274 mutex_lock(&bdev->bd_mutex);
1275
1276 holder = bd_find_holder_disk(bdev, disk);
1277
1278 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1279 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1280 del_symlink(bdev->bd_part->holder_dir,
1281 &disk_to_dev(disk)->kobj);
1282 kobject_put(bdev->bd_part->holder_dir);
1283 list_del_init(&holder->list);
1284 kfree(holder);
1285 }
1286
1287 mutex_unlock(&bdev->bd_mutex);
1288 }
1289 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1290 #endif
1291
1292 /**
1293 * flush_disk - invalidates all buffer-cache entries on a disk
1294 *
1295 * @bdev: struct block device to be flushed
1296 * @kill_dirty: flag to guide handling of dirty inodes
1297 *
1298 * Invalidates all buffer-cache entries on a disk. It should be called
1299 * when a disk has been changed -- either by a media change or online
1300 * resize.
1301 */
1302 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1303 {
1304 if (__invalidate_device(bdev, kill_dirty)) {
1305 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1306 "resized disk %s\n",
1307 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1308 }
1309
1310 if (!bdev->bd_disk)
1311 return;
1312 if (disk_part_scan_enabled(bdev->bd_disk))
1313 bdev->bd_invalidated = 1;
1314 }
1315
1316 /**
1317 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1318 * @disk: struct gendisk to check
1319 * @bdev: struct bdev to adjust.
1320 *
1321 * This routine checks to see if the bdev size does not match the disk size
1322 * and adjusts it if it differs.
1323 */
1324 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1325 {
1326 loff_t disk_size, bdev_size;
1327
1328 disk_size = (loff_t)get_capacity(disk) << 9;
1329 bdev_size = i_size_read(bdev->bd_inode);
1330 if (disk_size != bdev_size) {
1331 printk(KERN_INFO
1332 "%s: detected capacity change from %lld to %lld\n",
1333 disk->disk_name, bdev_size, disk_size);
1334 i_size_write(bdev->bd_inode, disk_size);
1335 flush_disk(bdev, false);
1336 }
1337 }
1338 EXPORT_SYMBOL(check_disk_size_change);
1339
1340 /**
1341 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1342 * @disk: struct gendisk to be revalidated
1343 *
1344 * This routine is a wrapper for lower-level driver's revalidate_disk
1345 * call-backs. It is used to do common pre and post operations needed
1346 * for all revalidate_disk operations.
1347 */
1348 int revalidate_disk(struct gendisk *disk)
1349 {
1350 struct block_device *bdev;
1351 int ret = 0;
1352
1353 if (disk->fops->revalidate_disk)
1354 ret = disk->fops->revalidate_disk(disk);
1355 bdev = bdget_disk(disk, 0);
1356 if (!bdev)
1357 return ret;
1358
1359 mutex_lock(&bdev->bd_mutex);
1360 check_disk_size_change(disk, bdev);
1361 bdev->bd_invalidated = 0;
1362 mutex_unlock(&bdev->bd_mutex);
1363 bdput(bdev);
1364 return ret;
1365 }
1366 EXPORT_SYMBOL(revalidate_disk);
1367
1368 /*
1369 * This routine checks whether a removable media has been changed,
1370 * and invalidates all buffer-cache-entries in that case. This
1371 * is a relatively slow routine, so we have to try to minimize using
1372 * it. Thus it is called only upon a 'mount' or 'open'. This
1373 * is the best way of combining speed and utility, I think.
