]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
net: hns: add the code for cleaning pkt in chip
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 int set_blocksize(struct block_device *bdev, int size)
108 {
109 /* Size must be a power of two, and between 512 and PAGE_SIZE */
110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
111 return -EINVAL;
112
113 /* Size cannot be smaller than the size supported by the device */
114 if (size < bdev_logical_block_size(bdev))
115 return -EINVAL;
116
117 /* Don't change the size if it is same as current */
118 if (bdev->bd_block_size != size) {
119 sync_blockdev(bdev);
120 bdev->bd_block_size = size;
121 bdev->bd_inode->i_blkbits = blksize_bits(size);
122 kill_bdev(bdev);
123 }
124 return 0;
125 }
126
127 EXPORT_SYMBOL(set_blocksize);
128
129 int sb_set_blocksize(struct super_block *sb, int size)
130 {
131 if (set_blocksize(sb->s_bdev, size))
132 return 0;
133 /* If we get here, we know size is power of two
134 * and it's value is between 512 and PAGE_SIZE */
135 sb->s_blocksize = size;
136 sb->s_blocksize_bits = blksize_bits(size);
137 return sb->s_blocksize;
138 }
139
140 EXPORT_SYMBOL(sb_set_blocksize);
141
142 int sb_min_blocksize(struct super_block *sb, int size)
143 {
144 int minsize = bdev_logical_block_size(sb->s_bdev);
145 if (size < minsize)
146 size = minsize;
147 return sb_set_blocksize(sb, size);
148 }
149
150 EXPORT_SYMBOL(sb_min_blocksize);
151
152 static int
153 blkdev_get_block(struct inode *inode, sector_t iblock,
154 struct buffer_head *bh, int create)
155 {
156 bh->b_bdev = I_BDEV(inode);
157 bh->b_blocknr = iblock;
158 set_buffer_mapped(bh);
159 return 0;
160 }
161
162 static struct inode *bdev_file_inode(struct file *file)
163 {
164 return file->f_mapping->host;
165 }
166
167 static unsigned int dio_bio_write_op(struct kiocb *iocb)
168 {
169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
170
171 /* avoid the need for a I/O completion work item */
172 if (iocb->ki_flags & IOCB_DSYNC)
173 op |= REQ_FUA;
174 return op;
175 }
176
177 #define DIO_INLINE_BIO_VECS 4
178
179 static void blkdev_bio_end_io_simple(struct bio *bio)
180 {
181 struct task_struct *waiter = bio->bi_private;
182
183 WRITE_ONCE(bio->bi_private, NULL);
184 wake_up_process(waiter);
185 }
186
187 static ssize_t
188 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
189 int nr_pages)
190 {
191 struct file *file = iocb->ki_filp;
192 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
194 loff_t pos = iocb->ki_pos;
195 bool should_dirty = false;
196 struct bio bio;
197 ssize_t ret;
198 blk_qc_t qc;
199 int i;
200
201 if ((pos | iov_iter_alignment(iter)) &
202 (bdev_logical_block_size(bdev) - 1))
203 return -EINVAL;
204
205 if (nr_pages <= DIO_INLINE_BIO_VECS)
206 vecs = inline_vecs;
207 else {
208 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
209 if (!vecs)
210 return -ENOMEM;
211 }
212
213 bio_init(&bio, vecs, nr_pages);
214 bio_set_dev(&bio, bdev);
215 bio.bi_iter.bi_sector = pos >> 9;
216 bio.bi_write_hint = iocb->ki_hint;
217 bio.bi_private = current;
218 bio.bi_end_io = blkdev_bio_end_io_simple;
219
220 ret = bio_iov_iter_get_pages(&bio, iter);
221 if (unlikely(ret))
222 return ret;
223 ret = bio.bi_iter.bi_size;
224
225 if (iov_iter_rw(iter) == READ) {
226 bio.bi_opf = REQ_OP_READ;
227 if (iter_is_iovec(iter))
228 should_dirty = true;
229 } else {
230 bio.bi_opf = dio_bio_write_op(iocb);
231 task_io_account_write(ret);
232 }
233
234 qc = submit_bio(&bio);
235 for (;;) {
236 set_current_state(TASK_UNINTERRUPTIBLE);
237 if (!READ_ONCE(bio.bi_private))
238 break;
239 if (!(iocb->ki_flags & IOCB_HIPRI) ||
240 !blk_poll(bdev_get_queue(bdev), qc))
241 io_schedule();
242 }
243 __set_current_state(TASK_RUNNING);
244
245 bio_for_each_segment_all(bvec, &bio, i) {
246 if (should_dirty && !PageCompound(bvec->bv_page))
247 set_page_dirty_lock(bvec->bv_page);
248 put_page(bvec->bv_page);
249 }
250
251 if (vecs != inline_vecs)
252 kfree(vecs);
253
254 if (unlikely(bio.bi_status))
255 ret = blk_status_to_errno(bio.bi_status);
256
257 bio_uninit(&bio);
258
259 return ret;
260 }
261
262 struct blkdev_dio {
263 union {
264 struct kiocb *iocb;
265 struct task_struct *waiter;
266 };
267 size_t size;
268 atomic_t ref;
269 bool multi_bio : 1;
270 bool should_dirty : 1;
271 bool is_sync : 1;
272 struct bio bio;
273 };
274
275 static struct bio_set *blkdev_dio_pool __read_mostly;
276
277 static void blkdev_bio_end_io(struct bio *bio)
278 {
279 struct blkdev_dio *dio = bio->bi_private;
280 bool should_dirty = dio->should_dirty;
281
282 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
283 if (bio->bi_status && !dio->bio.bi_status)
284 dio->bio.bi_status = bio->bi_status;
285 } else {
286 if (!dio->is_sync) {
287 struct kiocb *iocb = dio->iocb;
288 ssize_t ret;
289
290 if (likely(!dio->bio.bi_status)) {
291 ret = dio->size;
292 iocb->ki_pos += ret;
293 } else {
294 ret = blk_status_to_errno(dio->bio.bi_status);
295 }
296
297 dio->iocb->ki_complete(iocb, ret, 0);
298 bio_put(&dio->bio);
299 } else {
300 struct task_struct *waiter = dio->waiter;
301
302 WRITE_ONCE(dio->waiter, NULL);
303 wake_up_process(waiter);
304 }
305 }
306
307 if (should_dirty) {
308 bio_check_pages_dirty(bio);
309 } else {
310 struct bio_vec *bvec;
311 int i;
312
313 bio_for_each_segment_all(bvec, bio, i)
314 put_page(bvec->bv_page);
315 bio_put(bio);
316 }
317 }
318
319 static ssize_t
320 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
321 {
322 struct file *file = iocb->ki_filp;
323 struct inode *inode = bdev_file_inode(file);
324 struct block_device *bdev = I_BDEV(inode);
325 struct blk_plug plug;
326 struct blkdev_dio *dio;
327 struct bio *bio;
328 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
329 loff_t pos = iocb->ki_pos;
330 blk_qc_t qc = BLK_QC_T_NONE;
331 int ret = 0;
332
333 if ((pos | iov_iter_alignment(iter)) &
334 (bdev_logical_block_size(bdev) - 1))
335 return -EINVAL;
336
337 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
338 bio_get(bio); /* extra ref for the completion handler */
339
340 dio = container_of(bio, struct blkdev_dio, bio);
341 dio->is_sync = is_sync = is_sync_kiocb(iocb);
342 if (dio->is_sync)
343 dio->waiter = current;
344 else
345 dio->iocb = iocb;
346
347 dio->size = 0;
348 dio->multi_bio = false;
349 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
350
351 blk_start_plug(&plug);
352 for (;;) {
353 bio_set_dev(bio, bdev);
354 bio->bi_iter.bi_sector = pos >> 9;
355 bio->bi_write_hint = iocb->ki_hint;
356 bio->bi_private = dio;
357 bio->bi_end_io = blkdev_bio_end_io;
358
359 ret = bio_iov_iter_get_pages(bio, iter);
360 if (unlikely(ret)) {
361 bio->bi_status = BLK_STS_IOERR;
362 bio_endio(bio);
363 break;
364 }
365
366 if (is_read) {
367 bio->bi_opf = REQ_OP_READ;
368 if (dio->should_dirty)
369 bio_set_pages_dirty(bio);
370 } else {
371 bio->bi_opf = dio_bio_write_op(iocb);
372 task_io_account_write(bio->bi_iter.bi_size);
373 }
374
375 dio->size += bio->bi_iter.bi_size;
376 pos += bio->bi_iter.bi_size;
377
378 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
379 if (!nr_pages) {
380 qc = submit_bio(bio);
381 break;
382 }
383
384 if (!dio->multi_bio) {
385 dio->multi_bio = true;
386 atomic_set(&dio->ref, 2);
387 } else {
388 atomic_inc(&dio->ref);
389 }
390
391 submit_bio(bio);
392 bio = bio_alloc(GFP_KERNEL, nr_pages);
393 }
394 blk_finish_plug(&plug);
395
396 if (!is_sync)
397 return -EIOCBQUEUED;
398
399 for (;;) {
400 set_current_state(TASK_UNINTERRUPTIBLE);
401 if (!READ_ONCE(dio->waiter))
402 break;
403
404 if (!(iocb->ki_flags & IOCB_HIPRI) ||
405 !blk_poll(bdev_get_queue(bdev), qc))
406 io_schedule();
407 }
408 __set_current_state(TASK_RUNNING);
409
410 if (!ret)
411 ret = blk_status_to_errno(dio->bio.bi_status);
412 if (likely(!ret))
413 ret = dio->size;
414
415 bio_put(&dio->bio);
416 return ret;
417 }
418
419 static ssize_t
420 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
421 {
422 int nr_pages;
423
424 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
425 if (!nr_pages)
426 return 0;
427 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
428 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
429
430 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
431 }
432
433 static __init int blkdev_init(void)
434 {
435 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
436 if (!blkdev_dio_pool)
437 return -ENOMEM;
438 return 0;
439 }
440 module_init(blkdev_init);
441
442 int __sync_blockdev(struct block_device *bdev, int wait)
443 {
444 if (!bdev)
445 return 0;
446 if (!wait)
447 return filemap_flush(bdev->bd_inode->i_mapping);
448 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
449 }
450
451 /*
452 * Write out and wait upon all the dirty data associated with a block
453 * device via its mapping. Does not take the superblock lock.
