]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/block_dev.c
block: Add vfs_msg() interface
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
54 {
55 struct va_format vaf;
56 va_list args;
57
58 va_start(args, fmt);
59 vaf.fmt = fmt;
60 vaf.va = &args;
61 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
62 va_end(args);
63 }
64
65 static void bdev_write_inode(struct block_device *bdev)
66 {
67 struct inode *inode = bdev->bd_inode;
68 int ret;
69
70 spin_lock(&inode->i_lock);
71 while (inode->i_state & I_DIRTY) {
72 spin_unlock(&inode->i_lock);
73 ret = write_inode_now(inode, true);
74 if (ret) {
75 char name[BDEVNAME_SIZE];
76 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
77 "for block device %s (err=%d).\n",
78 bdevname(bdev, name), ret);
79 }
80 spin_lock(&inode->i_lock);
81 }
82 spin_unlock(&inode->i_lock);
83 }
84
85 /* Kill _all_ buffers and pagecache , dirty or not.. */
86 void kill_bdev(struct block_device *bdev)
87 {
88 struct address_space *mapping = bdev->bd_inode->i_mapping;
89
90 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
91 return;
92
93 invalidate_bh_lrus();
94 truncate_inode_pages(mapping, 0);
95 }
96 EXPORT_SYMBOL(kill_bdev);
97
98 /* Invalidate clean unused buffers and pagecache. */
99 void invalidate_bdev(struct block_device *bdev)
100 {
101 struct address_space *mapping = bdev->bd_inode->i_mapping;
102
103 if (mapping->nrpages == 0)
104 return;
105
106 invalidate_bh_lrus();
107 lru_add_drain_all(); /* make sure all lru add caches are flushed */
108 invalidate_mapping_pages(mapping, 0, -1);
109 /* 99% of the time, we don't need to flush the cleancache on the bdev.
110 * But, for the strange corners, lets be cautious
111 */
112 cleancache_invalidate_inode(mapping);
113 }
114 EXPORT_SYMBOL(invalidate_bdev);
115
116 int set_blocksize(struct block_device *bdev, int size)
117 {
118 /* Size must be a power of two, and between 512 and PAGE_SIZE */
119 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
120 return -EINVAL;
121
122 /* Size cannot be smaller than the size supported by the device */
123 if (size < bdev_logical_block_size(bdev))
124 return -EINVAL;
125
126 /* Don't change the size if it is same as current */
127 if (bdev->bd_block_size != size) {
128 sync_blockdev(bdev);
129 bdev->bd_block_size = size;
130 bdev->bd_inode->i_blkbits = blksize_bits(size);
131 kill_bdev(bdev);
132 }
133 return 0;
134 }
135
136 EXPORT_SYMBOL(set_blocksize);
137
138 int sb_set_blocksize(struct super_block *sb, int size)
139 {
140 if (set_blocksize(sb->s_bdev, size))
141 return 0;
142 /* If we get here, we know size is power of two
143 * and it's value is between 512 and PAGE_SIZE */
144 sb->s_blocksize = size;
145 sb->s_blocksize_bits = blksize_bits(size);
146 return sb->s_blocksize;
147 }
148
149 EXPORT_SYMBOL(sb_set_blocksize);
150
151 int sb_min_blocksize(struct super_block *sb, int size)
152 {
153 int minsize = bdev_logical_block_size(sb->s_bdev);
154 if (size < minsize)
155 size = minsize;
156 return sb_set_blocksize(sb, size);
157 }
158
159 EXPORT_SYMBOL(sb_min_blocksize);
160
161 static int
162 blkdev_get_block(struct inode *inode, sector_t iblock,
163 struct buffer_head *bh, int create)
164 {
165 bh->b_bdev = I_BDEV(inode);
166 bh->b_blocknr = iblock;
167 set_buffer_mapped(bh);
168 return 0;
169 }
170
171 static struct inode *bdev_file_inode(struct file *file)
172 {
173 return file->f_mapping->host;
174 }
175
176 static ssize_t
177 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
178 {
179 struct file *file = iocb->ki_filp;
180 struct inode *inode = bdev_file_inode(file);
181
182 if (IS_DAX(inode))
183 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
184 NULL, DIO_SKIP_DIO_COUNT);
185 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
186 blkdev_get_block, NULL, NULL,
187 DIO_SKIP_DIO_COUNT);
188 }
189
190 int __sync_blockdev(struct block_device *bdev, int wait)
191 {
192 if (!bdev)
193 return 0;
194 if (!wait)
195 return filemap_flush(bdev->bd_inode->i_mapping);
196 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
197 }
198
199 /*
200 * Write out and wait upon all the dirty data associated with a block
201 * device via its mapping. Does not take the superblock lock.
202 */
203 int sync_blockdev(struct block_device *bdev)
204 {
205 return __sync_blockdev(bdev, 1);
206 }
207 EXPORT_SYMBOL(sync_blockdev);
208
209 /*
210 * Write out and wait upon all dirty data associated with this
211 * device. Filesystem data as well as the underlying block
212 * device. Takes the superblock lock.
213 */
214 int fsync_bdev(struct block_device *bdev)
215 {
216 struct super_block *sb = get_super(bdev);
217 if (sb) {
218 int res = sync_filesystem(sb);
219 drop_super(sb);
220 return res;
221 }
222 return sync_blockdev(bdev);
223 }
224 EXPORT_SYMBOL(fsync_bdev);
225
226 /**
227 * freeze_bdev -- lock a filesystem and force it into a consistent state
228 * @bdev: blockdevice to lock
229 *
230 * If a superblock is found on this device, we take the s_umount semaphore
231 * on it to make sure nobody unmounts until the snapshot creation is done.
232 * The reference counter (bd_fsfreeze_count) guarantees that only the last
233 * unfreeze process can unfreeze the frozen filesystem actually when multiple
234 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
235 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
236 * actually.
237 */
238 struct super_block *freeze_bdev(struct block_device *bdev)
239 {
240 struct super_block *sb;
241 int error = 0;
242
243 mutex_lock(&bdev->bd_fsfreeze_mutex);
244 if (++bdev->bd_fsfreeze_count > 1) {
245 /*
246 * We don't even need to grab a reference - the first call
247 * to freeze_bdev grab an active reference and only the last
248 * thaw_bdev drops it.
