]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
UBUNTU: [Config] arm64: snapdragon: DRM_MSM=m
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 int set_blocksize(struct block_device *bdev, int size)
108 {
109 /* Size must be a power of two, and between 512 and PAGE_SIZE */
110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
111 return -EINVAL;
112
113 /* Size cannot be smaller than the size supported by the device */
114 if (size < bdev_logical_block_size(bdev))
115 return -EINVAL;
116
117 /* Don't change the size if it is same as current */
118 if (bdev->bd_block_size != size) {
119 sync_blockdev(bdev);
120 bdev->bd_block_size = size;
121 bdev->bd_inode->i_blkbits = blksize_bits(size);
122 kill_bdev(bdev);
123 }
124 return 0;
125 }
126
127 EXPORT_SYMBOL(set_blocksize);
128
129 int sb_set_blocksize(struct super_block *sb, int size)
130 {
131 if (set_blocksize(sb->s_bdev, size))
132 return 0;
133 /* If we get here, we know size is power of two
134 * and it's value is between 512 and PAGE_SIZE */
135 sb->s_blocksize = size;
136 sb->s_blocksize_bits = blksize_bits(size);
137 return sb->s_blocksize;
138 }
139
140 EXPORT_SYMBOL(sb_set_blocksize);
141
142 int sb_min_blocksize(struct super_block *sb, int size)
143 {
144 int minsize = bdev_logical_block_size(sb->s_bdev);
145 if (size < minsize)
146 size = minsize;
147 return sb_set_blocksize(sb, size);
148 }
149
150 EXPORT_SYMBOL(sb_min_blocksize);
151
152 static int
153 blkdev_get_block(struct inode *inode, sector_t iblock,
154 struct buffer_head *bh, int create)
155 {
156 bh->b_bdev = I_BDEV(inode);
157 bh->b_blocknr = iblock;
158 set_buffer_mapped(bh);
159 return 0;
160 }
161
162 static struct inode *bdev_file_inode(struct file *file)
163 {
164 return file->f_mapping->host;
165 }
166
167 static unsigned int dio_bio_write_op(struct kiocb *iocb)
168 {
169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
170
171 /* avoid the need for a I/O completion work item */
172 if (iocb->ki_flags & IOCB_DSYNC)
173 op |= REQ_FUA;
174 return op;
175 }
176
177 #define DIO_INLINE_BIO_VECS 4
178
179 static void blkdev_bio_end_io_simple(struct bio *bio)
180 {
181 struct task_struct *waiter = bio->bi_private;
182
183 WRITE_ONCE(bio->bi_private, NULL);
184 wake_up_process(waiter);
185 }
186
187 static ssize_t
188 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
189 int nr_pages)
190 {
191 struct file *file = iocb->ki_filp;
192 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
194 loff_t pos = iocb->ki_pos;
195 bool should_dirty = false;
196 struct bio bio;
197 ssize_t ret;
198 blk_qc_t qc;
199 int i;
200
201 if ((pos | iov_iter_alignment(iter)) &
202 (bdev_logical_block_size(bdev) - 1))
203 return -EINVAL;
204
205 if (nr_pages <= DIO_INLINE_BIO_VECS)
206 vecs = inline_vecs;
207 else {
208 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
209 if (!vecs)
210 return -ENOMEM;
211 }
212
213 bio_init(&bio, vecs, nr_pages);
214 bio_set_dev(&bio, bdev);
215 bio.bi_iter.bi_sector = pos >> 9;
216 bio.bi_write_hint = iocb->ki_hint;
217 bio.bi_private = current;
218 bio.bi_end_io = blkdev_bio_end_io_simple;
219
220 ret = bio_iov_iter_get_pages(&bio, iter);
221 if (unlikely(ret))
222 goto out;
223 ret = bio.bi_iter.bi_size;
224
225 if (iov_iter_rw(iter) == READ) {
226 bio.bi_opf = REQ_OP_READ;
227 if (iter_is_iovec(iter))
228 should_dirty = true;
229 } else {
230 bio.bi_opf = dio_bio_write_op(iocb);
231 task_io_account_write(ret);
232 }
233
234 qc = submit_bio(&bio);
235 for (;;) {
236 set_current_state(TASK_UNINTERRUPTIBLE);
237 if (!READ_ONCE(bio.bi_private))
238 break;
239 if (!(iocb->ki_flags & IOCB_HIPRI) ||
240 !blk_poll(bdev_get_queue(bdev), qc))
241 io_schedule();
242 }
243 __set_current_state(TASK_RUNNING);
244
245 bio_for_each_segment_all(bvec, &bio, i) {
246 if (should_dirty && !PageCompound(bvec->bv_page))
247 set_page_dirty_lock(bvec->bv_page);
248 put_page(bvec->bv_page);
249 }
250
251 if (unlikely(bio.bi_status))
252 ret = blk_status_to_errno(bio.bi_status);
253
254 out:
255 if (vecs != inline_vecs)
256 kfree(vecs);
257
258 bio_uninit(&bio);
259
260 return ret;
261 }
262
263 struct blkdev_dio {
264 union {
265 struct kiocb *iocb;
266 struct task_struct *waiter;
267 };
268 size_t size;
269 atomic_t ref;
270 bool multi_bio : 1;
271 bool should_dirty : 1;
272 bool is_sync : 1;
273 struct bio bio;
274 };
275
276 static struct bio_set *blkdev_dio_pool __read_mostly;
277
278 static void blkdev_bio_end_io(struct bio *bio)
279 {
280 struct blkdev_dio *dio = bio->bi_private;
281 bool should_dirty = dio->should_dirty;
282
283 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
284 if (bio->bi_status && !dio->bio.bi_status)
285 dio->bio.bi_status = bio->bi_status;
286 } else {
287 if (!dio->is_sync) {
288 struct kiocb *iocb = dio->iocb;
289 ssize_t ret;
290
291 if (likely(!dio->bio.bi_status)) {
292 ret = dio->size;
293 iocb->ki_pos += ret;
294 } else {
295 ret = blk_status_to_errno(dio->bio.bi_status);
296 }
297
298 dio->iocb->ki_complete(iocb, ret, 0);
299 bio_put(&dio->bio);
300 } else {
301 struct task_struct *waiter = dio->waiter;
302
303 WRITE_ONCE(dio->waiter, NULL);
304 wake_up_process(waiter);
305 }
306 }
307
308 if (should_dirty) {
309 bio_check_pages_dirty(bio);
310 } else {
311 struct bio_vec *bvec;
312 int i;
313
314 bio_for_each_segment_all(bvec, bio, i)
315 put_page(bvec->bv_page);
316 bio_put(bio);
317 }
318 }
319
320 static ssize_t
321 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
322 {
323 struct file *file = iocb->ki_filp;
324 struct inode *inode = bdev_file_inode(file);
325 struct block_device *bdev = I_BDEV(inode);
326 struct blk_plug plug;
327 struct blkdev_dio *dio;
328 struct bio *bio;
329 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
330 loff_t pos = iocb->ki_pos;
331 blk_qc_t qc = BLK_QC_T_NONE;
332 int ret = 0;
333
334 if ((pos | iov_iter_alignment(iter)) &
335 (bdev_logical_block_size(bdev) - 1))
336 return -EINVAL;
337
338 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
339 bio_get(bio); /* extra ref for the completion handler */
340
341 dio = container_of(bio, struct blkdev_dio, bio);
342 dio->is_sync = is_sync = is_sync_kiocb(iocb);
343 if (dio->is_sync)
344 dio->waiter = current;
345 else
346 dio->iocb = iocb;
347
348 dio->size = 0;
349 dio->multi_bio = false;
350 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
351
352 blk_start_plug(&plug);
353 for (;;) {
354 bio_set_dev(bio, bdev);
355 bio->bi_iter.bi_sector = pos >> 9;
356 bio->bi_write_hint = iocb->ki_hint;
357 bio->bi_private = dio;
358 bio->bi_end_io = blkdev_bio_end_io;
359
360 ret = bio_iov_iter_get_pages(bio, iter);
361 if (unlikely(ret)) {
362 bio->bi_status = BLK_STS_IOERR;
363 bio_endio(bio);
364 break;
365 }
366
367 if (is_read) {
368 bio->bi_opf = REQ_OP_READ;
369 if (dio->should_dirty)
370 bio_set_pages_dirty(bio);
371 } else {
372 bio->bi_opf = dio_bio_write_op(iocb);
373 task_io_account_write(bio->bi_iter.bi_size);
374 }
375
376 dio->size += bio->bi_iter.bi_size;
377 pos += bio->bi_iter.bi_size;
378
379 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
380 if (!nr_pages) {
381 qc = submit_bio(bio);
382 break;
383 }
384
385 if (!dio->multi_bio) {