454 */
455 int sync_blockdev(struct block_device *bdev)
456 {
457 return __sync_blockdev(bdev, 1);
458 }
459 EXPORT_SYMBOL(sync_blockdev);
460
461 /*
462 * Write out and wait upon all dirty data associated with this
463 * device. Filesystem data as well as the underlying block
464 * device. Takes the superblock lock.
465 */
466 int fsync_bdev(struct block_device *bdev)
467 {
468 struct super_block *sb = get_super(bdev);
469 if (sb) {
470 int res = sync_filesystem(sb);
471 drop_super(sb);
472 return res;
473 }
474 return sync_blockdev(bdev);
475 }
476 EXPORT_SYMBOL(fsync_bdev);
477
478 /**
479 * freeze_bdev -- lock a filesystem and force it into a consistent state
480 * @bdev: blockdevice to lock
481 *
482 * If a superblock is found on this device, we take the s_umount semaphore
483 * on it to make sure nobody unmounts until the snapshot creation is done.
484 * The reference counter (bd_fsfreeze_count) guarantees that only the last
485 * unfreeze process can unfreeze the frozen filesystem actually when multiple
486 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
487 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
488 * actually.
489 */
490 struct super_block *freeze_bdev(struct block_device *bdev)
491 {
492 struct super_block *sb;
493 int error = 0;
494
495 mutex_lock(&bdev->bd_fsfreeze_mutex);
496 if (++bdev->bd_fsfreeze_count > 1) {
497 /*
498 * We don't even need to grab a reference - the first call
499 * to freeze_bdev grab an active reference and only the last
500 * thaw_bdev drops it.
501 */
502 sb = get_super(bdev);
503 if (sb)
504 drop_super(sb);
505 mutex_unlock(&bdev->bd_fsfreeze_mutex);
506 return sb;
507 }
508
509 sb = get_active_super(bdev);
510 if (!sb)
511 goto out;
512 if (sb->s_op->freeze_super)
513 error = sb->s_op->freeze_super(sb);
514 else
515 error = freeze_super(sb);
516 if (error) {
517 deactivate_super(sb);
518 bdev->bd_fsfreeze_count--;
519 mutex_unlock(&bdev->bd_fsfreeze_mutex);
520 return ERR_PTR(error);
521 }
522 deactivate_super(sb);
523 out:
524 sync_blockdev(bdev);
525 mutex_unlock(&bdev->bd_fsfreeze_mutex);
526 return sb; /* thaw_bdev releases s->s_umount */
527 }
528 EXPORT_SYMBOL(freeze_bdev);
529
530 /**
531 * thaw_bdev -- unlock filesystem
532 * @bdev: blockdevice to unlock
533 * @sb: associated superblock
534 *
535 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
536 */
537 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
538 {
539 int error = -EINVAL;
540
541 mutex_lock(&bdev->bd_fsfreeze_mutex);
542 if (!bdev->bd_fsfreeze_count)
543 goto out;
544
545 error = 0;
546 if (--bdev->bd_fsfreeze_count > 0)
547 goto out;
548
549 if (!sb)
550 goto out;
551
552 if (sb->s_op->thaw_super)
553 error = sb->s_op->thaw_super(sb);
554 else
555 error = thaw_super(sb);
556 if (error)
557 bdev->bd_fsfreeze_count++;
558 out:
559 mutex_unlock(&bdev->bd_fsfreeze_mutex);
560 return error;
561 }
562 EXPORT_SYMBOL(thaw_bdev);
563
564 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
565 {
566 return block_write_full_page(page, blkdev_get_block, wbc);
567 }
568
569 static int blkdev_readpage(struct file * file, struct page * page)
570 {
571 return block_read_full_page(page, blkdev_get_block);
572 }
573
574 static int blkdev_readpages(struct file *file, struct address_space *mapping,
575 struct list_head *pages, unsigned nr_pages)
576 {
577 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
578 }
579
580 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
581 loff_t pos, unsigned len, unsigned flags,
582 struct page **pagep, void **fsdata)
583 {
584 return block_write_begin(mapping, pos, len, flags, pagep,
585 blkdev_get_block);
586 }
587
588 static int blkdev_write_end(struct file *file, struct address_space *mapping,
589 loff_t pos, unsigned len, unsigned copied,
590 struct page *page, void *fsdata)
591 {
592 int ret;
593 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
594
595 unlock_page(page);
596 put_page(page);
597
598 return ret;
599 }
600
601 /*
602 * private llseek:
603 * for a block special file file_inode(file)->i_size is zero
604 * so we compute the size by hand (just as in block_read/write above)
605 */
606 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
607 {
608 struct inode *bd_inode = bdev_file_inode(file);
609 loff_t retval;
610
611 inode_lock(bd_inode);
612 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
613 inode_unlock(bd_inode);
614 return retval;
615 }
616
617 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
618 {
619 struct inode *bd_inode = bdev_file_inode(filp);
620 struct block_device *bdev = I_BDEV(bd_inode);
621 int error;
622
623 error = file_write_and_wait_range(filp, start, end);
624 if (error)
625 return error;
626
627 /*
628 * There is no need to serialise calls to blkdev_issue_flush with
629 * i_mutex and doing so causes performance issues with concurrent
630 * O_SYNC writers to a block device.
631 */
632 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
633 if (error == -EOPNOTSUPP)
634 error = 0;
635
636 return error;
637 }
638 EXPORT_SYMBOL(blkdev_fsync);
639
640 /**
641 * bdev_read_page() - Start reading a page from a block device
642 * @bdev: The device to read the page from
643 * @sector: The offset on the device to read the page to (need not be aligned)
644 * @page: The page to read
645 *
646 * On entry, the page should be locked. It will be unlocked when the page
647 * has been read. If the block driver implements rw_page synchronously,
648 * that will be true on exit from this function, but it need not be.