249 */
250 sb = get_super(bdev);
251 drop_super(sb);
252 mutex_unlock(&bdev->bd_fsfreeze_mutex);
253 return sb;
254 }
255
256 sb = get_active_super(bdev);
257 if (!sb)
258 goto out;
259 if (sb->s_op->freeze_super)
260 error = sb->s_op->freeze_super(sb);
261 else
262 error = freeze_super(sb);
263 if (error) {
264 deactivate_super(sb);
265 bdev->bd_fsfreeze_count--;
266 mutex_unlock(&bdev->bd_fsfreeze_mutex);
267 return ERR_PTR(error);
268 }
269 deactivate_super(sb);
270 out:
271 sync_blockdev(bdev);
272 mutex_unlock(&bdev->bd_fsfreeze_mutex);
273 return sb; /* thaw_bdev releases s->s_umount */
274 }
275 EXPORT_SYMBOL(freeze_bdev);
276
277 /**
278 * thaw_bdev -- unlock filesystem
279 * @bdev: blockdevice to unlock
280 * @sb: associated superblock
281 *
282 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
283 */
284 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
285 {
286 int error = -EINVAL;
287
288 mutex_lock(&bdev->bd_fsfreeze_mutex);
289 if (!bdev->bd_fsfreeze_count)
290 goto out;
291
292 error = 0;
293 if (--bdev->bd_fsfreeze_count > 0)
294 goto out;
295
296 if (!sb)
297 goto out;
298
299 if (sb->s_op->thaw_super)
300 error = sb->s_op->thaw_super(sb);
301 else
302 error = thaw_super(sb);
303 if (error) {
304 bdev->bd_fsfreeze_count++;
305 mutex_unlock(&bdev->bd_fsfreeze_mutex);
306 return error;
307 }
308 out:
309 mutex_unlock(&bdev->bd_fsfreeze_mutex);
310 return 0;
311 }
312 EXPORT_SYMBOL(thaw_bdev);
313
314 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
315 {
316 return block_write_full_page(page, blkdev_get_block, wbc);
317 }
318
319 static int blkdev_readpage(struct file * file, struct page * page)
320 {
321 return block_read_full_page(page, blkdev_get_block);
322 }
323
324 static int blkdev_readpages(struct file *file, struct address_space *mapping,
325 struct list_head *pages, unsigned nr_pages)
326 {
327 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
328 }
329
330 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
331 loff_t pos, unsigned len, unsigned flags,
332 struct page **pagep, void **fsdata)
333 {
334 return block_write_begin(mapping, pos, len, flags, pagep,
335 blkdev_get_block);
336 }
337
338 static int blkdev_write_end(struct file *file, struct address_space *mapping,
339 loff_t pos, unsigned len, unsigned copied,
340 struct page *page, void *fsdata)
341 {
342 int ret;
343 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
344
345 unlock_page(page);
346 put_page(page);
347
348 return ret;
349 }
350
351 /*
352 * private llseek:
353 * for a block special file file_inode(file)->i_size is zero
354 * so we compute the size by hand (just as in block_read/write above)
355 */
356 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
357 {
358 struct inode *bd_inode = bdev_file_inode(file);
359 loff_t retval;
360
361 inode_lock(bd_inode);
362 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
363 inode_unlock(bd_inode);
364 return retval;
365 }
366
367 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
368 {
369 struct inode *bd_inode = bdev_file_inode(filp);
370 struct block_device *bdev = I_BDEV(bd_inode);
371 int error;
372
373 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
374 if (error)
375 return error;
376
377 /*
378 * There is no need to serialise calls to blkdev_issue_flush with
379 * i_mutex and doing so causes performance issues with concurrent
380 * O_SYNC writers to a block device.
381 */
382 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
383 if (error == -EOPNOTSUPP)
384 error = 0;
385
386 return error;
387 }
388 EXPORT_SYMBOL(blkdev_fsync);
389
390 /**
391 * bdev_read_page() - Start reading a page from a block device
392 * @bdev: The device to read the page from
393 * @sector: The offset on the device to read the page to (need not be aligned)
394 * @page: The page to read
395 *
396 * On entry, the page should be locked. It will be unlocked when the page
397 * has been read. If the block driver implements rw_page synchronously,
398 * that will be true on exit from this function, but it need not be.
399 *
400 * Errors returned by this function are usually "soft", eg out of memory, or
401 * queue full; callers should try a different route to read this page rather
402 * than propagate an error back up the stack.
403 *
404 * Return: negative errno if an error occurs, 0 if submission was successful.
405 */
406 int bdev_read_page(struct block_device *bdev, sector_t sector,
407 struct page *page)
408 {
409 const struct block_device_operations *ops = bdev->bd_disk->fops;
410 int result = -EOPNOTSUPP;
411
412 if (!ops->rw_page || bdev_get_integrity(bdev))
413 return result;
414
415 result = blk_queue_enter(bdev->bd_queue, false);
416 if (result)
417 return result;
418 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
419 blk_queue_exit(bdev->bd_queue);
420 return result;
421 }
422 EXPORT_SYMBOL_GPL(bdev_read_page);
423
424 /**
425 * bdev_write_page() - Start writing a page to a block device
426 * @bdev: The device to write the page to
427 * @sector: The offset on the device to write the page to (need not be aligned)
428 * @page: The page to write
429 * @wbc: The writeback_control for the write
430 *
431 * On entry, the page should be locked and not currently under writeback.
432 * On exit, if the write started successfully, the page will be unlocked and
433 * under writeback. If the write failed already (eg the driver failed to
434 * queue the page to the device), the page will still be locked. If the
435 * caller is a ->writepage implementation, it will need to unlock the page.
436 *
437 * Errors returned by this function are usually "soft", eg out of memory, or
438 * queue full; callers should try a different route to write this page rather
439 * than propagate an error back up the stack.
440 *
441 * Return: negative errno if an error occurs, 0 if submission was successful.
442 */
443 int bdev_write_page(struct block_device *bdev, sector_t sector,
444 struct page *page, struct writeback_control *wbc)
445 {
446 int result;
447 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
448 const struct block_device_operations *ops = bdev->bd_disk->fops;
449
450 if (!ops->rw_page || bdev_get_integrity(bdev))
451 return -EOPNOTSUPP;
452 result = blk_queue_enter(bdev->bd_queue, false);
453 if (result)
454 return result;
455
456 set_page_writeback(page);
457 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
458 if (result)
459 end_page_writeback(page);
460 else
461 unlock_page(page);
462 blk_queue_exit(bdev->bd_queue);
463 return result;
464 }
465 EXPORT_SYMBOL_GPL(bdev_write_page);
466
467 /**
468 * bdev_direct_access() - Get the address for directly-accessibly memory
469 * @bdev: The device containing the memory
470 * @dax: control and output parameters for ->direct_access
471 *
472 * If a block device is made up of directly addressable memory, this function
473 * will tell the caller the PFN and the address of the memory. The address
474 * may be directly dereferenced within the kernel without the need to call
475 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
476 * page tables.