386 dio->multi_bio = true;
387 atomic_set(&dio->ref, 2);
388 } else {
389 atomic_inc(&dio->ref);
390 }
391
392 submit_bio(bio);
393 bio = bio_alloc(GFP_KERNEL, nr_pages);
394 }
395 blk_finish_plug(&plug);
396
397 if (!is_sync)
398 return -EIOCBQUEUED;
399
400 for (;;) {
401 set_current_state(TASK_UNINTERRUPTIBLE);
402 if (!READ_ONCE(dio->waiter))
403 break;
404
405 if (!(iocb->ki_flags & IOCB_HIPRI) ||
406 !blk_poll(bdev_get_queue(bdev), qc))
407 io_schedule();
408 }
409 __set_current_state(TASK_RUNNING);
410
411 if (!ret)
412 ret = blk_status_to_errno(dio->bio.bi_status);
413 if (likely(!ret))
414 ret = dio->size;
415
416 bio_put(&dio->bio);
417 return ret;
418 }
419
420 static ssize_t
421 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
422 {
423 int nr_pages;
424
425 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
426 if (!nr_pages)
427 return 0;
428 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
429 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
430
431 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
432 }
433
434 static __init int blkdev_init(void)
435 {
436 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
437 if (!blkdev_dio_pool)
438 return -ENOMEM;
439 return 0;
440 }
441 module_init(blkdev_init);
442
443 int __sync_blockdev(struct block_device *bdev, int wait)
444 {
445 if (!bdev)
446 return 0;
447 if (!wait)
448 return filemap_flush(bdev->bd_inode->i_mapping);
449 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
450 }
451
452 /*
453 * Write out and wait upon all the dirty data associated with a block
454 * device via its mapping. Does not take the superblock lock.
455 */
456 int sync_blockdev(struct block_device *bdev)
457 {
458 return __sync_blockdev(bdev, 1);
459 }
460 EXPORT_SYMBOL(sync_blockdev);
461
462 /*
463 * Write out and wait upon all dirty data associated with this
464 * device. Filesystem data as well as the underlying block
465 * device. Takes the superblock lock.
466 */
467 int fsync_bdev(struct block_device *bdev)
468 {
469 struct super_block *sb = get_super(bdev);
470 if (sb) {
471 int res = sync_filesystem(sb);
472 drop_super(sb);
473 return res;
474 }
475 return sync_blockdev(bdev);
476 }
477 EXPORT_SYMBOL(fsync_bdev);
478
479 /**
480 * freeze_bdev -- lock a filesystem and force it into a consistent state
481 * @bdev: blockdevice to lock
482 *
483 * If a superblock is found on this device, we take the s_umount semaphore
484 * on it to make sure nobody unmounts until the snapshot creation is done.
485 * The reference counter (bd_fsfreeze_count) guarantees that only the last
486 * unfreeze process can unfreeze the frozen filesystem actually when multiple
487 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
488 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
489 * actually.
490 */
491 struct super_block *freeze_bdev(struct block_device *bdev)
492 {
493 struct super_block *sb;
494 int error = 0;
495
496 mutex_lock(&bdev->bd_fsfreeze_mutex);
497 if (++bdev->bd_fsfreeze_count > 1) {
498 /*
499 * We don't even need to grab a reference - the first call
500 * to freeze_bdev grab an active reference and only the last
501 * thaw_bdev drops it.
502 */
503 sb = get_super(bdev);
504 if (sb)
505 drop_super(sb);
506 mutex_unlock(&bdev->bd_fsfreeze_mutex);
507 return sb;
508 }
509
510 sb = get_active_super(bdev);
511 if (!sb)
512 goto out;
513 if (sb->s_op->freeze_super)
514 error = sb->s_op->freeze_super(sb);
515 else
516 error = freeze_super(sb);
517 if (error) {
518 deactivate_super(sb);
519 bdev->bd_fsfreeze_count--;
520 mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 return ERR_PTR(error);
522 }
523 deactivate_super(sb);
524 out:
525 sync_blockdev(bdev);
526 mutex_unlock(&bdev->bd_fsfreeze_mutex);
527 return sb; /* thaw_bdev releases s->s_umount */
528 }
529 EXPORT_SYMBOL(freeze_bdev);
530
531 /**
532 * thaw_bdev -- unlock filesystem
533 * @bdev: blockdevice to unlock
534 * @sb: associated superblock
535 *
536 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
537 */
538 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
539 {
540 int error = -EINVAL;
541
542 mutex_lock(&bdev->bd_fsfreeze_mutex);
543 if (!bdev->bd_fsfreeze_count)
544 goto out;
545
546 error = 0;
547 if (--bdev->bd_fsfreeze_count > 0)
548 goto out;
549
550 if (!sb)
551 goto out;
552
553 if (sb->s_op->thaw_super)
554 error = sb->s_op->thaw_super(sb);
555 else
556 error = thaw_super(sb);
557 if (error)
558 bdev->bd_fsfreeze_count++;
559 out:
560 mutex_unlock(&bdev->bd_fsfreeze_mutex);
561 return error;
562 }
563 EXPORT_SYMBOL(thaw_bdev);
564
565 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
566 {
567 return block_write_full_page(page, blkdev_get_block, wbc);
568 }
569
570 static int blkdev_readpage(struct file * file, struct page * page)
571 {
572 return block_read_full_page(page, blkdev_get_block);
573 }
574
575 static int blkdev_readpages(struct file *file, struct address_space *mapping,
576 struct list_head *pages, unsigned nr_pages)
577 {
578 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
579 }
580
581 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
582 loff_t pos, unsigned len, unsigned flags,
583 struct page **pagep, void **fsdata)
584 {
585 return block_write_begin(mapping, pos, len, flags, pagep,
586 blkdev_get_block);
587 }
588
589 static int blkdev_write_end(struct file *file, struct address_space *mapping,
590 loff_t pos, unsigned len, unsigned copied,
591 struct page *page, void *fsdata)
592 {
593 int ret;
594 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
595
596 unlock_page(page);
597 put_page(page);
598
599 return ret;
600 }
601
602 /*
603 * private llseek:
604 * for a block special file file_inode(file)->i_size is zero
605 * so we compute the size by hand (just as in block_read/write above)
606 */
607 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
608 {
609 struct inode *bd_inode = bdev_file_inode(file);
610 loff_t retval;
611
612 inode_lock(bd_inode);
613 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
614 inode_unlock(bd_inode);
615 return retval;
616 }
617
618 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
619 {
620 struct inode *bd_inode = bdev_file_inode(filp);
621 struct block_device *bdev = I_BDEV(bd_inode);
622 int error;
623
624 error = file_write_and_wait_range(filp, start, end);
625 if (error)
626 return error;
627
628 /*
629 * There is no need to serialise calls to blkdev_issue_flush with
630 * i_mutex and doing so causes performance issues with concurrent
631 * O_SYNC writers to a block device.
632 */
633 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
634 if (error == -EOPNOTSUPP)
635 error = 0;
636
637 return error;
638 }
639 EXPORT_SYMBOL(blkdev_fsync);
640
641 /**
642 * bdev_read_page() - Start reading a page from a block device
643 * @bdev: The device to read the page from
644 * @sector: The offset on the device to read the page to (need not be aligned)
645 * @page: The page to read
646 *
647 * On entry, the page should be locked. It will be unlocked when the page
648 * has been read. If the block driver implements rw_page synchronously,
649 * that will be true on exit from this function, but it need not be.