649 *
650 * Errors returned by this function are usually "soft", eg out of memory, or
651 * queue full; callers should try a different route to read this page rather
652 * than propagate an error back up the stack.
653 *
654 * Return: negative errno if an error occurs, 0 if submission was successful.
655 */
656 int bdev_read_page(struct block_device *bdev, sector_t sector,
657 struct page *page)
658 {
659 const struct block_device_operations *ops = bdev->bd_disk->fops;
660 int result = -EOPNOTSUPP;
661
662 if (!ops->rw_page || bdev_get_integrity(bdev))
663 return result;
664
665 result = blk_queue_enter(bdev->bd_queue, 0);
666 if (result)
667 return result;
668 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
669 blk_queue_exit(bdev->bd_queue);
670 return result;
671 }
672 EXPORT_SYMBOL_GPL(bdev_read_page);
673
674 /**
675 * bdev_write_page() - Start writing a page to a block device
676 * @bdev: The device to write the page to
677 * @sector: The offset on the device to write the page to (need not be aligned)
678 * @page: The page to write
679 * @wbc: The writeback_control for the write
680 *
681 * On entry, the page should be locked and not currently under writeback.
682 * On exit, if the write started successfully, the page will be unlocked and
683 * under writeback. If the write failed already (eg the driver failed to
684 * queue the page to the device), the page will still be locked. If the
685 * caller is a ->writepage implementation, it will need to unlock the page.
686 *
687 * Errors returned by this function are usually "soft", eg out of memory, or
688 * queue full; callers should try a different route to write this page rather
689 * than propagate an error back up the stack.
690 *
691 * Return: negative errno if an error occurs, 0 if submission was successful.
692 */
693 int bdev_write_page(struct block_device *bdev, sector_t sector,
694 struct page *page, struct writeback_control *wbc)
695 {
696 int result;
697 const struct block_device_operations *ops = bdev->bd_disk->fops;
698
699 if (!ops->rw_page || bdev_get_integrity(bdev))
700 return -EOPNOTSUPP;
701 result = blk_queue_enter(bdev->bd_queue, 0);
702 if (result)
703 return result;
704
705 set_page_writeback(page);
706 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
707 if (result) {
708 end_page_writeback(page);
709 } else {
710 clean_page_buffers(page);
711 unlock_page(page);
712 }
713 blk_queue_exit(bdev->bd_queue);
714 return result;
715 }
716 EXPORT_SYMBOL_GPL(bdev_write_page);
717
718 /*
719 * pseudo-fs
720 */
721
722 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
723 static struct kmem_cache * bdev_cachep __read_mostly;
724
725 static struct inode *bdev_alloc_inode(struct super_block *sb)
726 {
727 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
728 if (!ei)
729 return NULL;
730 return &ei->vfs_inode;
731 }
732
733 static void bdev_i_callback(struct rcu_head *head)
734 {
735 struct inode *inode = container_of(head, struct inode, i_rcu);
736 struct bdev_inode *bdi = BDEV_I(inode);
737
738 kmem_cache_free(bdev_cachep, bdi);
739 }
740
741 static void bdev_destroy_inode(struct inode *inode)
742 {
743 call_rcu(&inode->i_rcu, bdev_i_callback);
744 }
745
746 static void init_once(void *foo)
747 {
748 struct bdev_inode *ei = (struct bdev_inode *) foo;
749 struct block_device *bdev = &ei->bdev;
750
751 memset(bdev, 0, sizeof(*bdev));
752 mutex_init(&bdev->bd_mutex);
753 INIT_LIST_HEAD(&bdev->bd_list);
754 #ifdef CONFIG_SYSFS
755 INIT_LIST_HEAD(&bdev->bd_holder_disks);
756 #endif
757 bdev->bd_bdi = &noop_backing_dev_info;
758 inode_init_once(&ei->vfs_inode);
759 /* Initialize mutex for freeze. */
760 mutex_init(&bdev->bd_fsfreeze_mutex);
761 }
762
763 static void bdev_evict_inode(struct inode *inode)
764 {
765 struct block_device *bdev = &BDEV_I(inode)->bdev;
766 truncate_inode_pages_final(&inode->i_data);
767 invalidate_inode_buffers(inode); /* is it needed here? */
768 clear_inode(inode);
769 spin_lock(&bdev_lock);
770 list_del_init(&bdev->bd_list);
771 spin_unlock(&bdev_lock);
772 /* Detach inode from wb early as bdi_put() may free bdi->wb */
773 inode_detach_wb(inode);
774 if (bdev->bd_bdi != &noop_backing_dev_info) {
775 bdi_put(bdev->bd_bdi);
776 bdev->bd_bdi = &noop_backing_dev_info;
777 }
778 }
779
780 static const struct super_operations bdev_sops = {
781 .statfs = simple_statfs,
782 .alloc_inode = bdev_alloc_inode,
783 .destroy_inode = bdev_destroy_inode,
784 .drop_inode = generic_delete_inode,
785 .evict_inode = bdev_evict_inode,
786 };
787
788 static struct dentry *bd_mount(struct file_system_type *fs_type,
789 int flags, const char *dev_name, void *data)
790 {
791 struct dentry *dent;
792 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
793 if (!IS_ERR(dent))
794 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
795 return dent;
796 }
797
798 static struct file_system_type bd_type = {
799 .name = "bdev",
800 .mount = bd_mount,
801 .kill_sb = kill_anon_super,
802 };
803
804 struct super_block *blockdev_superblock __read_mostly;
805 EXPORT_SYMBOL_GPL(blockdev_superblock);
806
807 void __init bdev_cache_init(void)
808 {
809 int err;
810 static struct vfsmount *bd_mnt;
811
812 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
813 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
814 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
815 init_once);
816 err = register_filesystem(&bd_type);
817 if (err)
818 panic("Cannot register bdev pseudo-fs");
819 bd_mnt = kern_mount(&bd_type);
820 if (IS_ERR(bd_mnt))
821 panic("Cannot create bdev pseudo-fs");
822 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
823 }
824
825 /*
826 * Most likely _very_ bad one - but then it's hardly critical for small
827 * /dev and can be fixed when somebody will need really large one.
828 * Keep in mind that it will be fed through icache hash function too.
829 */
830 static inline unsigned long hash(dev_t dev)
831 {
832 return MAJOR(dev)+MINOR(dev);
833 }
834
835 static int bdev_test(struct inode *inode, void *data)
836 {
837 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
838 }
839
840 static int bdev_set(struct inode *inode, void *data)
841 {
842 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
843 return 0;
844 }
845
846 static LIST_HEAD(all_bdevs);
847
848 /*
849 * If there is a bdev inode for this device, unhash it so that it gets evicted
850 * as soon as last inode reference is dropped.
851 */
852 void bdev_unhash_inode(dev_t dev)
853 {
854 struct inode *inode;
855
856 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
857 if (inode) {
858 remove_inode_hash(inode);
859 iput(inode);
860 }
861 }
862
863 struct block_device *bdget(dev_t dev)
864 {
865 struct block_device *bdev;
866 struct inode *inode;
867
868 inode = iget5_locked(blockdev_superblock, hash(dev),
869 bdev_test, bdev_set, &dev);
870
871 if (!inode)
872 return NULL;
873
874 bdev = &BDEV_I(inode)->bdev;
875
876 if (inode->i_state & I_NEW) {
877 bdev->bd_contains = NULL;
878 bdev->bd_super = NULL;
879 bdev->bd_inode = inode;
880 bdev->bd_block_size = i_blocksize(inode);
881 bdev->bd_part_count = 0;
882 bdev->bd_invalidated = 0;
883 inode->i_mode = S_IFBLK;
884 inode->i_rdev = dev;
885 inode->i_bdev = bdev;
886 inode->i_data.a_ops = &def_blk_aops;
887 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
888 spin_lock(&bdev_lock);
889 list_add(&bdev->bd_list, &all_bdevs);
890 spin_unlock(&bdev_lock);
891 unlock_new_inode(inode);
892 }
893 return bdev;
894 }
895
896 EXPORT_SYMBOL(bdget);
897
898 /**
899 * bdgrab -- Grab a reference to an already referenced block device
900 * @bdev: Block device to grab a reference to.