477 *
478 * Return: negative errno if an error occurs, otherwise the number of bytes
479 * accessible at this address.
480 */
481 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
482 {
483 sector_t sector = dax->sector;
484 long avail, size = dax->size;
485 const struct block_device_operations *ops = bdev->bd_disk->fops;
486
487 /*
488 * The device driver is allowed to sleep, in order to make the
489 * memory directly accessible.
490 */
491 might_sleep();
492
493 if (size < 0)
494 return size;
495 if (!ops->direct_access)
496 return -EOPNOTSUPP;
497 if ((sector + DIV_ROUND_UP(size, 512)) >
498 part_nr_sects_read(bdev->bd_part))
499 return -ERANGE;
500 sector += get_start_sect(bdev);
501 if (sector % (PAGE_SIZE / 512))
502 return -EINVAL;
503 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
504 if (!avail)
505 return -ERANGE;
506 if (avail > 0 && avail & ~PAGE_MASK)
507 return -ENXIO;
508 return min(avail, size);
509 }
510 EXPORT_SYMBOL_GPL(bdev_direct_access);
511
512 /*
513 * pseudo-fs
514 */
515
516 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
517 static struct kmem_cache * bdev_cachep __read_mostly;
518
519 static struct inode *bdev_alloc_inode(struct super_block *sb)
520 {
521 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
522 if (!ei)
523 return NULL;
524 return &ei->vfs_inode;
525 }
526
527 static void bdev_i_callback(struct rcu_head *head)
528 {
529 struct inode *inode = container_of(head, struct inode, i_rcu);
530 struct bdev_inode *bdi = BDEV_I(inode);
531
532 kmem_cache_free(bdev_cachep, bdi);
533 }
534
535 static void bdev_destroy_inode(struct inode *inode)
536 {
537 call_rcu(&inode->i_rcu, bdev_i_callback);
538 }
539
540 static void init_once(void *foo)
541 {
542 struct bdev_inode *ei = (struct bdev_inode *) foo;
543 struct block_device *bdev = &ei->bdev;
544
545 memset(bdev, 0, sizeof(*bdev));
546 mutex_init(&bdev->bd_mutex);
547 INIT_LIST_HEAD(&bdev->bd_inodes);
548 INIT_LIST_HEAD(&bdev->bd_list);
549 #ifdef CONFIG_SYSFS
550 INIT_LIST_HEAD(&bdev->bd_holder_disks);
551 #endif
552 inode_init_once(&ei->vfs_inode);
553 /* Initialize mutex for freeze. */
554 mutex_init(&bdev->bd_fsfreeze_mutex);
555 }
556
557 static inline void __bd_forget(struct inode *inode)
558 {
559 list_del_init(&inode->i_devices);
560 inode->i_bdev = NULL;
561 inode->i_mapping = &inode->i_data;
562 }
563
564 static void bdev_evict_inode(struct inode *inode)
565 {
566 struct block_device *bdev = &BDEV_I(inode)->bdev;
567 struct list_head *p;
568 truncate_inode_pages_final(&inode->i_data);
569 invalidate_inode_buffers(inode); /* is it needed here? */
570 clear_inode(inode);
571 spin_lock(&bdev_lock);
572 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
573 __bd_forget(list_entry(p, struct inode, i_devices));
574 }
575 list_del_init(&bdev->bd_list);
576 spin_unlock(&bdev_lock);
577 }
578
579 static const struct super_operations bdev_sops = {
580 .statfs = simple_statfs,
581 .alloc_inode = bdev_alloc_inode,
582 .destroy_inode = bdev_destroy_inode,
583 .drop_inode = generic_delete_inode,
584 .evict_inode = bdev_evict_inode,
585 };
586
587 static struct dentry *bd_mount(struct file_system_type *fs_type,
588 int flags, const char *dev_name, void *data)
589 {
590 struct dentry *dent;
591 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
592 if (dent)
593 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
594 return dent;
595 }
596
597 static struct file_system_type bd_type = {
598 .name = "bdev",
599 .mount = bd_mount,
600 .kill_sb = kill_anon_super,
601 };
602
603 struct super_block *blockdev_superblock __read_mostly;
604 EXPORT_SYMBOL_GPL(blockdev_superblock);
605
606 void __init bdev_cache_init(void)
607 {
608 int err;
609 static struct vfsmount *bd_mnt;
610
611 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
612 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
613 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
614 init_once);
615 err = register_filesystem(&bd_type);
616 if (err)
617 panic("Cannot register bdev pseudo-fs");
618 bd_mnt = kern_mount(&bd_type);
619 if (IS_ERR(bd_mnt))
620 panic("Cannot create bdev pseudo-fs");
621 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
622 }
623
624 /*
625 * Most likely _very_ bad one - but then it's hardly critical for small
626 * /dev and can be fixed when somebody will need really large one.
627 * Keep in mind that it will be fed through icache hash function too.
628 */
629 static inline unsigned long hash(dev_t dev)
630 {
631 return MAJOR(dev)+MINOR(dev);
632 }
633
634 static int bdev_test(struct inode *inode, void *data)
635 {
636 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
637 }
638
639 static int bdev_set(struct inode *inode, void *data)
640 {
641 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
642 return 0;
643 }
644
645 static LIST_HEAD(all_bdevs);
646
647 struct block_device *bdget(dev_t dev)
648 {
649 struct block_device *bdev;
650 struct inode *inode;
651
652 inode = iget5_locked(blockdev_superblock, hash(dev),
653 bdev_test, bdev_set, &dev);
654
655 if (!inode)
656 return NULL;
657
658 bdev = &BDEV_I(inode)->bdev;
659
660 if (inode->i_state & I_NEW) {
661 bdev->bd_contains = NULL;
662 bdev->bd_super = NULL;
663 bdev->bd_inode = inode;
664 bdev->bd_block_size = (1 << inode->i_blkbits);
665 bdev->bd_part_count = 0;
666 bdev->bd_invalidated = 0;
667 inode->i_mode = S_IFBLK;
668 inode->i_rdev = dev;
669 inode->i_bdev = bdev;
670 inode->i_data.a_ops = &def_blk_aops;
671 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
672 spin_lock(&bdev_lock);
673 list_add(&bdev->bd_list, &all_bdevs);
674 spin_unlock(&bdev_lock);
675 unlock_new_inode(inode);
676 }
677 return bdev;
678 }
679
680 EXPORT_SYMBOL(bdget);
681
682 /**
683 * bdgrab -- Grab a reference to an already referenced block device
684 * @bdev: Block device to grab a reference to.