650 *
651 * Errors returned by this function are usually "soft", eg out of memory, or
652 * queue full; callers should try a different route to read this page rather
653 * than propagate an error back up the stack.
654 *
655 * Return: negative errno if an error occurs, 0 if submission was successful.
656 */
657 int bdev_read_page(struct block_device *bdev, sector_t sector,
658 struct page *page)
659 {
660 const struct block_device_operations *ops = bdev->bd_disk->fops;
661 int result = -EOPNOTSUPP;
662
663 if (!ops->rw_page || bdev_get_integrity(bdev))
664 return result;
665
666 result = blk_queue_enter(bdev->bd_queue, 0);
667 if (result)
668 return result;
669 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
670 blk_queue_exit(bdev->bd_queue);
671 return result;
672 }
673 EXPORT_SYMBOL_GPL(bdev_read_page);
674
675 /**
676 * bdev_write_page() - Start writing a page to a block device
677 * @bdev: The device to write the page to
678 * @sector: The offset on the device to write the page to (need not be aligned)
679 * @page: The page to write
680 * @wbc: The writeback_control for the write
681 *
682 * On entry, the page should be locked and not currently under writeback.
683 * On exit, if the write started successfully, the page will be unlocked and
684 * under writeback. If the write failed already (eg the driver failed to
685 * queue the page to the device), the page will still be locked. If the
686 * caller is a ->writepage implementation, it will need to unlock the page.
687 *
688 * Errors returned by this function are usually "soft", eg out of memory, or
689 * queue full; callers should try a different route to write this page rather
690 * than propagate an error back up the stack.
691 *
692 * Return: negative errno if an error occurs, 0 if submission was successful.
693 */
694 int bdev_write_page(struct block_device *bdev, sector_t sector,
695 struct page *page, struct writeback_control *wbc)
696 {
697 int result;
698 const struct block_device_operations *ops = bdev->bd_disk->fops;
699
700 if (!ops->rw_page || bdev_get_integrity(bdev))
701 return -EOPNOTSUPP;
702 result = blk_queue_enter(bdev->bd_queue, 0);
703 if (result)
704 return result;
705
706 set_page_writeback(page);
707 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
708 if (result) {
709 end_page_writeback(page);
710 } else {
711 clean_page_buffers(page);
712 unlock_page(page);
713 }
714 blk_queue_exit(bdev->bd_queue);
715 return result;
716 }
717 EXPORT_SYMBOL_GPL(bdev_write_page);
718
719 /*
720 * pseudo-fs
721 */
722
723 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
724 static struct kmem_cache * bdev_cachep __read_mostly;
725
726 static struct inode *bdev_alloc_inode(struct super_block *sb)
727 {
728 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
729 if (!ei)
730 return NULL;
731 return &ei->vfs_inode;
732 }
733
734 static void bdev_i_callback(struct rcu_head *head)
735 {
736 struct inode *inode = container_of(head, struct inode, i_rcu);
737 struct bdev_inode *bdi = BDEV_I(inode);
738
739 kmem_cache_free(bdev_cachep, bdi);
740 }
741
742 static void bdev_destroy_inode(struct inode *inode)
743 {
744 call_rcu(&inode->i_rcu, bdev_i_callback);
745 }
746
747 static void init_once(void *foo)
748 {
749 struct bdev_inode *ei = (struct bdev_inode *) foo;
750 struct block_device *bdev = &ei->bdev;
751
752 memset(bdev, 0, sizeof(*bdev));
753 mutex_init(&bdev->bd_mutex);
754 INIT_LIST_HEAD(&bdev->bd_list);
755 #ifdef CONFIG_SYSFS
756 INIT_LIST_HEAD(&bdev->bd_holder_disks);
757 #endif
758 bdev->bd_bdi = &noop_backing_dev_info;
759 inode_init_once(&ei->vfs_inode);
760 /* Initialize mutex for freeze. */
761 mutex_init(&bdev->bd_fsfreeze_mutex);
762 }
763
764 static void bdev_evict_inode(struct inode *inode)
765 {
766 struct block_device *bdev = &BDEV_I(inode)->bdev;
767 truncate_inode_pages_final(&inode->i_data);
768 invalidate_inode_buffers(inode); /* is it needed here? */
769 clear_inode(inode);
770 spin_lock(&bdev_lock);
771 list_del_init(&bdev->bd_list);
772 spin_unlock(&bdev_lock);
773 /* Detach inode from wb early as bdi_put() may free bdi->wb */
774 inode_detach_wb(inode);
775 if (bdev->bd_bdi != &noop_backing_dev_info) {
776 bdi_put(bdev->bd_bdi);
777 bdev->bd_bdi = &noop_backing_dev_info;
778 }
779 }
780
781 static const struct super_operations bdev_sops = {
782 .statfs = simple_statfs,
783 .alloc_inode = bdev_alloc_inode,
784 .destroy_inode = bdev_destroy_inode,
785 .drop_inode = generic_delete_inode,
786 .evict_inode = bdev_evict_inode,
787 };
788
789 static struct dentry *bd_mount(struct file_system_type *fs_type,
790 int flags, const char *dev_name, void *data)
791 {
792 struct dentry *dent;
793 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
794 if (!IS_ERR(dent))
795 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
796 return dent;
797 }
798
799 static struct file_system_type bd_type = {
800 .name = "bdev",
801 .mount = bd_mount,
802 .kill_sb = kill_anon_super,
803 };
804
805 struct super_block *blockdev_superblock __read_mostly;
806 EXPORT_SYMBOL_GPL(blockdev_superblock);
807
808 void __init bdev_cache_init(void)
809 {
810 int err;
811 static struct vfsmount *bd_mnt;
812
813 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
814 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
815 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
816 init_once);
817 err = register_filesystem(&bd_type);
818 if (err)
819 panic("Cannot register bdev pseudo-fs");
820 bd_mnt = kern_mount(&bd_type);
821 if (IS_ERR(bd_mnt))
822 panic("Cannot create bdev pseudo-fs");
823 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
824 }
825
826 /*
827 * Most likely _very_ bad one - but then it's hardly critical for small
828 * /dev and can be fixed when somebody will need really large one.
829 * Keep in mind that it will be fed through icache hash function too.
830 */
831 static inline unsigned long hash(dev_t dev)
832 {
833 return MAJOR(dev)+MINOR(dev);
834 }
835
836 static int bdev_test(struct inode *inode, void *data)
837 {
838 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
839 }
840
841 static int bdev_set(struct inode *inode, void *data)
842 {
843 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
844 return 0;
845 }
846
847 static LIST_HEAD(all_bdevs);
848
849 /*
850 * If there is a bdev inode for this device, unhash it so that it gets evicted
851 * as soon as last inode reference is dropped.
852 */
853 void bdev_unhash_inode(dev_t dev)
854 {
855 struct inode *inode;
856
857 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
858 if (inode) {
859 remove_inode_hash(inode);
860 iput(inode);
861 }
862 }
863
864 struct block_device *bdget(dev_t dev)
865 {
866 struct block_device *bdev;
867 struct inode *inode;
868
869 inode = iget5_locked(blockdev_superblock, hash(dev),
870 bdev_test, bdev_set, &dev);
871
872 if (!inode)
873 return NULL;
874
875 bdev = &BDEV_I(inode)->bdev;
876
877 if (inode->i_state & I_NEW) {
878 bdev->bd_contains = NULL;
879 bdev->bd_super = NULL;
880 bdev->bd_inode = inode;
881 bdev->bd_block_size = i_blocksize(inode);
882 bdev->bd_part_count = 0;
883 bdev->bd_invalidated = 0;
884 inode->i_mode = S_IFBLK;
885 inode->i_rdev = dev;
886 inode->i_bdev = bdev;
887 inode->i_data.a_ops = &def_blk_aops;
888 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
889 spin_lock(&bdev_lock);
890 list_add(&bdev->bd_list, &all_bdevs);
891 spin_unlock(&bdev_lock);
892 unlock_new_inode(inode);
893 }
894 return bdev;
895 }
896
897 EXPORT_SYMBOL(bdget);
898
899 /**
900 * bdgrab -- Grab a reference to an already referenced block device
901 * @bdev: Block device to grab a reference to.