1374 * People changing diskettes in the middle of an operation deserve
1375 * to lose :-)
1376 */
1377 int check_disk_change(struct block_device *bdev)
1378 {
1379 struct gendisk *disk = bdev->bd_disk;
1380 const struct block_device_operations *bdops = disk->fops;
1381 unsigned int events;
1382
1383 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1384 DISK_EVENT_EJECT_REQUEST);
1385 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1386 return 0;
1387
1388 flush_disk(bdev, true);
1389 if (bdops->revalidate_disk)
1390 bdops->revalidate_disk(bdev->bd_disk);
1391 return 1;
1392 }
1393
1394 EXPORT_SYMBOL(check_disk_change);
1395
1396 void bd_set_size(struct block_device *bdev, loff_t size)
1397 {
1398 inode_lock(bdev->bd_inode);
1399 i_size_write(bdev->bd_inode, size);
1400 inode_unlock(bdev->bd_inode);
1401 }
1402 EXPORT_SYMBOL(bd_set_size);
1403
1404 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1405
1406 /*
1407 * bd_mutex locking:
1408 *
1409 * mutex_lock(part->bd_mutex)
1410 * mutex_lock_nested(whole->bd_mutex, 1)
1411 */
1412
1413 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1414 {
1415 struct gendisk *disk;
1416 struct module *owner;
1417 int ret;
1418 int partno;
1419 int perm = 0;
1420
1421 if (mode & FMODE_READ)
1422 perm |= MAY_READ;
1423 if (mode & FMODE_WRITE)
1424 perm |= MAY_WRITE;
1425 /*
1426 * hooks: /n/, see "layering violations".
1427 */
1428 if (!for_part) {
1429 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1430 if (ret != 0) {
1431 bdput(bdev);
1432 return ret;
1433 }
1434 }
1435
1436 restart:
1437
1438 ret = -ENXIO;
1439 disk = get_gendisk(bdev->bd_dev, &partno);
1440 if (!disk)
1441 goto out;
1442 owner = disk->fops->owner;
1443
1444 disk_block_events(disk);
1445 mutex_lock_nested(&bdev->bd_mutex, for_part);
1446 if (!bdev->bd_openers) {
1447 bdev->bd_disk = disk;
1448 bdev->bd_queue = disk->queue;
1449 bdev->bd_contains = bdev;
1450 bdev->bd_partno = partno;
1451
1452 if (!partno) {
1453 ret = -ENXIO;
1454 bdev->bd_part = disk_get_part(disk, partno);
1455 if (!bdev->bd_part)
1456 goto out_clear;
1457
1458 ret = 0;
1459 if (disk->fops->open) {
1460 ret = disk->fops->open(bdev, mode);
1461 if (ret == -ERESTARTSYS) {
1462 /* Lost a race with 'disk' being
1463 * deleted, try again.
1464 * See md.c
1465 */
1466 disk_put_part(bdev->bd_part);
1467 bdev->bd_part = NULL;
1468 bdev->bd_disk = NULL;
1469 bdev->bd_queue = NULL;
1470 mutex_unlock(&bdev->bd_mutex);
1471 disk_unblock_events(disk);
1472 put_disk(disk);
1473 module_put(owner);
1474 goto restart;
1475 }
1476 }
1477
1478 if (!ret) {
1479 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1480 set_init_blocksize(bdev);
1481 }
1482
1483 /*
1484 * If the device is invalidated, rescan partition
1485 * if open succeeded or failed with -ENOMEDIUM.
1486 * The latter is necessary to prevent ghost
1487 * partitions on a removed medium.
1488 */
1489 if (bdev->bd_invalidated) {
1490 if (!ret)
1491 rescan_partitions(disk, bdev);
1492 else if (ret == -ENOMEDIUM)
1493 invalidate_partitions(disk, bdev);
1494 }
1495
1496 if (ret)
1497 goto out_clear;
1498 } else {
1499 struct block_device *whole;
1500 whole = bdget_disk(disk, 0);
1501 ret = -ENOMEM;
1502 if (!whole)
1503 goto out_clear;
1504 BUG_ON(for_part);
1505 ret = __blkdev_get(whole, mode, 1);
1506 if (ret)
1507 goto out_clear;
1508 bdev->bd_contains = whole;
1509 bdev->bd_part = disk_get_part(disk, partno);
1510 if (!(disk->flags & GENHD_FL_UP) ||
1511 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1512 ret = -ENXIO;
1513 goto out_clear;
1514 }
1515 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1516 set_init_blocksize(bdev);
1517 }
1518
1519 if (bdev->bd_bdi == &noop_backing_dev_info)
1520 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1521 } else {
1522 if (bdev->bd_contains == bdev) {
1523 ret = 0;