685 */
686 struct block_device *bdgrab(struct block_device *bdev)
687 {
688 ihold(bdev->bd_inode);
689 return bdev;
690 }
691 EXPORT_SYMBOL(bdgrab);
692
693 long nr_blockdev_pages(void)
694 {
695 struct block_device *bdev;
696 long ret = 0;
697 spin_lock(&bdev_lock);
698 list_for_each_entry(bdev, &all_bdevs, bd_list) {
699 ret += bdev->bd_inode->i_mapping->nrpages;
700 }
701 spin_unlock(&bdev_lock);
702 return ret;
703 }
704
705 void bdput(struct block_device *bdev)
706 {
707 iput(bdev->bd_inode);
708 }
709
710 EXPORT_SYMBOL(bdput);
711
712 static struct block_device *bd_acquire(struct inode *inode)
713 {
714 struct block_device *bdev;
715
716 spin_lock(&bdev_lock);
717 bdev = inode->i_bdev;
718 if (bdev) {
719 bdgrab(bdev);
720 spin_unlock(&bdev_lock);
721 return bdev;
722 }
723 spin_unlock(&bdev_lock);
724
725 bdev = bdget(inode->i_rdev);
726 if (bdev) {
727 spin_lock(&bdev_lock);
728 if (!inode->i_bdev) {
729 /*
730 * We take an additional reference to bd_inode,
731 * and it's released in clear_inode() of inode.
732 * So, we can access it via ->i_mapping always
733 * without igrab().
734 */
735 bdgrab(bdev);
736 inode->i_bdev = bdev;
737 inode->i_mapping = bdev->bd_inode->i_mapping;
738 list_add(&inode->i_devices, &bdev->bd_inodes);
739 }
740 spin_unlock(&bdev_lock);
741 }
742 return bdev;
743 }
744
745 /* Call when you free inode */
746
747 void bd_forget(struct inode *inode)
748 {
749 struct block_device *bdev = NULL;
750
751 spin_lock(&bdev_lock);
752 if (!sb_is_blkdev_sb(inode->i_sb))
753 bdev = inode->i_bdev;
754 __bd_forget(inode);
755 spin_unlock(&bdev_lock);
756
757 if (bdev)
758 bdput(bdev);
759 }
760
761 /**
762 * bd_may_claim - test whether a block device can be claimed
763 * @bdev: block device of interest
764 * @whole: whole block device containing @bdev, may equal @bdev
765 * @holder: holder trying to claim @bdev
766 *
767 * Test whether @bdev can be claimed by @holder.
768 *
769 * CONTEXT:
770 * spin_lock(&bdev_lock).
771 *
772 * RETURNS:
773 * %true if @bdev can be claimed, %false otherwise.
774 */
775 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
776 void *holder)
777 {
778 if (bdev->bd_holder == holder)
779 return true; /* already a holder */
780 else if (bdev->bd_holder != NULL)
781 return false; /* held by someone else */
782 else if (bdev->bd_contains == bdev)
783 return true; /* is a whole device which isn't held */
784
785 else if (whole->bd_holder == bd_may_claim)
786 return true; /* is a partition of a device that is being partitioned */
787 else if (whole->bd_holder != NULL)
788 return false; /* is a partition of a held device */
789 else
790 return true; /* is a partition of an un-held device */
791 }
792
793 /**
794 * bd_prepare_to_claim - prepare to claim a block device
795 * @bdev: block device of interest
796 * @whole: the whole device containing @bdev, may equal @bdev
797 * @holder: holder trying to claim @bdev
798 *
799 * Prepare to claim @bdev. This function fails if @bdev is already
800 * claimed by another holder and waits if another claiming is in
801 * progress. This function doesn't actually claim. On successful
802 * return, the caller has ownership of bd_claiming and bd_holder[s].
803 *
804 * CONTEXT:
805 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
806 * it multiple times.
807 *
808 * RETURNS:
809 * 0 if @bdev can be claimed, -EBUSY otherwise.
810 */
811 static int bd_prepare_to_claim(struct block_device *bdev,
812 struct block_device *whole, void *holder)
813 {
814 retry:
815 /* if someone else claimed, fail */
816 if (!bd_may_claim(bdev, whole, holder))
817 return -EBUSY;
818
819 /* if claiming is already in progress, wait for it to finish */
820 if (whole->bd_claiming) {
821 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
822 DEFINE_WAIT(wait);
823
824 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
825 spin_unlock(&bdev_lock);
826 schedule();
827 finish_wait(wq, &wait);
828 spin_lock(&bdev_lock);
829 goto retry;
830 }
831
832 /* yay, all mine */
833 return 0;
834 }
835
836 /**
837 * bd_start_claiming - start claiming a block device
838 * @bdev: block device of interest
839 * @holder: holder trying to claim @bdev
840 *
841 * @bdev is about to be opened exclusively. Check @bdev can be opened
842 * exclusively and mark that an exclusive open is in progress. Each
843 * successful call to this function must be matched with a call to
844 * either bd_finish_claiming() or bd_abort_claiming() (which do not
845 * fail).
846 *
847 * This function is used to gain exclusive access to the block device
848 * without actually causing other exclusive open attempts to fail. It
849 * should be used when the open sequence itself requires exclusive
850 * access but may subsequently fail.
851 *
852 * CONTEXT:
853 * Might sleep.
854 *
855 * RETURNS:
856 * Pointer to the block device containing @bdev on success, ERR_PTR()
857 * value on failure.
858 */
859 static struct block_device *bd_start_claiming(struct block_device *bdev,
860 void *holder)
861 {
862 struct gendisk *disk;
863 struct block_device *whole;
864 int partno, err;
865
866 might_sleep();
867
868 /*
869 * @bdev might not have been initialized properly yet, look up
870 * and grab the outer block device the hard way.
871 */
872 disk = get_gendisk(bdev->bd_dev, &partno);
873 if (!disk)
874 return ERR_PTR(-ENXIO);
875
876 /*
877 * Normally, @bdev should equal what's returned from bdget_disk()
878 * if partno is 0; however, some drivers (floppy) use multiple
879 * bdev's for the same physical device and @bdev may be one of the
880 * aliases. Keep @bdev if partno is 0. This means claimer
881 * tracking is broken for those devices but it has always been that
882 * way.