902 */
903 struct block_device *bdgrab(struct block_device *bdev)
904 {
905 ihold(bdev->bd_inode);
906 return bdev;
907 }
908 EXPORT_SYMBOL(bdgrab);
909
910 long nr_blockdev_pages(void)
911 {
912 struct block_device *bdev;
913 long ret = 0;
914 spin_lock(&bdev_lock);
915 list_for_each_entry(bdev, &all_bdevs, bd_list) {
916 ret += bdev->bd_inode->i_mapping->nrpages;
917 }
918 spin_unlock(&bdev_lock);
919 return ret;
920 }
921
922 void bdput(struct block_device *bdev)
923 {
924 iput(bdev->bd_inode);
925 }
926
927 EXPORT_SYMBOL(bdput);
928
929 static struct block_device *bd_acquire(struct inode *inode)
930 {
931 struct block_device *bdev;
932
933 spin_lock(&bdev_lock);
934 bdev = inode->i_bdev;
935 if (bdev && !inode_unhashed(bdev->bd_inode)) {
936 bdgrab(bdev);
937 spin_unlock(&bdev_lock);
938 return bdev;
939 }
940 spin_unlock(&bdev_lock);
941
942 /*
943 * i_bdev references block device inode that was already shut down
944 * (corresponding device got removed). Remove the reference and look
945 * up block device inode again just in case new device got
946 * reestablished under the same device number.
947 */
948 if (bdev)
949 bd_forget(inode);
950
951 bdev = bdget(inode->i_rdev);
952 if (bdev) {
953 spin_lock(&bdev_lock);
954 if (!inode->i_bdev) {
955 /*
956 * We take an additional reference to bd_inode,
957 * and it's released in clear_inode() of inode.
958 * So, we can access it via ->i_mapping always
959 * without igrab().
960 */
961 bdgrab(bdev);
962 inode->i_bdev = bdev;
963 inode->i_mapping = bdev->bd_inode->i_mapping;
964 }
965 spin_unlock(&bdev_lock);
966 }
967 return bdev;
968 }
969
970 /* Call when you free inode */
971
972 void bd_forget(struct inode *inode)
973 {
974 struct block_device *bdev = NULL;
975
976 spin_lock(&bdev_lock);
977 if (!sb_is_blkdev_sb(inode->i_sb))
978 bdev = inode->i_bdev;
979 inode->i_bdev = NULL;
980 inode->i_mapping = &inode->i_data;
981 spin_unlock(&bdev_lock);
982
983 if (bdev)
984 bdput(bdev);
985 }
986
987 /**
988 * bd_may_claim - test whether a block device can be claimed
989 * @bdev: block device of interest
990 * @whole: whole block device containing @bdev, may equal @bdev
991 * @holder: holder trying to claim @bdev
992 *
993 * Test whether @bdev can be claimed by @holder.
994 *
995 * CONTEXT:
996 * spin_lock(&bdev_lock).
997 *
998 * RETURNS:
999 * %true if @bdev can be claimed, %false otherwise.
1000 */
1001 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1002 void *holder)
1003 {
1004 if (bdev->bd_holder == holder)
1005 return true; /* already a holder */
1006 else if (bdev->bd_holder != NULL)
1007 return false; /* held by someone else */
1008 else if (whole == bdev)
1009 return true; /* is a whole device which isn't held */
1010
1011 else if (whole->bd_holder == bd_may_claim)
1012 return true; /* is a partition of a device that is being partitioned */
1013 else if (whole->bd_holder != NULL)
1014 return false; /* is a partition of a held device */
1015 else
1016 return true; /* is a partition of an un-held device */
1017 }
1018
1019 /**
1020 * bd_prepare_to_claim - prepare to claim a block device
1021 * @bdev: block device of interest
1022 * @whole: the whole device containing @bdev, may equal @bdev
1023 * @holder: holder trying to claim @bdev
1024 *
1025 * Prepare to claim @bdev. This function fails if @bdev is already
1026 * claimed by another holder and waits if another claiming is in
1027 * progress. This function doesn't actually claim. On successful
1028 * return, the caller has ownership of bd_claiming and bd_holder[s].
1029 *
1030 * CONTEXT:
1031 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1032 * it multiple times.
1033 *
1034 * RETURNS:
1035 * 0 if @bdev can be claimed, -EBUSY otherwise.
1036 */
1037 static int bd_prepare_to_claim(struct block_device *bdev,
1038 struct block_device *whole, void *holder)
1039 {
1040 retry:
1041 /* if someone else claimed, fail */
1042 if (!bd_may_claim(bdev, whole, holder))
1043 return -EBUSY;
1044
1045 /* if claiming is already in progress, wait for it to finish */
1046 if (whole->bd_claiming) {
1047 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1048 DEFINE_WAIT(wait);
1049
1050 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1051 spin_unlock(&bdev_lock);
1052 schedule();
1053 finish_wait(wq, &wait);
1054 spin_lock(&bdev_lock);
1055 goto retry;
1056 }
1057
1058 /* yay, all mine */
1059 return 0;
1060 }
1061
1062 /**
1063 * bd_start_claiming - start claiming a block device
1064 * @bdev: block device of interest
1065 * @holder: holder trying to claim @bdev
1066 *
1067 * @bdev is about to be opened exclusively. Check @bdev can be opened
1068 * exclusively and mark that an exclusive open is in progress. Each
1069 * successful call to this function must be matched with a call to
1070 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1071 * fail).
1072 *
1073 * This function is used to gain exclusive access to the block device
1074 * without actually causing other exclusive open attempts to fail. It
1075 * should be used when the open sequence itself requires exclusive
1076 * access but may subsequently fail.
1077 *
1078 * CONTEXT:
1079 * Might sleep.
1080 *
1081 * RETURNS:
1082 * Pointer to the block device containing @bdev on success, ERR_PTR()
1083 * value on failure.
1084 */
1085 static struct block_device *bd_start_claiming(struct block_device *bdev,
1086 void *holder)
1087 {
1088 struct gendisk *disk;
1089 struct block_device *whole;
1090 int partno, err;
1091
1092 might_sleep();
1093
1094 /*
1095 * @bdev might not have been initialized properly yet, look up
1096 * and grab the outer block device the hard way.
1097 */
1098 disk = get_gendisk(bdev->bd_dev, &partno);
1099 if (!disk)
1100 return ERR_PTR(-ENXIO);
1101
1102 /*
1103 * Normally, @bdev should equal what's returned from bdget_disk()
1104 * if partno is 0; however, some drivers (floppy) use multiple
1105 * bdev's for the same physical device and @bdev may be one of the
1106 * aliases. Keep @bdev if partno is 0. This means claimer
1107 * tracking is broken for those devices but it has always been that
1108 * way.
1109 */
1110 if (partno)
1111 whole = bdget_disk(disk, 0);
1112 else
1113 whole = bdgrab(bdev);
1114
1115 module_put(disk->fops->owner);
1116 put_disk(disk);
1117 if (!whole)
1118 return ERR_PTR(-ENOMEM);
1119
1120 /* prepare to claim, if successful, mark claiming in progress */
1121 spin_lock(&bdev_lock);
1122
1123 err = bd_prepare_to_claim(bdev, whole, holder);
1124 if (err == 0) {
1125 whole->bd_claiming = holder;
1126 spin_unlock(&bdev_lock);
1127 return whole;
1128 } else {
1129 spin_unlock(&bdev_lock);
1130 bdput(whole);
1131 return ERR_PTR(err);
1132 }
1133 }
1134
1135 #ifdef CONFIG_SYSFS
1136 struct bd_holder_disk {
1137 struct list_head list;
1138 struct gendisk *disk;
1139 int refcnt;
1140 };
1141
1142 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1143 struct gendisk *disk)
1144 {
1145 struct bd_holder_disk *holder;
1146
1147 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1148 if (holder->disk == disk)
1149 return holder;
1150 return NULL;
1151 }
1152
1153 static int add_symlink(struct kobject *from, struct kobject *to)
1154 {
1155 return sysfs_create_link(from, to, kobject_name(to));
1156 }
1157
1158 static void del_symlink(struct kobject *from, struct kobject *to)
1159 {
1160 sysfs_remove_link(from, kobject_name(to));
1161 }
1162
1163 /**
1164 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1165 * @bdev: the claimed slave bdev
1166 * @disk: the holding disk
1167 *
1168 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1169 *
1170 * This functions creates the following sysfs symlinks.