1524 if (bdev->bd_disk->fops->open)
1525 ret = bdev->bd_disk->fops->open(bdev, mode);
1526 /* the same as first opener case, read comment there */
1527 if (bdev->bd_invalidated) {
1528 if (!ret)
1529 rescan_partitions(bdev->bd_disk, bdev);
1530 else if (ret == -ENOMEDIUM)
1531 invalidate_partitions(bdev->bd_disk, bdev);
1532 }
1533 if (ret)
1534 goto out_unlock_bdev;
1535 }
1536 /* only one opener holds refs to the module and disk */
1537 put_disk(disk);
1538 module_put(owner);
1539 }
1540 bdev->bd_openers++;
1541 if (for_part)
1542 bdev->bd_part_count++;
1543 mutex_unlock(&bdev->bd_mutex);
1544 disk_unblock_events(disk);
1545 return 0;
1546
1547 out_clear:
1548 disk_put_part(bdev->bd_part);
1549 bdev->bd_disk = NULL;
1550 bdev->bd_part = NULL;
1551 bdev->bd_queue = NULL;
1552 if (bdev != bdev->bd_contains)
1553 __blkdev_put(bdev->bd_contains, mode, 1);
1554 bdev->bd_contains = NULL;
1555 out_unlock_bdev:
1556 mutex_unlock(&bdev->bd_mutex);
1557 disk_unblock_events(disk);
1558 put_disk(disk);
1559 module_put(owner);
1560 out:
1561 bdput(bdev);
1562
1563 return ret;
1564 }
1565
1566 /**
1567 * blkdev_get - open a block device
1568 * @bdev: block_device to open
1569 * @mode: FMODE_* mask
1570 * @holder: exclusive holder identifier
1571 *
1572 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1573 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1574 * @holder is invalid. Exclusive opens may nest for the same @holder.
1575 *
1576 * On success, the reference count of @bdev is unchanged. On failure,
1577 * @bdev is put.
1578 *
1579 * CONTEXT:
1580 * Might sleep.
1581 *
1582 * RETURNS:
1583 * 0 on success, -errno on failure.
1584 */
1585 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1586 {
1587 struct block_device *whole = NULL;
1588 int res;
1589
1590 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1591
1592 if ((mode & FMODE_EXCL) && holder) {
1593 whole = bd_start_claiming(bdev, holder);
1594 if (IS_ERR(whole)) {
1595 bdput(bdev);
1596 return PTR_ERR(whole);
1597 }
1598 }
1599
1600 res = __blkdev_get(bdev, mode, 0);
1601
1602 if (whole) {
1603 struct gendisk *disk = whole->bd_disk;
1604
1605 /* finish claiming */
1606 mutex_lock(&bdev->bd_mutex);
1607 spin_lock(&bdev_lock);
1608
1609 if (!res) {
1610 BUG_ON(!bd_may_claim(bdev, whole, holder));
1611 /*
1612 * Note that for a whole device bd_holders
1613 * will be incremented twice, and bd_holder
1614 * will be set to bd_may_claim before being
1615 * set to holder
1616 */
1617 whole->bd_holders++;
1618 whole->bd_holder = bd_may_claim;
1619 bdev->bd_holders++;
1620 bdev->bd_holder = holder;
1621 }
1622
1623 /* tell others that we're done */
1624 BUG_ON(whole->bd_claiming != holder);
1625 whole->bd_claiming = NULL;
1626 wake_up_bit(&whole->bd_claiming, 0);
1627
1628 spin_unlock(&bdev_lock);
1629
1630 /*
1631 * Block event polling for write claims if requested. Any
1632 * write holder makes the write_holder state stick until
1633 * all are released. This is good enough and tracking
1634 * individual writeable reference is too fragile given the
1635 * way @mode is used in blkdev_get/put().
1636 */
1637 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1638 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1639 bdev->bd_write_holder = true;
1640 disk_block_events(disk);
1641 }
1642
1643 mutex_unlock(&bdev->bd_mutex);
1644 bdput(whole);
1645 }
1646
1647 return res;
1648 }
1649 EXPORT_SYMBOL(blkdev_get);
1650
1651 /**
1652 * blkdev_get_by_path - open a block device by name
1653 * @path: path to the block device to open
1654 * @mode: FMODE_* mask
1655 * @holder: exclusive holder identifier
1656 *
1657 * Open the blockdevice described by the device file at @path. @mode
1658 * and @holder are identical to blkdev_get().
1659 *
1660 * On success, the returned block_device has reference count of one.