883 */
884 if (partno)
885 whole = bdget_disk(disk, 0);
886 else
887 whole = bdgrab(bdev);
888
889 module_put(disk->fops->owner);
890 put_disk(disk);
891 if (!whole)
892 return ERR_PTR(-ENOMEM);
893
894 /* prepare to claim, if successful, mark claiming in progress */
895 spin_lock(&bdev_lock);
896
897 err = bd_prepare_to_claim(bdev, whole, holder);
898 if (err == 0) {
899 whole->bd_claiming = holder;
900 spin_unlock(&bdev_lock);
901 return whole;
902 } else {
903 spin_unlock(&bdev_lock);
904 bdput(whole);
905 return ERR_PTR(err);
906 }
907 }
908
909 #ifdef CONFIG_SYSFS
910 struct bd_holder_disk {
911 struct list_head list;
912 struct gendisk *disk;
913 int refcnt;
914 };
915
916 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
917 struct gendisk *disk)
918 {
919 struct bd_holder_disk *holder;
920
921 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
922 if (holder->disk == disk)
923 return holder;
924 return NULL;
925 }
926
927 static int add_symlink(struct kobject *from, struct kobject *to)
928 {
929 return sysfs_create_link(from, to, kobject_name(to));
930 }
931
932 static void del_symlink(struct kobject *from, struct kobject *to)
933 {
934 sysfs_remove_link(from, kobject_name(to));
935 }
936
937 /**
938 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
939 * @bdev: the claimed slave bdev
940 * @disk: the holding disk
941 *
942 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
943 *
944 * This functions creates the following sysfs symlinks.
945 *
946 * - from "slaves" directory of the holder @disk to the claimed @bdev
947 * - from "holders" directory of the @bdev to the holder @disk
948 *
949 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
950 * passed to bd_link_disk_holder(), then:
951 *
952 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
953 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
954 *
955 * The caller must have claimed @bdev before calling this function and
956 * ensure that both @bdev and @disk are valid during the creation and
957 * lifetime of these symlinks.
958 *
959 * CONTEXT:
960 * Might sleep.
961 *
962 * RETURNS:
963 * 0 on success, -errno on failure.
964 */
965 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
966 {
967 struct bd_holder_disk *holder;
968 int ret = 0;
969
970 mutex_lock(&bdev->bd_mutex);
971
972 WARN_ON_ONCE(!bdev->bd_holder);
973
974 /* FIXME: remove the following once add_disk() handles errors */
975 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
976 goto out_unlock;
977
978 holder = bd_find_holder_disk(bdev, disk);
979 if (holder) {
980 holder->refcnt++;
981 goto out_unlock;
982 }
983
984 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
985 if (!holder) {
986 ret = -ENOMEM;
987 goto out_unlock;
988 }
989
990 INIT_LIST_HEAD(&holder->list);
991 holder->disk = disk;
992 holder->refcnt = 1;
993
994 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
995 if (ret)
996 goto out_free;
997
998 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
999 if (ret)
1000 goto out_del;
1001 /*
1002 * bdev could be deleted beneath us which would implicitly destroy
1003 * the holder directory. Hold on to it.
1004 */
1005 kobject_get(bdev->bd_part->holder_dir);
1006
1007 list_add(&holder->list, &bdev->bd_holder_disks);
1008 goto out_unlock;
1009
1010 out_del:
1011 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1012 out_free:
1013 kfree(holder);
1014 out_unlock:
1015 mutex_unlock(&bdev->bd_mutex);
1016 return ret;
1017 }
1018 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1019
1020 /**
1021 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1022 * @bdev: the calimed slave bdev
1023 * @disk: the holding disk
1024 *
1025 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1026 *
1027 * CONTEXT:
1028 * Might sleep.
1029 */
1030 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1031 {
1032 struct bd_holder_disk *holder;
1033
1034 mutex_lock(&bdev->bd_mutex);
1035
1036 holder = bd_find_holder_disk(bdev, disk);
1037
1038 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1039 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1040 del_symlink(bdev->bd_part->holder_dir,
1041 &disk_to_dev(disk)->kobj);
1042 kobject_put(bdev->bd_part->holder_dir);
1043 list_del_init(&holder->list);
1044 kfree(holder);
1045 }
1046
1047 mutex_unlock(&bdev->bd_mutex);
1048 }
1049 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1050 #endif
1051
1052 /**
1053 * flush_disk - invalidates all buffer-cache entries on a disk
1054 *
1055 * @bdev: struct block device to be flushed
1056 * @kill_dirty: flag to guide handling of dirty inodes
1057 *
1058 * Invalidates all buffer-cache entries on a disk. It should be called
1059 * when a disk has been changed -- either by a media change or online
1060 * resize.
1061 */
1062 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1063 {
1064 if (__invalidate_device(bdev, kill_dirty)) {
1065 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1066 "resized disk %s\n",
1067 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1068 }
1069
1070 if (!bdev->bd_disk)
1071 return;
1072 if (disk_part_scan_enabled(bdev->bd_disk))
1073 bdev->bd_invalidated = 1;
1074 }
1075
1076 /**
1077 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1078 * @disk: struct gendisk to check
1079 * @bdev: struct bdev to adjust.
1080 *
1081 * This routine checks to see if the bdev size does not match the disk size
1082 * and adjusts it if it differs.
1083 */
1084 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1085 {
1086 loff_t disk_size, bdev_size;
1087
1088 disk_size = (loff_t)get_capacity(disk) << 9;
1089 bdev_size = i_size_read(bdev->bd_inode);
1090 if (disk_size != bdev_size) {
1091 printk(KERN_INFO
1092 "%s: detected capacity change from %lld to %lld\n",
1093 disk->disk_name, bdev_size, disk_size);
1094 i_size_write(bdev->bd_inode, disk_size);
1095 flush_disk(bdev, false);
1096 }
1097 }
1098 EXPORT_SYMBOL(check_disk_size_change);
1099
1100 /**
1101 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1102 * @disk: struct gendisk to be revalidated
1103 *
1104 * This routine is a wrapper for lower-level driver's revalidate_disk
1105 * call-backs. It is used to do common pre and post operations needed
1106 * for all revalidate_disk operations.