901 */
902 struct block_device *bdgrab(struct block_device *bdev)
903 {
904 ihold(bdev->bd_inode);
905 return bdev;
906 }
907 EXPORT_SYMBOL(bdgrab);
908
909 long nr_blockdev_pages(void)
910 {
911 struct block_device *bdev;
912 long ret = 0;
913 spin_lock(&bdev_lock);
914 list_for_each_entry(bdev, &all_bdevs, bd_list) {
915 ret += bdev->bd_inode->i_mapping->nrpages;
916 }
917 spin_unlock(&bdev_lock);
918 return ret;
919 }
920
921 void bdput(struct block_device *bdev)
922 {
923 iput(bdev->bd_inode);
924 }
925
926 EXPORT_SYMBOL(bdput);
927
928 static struct block_device *bd_acquire(struct inode *inode)
929 {
930 struct block_device *bdev;
931
932 spin_lock(&bdev_lock);
933 bdev = inode->i_bdev;
934 if (bdev && !inode_unhashed(bdev->bd_inode)) {
935 bdgrab(bdev);
936 spin_unlock(&bdev_lock);
937 return bdev;
938 }
939 spin_unlock(&bdev_lock);
940
941 /*
942 * i_bdev references block device inode that was already shut down
943 * (corresponding device got removed). Remove the reference and look
944 * up block device inode again just in case new device got
945 * reestablished under the same device number.
946 */
947 if (bdev)
948 bd_forget(inode);
949
950 bdev = bdget(inode->i_rdev);
951 if (bdev) {
952 spin_lock(&bdev_lock);
953 if (!inode->i_bdev) {
954 /*
955 * We take an additional reference to bd_inode,
956 * and it's released in clear_inode() of inode.
957 * So, we can access it via ->i_mapping always
958 * without igrab().
959 */
960 bdgrab(bdev);
961 inode->i_bdev = bdev;
962 inode->i_mapping = bdev->bd_inode->i_mapping;
963 }
964 spin_unlock(&bdev_lock);
965 }
966 return bdev;
967 }
968
969 /* Call when you free inode */
970
971 void bd_forget(struct inode *inode)
972 {
973 struct block_device *bdev = NULL;
974
975 spin_lock(&bdev_lock);
976 if (!sb_is_blkdev_sb(inode->i_sb))
977 bdev = inode->i_bdev;
978 inode->i_bdev = NULL;
979 inode->i_mapping = &inode->i_data;
980 spin_unlock(&bdev_lock);
981
982 if (bdev)
983 bdput(bdev);
984 }
985
986 /**
987 * bd_may_claim - test whether a block device can be claimed
988 * @bdev: block device of interest
989 * @whole: whole block device containing @bdev, may equal @bdev
990 * @holder: holder trying to claim @bdev
991 *
992 * Test whether @bdev can be claimed by @holder.
993 *
994 * CONTEXT:
995 * spin_lock(&bdev_lock).
996 *
997 * RETURNS:
998 * %true if @bdev can be claimed, %false otherwise.
999 */
1000 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1001 void *holder)
1002 {
1003 if (bdev->bd_holder == holder)
1004 return true; /* already a holder */
1005 else if (bdev->bd_holder != NULL)
1006 return false; /* held by someone else */
1007 else if (whole == bdev)
1008 return true; /* is a whole device which isn't held */
1009
1010 else if (whole->bd_holder == bd_may_claim)
1011 return true; /* is a partition of a device that is being partitioned */
1012 else if (whole->bd_holder != NULL)
1013 return false; /* is a partition of a held device */
1014 else
1015 return true; /* is a partition of an un-held device */
1016 }
1017
1018 /**
1019 * bd_prepare_to_claim - prepare to claim a block device
1020 * @bdev: block device of interest
1021 * @whole: the whole device containing @bdev, may equal @bdev
1022 * @holder: holder trying to claim @bdev
1023 *
1024 * Prepare to claim @bdev. This function fails if @bdev is already
1025 * claimed by another holder and waits if another claiming is in
1026 * progress. This function doesn't actually claim. On successful
1027 * return, the caller has ownership of bd_claiming and bd_holder[s].
1028 *
1029 * CONTEXT:
1030 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1031 * it multiple times.
1032 *
1033 * RETURNS:
1034 * 0 if @bdev can be claimed, -EBUSY otherwise.
1035 */
1036 static int bd_prepare_to_claim(struct block_device *bdev,
1037 struct block_device *whole, void *holder)
1038 {
1039 retry:
1040 /* if someone else claimed, fail */
1041 if (!bd_may_claim(bdev, whole, holder))
1042 return -EBUSY;
1043
1044 /* if claiming is already in progress, wait for it to finish */
1045 if (whole->bd_claiming) {
1046 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1047 DEFINE_WAIT(wait);
1048
1049 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1050 spin_unlock(&bdev_lock);
1051 schedule();
1052 finish_wait(wq, &wait);
1053 spin_lock(&bdev_lock);
1054 goto retry;
1055 }
1056
1057 /* yay, all mine */
1058 return 0;
1059 }
1060
1061 /**
1062 * bd_start_claiming - start claiming a block device
1063 * @bdev: block device of interest
1064 * @holder: holder trying to claim @bdev
1065 *
1066 * @bdev is about to be opened exclusively. Check @bdev can be opened
1067 * exclusively and mark that an exclusive open is in progress. Each
1068 * successful call to this function must be matched with a call to
1069 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1070 * fail).
1071 *
1072 * This function is used to gain exclusive access to the block device
1073 * without actually causing other exclusive open attempts to fail. It
1074 * should be used when the open sequence itself requires exclusive
1075 * access but may subsequently fail.
1076 *
1077 * CONTEXT:
1078 * Might sleep.
1079 *
1080 * RETURNS:
1081 * Pointer to the block device containing @bdev on success, ERR_PTR()
1082 * value on failure.
1083 */
1084 static struct block_device *bd_start_claiming(struct block_device *bdev,
1085 void *holder)
1086 {
1087 struct gendisk *disk;
1088 struct block_device *whole;
1089 int partno, err;
1090
1091 might_sleep();
1092
1093 /*
1094 * @bdev might not have been initialized properly yet, look up
1095 * and grab the outer block device the hard way.
1096 */
1097 disk = get_gendisk(bdev->bd_dev, &partno);
1098 if (!disk)
1099 return ERR_PTR(-ENXIO);
1100
1101 /*
1102 * Normally, @bdev should equal what's returned from bdget_disk()
1103 * if partno is 0; however, some drivers (floppy) use multiple
1104 * bdev's for the same physical device and @bdev may be one of the
1105 * aliases. Keep @bdev if partno is 0. This means claimer
1106 * tracking is broken for those devices but it has always been that
1107 * way.
1108 */
1109 if (partno)
1110 whole = bdget_disk(disk, 0);
1111 else
1112 whole = bdgrab(bdev);
1113
1114 module_put(disk->fops->owner);
1115 put_disk(disk);
1116 if (!whole)
1117 return ERR_PTR(-ENOMEM);
1118
1119 /* prepare to claim, if successful, mark claiming in progress */
1120 spin_lock(&bdev_lock);
1121
1122 err = bd_prepare_to_claim(bdev, whole, holder);
1123 if (err == 0) {
1124 whole->bd_claiming = holder;
1125 spin_unlock(&bdev_lock);
1126 return whole;
1127 } else {
1128 spin_unlock(&bdev_lock);
1129 bdput(whole);
1130 return ERR_PTR(err);
1131 }
1132 }
1133
1134 #ifdef CONFIG_SYSFS
1135 struct bd_holder_disk {
1136 struct list_head list;
1137 struct gendisk *disk;
1138 int refcnt;
1139 };
1140
1141 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1142 struct gendisk *disk)
1143 {
1144 struct bd_holder_disk *holder;
1145
1146 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1147 if (holder->disk == disk)
1148 return holder;
1149 return NULL;
1150 }
1151
1152 static int add_symlink(struct kobject *from, struct kobject *to)
1153 {
1154 return sysfs_create_link(from, to, kobject_name(to));
1155 }
1156
1157 static void del_symlink(struct kobject *from, struct kobject *to)
1158 {
1159 sysfs_remove_link(from, kobject_name(to));
1160 }
1161
1162 /**
1163 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1164 * @bdev: the claimed slave bdev
1165 * @disk: the holding disk
1166 *
1167 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1168 *
1169 * This functions creates the following sysfs symlinks.