1661 *
1662 * CONTEXT:
1663 * Might sleep.
1664 *
1665 * RETURNS:
1666 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1667 */
1668 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1669 void *holder)
1670 {
1671 struct block_device *bdev;
1672 int perm = 0;
1673 int err;
1674
1675 if (mode & FMODE_READ)
1676 perm |= MAY_READ;
1677 if (mode & FMODE_WRITE)
1678 perm |= MAY_WRITE;
1679 bdev = lookup_bdev(path, perm);
1680 if (IS_ERR(bdev))
1681 return bdev;
1682
1683 err = blkdev_get(bdev, mode, holder);
1684 if (err)
1685 return ERR_PTR(err);
1686
1687 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1688 blkdev_put(bdev, mode);
1689 return ERR_PTR(-EACCES);
1690 }
1691
1692 return bdev;
1693 }
1694 EXPORT_SYMBOL(blkdev_get_by_path);
1695
1696 /**
1697 * blkdev_get_by_dev - open a block device by device number
1698 * @dev: device number of block device to open
1699 * @mode: FMODE_* mask
1700 * @holder: exclusive holder identifier
1701 *
1702 * Open the blockdevice described by device number @dev. @mode and
1703 * @holder are identical to blkdev_get().
1704 *
1705 * Use it ONLY if you really do not have anything better - i.e. when
1706 * you are behind a truly sucky interface and all you are given is a
1707 * device number. _Never_ to be used for internal purposes. If you
1708 * ever need it - reconsider your API.
1709 *
1710 * On success, the returned block_device has reference count of one.
1711 *
1712 * CONTEXT:
1713 * Might sleep.
1714 *
1715 * RETURNS:
1716 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1717 */
1718 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1719 {
1720 struct block_device *bdev;
1721 int err;
1722
1723 bdev = bdget(dev);
1724 if (!bdev)
1725 return ERR_PTR(-ENOMEM);
1726
1727 err = blkdev_get(bdev, mode, holder);
1728 if (err)
1729 return ERR_PTR(err);
1730
1731 return bdev;
1732 }
1733 EXPORT_SYMBOL(blkdev_get_by_dev);
1734
1735 static int blkdev_open(struct inode * inode, struct file * filp)
1736 {
1737 struct block_device *bdev;
1738
1739 /*
1740 * Preserve backwards compatibility and allow large file access
1741 * even if userspace doesn't ask for it explicitly. Some mkfs
1742 * binary needs it. We might want to drop this workaround
1743 * during an unstable branch.
1744 */
1745 filp->f_flags |= O_LARGEFILE;
1746
1747 filp->f_mode |= FMODE_NOWAIT;
1748
1749 if (filp->f_flags & O_NDELAY)
1750 filp->f_mode |= FMODE_NDELAY;
1751 if (filp->f_flags & O_EXCL)
1752 filp->f_mode |= FMODE_EXCL;
1753 if ((filp->f_flags & O_ACCMODE) == 3)
1754 filp->f_mode |= FMODE_WRITE_IOCTL;
1755
1756 bdev = bd_acquire(inode);
1757 if (bdev == NULL)
1758 return -ENOMEM;
1759
1760 /*
1761 * A negative i_writecount for bdev->bd_inode means that the bdev
1762 * or one of its paritions is mounted in a user namespace. Deny
1763 * writing for non-root in this case, otherwise an unprivileged
1764 * user can attack the kernel by modifying the backing store of a
1765 * mounted filesystem.