1171 *
1172 * - from "slaves" directory of the holder @disk to the claimed @bdev
1173 * - from "holders" directory of the @bdev to the holder @disk
1174 *
1175 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1176 * passed to bd_link_disk_holder(), then:
1177 *
1178 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1179 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1180 *
1181 * The caller must have claimed @bdev before calling this function and
1182 * ensure that both @bdev and @disk are valid during the creation and
1183 * lifetime of these symlinks.
1184 *
1185 * CONTEXT:
1186 * Might sleep.
1187 *
1188 * RETURNS:
1189 * 0 on success, -errno on failure.
1190 */
1191 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1192 {
1193 struct bd_holder_disk *holder;
1194 int ret = 0;
1195
1196 mutex_lock(&bdev->bd_mutex);
1197
1198 WARN_ON_ONCE(!bdev->bd_holder);
1199
1200 /* FIXME: remove the following once add_disk() handles errors */
1201 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1202 goto out_unlock;
1203
1204 holder = bd_find_holder_disk(bdev, disk);
1205 if (holder) {
1206 holder->refcnt++;
1207 goto out_unlock;
1208 }
1209
1210 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1211 if (!holder) {
1212 ret = -ENOMEM;
1213 goto out_unlock;
1214 }
1215
1216 INIT_LIST_HEAD(&holder->list);
1217 holder->disk = disk;
1218 holder->refcnt = 1;
1219
1220 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1221 if (ret)
1222 goto out_free;
1223
1224 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1225 if (ret)
1226 goto out_del;
1227 /*
1228 * bdev could be deleted beneath us which would implicitly destroy
1229 * the holder directory. Hold on to it.
1230 */
1231 kobject_get(bdev->bd_part->holder_dir);
1232
1233 list_add(&holder->list, &bdev->bd_holder_disks);
1234 goto out_unlock;
1235
1236 out_del:
1237 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1238 out_free:
1239 kfree(holder);
1240 out_unlock:
1241 mutex_unlock(&bdev->bd_mutex);
1242 return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1245
1246 /**
1247 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1248 * @bdev: the calimed slave bdev
1249 * @disk: the holding disk
1250 *
1251 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1252 *
1253 * CONTEXT:
1254 * Might sleep.
1255 */
1256 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1257 {
1258 struct bd_holder_disk *holder;
1259
1260 mutex_lock(&bdev->bd_mutex);
1261
1262 holder = bd_find_holder_disk(bdev, disk);
1263
1264 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1265 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1266 del_symlink(bdev->bd_part->holder_dir,
1267 &disk_to_dev(disk)->kobj);
1268 kobject_put(bdev->bd_part->holder_dir);
1269 list_del_init(&holder->list);
1270 kfree(holder);
1271 }
1272
1273 mutex_unlock(&bdev->bd_mutex);
1274 }
1275 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1276 #endif
1277
1278 /**
1279 * flush_disk - invalidates all buffer-cache entries on a disk
1280 *
1281 * @bdev: struct block device to be flushed
1282 * @kill_dirty: flag to guide handling of dirty inodes
1283 *
1284 * Invalidates all buffer-cache entries on a disk. It should be called
1285 * when a disk has been changed -- either by a media change or online
1286 * resize.
1287 */
1288 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1289 {
1290 if (__invalidate_device(bdev, kill_dirty)) {
1291 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1292 "resized disk %s\n",
1293 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1294 }
1295
1296 if (!bdev->bd_disk)
1297 return;
1298 if (disk_part_scan_enabled(bdev->bd_disk))
1299 bdev->bd_invalidated = 1;
1300 }
1301
1302 /**
1303 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1304 * @disk: struct gendisk to check
1305 * @bdev: struct bdev to adjust.
1306 *
1307 * This routine checks to see if the bdev size does not match the disk size
1308 * and adjusts it if it differs.
1309 */
1310 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1311 {
1312 loff_t disk_size, bdev_size;
1313
1314 disk_size = (loff_t)get_capacity(disk) << 9;
1315 bdev_size = i_size_read(bdev->bd_inode);
1316 if (disk_size != bdev_size) {
1317 printk(KERN_INFO
1318 "%s: detected capacity change from %lld to %lld\n",
1319 disk->disk_name, bdev_size, disk_size);
1320 i_size_write(bdev->bd_inode, disk_size);
1321 flush_disk(bdev, false);
1322 }
1323 }
1324 EXPORT_SYMBOL(check_disk_size_change);
1325
1326 /**
1327 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1328 * @disk: struct gendisk to be revalidated
1329 *
1330 * This routine is a wrapper for lower-level driver's revalidate_disk
1331 * call-backs. It is used to do common pre and post operations needed
1332 * for all revalidate_disk operations.
1333 */
1334 int revalidate_disk(struct gendisk *disk)
1335 {
1336 struct block_device *bdev;
1337 int ret = 0;
1338
1339 if (disk->fops->revalidate_disk)
1340 ret = disk->fops->revalidate_disk(disk);
1341 bdev = bdget_disk(disk, 0);
1342 if (!bdev)
1343 return ret;
1344
1345 mutex_lock(&bdev->bd_mutex);
1346 check_disk_size_change(disk, bdev);
1347 bdev->bd_invalidated = 0;
1348 mutex_unlock(&bdev->bd_mutex);
1349 bdput(bdev);
1350 return ret;
1351 }
1352 EXPORT_SYMBOL(revalidate_disk);
1353
1354 /*
1355 * This routine checks whether a removable media has been changed,
1356 * and invalidates all buffer-cache-entries in that case. This
1357 * is a relatively slow routine, so we have to try to minimize using
1358 * it. Thus it is called only upon a 'mount' or 'open'. This
1359 * is the best way of combining speed and utility, I think.
1360 * People changing diskettes in the middle of an operation deserve
1361 * to lose :-)
1362 */
1363 int check_disk_change(struct block_device *bdev)
1364 {
1365 struct gendisk *disk = bdev->bd_disk;
1366 const struct block_device_operations *bdops = disk->fops;
1367 unsigned int events;
1368
1369 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1370 DISK_EVENT_EJECT_REQUEST);
1371 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1372 return 0;
1373
1374 flush_disk(bdev, true);
1375 if (bdops->revalidate_disk)
1376 bdops->revalidate_disk(bdev->bd_disk);
1377 return 1;
1378 }
1379
1380 EXPORT_SYMBOL(check_disk_change);
1381
1382 void bd_set_size(struct block_device *bdev, loff_t size)
1383 {
1384 unsigned bsize = bdev_logical_block_size(bdev);
1385
1386 inode_lock(bdev->bd_inode);
1387 i_size_write(bdev->bd_inode, size);
1388 inode_unlock(bdev->bd_inode);
1389 while (bsize < PAGE_SIZE) {
1390 if (size & bsize)
1391 break;
1392 bsize <<= 1;
1393 }
1394 bdev->bd_block_size = bsize;
1395 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1396 }
1397 EXPORT_SYMBOL(bd_set_size);
1398
1399 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1400
1401 /*
1402 * bd_mutex locking:
1403 *
1404 * mutex_lock(part->bd_mutex)
1405 * mutex_lock_nested(whole->bd_mutex, 1)
1406 */
1407
1408 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1409 {
1410 struct gendisk *disk;
1411 struct module *owner;
1412 int ret;
1413 int partno;
1414 int perm = 0;
1415
1416 if (mode & FMODE_READ)
1417 perm |= MAY_READ;
1418 if (mode & FMODE_WRITE)
1419 perm |= MAY_WRITE;
1420 /*
1421 * hooks: /n/, see "layering violations".