1170 *
1171 * - from "slaves" directory of the holder @disk to the claimed @bdev
1172 * - from "holders" directory of the @bdev to the holder @disk
1173 *
1174 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1175 * passed to bd_link_disk_holder(), then:
1176 *
1177 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1178 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1179 *
1180 * The caller must have claimed @bdev before calling this function and
1181 * ensure that both @bdev and @disk are valid during the creation and
1182 * lifetime of these symlinks.
1183 *
1184 * CONTEXT:
1185 * Might sleep.
1186 *
1187 * RETURNS:
1188 * 0 on success, -errno on failure.
1189 */
1190 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1191 {
1192 struct bd_holder_disk *holder;
1193 int ret = 0;
1194
1195 mutex_lock(&bdev->bd_mutex);
1196
1197 WARN_ON_ONCE(!bdev->bd_holder);
1198
1199 /* FIXME: remove the following once add_disk() handles errors */
1200 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1201 goto out_unlock;
1202
1203 holder = bd_find_holder_disk(bdev, disk);
1204 if (holder) {
1205 holder->refcnt++;
1206 goto out_unlock;
1207 }
1208
1209 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1210 if (!holder) {
1211 ret = -ENOMEM;
1212 goto out_unlock;
1213 }
1214
1215 INIT_LIST_HEAD(&holder->list);
1216 holder->disk = disk;
1217 holder->refcnt = 1;
1218
1219 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1220 if (ret)
1221 goto out_free;
1222
1223 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1224 if (ret)
1225 goto out_del;
1226 /*
1227 * bdev could be deleted beneath us which would implicitly destroy
1228 * the holder directory. Hold on to it.
1229 */
1230 kobject_get(bdev->bd_part->holder_dir);
1231
1232 list_add(&holder->list, &bdev->bd_holder_disks);
1233 goto out_unlock;
1234
1235 out_del:
1236 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1237 out_free:
1238 kfree(holder);
1239 out_unlock:
1240 mutex_unlock(&bdev->bd_mutex);
1241 return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1244
1245 /**
1246 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1247 * @bdev: the calimed slave bdev
1248 * @disk: the holding disk
1249 *
1250 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1251 *
1252 * CONTEXT:
1253 * Might sleep.
1254 */
1255 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1256 {
1257 struct bd_holder_disk *holder;
1258
1259 mutex_lock(&bdev->bd_mutex);
1260
1261 holder = bd_find_holder_disk(bdev, disk);
1262
1263 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1264 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1265 del_symlink(bdev->bd_part->holder_dir,
1266 &disk_to_dev(disk)->kobj);
1267 kobject_put(bdev->bd_part->holder_dir);
1268 list_del_init(&holder->list);
1269 kfree(holder);
1270 }
1271
1272 mutex_unlock(&bdev->bd_mutex);
1273 }
1274 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1275 #endif
1276
1277 /**
1278 * flush_disk - invalidates all buffer-cache entries on a disk
1279 *
1280 * @bdev: struct block device to be flushed
1281 * @kill_dirty: flag to guide handling of dirty inodes
1282 *
1283 * Invalidates all buffer-cache entries on a disk. It should be called
1284 * when a disk has been changed -- either by a media change or online
1285 * resize.
1286 */
1287 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1288 {
1289 if (__invalidate_device(bdev, kill_dirty)) {
1290 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1291 "resized disk %s\n",
1292 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1293 }
1294
1295 if (!bdev->bd_disk)
1296 return;
1297 if (disk_part_scan_enabled(bdev->bd_disk))
1298 bdev->bd_invalidated = 1;
1299 }
1300
1301 /**
1302 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1303 * @disk: struct gendisk to check
1304 * @bdev: struct bdev to adjust.
1305 *
1306 * This routine checks to see if the bdev size does not match the disk size
1307 * and adjusts it if it differs.
1308 */
1309 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1310 {
1311 loff_t disk_size, bdev_size;
1312
1313 disk_size = (loff_t)get_capacity(disk) << 9;
1314 bdev_size = i_size_read(bdev->bd_inode);
1315 if (disk_size != bdev_size) {
1316 printk(KERN_INFO
1317 "%s: detected capacity change from %lld to %lld\n",
1318 disk->disk_name, bdev_size, disk_size);
1319 i_size_write(bdev->bd_inode, disk_size);
1320 flush_disk(bdev, false);
1321 }
1322 }
1323 EXPORT_SYMBOL(check_disk_size_change);
1324
1325 /**
1326 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1327 * @disk: struct gendisk to be revalidated
1328 *
1329 * This routine is a wrapper for lower-level driver's revalidate_disk
1330 * call-backs. It is used to do common pre and post operations needed
1331 * for all revalidate_disk operations.
1332 */
1333 int revalidate_disk(struct gendisk *disk)
1334 {
1335 struct block_device *bdev;
1336 int ret = 0;
1337
1338 if (disk->fops->revalidate_disk)
1339 ret = disk->fops->revalidate_disk(disk);
1340 bdev = bdget_disk(disk, 0);
1341 if (!bdev)
1342 return ret;
1343
1344 mutex_lock(&bdev->bd_mutex);
1345 check_disk_size_change(disk, bdev);
1346 bdev->bd_invalidated = 0;
1347 mutex_unlock(&bdev->bd_mutex);
1348 bdput(bdev);
1349 return ret;
1350 }
1351 EXPORT_SYMBOL(revalidate_disk);
1352
1353 /*
1354 * This routine checks whether a removable media has been changed,
1355 * and invalidates all buffer-cache-entries in that case. This
1356 * is a relatively slow routine, so we have to try to minimize using
1357 * it. Thus it is called only upon a 'mount' or 'open'. This
1358 * is the best way of combining speed and utility, I think.
1359 * People changing diskettes in the middle of an operation deserve
1360 * to lose :-)
1361 */
1362 int check_disk_change(struct block_device *bdev)
1363 {
1364 struct gendisk *disk = bdev->bd_disk;
1365 const struct block_device_operations *bdops = disk->fops;
1366 unsigned int events;
1367
1368 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1369 DISK_EVENT_EJECT_REQUEST);
1370 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1371 return 0;
1372
1373 flush_disk(bdev, true);
1374 if (bdops->revalidate_disk)
1375 bdops->revalidate_disk(bdev->bd_disk);
1376 return 1;
1377 }
1378
1379 EXPORT_SYMBOL(check_disk_change);
1380
1381 void bd_set_size(struct block_device *bdev, loff_t size)
1382 {
1383 unsigned bsize = bdev_logical_block_size(bdev);
1384
1385 inode_lock(bdev->bd_inode);
1386 i_size_write(bdev->bd_inode, size);
1387 inode_unlock(bdev->bd_inode);
1388 while (bsize < PAGE_SIZE) {
1389 if (size & bsize)
1390 break;
1391 bsize <<= 1;
1392 }
1393 bdev->bd_block_size = bsize;
1394 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1395 }
1396 EXPORT_SYMBOL(bd_set_size);
1397
1398 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1399
1400 /*
1401 * bd_mutex locking:
1402 *
1403 * mutex_lock(part->bd_mutex)
1404 * mutex_lock_nested(whole->bd_mutex, 1)
1405 */
1406
1407 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1408 {
1409 struct gendisk *disk;
1410 struct module *owner;
1411 int ret;
1412 int partno;
1413 int perm = 0;
1414
1415 if (mode & FMODE_READ)
1416 perm |= MAY_READ;
1417 if (mode & FMODE_WRITE)
1418 perm |= MAY_WRITE;
1419 /*
1420 * hooks: /n/, see "layering violations".