1766 */
1767 if ((filp->f_mode & FMODE_WRITE) &&
1768 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1769 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1770 bdput(bdev);
1771 return -EBUSY;
1772 }
1773
1774 filp->f_mapping = bdev->bd_inode->i_mapping;
1775 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1776
1777 return blkdev_get(bdev, filp->f_mode, filp);
1778 }
1779
1780 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1781 {
1782 struct gendisk *disk = bdev->bd_disk;
1783 struct block_device *victim = NULL;
1784
1785 mutex_lock_nested(&bdev->bd_mutex, for_part);
1786 if (for_part)
1787 bdev->bd_part_count--;
1788
1789 if (!--bdev->bd_openers) {
1790 WARN_ON_ONCE(bdev->bd_holders);
1791 sync_blockdev(bdev);
1792 kill_bdev(bdev);
1793
1794 bdev_write_inode(bdev);
1795 }
1796 if (bdev->bd_contains == bdev) {
1797 if (disk->fops->release)
1798 disk->fops->release(disk, mode);
1799 }
1800 if (!bdev->bd_openers) {
1801 struct module *owner = disk->fops->owner;
1802
1803 disk_put_part(bdev->bd_part);
1804 bdev->bd_part = NULL;
1805 bdev->bd_disk = NULL;
1806 if (bdev != bdev->bd_contains)
1807 victim = bdev->bd_contains;
1808 bdev->bd_contains = NULL;
1809
1810 put_disk(disk);
1811 module_put(owner);
1812 }
1813 mutex_unlock(&bdev->bd_mutex);
1814 bdput(bdev);
1815 if (victim)
1816 __blkdev_put(victim, mode, 1);
1817 }
1818
1819 void blkdev_put(struct block_device *bdev, fmode_t mode)
1820 {
1821 mutex_lock(&bdev->bd_mutex);
1822
1823 if (mode & FMODE_EXCL) {
1824 bool bdev_free;
1825
1826 /*
1827 * Release a claim on the device. The holder fields
1828 * are protected with bdev_lock. bd_mutex is to
1829 * synchronize disk_holder unlinking.
1830 */
1831 spin_lock(&bdev_lock);
1832
1833 WARN_ON_ONCE(--bdev->bd_holders < 0);
1834 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1835
1836 /* bd_contains might point to self, check in a separate step */
1837 if ((bdev_free = !bdev->bd_holders))
1838 bdev->bd_holder = NULL;
1839 if (!bdev->bd_contains->bd_holders)
1840 bdev->bd_contains->bd_holder = NULL;
1841
1842 spin_unlock(&bdev_lock);
1843
1844 /*
1845 * If this was the last claim, remove holder link and
1846 * unblock evpoll if it was a write holder.
1847 */
1848 if (bdev_free && bdev->bd_write_holder) {
1849 disk_unblock_events(bdev->bd_disk);
1850 bdev->bd_write_holder = false;
1851 }
1852 }
1853
1854 /*
1855 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1856 * event. This is to ensure detection of media removal commanded
1857 * from userland - e.g. eject(1).
1858 */
1859 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1860
1861 mutex_unlock(&bdev->bd_mutex);
1862
1863 __blkdev_put(bdev, mode, 0);
1864 }
1865 EXPORT_SYMBOL(blkdev_put);
1866
1867 static int blkdev_close(struct inode * inode, struct file * filp)
1868 {
1869 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1870 if (filp->f_mode & FMODE_WRITE &&
1871 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1872 atomic_dec(&bdev->bd_inode->i_writecount);
1873 blkdev_put(bdev, filp->f_mode);
1874 return 0;
1875 }
1876
1877 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1878 {
1879 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1880 fmode_t mode = file->f_mode;
1881
1882 /*
1883 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1884 * to updated it before every ioctl.
1885 */
1886 if (file->f_flags & O_NDELAY)
1887 mode |= FMODE_NDELAY;
1888 else
1889 mode &= ~FMODE_NDELAY;
1890
1891 return blkdev_ioctl(bdev, mode, cmd, arg);
1892 }
1893
1894 /*
1895 * Write data to the block device. Only intended for the block device itself
1896 * and the raw driver which basically is a fake block device.
1897 *
1898 * Does not take i_mutex for the write and thus is not for general purpose
1899 * use.