1422 */
1423 if (!for_part) {
1424 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1425 if (ret != 0) {
1426 bdput(bdev);
1427 return ret;
1428 }
1429 }
1430
1431 restart:
1432
1433 ret = -ENXIO;
1434 disk = get_gendisk(bdev->bd_dev, &partno);
1435 if (!disk)
1436 goto out;
1437 owner = disk->fops->owner;
1438
1439 disk_block_events(disk);
1440 mutex_lock_nested(&bdev->bd_mutex, for_part);
1441 if (!bdev->bd_openers) {
1442 bdev->bd_disk = disk;
1443 bdev->bd_queue = disk->queue;
1444 bdev->bd_contains = bdev;
1445 bdev->bd_partno = partno;
1446
1447 if (!partno) {
1448 ret = -ENXIO;
1449 bdev->bd_part = disk_get_part(disk, partno);
1450 if (!bdev->bd_part)
1451 goto out_clear;
1452
1453 ret = 0;
1454 if (disk->fops->open) {
1455 ret = disk->fops->open(bdev, mode);
1456 if (ret == -ERESTARTSYS) {
1457 /* Lost a race with 'disk' being
1458 * deleted, try again.
1459 * See md.c
1460 */
1461 disk_put_part(bdev->bd_part);
1462 bdev->bd_part = NULL;
1463 bdev->bd_disk = NULL;
1464 bdev->bd_queue = NULL;
1465 mutex_unlock(&bdev->bd_mutex);
1466 disk_unblock_events(disk);
1467 put_disk(disk);
1468 module_put(owner);
1469 goto restart;
1470 }
1471 }
1472
1473 if (!ret)
1474 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1475
1476 /*
1477 * If the device is invalidated, rescan partition
1478 * if open succeeded or failed with -ENOMEDIUM.
1479 * The latter is necessary to prevent ghost
1480 * partitions on a removed medium.
1481 */
1482 if (bdev->bd_invalidated) {
1483 if (!ret)
1484 rescan_partitions(disk, bdev);
1485 else if (ret == -ENOMEDIUM)
1486 invalidate_partitions(disk, bdev);
1487 }
1488
1489 if (ret)
1490 goto out_clear;
1491 } else {
1492 struct block_device *whole;
1493 whole = bdget_disk(disk, 0);
1494 ret = -ENOMEM;
1495 if (!whole)
1496 goto out_clear;
1497 BUG_ON(for_part);
1498 ret = __blkdev_get(whole, mode, 1);
1499 if (ret)
1500 goto out_clear;
1501 bdev->bd_contains = whole;
1502 bdev->bd_part = disk_get_part(disk, partno);
1503 if (!(disk->flags & GENHD_FL_UP) ||
1504 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1505 ret = -ENXIO;
1506 goto out_clear;
1507 }
1508 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1509 }
1510
1511 if (bdev->bd_bdi == &noop_backing_dev_info)
1512 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1513 } else {
1514 if (bdev->bd_contains == bdev) {
1515 ret = 0;
1516 if (bdev->bd_disk->fops->open)
1517 ret = bdev->bd_disk->fops->open(bdev, mode);
1518 /* the same as first opener case, read comment there */
1519 if (bdev->bd_invalidated) {
1520 if (!ret)
1521 rescan_partitions(bdev->bd_disk, bdev);
1522 else if (ret == -ENOMEDIUM)
1523 invalidate_partitions(bdev->bd_disk, bdev);
1524 }
1525 if (ret)
1526 goto out_unlock_bdev;
1527 }
1528 /* only one opener holds refs to the module and disk */
1529 put_disk(disk);
1530 module_put(owner);
1531 }
1532 bdev->bd_openers++;
1533 if (for_part)
1534 bdev->bd_part_count++;
1535 mutex_unlock(&bdev->bd_mutex);
1536 disk_unblock_events(disk);
1537 return 0;
1538
1539 out_clear:
1540 disk_put_part(bdev->bd_part);
1541 bdev->bd_disk = NULL;
1542 bdev->bd_part = NULL;
1543 bdev->bd_queue = NULL;
1544 if (bdev != bdev->bd_contains)
1545 __blkdev_put(bdev->bd_contains, mode, 1);
1546 bdev->bd_contains = NULL;
1547 out_unlock_bdev:
1548 mutex_unlock(&bdev->bd_mutex);
1549 disk_unblock_events(disk);
1550 put_disk(disk);
1551 module_put(owner);
1552 out:
1553 bdput(bdev);
1554
1555 return ret;
1556 }
1557
1558 /**
1559 * blkdev_get - open a block device
1560 * @bdev: block_device to open
1561 * @mode: FMODE_* mask
1562 * @holder: exclusive holder identifier
1563 *
1564 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1565 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1566 * @holder is invalid. Exclusive opens may nest for the same @holder.
1567 *
1568 * On success, the reference count of @bdev is unchanged. On failure,
1569 * @bdev is put.
1570 *
1571 * CONTEXT:
1572 * Might sleep.
1573 *
1574 * RETURNS:
1575 * 0 on success, -errno on failure.
1576 */
1577 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1578 {
1579 struct block_device *whole = NULL;
1580 int res;
1581
1582 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1583
1584 if ((mode & FMODE_EXCL) && holder) {
1585 whole = bd_start_claiming(bdev, holder);
1586 if (IS_ERR(whole)) {
1587 bdput(bdev);
1588 return PTR_ERR(whole);
1589 }
1590 }
1591
1592 res = __blkdev_get(bdev, mode, 0);
1593
1594 if (whole) {
1595 struct gendisk *disk = whole->bd_disk;
1596
1597 /* finish claiming */
1598 mutex_lock(&bdev->bd_mutex);
1599 spin_lock(&bdev_lock);
1600
1601 if (!res) {
1602 BUG_ON(!bd_may_claim(bdev, whole, holder));
1603 /*
1604 * Note that for a whole device bd_holders
1605 * will be incremented twice, and bd_holder
1606 * will be set to bd_may_claim before being
1607 * set to holder
1608 */
1609 whole->bd_holders++;
1610 whole->bd_holder = bd_may_claim;
1611 bdev->bd_holders++;
1612 bdev->bd_holder = holder;
1613 }
1614
1615 /* tell others that we're done */
1616 BUG_ON(whole->bd_claiming != holder);
1617 whole->bd_claiming = NULL;
1618 wake_up_bit(&whole->bd_claiming, 0);
1619
1620 spin_unlock(&bdev_lock);
1621
1622 /*
1623 * Block event polling for write claims if requested. Any
1624 * write holder makes the write_holder state stick until
1625 * all are released. This is good enough and tracking
1626 * individual writeable reference is too fragile given the
1627 * way @mode is used in blkdev_get/put().
1628 */
1629 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1630 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1631 bdev->bd_write_holder = true;
1632 disk_block_events(disk);
1633 }
1634
1635 mutex_unlock(&bdev->bd_mutex);
1636 bdput(whole);
1637 }
1638
1639 return res;
1640 }
1641 EXPORT_SYMBOL(blkdev_get);
1642
1643 /**
1644 * blkdev_get_by_path - open a block device by name
1645 * @path: path to the block device to open
1646 * @mode: FMODE_* mask
1647 * @holder: exclusive holder identifier
1648 *
1649 * Open the blockdevice described by the device file at @path. @mode
1650 * and @holder are identical to blkdev_get().
1651 *
1652 * On success, the returned block_device has reference count of one.
1653 *
1654 * CONTEXT:
1655 * Might sleep.