1421 */
1422 if (!for_part) {
1423 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1424 if (ret != 0) {
1425 bdput(bdev);
1426 return ret;
1427 }
1428 }
1429
1430 restart:
1431
1432 ret = -ENXIO;
1433 disk = get_gendisk(bdev->bd_dev, &partno);
1434 if (!disk)
1435 goto out;
1436 owner = disk->fops->owner;
1437
1438 disk_block_events(disk);
1439 mutex_lock_nested(&bdev->bd_mutex, for_part);
1440 if (!bdev->bd_openers) {
1441 bdev->bd_disk = disk;
1442 bdev->bd_queue = disk->queue;
1443 bdev->bd_contains = bdev;
1444 bdev->bd_partno = partno;
1445
1446 if (!partno) {
1447 ret = -ENXIO;
1448 bdev->bd_part = disk_get_part(disk, partno);
1449 if (!bdev->bd_part)
1450 goto out_clear;
1451
1452 ret = 0;
1453 if (disk->fops->open) {
1454 ret = disk->fops->open(bdev, mode);
1455 if (ret == -ERESTARTSYS) {
1456 /* Lost a race with 'disk' being
1457 * deleted, try again.
1458 * See md.c
1459 */
1460 disk_put_part(bdev->bd_part);
1461 bdev->bd_part = NULL;
1462 bdev->bd_disk = NULL;
1463 bdev->bd_queue = NULL;
1464 mutex_unlock(&bdev->bd_mutex);
1465 disk_unblock_events(disk);
1466 put_disk(disk);
1467 module_put(owner);
1468 goto restart;
1469 }
1470 }
1471
1472 if (!ret)
1473 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1474
1475 /*
1476 * If the device is invalidated, rescan partition
1477 * if open succeeded or failed with -ENOMEDIUM.
1478 * The latter is necessary to prevent ghost
1479 * partitions on a removed medium.
1480 */
1481 if (bdev->bd_invalidated) {
1482 if (!ret)
1483 rescan_partitions(disk, bdev);
1484 else if (ret == -ENOMEDIUM)
1485 invalidate_partitions(disk, bdev);
1486 }
1487
1488 if (ret)
1489 goto out_clear;
1490 } else {
1491 struct block_device *whole;
1492 whole = bdget_disk(disk, 0);
1493 ret = -ENOMEM;
1494 if (!whole)
1495 goto out_clear;
1496 BUG_ON(for_part);
1497 ret = __blkdev_get(whole, mode, 1);
1498 if (ret)
1499 goto out_clear;
1500 bdev->bd_contains = whole;
1501 bdev->bd_part = disk_get_part(disk, partno);
1502 if (!(disk->flags & GENHD_FL_UP) ||
1503 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1504 ret = -ENXIO;
1505 goto out_clear;
1506 }
1507 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1508 }
1509
1510 if (bdev->bd_bdi == &noop_backing_dev_info)
1511 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1512 } else {
1513 if (bdev->bd_contains == bdev) {
1514 ret = 0;
1515 if (bdev->bd_disk->fops->open)
1516 ret = bdev->bd_disk->fops->open(bdev, mode);
1517 /* the same as first opener case, read comment there */
1518 if (bdev->bd_invalidated) {
1519 if (!ret)
1520 rescan_partitions(bdev->bd_disk, bdev);
1521 else if (ret == -ENOMEDIUM)
1522 invalidate_partitions(bdev->bd_disk, bdev);
1523 }
1524 if (ret)
1525 goto out_unlock_bdev;
1526 }
1527 /* only one opener holds refs to the module and disk */
1528 put_disk(disk);
1529 module_put(owner);
1530 }
1531 bdev->bd_openers++;
1532 if (for_part)
1533 bdev->bd_part_count++;
1534 mutex_unlock(&bdev->bd_mutex);
1535 disk_unblock_events(disk);
1536 return 0;
1537
1538 out_clear:
1539 disk_put_part(bdev->bd_part);
1540 bdev->bd_disk = NULL;
1541 bdev->bd_part = NULL;
1542 bdev->bd_queue = NULL;
1543 if (bdev != bdev->bd_contains)
1544 __blkdev_put(bdev->bd_contains, mode, 1);
1545 bdev->bd_contains = NULL;
1546 out_unlock_bdev:
1547 mutex_unlock(&bdev->bd_mutex);
1548 disk_unblock_events(disk);
1549 put_disk(disk);
1550 module_put(owner);
1551 out:
1552 bdput(bdev);
1553
1554 return ret;
1555 }
1556
1557 /**
1558 * blkdev_get - open a block device
1559 * @bdev: block_device to open
1560 * @mode: FMODE_* mask
1561 * @holder: exclusive holder identifier
1562 *
1563 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1564 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1565 * @holder is invalid. Exclusive opens may nest for the same @holder.
1566 *
1567 * On success, the reference count of @bdev is unchanged. On failure,
1568 * @bdev is put.
1569 *
1570 * CONTEXT:
1571 * Might sleep.
1572 *
1573 * RETURNS:
1574 * 0 on success, -errno on failure.
1575 */
1576 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1577 {
1578 struct block_device *whole = NULL;
1579 int res;
1580
1581 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1582
1583 if ((mode & FMODE_EXCL) && holder) {
1584 whole = bd_start_claiming(bdev, holder);
1585 if (IS_ERR(whole)) {
1586 bdput(bdev);
1587 return PTR_ERR(whole);
1588 }
1589 }
1590
1591 res = __blkdev_get(bdev, mode, 0);
1592
1593 if (whole) {
1594 struct gendisk *disk = whole->bd_disk;
1595
1596 /* finish claiming */
1597 mutex_lock(&bdev->bd_mutex);
1598 spin_lock(&bdev_lock);
1599
1600 if (!res) {
1601 BUG_ON(!bd_may_claim(bdev, whole, holder));
1602 /*
1603 * Note that for a whole device bd_holders
1604 * will be incremented twice, and bd_holder
1605 * will be set to bd_may_claim before being
1606 * set to holder
1607 */
1608 whole->bd_holders++;
1609 whole->bd_holder = bd_may_claim;
1610 bdev->bd_holders++;
1611 bdev->bd_holder = holder;
1612 }
1613
1614 /* tell others that we're done */
1615 BUG_ON(whole->bd_claiming != holder);
1616 whole->bd_claiming = NULL;
1617 wake_up_bit(&whole->bd_claiming, 0);
1618
1619 spin_unlock(&bdev_lock);
1620
1621 /*
1622 * Block event polling for write claims if requested. Any
1623 * write holder makes the write_holder state stick until
1624 * all are released. This is good enough and tracking
1625 * individual writeable reference is too fragile given the
1626 * way @mode is used in blkdev_get/put().
1627 */
1628 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1629 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1630 bdev->bd_write_holder = true;
1631 disk_block_events(disk);
1632 }
1633
1634 mutex_unlock(&bdev->bd_mutex);
1635 bdput(whole);
1636 }
1637
1638 return res;
1639 }
1640 EXPORT_SYMBOL(blkdev_get);
1641
1642 /**
1643 * blkdev_get_by_path - open a block device by name
1644 * @path: path to the block device to open
1645 * @mode: FMODE_* mask
1646 * @holder: exclusive holder identifier
1647 *
1648 * Open the blockdevice described by the device file at @path. @mode
1649 * and @holder are identical to blkdev_get().
1650 *
1651 * On success, the returned block_device has reference count of one.
1652 *
1653 * CONTEXT:
1654 * Might sleep.
1655 *
1656 * RETURNS:
1657 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1658 */
1659 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1660 void *holder)
1661 {
1662 struct block_device *bdev;
1663 int perm = 0;
1664 int err;
1665
1666 if (mode & FMODE_READ)
1667 perm |= MAY_READ;
1668 if (mode & FMODE_WRITE)
1669 perm |= MAY_WRITE;
1670 bdev = lookup_bdev(path, perm);
1671 if (IS_ERR(bdev))
1672 return bdev;
1673
1674 err = blkdev_get(bdev, mode, holder);
1675 if (err)
1676 return ERR_PTR(err);
1677
1678 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1679 blkdev_put(bdev, mode);
1680 return ERR_PTR(-EACCES);
1681 }
1682
1683 return bdev;
1684 }
1685 EXPORT_SYMBOL(blkdev_get_by_path);
1686
1687 /**
1688 * blkdev_get_by_dev - open a block device by device number
1689 * @dev: device number of block device to open
1690 * @mode: FMODE_* mask
1691 * @holder: exclusive holder identifier
1692 *
1693 * Open the blockdevice described by device number @dev. @mode and
1694 * @holder are identical to blkdev_get().