1900 */
1901 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1902 {
1903 struct file *file = iocb->ki_filp;
1904 struct inode *bd_inode = bdev_file_inode(file);
1905 loff_t size = i_size_read(bd_inode);
1906 struct blk_plug plug;
1907 ssize_t ret;
1908
1909 if (bdev_read_only(I_BDEV(bd_inode)))
1910 return -EPERM;
1911
1912 if (!iov_iter_count(from))
1913 return 0;
1914
1915 if (iocb->ki_pos >= size)
1916 return -ENOSPC;
1917
1918 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1919 return -EOPNOTSUPP;
1920
1921 iov_iter_truncate(from, size - iocb->ki_pos);
1922
1923 blk_start_plug(&plug);
1924 ret = __generic_file_write_iter(iocb, from);
1925 if (ret > 0)
1926 ret = generic_write_sync(iocb, ret);
1927 blk_finish_plug(&plug);
1928 return ret;
1929 }
1930 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1931
1932 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1933 {
1934 struct file *file = iocb->ki_filp;
1935 struct inode *bd_inode = bdev_file_inode(file);
1936 loff_t size = i_size_read(bd_inode);
1937 loff_t pos = iocb->ki_pos;
1938
1939 if (pos >= size)
1940 return 0;
1941
1942 size -= pos;
1943 iov_iter_truncate(to, size);
1944 return generic_file_read_iter(iocb, to);
1945 }
1946 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1947
1948 /*
1949 * Try to release a page associated with block device when the system
1950 * is under memory pressure.
1951 */
1952 static int blkdev_releasepage(struct page *page, gfp_t wait)
1953 {
1954 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1955
1956 if (super && super->s_op->bdev_try_to_free_page)
1957 return super->s_op->bdev_try_to_free_page(super, page, wait);
1958
1959 return try_to_free_buffers(page);
1960 }
1961
1962 static int blkdev_writepages(struct address_space *mapping,
1963 struct writeback_control *wbc)
1964 {
1965 if (dax_mapping(mapping)) {
1966 struct block_device *bdev = I_BDEV(mapping->host);
1967
1968 return dax_writeback_mapping_range(mapping, bdev, wbc);
1969 }
1970 return generic_writepages(mapping, wbc);
1971 }
1972
1973 static const struct address_space_operations def_blk_aops = {
1974 .readpage = blkdev_readpage,
1975 .readpages = blkdev_readpages,
1976 .writepage = blkdev_writepage,
1977 .write_begin = blkdev_write_begin,
1978 .write_end = blkdev_write_end,
1979 .writepages = blkdev_writepages,
1980 .releasepage = blkdev_releasepage,
1981 .direct_IO = blkdev_direct_IO,
1982 .is_dirty_writeback = buffer_check_dirty_writeback,
1983 };
1984
1985 #define BLKDEV_FALLOC_FL_SUPPORTED \
1986 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1987 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1988
1989 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1990 loff_t len)
1991 {
1992 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1993 struct address_space *mapping;
1994 loff_t end = start + len - 1;
1995 loff_t isize;
1996 int error;
1997
1998 /* Fail if we don't recognize the flags. */
1999 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2000 return -EOPNOTSUPP;
2001
2002 /* Don't go off the end of the device. */
2003 isize = i_size_read(bdev->bd_inode);
2004 if (start >= isize)
2005 return -EINVAL;
2006 if (end >= isize) {
2007 if (mode & FALLOC_FL_KEEP_SIZE) {
2008 len = isize - start;
2009 end = start + len - 1;
2010 } else
2011 return -EINVAL;
2012 }
2013
2014 /*
2015 * Don't allow IO that isn't aligned to logical block size.
2016 */
2017 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2018 return -EINVAL;
2019
2020 /* Invalidate the page cache, including dirty pages. */
2021 mapping = bdev->bd_inode->i_mapping;
2022 truncate_inode_pages_range(mapping, start, end);
2023
2024 switch (mode) {
2025 case FALLOC_FL_ZERO_RANGE:
2026 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2027 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2028 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2029 break;
2030 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2031 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2032 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2033 break;
2034 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2035 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2036 GFP_KERNEL, 0);
2037 break;
2038 default:
2039 return -EOPNOTSUPP;
2040 }
2041 if (error)
2042 return error;
2043
2044 /*
2045 * Invalidate again; if someone wandered in and dirtied a page,
2046 * the caller will be given -EBUSY. The third argument is
2047 * inclusive, so the rounding here is safe.