1107 */
1108 int revalidate_disk(struct gendisk *disk)
1109 {
1110 struct block_device *bdev;
1111 int ret = 0;
1112
1113 if (disk->fops->revalidate_disk)
1114 ret = disk->fops->revalidate_disk(disk);
1115 blk_integrity_revalidate(disk);
1116 bdev = bdget_disk(disk, 0);
1117 if (!bdev)
1118 return ret;
1119
1120 mutex_lock(&bdev->bd_mutex);
1121 check_disk_size_change(disk, bdev);
1122 bdev->bd_invalidated = 0;
1123 mutex_unlock(&bdev->bd_mutex);
1124 bdput(bdev);
1125 return ret;
1126 }
1127 EXPORT_SYMBOL(revalidate_disk);
1128
1129 /*
1130 * This routine checks whether a removable media has been changed,
1131 * and invalidates all buffer-cache-entries in that case. This
1132 * is a relatively slow routine, so we have to try to minimize using
1133 * it. Thus it is called only upon a 'mount' or 'open'. This
1134 * is the best way of combining speed and utility, I think.
1135 * People changing diskettes in the middle of an operation deserve
1136 * to lose :-)
1137 */
1138 int check_disk_change(struct block_device *bdev)
1139 {
1140 struct gendisk *disk = bdev->bd_disk;
1141 const struct block_device_operations *bdops = disk->fops;
1142 unsigned int events;
1143
1144 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1145 DISK_EVENT_EJECT_REQUEST);
1146 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1147 return 0;
1148
1149 flush_disk(bdev, true);
1150 if (bdops->revalidate_disk)
1151 bdops->revalidate_disk(bdev->bd_disk);
1152 return 1;
1153 }
1154
1155 EXPORT_SYMBOL(check_disk_change);
1156
1157 void bd_set_size(struct block_device *bdev, loff_t size)
1158 {
1159 unsigned bsize = bdev_logical_block_size(bdev);
1160
1161 inode_lock(bdev->bd_inode);
1162 i_size_write(bdev->bd_inode, size);
1163 inode_unlock(bdev->bd_inode);
1164 while (bsize < PAGE_SIZE) {
1165 if (size & bsize)
1166 break;
1167 bsize <<= 1;
1168 }
1169 bdev->bd_block_size = bsize;
1170 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1171 }
1172 EXPORT_SYMBOL(bd_set_size);
1173
1174 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1175
1176 /*
1177 * bd_mutex locking:
1178 *
1179 * mutex_lock(part->bd_mutex)
1180 * mutex_lock_nested(whole->bd_mutex, 1)
1181 */
1182
1183 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1184 {
1185 struct gendisk *disk;
1186 struct module *owner;
1187 int ret;
1188 int partno;
1189 int perm = 0;
1190
1191 if (mode & FMODE_READ)
1192 perm |= MAY_READ;
1193 if (mode & FMODE_WRITE)
1194 perm |= MAY_WRITE;
1195 /*
1196 * hooks: /n/, see "layering violations".
1197 */
1198 if (!for_part) {
1199 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1200 if (ret != 0) {
1201 bdput(bdev);
1202 return ret;
1203 }
1204 }
1205
1206 restart:
1207
1208 ret = -ENXIO;
1209 disk = get_gendisk(bdev->bd_dev, &partno);
1210 if (!disk)
1211 goto out;
1212 owner = disk->fops->owner;
1213
1214 disk_block_events(disk);
1215 mutex_lock_nested(&bdev->bd_mutex, for_part);
1216 if (!bdev->bd_openers) {
1217 bdev->bd_disk = disk;
1218 bdev->bd_queue = disk->queue;
1219 bdev->bd_contains = bdev;
1220 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1221 bdev->bd_inode->i_flags = S_DAX;
1222 else
1223 bdev->bd_inode->i_flags = 0;
1224
1225 if (!partno) {
1226 ret = -ENXIO;
1227 bdev->bd_part = disk_get_part(disk, partno);
1228 if (!bdev->bd_part)
1229 goto out_clear;
1230
1231 ret = 0;
1232 if (disk->fops->open) {
1233 ret = disk->fops->open(bdev, mode);
1234 if (ret == -ERESTARTSYS) {
1235 /* Lost a race with 'disk' being
1236 * deleted, try again.
1237 * See md.c
1238 */
1239 disk_put_part(bdev->bd_part);
1240 bdev->bd_part = NULL;
1241 bdev->bd_disk = NULL;
1242 bdev->bd_queue = NULL;
1243 mutex_unlock(&bdev->bd_mutex);
1244 disk_unblock_events(disk);
1245 put_disk(disk);
1246 module_put(owner);
1247 goto restart;
1248 }
1249 }
1250
1251 if (!ret) {
1252 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1253 if (!blkdev_dax_capable(bdev))
1254 bdev->bd_inode->i_flags &= ~S_DAX;
1255 }
1256
1257 /*
1258 * If the device is invalidated, rescan partition
1259 * if open succeeded or failed with -ENOMEDIUM.
1260 * The latter is necessary to prevent ghost
1261 * partitions on a removed medium.
1262 */
1263 if (bdev->bd_invalidated) {
1264 if (!ret)
1265 rescan_partitions(disk, bdev);
1266 else if (ret == -ENOMEDIUM)
1267 invalidate_partitions(disk, bdev);
1268 }
1269
1270 if (ret)
1271 goto out_clear;
1272 } else {
1273 struct block_device *whole;
1274 whole = bdget_disk(disk, 0);
1275 ret = -ENOMEM;
1276 if (!whole)
1277 goto out_clear;
1278 BUG_ON(for_part);
1279 ret = __blkdev_get(whole, mode, 1);
1280 if (ret)
1281 goto out_clear;
1282 bdev->bd_contains = whole;
1283 bdev->bd_part = disk_get_part(disk, partno);
1284 if (!(disk->flags & GENHD_FL_UP) ||
1285 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1286 ret = -ENXIO;
1287 goto out_clear;
1288 }
1289 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1290 if (!blkdev_dax_capable(bdev))
1291 bdev->bd_inode->i_flags &= ~S_DAX;
1292 }
1293 } else {
1294 if (bdev->bd_contains == bdev) {
1295 ret = 0;
1296 if (bdev->bd_disk->fops->open)
1297 ret = bdev->bd_disk->fops->open(bdev, mode);
1298 /* the same as first opener case, read comment there */
1299 if (bdev->bd_invalidated) {
1300 if (!ret)
1301 rescan_partitions(bdev->bd_disk, bdev);
1302 else if (ret == -ENOMEDIUM)
1303 invalidate_partitions(bdev->bd_disk, bdev);
1304 }
1305 if (ret)
1306 goto out_unlock_bdev;
1307 }
1308 /* only one opener holds refs to the module and disk */
1309 put_disk(disk);
1310 module_put(owner);
1311 }
1312 bdev->bd_openers++;
1313 if (for_part)
1314 bdev->bd_part_count++;
1315 mutex_unlock(&bdev->bd_mutex);
1316 disk_unblock_events(disk);
1317 return 0;
1318
1319 out_clear:
1320 disk_put_part(bdev->bd_part);
1321 bdev->bd_disk = NULL;
1322 bdev->bd_part = NULL;
1323 bdev->bd_queue = NULL;
1324 if (bdev != bdev->bd_contains)
1325 __blkdev_put(bdev->bd_contains, mode, 1);
1326 bdev->bd_contains = NULL;
1327 out_unlock_bdev:
1328 mutex_unlock(&bdev->bd_mutex);
1329 disk_unblock_events(disk);
1330 put_disk(disk);
1331 module_put(owner);
1332 out:
1333 bdput(bdev);
1334
1335 return ret;
1336 }
1337
1338 /**
1339 * blkdev_get - open a block device
1340 * @bdev: block_device to open
1341 * @mode: FMODE_* mask
1342 * @holder: exclusive holder identifier
1343 *
1344 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1345 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1346 * @holder is invalid. Exclusive opens may nest for the same @holder.