1695 *
1696 * Use it ONLY if you really do not have anything better - i.e. when
1697 * you are behind a truly sucky interface and all you are given is a
1698 * device number. _Never_ to be used for internal purposes. If you
1699 * ever need it - reconsider your API.
1700 *
1701 * On success, the returned block_device has reference count of one.
1702 *
1703 * CONTEXT:
1704 * Might sleep.
1705 *
1706 * RETURNS:
1707 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1708 */
1709 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1710 {
1711 struct block_device *bdev;
1712 int err;
1713
1714 bdev = bdget(dev);
1715 if (!bdev)
1716 return ERR_PTR(-ENOMEM);
1717
1718 err = blkdev_get(bdev, mode, holder);
1719 if (err)
1720 return ERR_PTR(err);
1721
1722 return bdev;
1723 }
1724 EXPORT_SYMBOL(blkdev_get_by_dev);
1725
1726 static int blkdev_open(struct inode * inode, struct file * filp)
1727 {
1728 struct block_device *bdev;
1729
1730 /*
1731 * Preserve backwards compatibility and allow large file access
1732 * even if userspace doesn't ask for it explicitly. Some mkfs
1733 * binary needs it. We might want to drop this workaround
1734 * during an unstable branch.
1735 */
1736 filp->f_flags |= O_LARGEFILE;
1737
1738 filp->f_mode |= FMODE_NOWAIT;
1739
1740 if (filp->f_flags & O_NDELAY)
1741 filp->f_mode |= FMODE_NDELAY;
1742 if (filp->f_flags & O_EXCL)
1743 filp->f_mode |= FMODE_EXCL;
1744 if ((filp->f_flags & O_ACCMODE) == 3)
1745 filp->f_mode |= FMODE_WRITE_IOCTL;
1746
1747 bdev = bd_acquire(inode);
1748 if (bdev == NULL)
1749 return -ENOMEM;
1750
1751 /*
1752 * A negative i_writecount for bdev->bd_inode means that the bdev
1753 * or one of its paritions is mounted in a user namespace. Deny
1754 * writing for non-root in this case, otherwise an unprivileged
1755 * user can attack the kernel by modifying the backing store of a
1756 * mounted filesystem.
1757 */
1758 if ((filp->f_mode & FMODE_WRITE) &&
1759 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN) &&
1760 !atomic_inc_unless_negative(&bdev->bd_inode->i_writecount)) {
1761 bdput(bdev);
1762 return -EBUSY;
1763 }
1764
1765 filp->f_mapping = bdev->bd_inode->i_mapping;
1766 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1767
1768 return blkdev_get(bdev, filp->f_mode, filp);
1769 }
1770
1771 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1772 {
1773 struct gendisk *disk = bdev->bd_disk;
1774 struct block_device *victim = NULL;
1775
1776 mutex_lock_nested(&bdev->bd_mutex, for_part);
1777 if (for_part)
1778 bdev->bd_part_count--;
1779
1780 if (!--bdev->bd_openers) {
1781 WARN_ON_ONCE(bdev->bd_holders);
1782 sync_blockdev(bdev);
1783 kill_bdev(bdev);
1784
1785 bdev_write_inode(bdev);
1786 }
1787 if (bdev->bd_contains == bdev) {
1788 if (disk->fops->release)
1789 disk->fops->release(disk, mode);
1790 }
1791 if (!bdev->bd_openers) {
1792 struct module *owner = disk->fops->owner;
1793
1794 disk_put_part(bdev->bd_part);
1795 bdev->bd_part = NULL;
1796 bdev->bd_disk = NULL;
1797 if (bdev != bdev->bd_contains)
1798 victim = bdev->bd_contains;
1799 bdev->bd_contains = NULL;
1800
1801 put_disk(disk);
1802 module_put(owner);
1803 }
1804 mutex_unlock(&bdev->bd_mutex);
1805 bdput(bdev);
1806 if (victim)
1807 __blkdev_put(victim, mode, 1);
1808 }
1809
1810 void blkdev_put(struct block_device *bdev, fmode_t mode)
1811 {
1812 mutex_lock(&bdev->bd_mutex);
1813
1814 if (mode & FMODE_EXCL) {
1815 bool bdev_free;
1816
1817 /*
1818 * Release a claim on the device. The holder fields
1819 * are protected with bdev_lock. bd_mutex is to
1820 * synchronize disk_holder unlinking.
1821 */
1822 spin_lock(&bdev_lock);
1823
1824 WARN_ON_ONCE(--bdev->bd_holders < 0);
1825 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1826
1827 /* bd_contains might point to self, check in a separate step */
1828 if ((bdev_free = !bdev->bd_holders))
1829 bdev->bd_holder = NULL;
1830 if (!bdev->bd_contains->bd_holders)
1831 bdev->bd_contains->bd_holder = NULL;
1832
1833 spin_unlock(&bdev_lock);
1834
1835 /*
1836 * If this was the last claim, remove holder link and
1837 * unblock evpoll if it was a write holder.
1838 */
1839 if (bdev_free && bdev->bd_write_holder) {
1840 disk_unblock_events(bdev->bd_disk);
1841 bdev->bd_write_holder = false;
1842 }
1843 }
1844
1845 /*
1846 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1847 * event. This is to ensure detection of media removal commanded
1848 * from userland - e.g. eject(1).
1849 */
1850 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1851
1852 mutex_unlock(&bdev->bd_mutex);
1853
1854 __blkdev_put(bdev, mode, 0);
1855 }
1856 EXPORT_SYMBOL(blkdev_put);
1857
1858 static int blkdev_close(struct inode * inode, struct file * filp)
1859 {
1860 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1861 if (filp->f_mode & FMODE_WRITE &&
1862 !file_ns_capable(filp, &init_user_ns, CAP_SYS_ADMIN))
1863 atomic_dec(&bdev->bd_inode->i_writecount);
1864 blkdev_put(bdev, filp->f_mode);
1865 return 0;
1866 }
1867
1868 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1869 {
1870 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1871 fmode_t mode = file->f_mode;
1872
1873 /*
1874 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1875 * to updated it before every ioctl.
1876 */
1877 if (file->f_flags & O_NDELAY)
1878 mode |= FMODE_NDELAY;
1879 else
1880 mode &= ~FMODE_NDELAY;
1881
1882 return blkdev_ioctl(bdev, mode, cmd, arg);
1883 }
1884
1885 /*
1886 * Write data to the block device. Only intended for the block device itself
1887 * and the raw driver which basically is a fake block device.
1888 *
1889 * Does not take i_mutex for the write and thus is not for general purpose
1890 * use.
1891 */
1892 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1893 {
1894 struct file *file = iocb->ki_filp;
1895 struct inode *bd_inode = bdev_file_inode(file);
1896 loff_t size = i_size_read(bd_inode);
1897 struct blk_plug plug;
1898 ssize_t ret;
1899
1900 if (bdev_read_only(I_BDEV(bd_inode)))
1901 return -EPERM;
1902
1903 if (!iov_iter_count(from))
1904 return 0;
1905
1906 if (iocb->ki_pos >= size)
1907 return -ENOSPC;
1908
1909 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1910 return -EOPNOTSUPP;
1911
1912 iov_iter_truncate(from, size - iocb->ki_pos);
1913
1914 blk_start_plug(&plug);
1915 ret = __generic_file_write_iter(iocb, from);
1916 if (ret > 0)
1917 ret = generic_write_sync(iocb, ret);
1918 blk_finish_plug(&plug);
1919 return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1922
1923 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1924 {
1925 struct file *file = iocb->ki_filp;
1926 struct inode *bd_inode = bdev_file_inode(file);
1927 loff_t size = i_size_read(bd_inode);
1928 loff_t pos = iocb->ki_pos;
1929
1930 if (pos >= size)
1931 return 0;
1932
1933 size -= pos;
1934 iov_iter_truncate(to, size);
1935 return generic_file_read_iter(iocb, to);
1936 }
1937 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1938
1939 /*
1940 * Try to release a page associated with block device when the system
1941 * is under memory pressure.