2048 */
2049 return invalidate_inode_pages2_range(mapping,
2050 start >> PAGE_SHIFT,
2051 end >> PAGE_SHIFT);
2052 }
2053
2054 const struct file_operations def_blk_fops = {
2055 .open = blkdev_open,
2056 .release = blkdev_close,
2057 .llseek = block_llseek,
2058 .read_iter = blkdev_read_iter,
2059 .write_iter = blkdev_write_iter,
2060 .mmap = generic_file_mmap,
2061 .fsync = blkdev_fsync,
2062 .unlocked_ioctl = block_ioctl,
2063 #ifdef CONFIG_COMPAT
2064 .compat_ioctl = compat_blkdev_ioctl,
2065 #endif
2066 .splice_read = generic_file_splice_read,
2067 .splice_write = iter_file_splice_write,
2068 .fallocate = blkdev_fallocate,
2069 };
2070
2071 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2072 {
2073 int res;
2074 mm_segment_t old_fs = get_fs();
2075 set_fs(KERNEL_DS);
2076 res = blkdev_ioctl(bdev, 0, cmd, arg);
2077 set_fs(old_fs);
2078 return res;
2079 }
2080
2081 EXPORT_SYMBOL(ioctl_by_bdev);
2082
2083 /**
2084 * lookup_bdev - lookup a struct block_device by name
2085 * @pathname: special file representing the block device
2086 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
2087 *
2088 * Get a reference to the blockdevice at @pathname in the current
2089 * namespace if possible and return it. Return ERR_PTR(error)
2090 * otherwise. If @mask is non-zero, check for access rights to the
2091 * inode at @pathname.
2092 */
2093 struct block_device *lookup_bdev(const char *pathname, int mask)
2094 {
2095 struct block_device *bdev;
2096 struct inode *inode;
2097 struct path path;
2098 int error;
2099
2100 if (!pathname || !*pathname)
2101 return ERR_PTR(-EINVAL);
2102
2103 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2104 if (error)
2105 return ERR_PTR(error);
2106
2107 inode = d_backing_inode(path.dentry);
2108 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
2109 error = __inode_permission(inode, mask);
2110 if (error)
2111 goto fail;
2112 }
2113 error = -ENOTBLK;
2114 if (!S_ISBLK(inode->i_mode))
2115 goto fail;
2116 error = -EACCES;
2117 if (!may_open_dev(&path))
2118 goto fail;
2119 error = -ENOMEM;
2120 bdev = bd_acquire(inode);
2121 if (!bdev)
2122 goto fail;
2123 out:
2124 path_put(&path);
2125 return bdev;
2126 fail:
2127 bdev = ERR_PTR(error);
2128 goto out;
2129 }
2130 EXPORT_SYMBOL(lookup_bdev);
2131
2132 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2133 {
2134 struct super_block *sb = get_super(bdev);
2135 int res = 0;
2136
2137 if (sb) {
2138 /*
2139 * no need to lock the super, get_super holds the
2140 * read mutex so the filesystem cannot go away
2141 * under us (->put_super runs with the write lock
2142 * hold).
2143 */
2144 shrink_dcache_sb(sb);
2145 res = invalidate_inodes(sb, kill_dirty);
2146 drop_super(sb);
2147 }
2148 invalidate_bdev(bdev);
2149 return res;
2150 }
2151 EXPORT_SYMBOL(__invalidate_device);
2152
2153 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2154 {
2155 struct inode *inode, *old_inode = NULL;
2156
2157 spin_lock(&blockdev_superblock->s_inode_list_lock);
2158 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2159 struct address_space *mapping = inode->i_mapping;
2160 struct block_device *bdev;
2161
2162 spin_lock(&inode->i_lock);
2163 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2164 mapping->nrpages == 0) {
2165 spin_unlock(&inode->i_lock);
2166 continue;
2167 }
2168 __iget(inode);
2169 spin_unlock(&inode->i_lock);
2170 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2171 /*
2172 * We hold a reference to 'inode' so it couldn't have been
2173 * removed from s_inodes list while we dropped the
2174 * s_inode_list_lock We cannot iput the inode now as we can
2175 * be holding the last reference and we cannot iput it under
2176 * s_inode_list_lock. So we keep the reference and iput it
2177 * later.
2178 */
2179 iput(old_inode);
2180 old_inode = inode;
2181 bdev = I_BDEV(inode);
2182
2183 mutex_lock(&bdev->bd_mutex);
2184 if (bdev->bd_openers)
2185 func(bdev, arg);
2186 mutex_unlock(&bdev->bd_mutex);
2187
2188 spin_lock(&blockdev_superblock->s_inode_list_lock);
2189 }
2190 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2191 iput(old_inode);
2192 }