1347 *
1348 * On success, the reference count of @bdev is unchanged. On failure,
1349 * @bdev is put.
1350 *
1351 * CONTEXT:
1352 * Might sleep.
1353 *
1354 * RETURNS:
1355 * 0 on success, -errno on failure.
1356 */
1357 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1358 {
1359 struct block_device *whole = NULL;
1360 int res;
1361
1362 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1363
1364 if ((mode & FMODE_EXCL) && holder) {
1365 whole = bd_start_claiming(bdev, holder);
1366 if (IS_ERR(whole)) {
1367 bdput(bdev);
1368 return PTR_ERR(whole);
1369 }
1370 }
1371
1372 res = __blkdev_get(bdev, mode, 0);
1373
1374 if (whole) {
1375 struct gendisk *disk = whole->bd_disk;
1376
1377 /* finish claiming */
1378 mutex_lock(&bdev->bd_mutex);
1379 spin_lock(&bdev_lock);
1380
1381 if (!res) {
1382 BUG_ON(!bd_may_claim(bdev, whole, holder));
1383 /*
1384 * Note that for a whole device bd_holders
1385 * will be incremented twice, and bd_holder
1386 * will be set to bd_may_claim before being
1387 * set to holder
1388 */
1389 whole->bd_holders++;
1390 whole->bd_holder = bd_may_claim;
1391 bdev->bd_holders++;
1392 bdev->bd_holder = holder;
1393 }
1394
1395 /* tell others that we're done */
1396 BUG_ON(whole->bd_claiming != holder);
1397 whole->bd_claiming = NULL;
1398 wake_up_bit(&whole->bd_claiming, 0);
1399
1400 spin_unlock(&bdev_lock);
1401
1402 /*
1403 * Block event polling for write claims if requested. Any
1404 * write holder makes the write_holder state stick until
1405 * all are released. This is good enough and tracking
1406 * individual writeable reference is too fragile given the
1407 * way @mode is used in blkdev_get/put().
1408 */
1409 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1410 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1411 bdev->bd_write_holder = true;
1412 disk_block_events(disk);
1413 }
1414
1415 mutex_unlock(&bdev->bd_mutex);
1416 bdput(whole);
1417 }
1418
1419 return res;
1420 }
1421 EXPORT_SYMBOL(blkdev_get);
1422
1423 /**
1424 * blkdev_get_by_path - open a block device by name
1425 * @path: path to the block device to open
1426 * @mode: FMODE_* mask
1427 * @holder: exclusive holder identifier
1428 *
1429 * Open the blockdevice described by the device file at @path. @mode
1430 * and @holder are identical to blkdev_get().
1431 *
1432 * On success, the returned block_device has reference count of one.
1433 *
1434 * CONTEXT:
1435 * Might sleep.
1436 *
1437 * RETURNS:
1438 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1439 */
1440 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1441 void *holder)
1442 {
1443 struct block_device *bdev;
1444 int err;
1445
1446 bdev = lookup_bdev(path);
1447 if (IS_ERR(bdev))
1448 return bdev;
1449
1450 err = blkdev_get(bdev, mode, holder);
1451 if (err)
1452 return ERR_PTR(err);
1453
1454 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1455 blkdev_put(bdev, mode);
1456 return ERR_PTR(-EACCES);
1457 }
1458
1459 return bdev;
1460 }
1461 EXPORT_SYMBOL(blkdev_get_by_path);
1462
1463 /**
1464 * blkdev_get_by_dev - open a block device by device number
1465 * @dev: device number of block device to open
1466 * @mode: FMODE_* mask
1467 * @holder: exclusive holder identifier
1468 *
1469 * Open the blockdevice described by device number @dev. @mode and
1470 * @holder are identical to blkdev_get().
1471 *
1472 * Use it ONLY if you really do not have anything better - i.e. when
1473 * you are behind a truly sucky interface and all you are given is a
1474 * device number. _Never_ to be used for internal purposes. If you
1475 * ever need it - reconsider your API.
1476 *
1477 * On success, the returned block_device has reference count of one.
1478 *
1479 * CONTEXT:
1480 * Might sleep.
1481 *
1482 * RETURNS:
1483 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1484 */
1485 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1486 {
1487 struct block_device *bdev;
1488 int err;
1489
1490 bdev = bdget(dev);
1491 if (!bdev)
1492 return ERR_PTR(-ENOMEM);
1493
1494 err = blkdev_get(bdev, mode, holder);
1495 if (err)
1496 return ERR_PTR(err);
1497
1498 return bdev;
1499 }
1500 EXPORT_SYMBOL(blkdev_get_by_dev);
1501
1502 static int blkdev_open(struct inode * inode, struct file * filp)
1503 {
1504 struct block_device *bdev;
1505
1506 /*
1507 * Preserve backwards compatibility and allow large file access
1508 * even if userspace doesn't ask for it explicitly. Some mkfs
1509 * binary needs it. We might want to drop this workaround
1510 * during an unstable branch.