1656 *
1657 * RETURNS:
1658 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1659 */
1660 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1661 void *holder)
1662 {
1663 struct block_device *bdev;
1664 int perm = 0;
1665 int err;
1666
1667 if (mode & FMODE_READ)
1668 perm |= MAY_READ;
1669 if (mode & FMODE_WRITE)
1670 perm |= MAY_WRITE;
1671 bdev = lookup_bdev(path, perm);
1672 if (IS_ERR(bdev))
1673 return bdev;
1674
1675 err = blkdev_get(bdev, mode, holder);
1676 if (err)
1677 return ERR_PTR(err);
1678
1679 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1680 blkdev_put(bdev, mode);
1681 return ERR_PTR(-EACCES);
1682 }
1683
1684 return bdev;
1685 }
1686 EXPORT_SYMBOL(blkdev_get_by_path);
1687
1688 /**
1689 * blkdev_get_by_dev - open a block device by device number
1690 * @dev: device number of block device to open
1691 * @mode: FMODE_* mask
1692 * @holder: exclusive holder identifier
1693 *
1694 * Open the blockdevice described by device number @dev. @mode and
1695 * @holder are identical to blkdev_get().
1696 *
1697 * Use it ONLY if you really do not have anything better - i.e. when
1698 * you are behind a truly sucky interface and all you are given is a
1699 * device number. _Never_ to be used for internal purposes. If you
1700 * ever need it - reconsider your API.
1701 *
1702 * On success, the returned block_device has reference count of one.
1703 *
1704 * CONTEXT:
1705 * Might sleep.
1706 *
1707 * RETURNS:
1708 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1709 */
1710 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1711 {
1712 struct block_device *bdev;
1713 int err;
1714
1715 bdev = bdget(dev);
1716 if (!bdev)
1717 return ERR_PTR(-ENOMEM);
1718
1719 err = blkdev_get(bdev, mode, holder);
1720 if (err)
1721 return ERR_PTR(err);
1722
1723 return bdev;
1724 }
1725 EXPORT_SYMBOL(blkdev_get_by_dev);
1726
1727 static int blkdev_open(struct inode * inode, struct file * filp)
1728 {
1729 struct block_device *bdev;
1730
1731 /*
1732 * Preserve backwards compatibility and allow large file access
1733 * even if userspace doesn't ask for it explicitly. Some mkfs
1734 * binary needs it. We might want to drop this workaround
1735 * during an unstable branch.
1736 */
1737 filp->f_flags |= O_LARGEFILE;
1738
1739 filp->f_mode |= FMODE_NOWAIT;
1740
1741 if (filp->f_flags & O_NDELAY)
1742 filp->f_mode |= FMODE_NDELAY;
1743 if (filp->f_flags & O_EXCL)
1744 filp->f_mode |= FMODE_EXCL;
1745 if ((filp->f_flags & O_ACCMODE) == 3)
1746 filp->f_mode |= FMODE_WRITE_IOCTL;
1747
1748 bdev = bd_acquire(inode);
1749 if (bdev == NULL)
1750 return -ENOMEM;
1751
1752 /*
1753 * A negative i_writecount for bdev->bd_inode means that the bdev
1754 * or one of its paritions is mounted in a user namespace. Deny
1755 * writing for non-root in this case, otherwise an unprivileged
1756 * user can attack the kernel by modifying the backing store of a
1757 * mounted filesystem.
1758 */
1759 if ((filp->f_mode & FMODE_WRITE) &&
1760 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1761 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1762 bdput(bdev);
1763 return -EBUSY;
1764 }
1765
1766 filp->f_mapping = bdev->bd_inode->i_mapping;
1767 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1768
1769 return blkdev_get(bdev, filp->f_mode, filp);
1770 }
1771
1772 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1773 {
1774 struct gendisk *disk = bdev->bd_disk;
1775 struct block_device *victim = NULL;
1776
1777 mutex_lock_nested(&bdev->bd_mutex, for_part);
1778 if (for_part)
1779 bdev->bd_part_count--;
1780
1781 if (!--bdev->bd_openers) {
1782 WARN_ON_ONCE(bdev->bd_holders);
1783 sync_blockdev(bdev);
1784 kill_bdev(bdev);
1785
1786 bdev_write_inode(bdev);
1787 }
1788 if (bdev->bd_contains == bdev) {
1789 if (disk->fops->release)
1790 disk->fops->release(disk, mode);
1791 }
1792 if (!bdev->bd_openers) {
1793 struct module *owner = disk->fops->owner;
1794
1795 disk_put_part(bdev->bd_part);
1796 bdev->bd_part = NULL;
1797 bdev->bd_disk = NULL;
1798 if (bdev != bdev->bd_contains)
1799 victim = bdev->bd_contains;
1800 bdev->bd_contains = NULL;
1801
1802 put_disk(disk);
1803 module_put(owner);
1804 }
1805 mutex_unlock(&bdev->bd_mutex);
1806 bdput(bdev);
1807 if (victim)
1808 __blkdev_put(victim, mode, 1);
1809 }
1810
1811 void blkdev_put(struct block_device *bdev, fmode_t mode)
1812 {
1813 mutex_lock(&bdev->bd_mutex);
1814
1815 if (mode & FMODE_EXCL) {
1816 bool bdev_free;
1817
1818 /*
1819 * Release a claim on the device. The holder fields
1820 * are protected with bdev_lock. bd_mutex is to
1821 * synchronize disk_holder unlinking.
1822 */
1823 spin_lock(&bdev_lock);
1824
1825 WARN_ON_ONCE(--bdev->bd_holders < 0);
1826 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1827
1828 /* bd_contains might point to self, check in a separate step */
1829 if ((bdev_free = !bdev->bd_holders))
1830 bdev->bd_holder = NULL;
1831 if (!bdev->bd_contains->bd_holders)
1832 bdev->bd_contains->bd_holder = NULL;
1833
1834 spin_unlock(&bdev_lock);
1835
1836 /*
1837 * If this was the last claim, remove holder link and
1838 * unblock evpoll if it was a write holder.
1839 */
1840 if (bdev_free && bdev->bd_write_holder) {
1841 disk_unblock_events(bdev->bd_disk);
1842 bdev->bd_write_holder = false;
1843 }
1844 }
1845
1846 /*
1847 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1848 * event. This is to ensure detection of media removal commanded
1849 * from userland - e.g. eject(1).
1850 */
1851 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1852
1853 mutex_unlock(&bdev->bd_mutex);
1854
1855 __blkdev_put(bdev, mode, 0);
1856 }
1857 EXPORT_SYMBOL(blkdev_put);
1858
1859 static int blkdev_close(struct inode * inode, struct file * filp)
1860 {
1861 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1862 if (filp->f_mode & FMODE_WRITE &&
1863 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1864 atomic_dec(&bdev->bd_inode->i_writecount);
1865 blkdev_put(bdev, filp->f_mode);
1866 return 0;
1867 }
1868
1869 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1870 {
1871 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1872 fmode_t mode = file->f_mode;
1873
1874 /*
1875 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1876 * to updated it before every ioctl.
1877 */
1878 if (file->f_flags & O_NDELAY)
1879 mode |= FMODE_NDELAY;
1880 else
1881 mode &= ~FMODE_NDELAY;
1882
1883 return blkdev_ioctl(bdev, mode, cmd, arg);
1884 }
1885
1886 /*
1887 * Write data to the block device. Only intended for the block device itself
1888 * and the raw driver which basically is a fake block device.
1889 *
1890 * Does not take i_mutex for the write and thus is not for general purpose
1891 * use.
1892 */
1893 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1894 {
1895 struct file *file = iocb->ki_filp;
1896 struct inode *bd_inode = bdev_file_inode(file);
1897 loff_t size = i_size_read(bd_inode);
1898 struct blk_plug plug;
1899 ssize_t ret;
1900
1901 if (bdev_read_only(I_BDEV(bd_inode)))
1902 return -EPERM;
1903
1904 if (!iov_iter_count(from))
1905 return 0;
1906
1907 if (iocb->ki_pos >= size)
1908 return -ENOSPC;
1909
1910 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1911 return -EOPNOTSUPP;
1912
1913 iov_iter_truncate(from, size - iocb->ki_pos);
1914
1915 blk_start_plug(&plug);
1916 ret = __generic_file_write_iter(iocb, from);
1917 if (ret > 0)
1918 ret = generic_write_sync(iocb, ret);
1919 blk_finish_plug(&plug);
1920 return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1923
1924 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1925 {
1926 struct file *file = iocb->ki_filp;
1927 struct inode *bd_inode = bdev_file_inode(file);
1928 loff_t size = i_size_read(bd_inode);
1929 loff_t pos = iocb->ki_pos;
1930
1931 if (pos >= size)
1932 return 0;
1933
1934 size -= pos;
1935 iov_iter_truncate(to, size);
1936 return generic_file_read_iter(iocb, to);
1937 }
1938 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1939
1940 /*
1941 * Try to release a page associated with block device when the system
1942 * is under memory pressure.