1942 */
1943 static int blkdev_releasepage(struct page *page, gfp_t wait)
1944 {
1945 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1946
1947 if (super && super->s_op->bdev_try_to_free_page)
1948 return super->s_op->bdev_try_to_free_page(super, page, wait);
1949
1950 return try_to_free_buffers(page);
1951 }
1952
1953 static int blkdev_writepages(struct address_space *mapping,
1954 struct writeback_control *wbc)
1955 {
1956 if (dax_mapping(mapping)) {
1957 struct block_device *bdev = I_BDEV(mapping->host);
1958
1959 return dax_writeback_mapping_range(mapping, bdev, wbc);
1960 }
1961 return generic_writepages(mapping, wbc);
1962 }
1963
1964 static const struct address_space_operations def_blk_aops = {
1965 .readpage = blkdev_readpage,
1966 .readpages = blkdev_readpages,
1967 .writepage = blkdev_writepage,
1968 .write_begin = blkdev_write_begin,
1969 .write_end = blkdev_write_end,
1970 .writepages = blkdev_writepages,
1971 .releasepage = blkdev_releasepage,
1972 .direct_IO = blkdev_direct_IO,
1973 .is_dirty_writeback = buffer_check_dirty_writeback,
1974 };
1975
1976 #define BLKDEV_FALLOC_FL_SUPPORTED \
1977 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1978 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1979
1980 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1981 loff_t len)
1982 {
1983 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1984 struct address_space *mapping;
1985 loff_t end = start + len - 1;
1986 loff_t isize;
1987 int error;
1988
1989 /* Fail if we don't recognize the flags. */
1990 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1991 return -EOPNOTSUPP;
1992
1993 /* Don't go off the end of the device. */
1994 isize = i_size_read(bdev->bd_inode);
1995 if (start >= isize)
1996 return -EINVAL;
1997 if (end >= isize) {
1998 if (mode & FALLOC_FL_KEEP_SIZE) {
1999 len = isize - start;
2000 end = start + len - 1;
2001 } else
2002 return -EINVAL;
2003 }
2004
2005 /*
2006 * Don't allow IO that isn't aligned to logical block size.
2007 */
2008 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2009 return -EINVAL;
2010
2011 /* Invalidate the page cache, including dirty pages. */
2012 mapping = bdev->bd_inode->i_mapping;
2013 truncate_inode_pages_range(mapping, start, end);
2014
2015 switch (mode) {
2016 case FALLOC_FL_ZERO_RANGE:
2017 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2018 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2019 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2020 break;
2021 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2022 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2023 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2024 break;
2025 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2026 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2027 GFP_KERNEL, 0);
2028 break;
2029 default:
2030 return -EOPNOTSUPP;
2031 }
2032 if (error)
2033 return error;
2034
2035 /*
2036 * Invalidate again; if someone wandered in and dirtied a page,
2037 * the caller will be given -EBUSY. The third argument is
2038 * inclusive, so the rounding here is safe.
2039 */
2040 return invalidate_inode_pages2_range(mapping,
2041 start >> PAGE_SHIFT,
2042 end >> PAGE_SHIFT);
2043 }
2044
2045 const struct file_operations def_blk_fops = {
2046 .open = blkdev_open,
2047 .release = blkdev_close,
2048 .llseek = block_llseek,
2049 .read_iter = blkdev_read_iter,
2050 .write_iter = blkdev_write_iter,
2051 .mmap = generic_file_mmap,
2052 .fsync = blkdev_fsync,
2053 .unlocked_ioctl = block_ioctl,
2054 #ifdef CONFIG_COMPAT
2055 .compat_ioctl = compat_blkdev_ioctl,
2056 #endif
2057 .splice_read = generic_file_splice_read,
2058 .splice_write = iter_file_splice_write,
2059 .fallocate = blkdev_fallocate,
2060 };
2061
2062 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2063 {
2064 int res;
2065 mm_segment_t old_fs = get_fs();
2066 set_fs(KERNEL_DS);
2067 res = blkdev_ioctl(bdev, 0, cmd, arg);
2068 set_fs(old_fs);
2069 return res;
2070 }
2071
2072 EXPORT_SYMBOL(ioctl_by_bdev);
2073
2074 /**
2075 * lookup_bdev - lookup a struct block_device by name
2076 * @pathname: special file representing the block device
2077 * @mask: rights to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
2078 *
2079 * Get a reference to the blockdevice at @pathname in the current
2080 * namespace if possible and return it. Return ERR_PTR(error)
2081 * otherwise. If @mask is non-zero, check for access rights to the
2082 * inode at @pathname.
2083 */
2084 struct block_device *lookup_bdev(const char *pathname, int mask)
2085 {
2086 struct block_device *bdev;
2087 struct inode *inode;
2088 struct path path;
2089 int error;
2090
2091 if (!pathname || !*pathname)
2092 return ERR_PTR(-EINVAL);
2093
2094 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2095 if (error)
2096 return ERR_PTR(error);
2097
2098 inode = d_backing_inode(path.dentry);
2099 if (mask != 0 && !capable(CAP_SYS_ADMIN)) {
2100 error = __inode_permission(inode, mask);
2101 if (error)
2102 goto fail;
2103 }
2104 error = -ENOTBLK;
2105 if (!S_ISBLK(inode->i_mode))
2106 goto fail;
2107 error = -EACCES;
2108 if (!may_open_dev(&path))
2109 goto fail;
2110 error = -ENOMEM;
2111 bdev = bd_acquire(inode);
2112 if (!bdev)
2113 goto fail;
2114 out:
2115 path_put(&path);
2116 return bdev;
2117 fail:
2118 bdev = ERR_PTR(error);
2119 goto out;
2120 }
2121 EXPORT_SYMBOL(lookup_bdev);
2122
2123 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2124 {
2125 struct super_block *sb = get_super(bdev);
2126 int res = 0;
2127
2128 if (sb) {
2129 /*
2130 * no need to lock the super, get_super holds the
2131 * read mutex so the filesystem cannot go away
2132 * under us (->put_super runs with the write lock
2133 * hold).
2134 */
2135 shrink_dcache_sb(sb);
2136 res = invalidate_inodes(sb, kill_dirty);
2137 drop_super(sb);
2138 }
2139 invalidate_bdev(bdev);
2140 return res;
2141 }
2142 EXPORT_SYMBOL(__invalidate_device);
2143
2144 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2145 {
2146 struct inode *inode, *old_inode = NULL;
2147
2148 spin_lock(&blockdev_superblock->s_inode_list_lock);
2149 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2150 struct address_space *mapping = inode->i_mapping;
2151 struct block_device *bdev;
2152
2153 spin_lock(&inode->i_lock);
2154 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2155 mapping->nrpages == 0) {
2156 spin_unlock(&inode->i_lock);
2157 continue;
2158 }
2159 __iget(inode);
2160 spin_unlock(&inode->i_lock);
2161 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2162 /*
2163 * We hold a reference to 'inode' so it couldn't have been
2164 * removed from s_inodes list while we dropped the
2165 * s_inode_list_lock We cannot iput the inode now as we can
2166 * be holding the last reference and we cannot iput it under
2167 * s_inode_list_lock. So we keep the reference and iput it
2168 * later.
2169 */
2170 iput(old_inode);
2171 old_inode = inode;
2172 bdev = I_BDEV(inode);
2173
2174 mutex_lock(&bdev->bd_mutex);
2175 if (bdev->bd_openers)
2176 func(bdev, arg);
2177 mutex_unlock(&bdev->bd_mutex);
2178
2179 spin_lock(&blockdev_superblock->s_inode_list_lock);
2180 }
2181 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2182 iput(old_inode);
2183 }