1943 */
1944 static int blkdev_releasepage(struct page *page, gfp_t wait)
1945 {
1946 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1947
1948 if (super && super->s_op->bdev_try_to_free_page)
1949 return super->s_op->bdev_try_to_free_page(super, page, wait);
1950
1951 return try_to_free_buffers(page);
1952 }
1953
1954 static int blkdev_writepages(struct address_space *mapping,
1955 struct writeback_control *wbc)
1956 {
1957 if (dax_mapping(mapping)) {
1958 struct block_device *bdev = I_BDEV(mapping->host);
1959
1960 return dax_writeback_mapping_range(mapping, bdev, wbc);
1961 }
1962 return generic_writepages(mapping, wbc);
1963 }
1964
1965 static const struct address_space_operations def_blk_aops = {
1966 .readpage = blkdev_readpage,
1967 .readpages = blkdev_readpages,
1968 .writepage = blkdev_writepage,
1969 .write_begin = blkdev_write_begin,
1970 .write_end = blkdev_write_end,
1971 .writepages = blkdev_writepages,
1972 .releasepage = blkdev_releasepage,
1973 .direct_IO = blkdev_direct_IO,
1974 .is_dirty_writeback = buffer_check_dirty_writeback,
1975 };
1976
1977 #define BLKDEV_FALLOC_FL_SUPPORTED \
1978 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1979 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1980
1981 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1982 loff_t len)
1983 {
1984 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1985 struct address_space *mapping;
1986 loff_t end = start + len - 1;
1987 loff_t isize;
1988 int error;
1989
1990 /* Fail if we don't recognize the flags. */
1991 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1992 return -EOPNOTSUPP;
1993
1994 /* Don't go off the end of the device. */
1995 isize = i_size_read(bdev->bd_inode);
1996 if (start >= isize)
1997 return -EINVAL;
1998 if (end >= isize) {
1999 if (mode & FALLOC_FL_KEEP_SIZE) {
2000 len = isize - start;
2001 end = start + len - 1;
2002 } else
2003 return -EINVAL;
2004 }
2005
2006 /*
2007 * Don't allow IO that isn't aligned to logical block size.
2008 */
2009 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2010 return -EINVAL;
2011
2012 /* Invalidate the page cache, including dirty pages. */
2013 mapping = bdev->bd_inode->i_mapping;
2014 truncate_inode_pages_range(mapping, start, end);
2015
2016 switch (mode) {
2017 case FALLOC_FL_ZERO_RANGE:
2018 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2019 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2020 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2021 break;
2022 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2023 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2024 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2025 break;
2026 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2027 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2028 GFP_KERNEL, 0);
2029 break;
2030 default:
2031 return -EOPNOTSUPP;
2032 }
2033 if (error)
2034 return error;
2035
2036 /*
2037 * Invalidate again; if someone wandered in and dirtied a page,
2038 * the caller will be given -EBUSY. The third argument is
2039 * inclusive, so the rounding here is safe.
2040 */
2041 return invalidate_inode_pages2_range(mapping,
2042 start >> PAGE_SHIFT,
2043 end >> PAGE_SHIFT);
2044 }
2045
2046 const struct file_operations def_blk_fops = {
2047 .open = blkdev_open,
2048 .release = blkdev_close,
2049 .llseek = block_llseek,
2050 .read_iter = blkdev_read_iter,
2051 .write_iter = blkdev_write_iter,
2052 .mmap = generic_file_mmap,
2053 .fsync = blkdev_fsync,
2054 .unlocked_ioctl = block_ioctl,
2055 #ifdef CONFIG_COMPAT
2056 .compat_ioctl = compat_blkdev_ioctl,
2057 #endif
2058 .splice_read = generic_file_splice_read,
2059 .splice_write = iter_file_splice_write,
2060 .fallocate = blkdev_fallocate,
2061 };
2062
2063 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2064 {
2065 int res;
2066 mm_segment_t old_fs = get_fs();
2067 set_fs(KERNEL_DS);
2068 res = blkdev_ioctl(bdev, 0, cmd, arg);
2069 set_fs(old_fs);
2070 return res;
2071 }
2072
2073 EXPORT_SYMBOL(ioctl_by_bdev);
2074
2075 /**
2076 * lookup_bdev - lookup a struct block_device by name
2077 * @pathname: special file representing the block device
2078 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
2079 *
2080 * Get a reference to the blockdevice at @pathname in the current
2081 * namespace if possible and return it. Return ERR_PTR(error)
2082 * otherwise. If @mask is non-zero, check for access rights to the
2083 * inode at @pathname.
2084 */
2085 struct block_device *lookup_bdev(const char *pathname, int mask)
2086 {
2087 struct block_device *bdev;
2088 struct inode *inode;
2089 struct path path;
2090 int error;
2091
2092 if (!pathname || !*pathname)
2093 return ERR_PTR(-EINVAL);
2094
2095 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2096 if (error)
2097 return ERR_PTR(error);
2098
2099 inode = d_backing_inode(path.dentry);
2100 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
2101 error = __inode_permission(inode, mask);
2102 if (error)
2103 goto fail;
2104 }
2105 error = -ENOTBLK;
2106 if (!S_ISBLK(inode->i_mode))
2107 goto fail;
2108 error = -EACCES;
2109 if (!may_open_dev(&path))
2110 goto fail;
2111 error = -ENOMEM;
2112 bdev = bd_acquire(inode);
2113 if (!bdev)
2114 goto fail;
2115 out:
2116 path_put(&path);
2117 return bdev;
2118 fail:
2119 bdev = ERR_PTR(error);
2120 goto out;
2121 }
2122 EXPORT_SYMBOL(lookup_bdev);
2123
2124 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2125 {
2126 struct super_block *sb = get_super(bdev);
2127 int res = 0;
2128
2129 if (sb) {
2130 /*
2131 * no need to lock the super, get_super holds the
2132 * read mutex so the filesystem cannot go away
2133 * under us (->put_super runs with the write lock
2134 * hold).
2135 */
2136 shrink_dcache_sb(sb);
2137 res = invalidate_inodes(sb, kill_dirty);
2138 drop_super(sb);
2139 }
2140 invalidate_bdev(bdev);
2141 return res;
2142 }
2143 EXPORT_SYMBOL(__invalidate_device);
2144
2145 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2146 {
2147 struct inode *inode, *old_inode = NULL;
2148
2149 spin_lock(&blockdev_superblock->s_inode_list_lock);
2150 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2151 struct address_space *mapping = inode->i_mapping;
2152 struct block_device *bdev;
2153
2154 spin_lock(&inode->i_lock);
2155 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2156 mapping->nrpages == 0) {
2157 spin_unlock(&inode->i_lock);
2158 continue;
2159 }
2160 __iget(inode);
2161 spin_unlock(&inode->i_lock);
2162 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2163 /*
2164 * We hold a reference to 'inode' so it couldn't have been
2165 * removed from s_inodes list while we dropped the
2166 * s_inode_list_lock We cannot iput the inode now as we can
2167 * be holding the last reference and we cannot iput it under
2168 * s_inode_list_lock. So we keep the reference and iput it
2169 * later.
2170 */
2171 iput(old_inode);
2172 old_inode = inode;
2173 bdev = I_BDEV(inode);
2174
2175 mutex_lock(&bdev->bd_mutex);
2176 if (bdev->bd_openers)
2177 func(bdev, arg);
2178 mutex_unlock(&bdev->bd_mutex);
2179
2180 spin_lock(&blockdev_superblock->s_inode_list_lock);
2181 }
2182 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2183 iput(old_inode);
2184 }