1511 */
1512 filp->f_flags |= O_LARGEFILE;
1513
1514 if (filp->f_flags & O_NDELAY)
1515 filp->f_mode |= FMODE_NDELAY;
1516 if (filp->f_flags & O_EXCL)
1517 filp->f_mode |= FMODE_EXCL;
1518 if ((filp->f_flags & O_ACCMODE) == 3)
1519 filp->f_mode |= FMODE_WRITE_IOCTL;
1520
1521 bdev = bd_acquire(inode);
1522 if (bdev == NULL)
1523 return -ENOMEM;
1524
1525 filp->f_mapping = bdev->bd_inode->i_mapping;
1526
1527 return blkdev_get(bdev, filp->f_mode, filp);
1528 }
1529
1530 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1531 {
1532 struct gendisk *disk = bdev->bd_disk;
1533 struct block_device *victim = NULL;
1534
1535 mutex_lock_nested(&bdev->bd_mutex, for_part);
1536 if (for_part)
1537 bdev->bd_part_count--;
1538
1539 if (!--bdev->bd_openers) {
1540 WARN_ON_ONCE(bdev->bd_holders);
1541 sync_blockdev(bdev);
1542 kill_bdev(bdev);
1543
1544 bdev_write_inode(bdev);
1545 /*
1546 * Detaching bdev inode from its wb in __destroy_inode()
1547 * is too late: the queue which embeds its bdi (along with
1548 * root wb) can be gone as soon as we put_disk() below.
1549 */
1550 inode_detach_wb(bdev->bd_inode);
1551 }
1552 if (bdev->bd_contains == bdev) {
1553 if (disk->fops->release)
1554 disk->fops->release(disk, mode);
1555 }
1556 if (!bdev->bd_openers) {
1557 struct module *owner = disk->fops->owner;
1558
1559 disk_put_part(bdev->bd_part);
1560 bdev->bd_part = NULL;
1561 bdev->bd_disk = NULL;
1562 if (bdev != bdev->bd_contains)
1563 victim = bdev->bd_contains;
1564 bdev->bd_contains = NULL;
1565
1566 put_disk(disk);
1567 module_put(owner);
1568 }
1569 mutex_unlock(&bdev->bd_mutex);
1570 bdput(bdev);
1571 if (victim)
1572 __blkdev_put(victim, mode, 1);
1573 }
1574
1575 void blkdev_put(struct block_device *bdev, fmode_t mode)
1576 {
1577 mutex_lock(&bdev->bd_mutex);
1578
1579 if (mode & FMODE_EXCL) {
1580 bool bdev_free;
1581
1582 /*
1583 * Release a claim on the device. The holder fields
1584 * are protected with bdev_lock. bd_mutex is to
1585 * synchronize disk_holder unlinking.
1586 */
1587 spin_lock(&bdev_lock);
1588
1589 WARN_ON_ONCE(--bdev->bd_holders < 0);
1590 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1591
1592 /* bd_contains might point to self, check in a separate step */
1593 if ((bdev_free = !bdev->bd_holders))
1594 bdev->bd_holder = NULL;
1595 if (!bdev->bd_contains->bd_holders)
1596 bdev->bd_contains->bd_holder = NULL;
1597
1598 spin_unlock(&bdev_lock);
1599
1600 /*
1601 * If this was the last claim, remove holder link and
1602 * unblock evpoll if it was a write holder.
1603 */
1604 if (bdev_free && bdev->bd_write_holder) {
1605 disk_unblock_events(bdev->bd_disk);
1606 bdev->bd_write_holder = false;
1607 }
1608 }
1609
1610 /*
1611 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1612 * event. This is to ensure detection of media removal commanded
1613 * from userland - e.g. eject(1).
1614 */
1615 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1616
1617 mutex_unlock(&bdev->bd_mutex);
1618
1619 __blkdev_put(bdev, mode, 0);
1620 }
1621 EXPORT_SYMBOL(blkdev_put);
1622
1623 static int blkdev_close(struct inode * inode, struct file * filp)
1624 {
1625 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1626 blkdev_put(bdev, filp->f_mode);
1627 return 0;
1628 }
1629
1630 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1631 {
1632 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1633 fmode_t mode = file->f_mode;
1634
1635 /*
1636 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1637 * to updated it before every ioctl.
1638 */
1639 if (file->f_flags & O_NDELAY)
1640 mode |= FMODE_NDELAY;
1641 else
1642 mode &= ~FMODE_NDELAY;
1643
1644 return blkdev_ioctl(bdev, mode, cmd, arg);
1645 }
1646
1647 /*
1648 * Write data to the block device. Only intended for the block device itself
1649 * and the raw driver which basically is a fake block device.
1650 *
1651 * Does not take i_mutex for the write and thus is not for general purpose
1652 * use.
1653 */
1654 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1655 {
1656 struct file *file = iocb->ki_filp;
1657 struct inode *bd_inode = bdev_file_inode(file);
1658 loff_t size = i_size_read(bd_inode);
1659 struct blk_plug plug;
1660 ssize_t ret;
1661
1662 if (bdev_read_only(I_BDEV(bd_inode)))
1663 return -EPERM;
1664
1665 if (!iov_iter_count(from))
1666 return 0;
1667
1668 if (iocb->ki_pos >= size)
1669 return -ENOSPC;
1670
1671 iov_iter_truncate(from, size - iocb->ki_pos);
1672
1673 blk_start_plug(&plug);
1674 ret = __generic_file_write_iter(iocb, from);
1675 if (ret > 0) {
1676 ssize_t err;
1677 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1678 if (err < 0)
1679 ret = err;
1680 }
1681 blk_finish_plug(&plug);
1682 return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1685
1686 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1687 {
1688 struct file *file = iocb->ki_filp;
1689 struct inode *bd_inode = bdev_file_inode(file);
1690 loff_t size = i_size_read(bd_inode);
1691 loff_t pos = iocb->ki_pos;
1692
1693 if (pos >= size)
1694 return 0;
1695
1696 size -= pos;
1697 iov_iter_truncate(to, size);
1698 return generic_file_read_iter(iocb, to);
1699 }
1700 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1701
1702 /*
1703 * Try to release a page associated with block device when the system
1704 * is under memory pressure.
1705 */
1706 static int blkdev_releasepage(struct page *page, gfp_t wait)
1707 {
1708 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1709
1710 if (super && super->s_op->bdev_try_to_free_page)
1711 return super->s_op->bdev_try_to_free_page(super, page, wait);
1712
1713 return try_to_free_buffers(page);
1714 }
1715
1716 static int blkdev_writepages(struct address_space *mapping,
1717 struct writeback_control *wbc)
1718 {
1719 if (dax_mapping(mapping)) {
1720 struct block_device *bdev = I_BDEV(mapping->host);
1721
1722 return dax_writeback_mapping_range(mapping, bdev, wbc);
1723 }
1724 return generic_writepages(mapping, wbc);
1725 }
1726
1727 static const struct address_space_operations def_blk_aops = {
1728 .readpage = blkdev_readpage,
1729 .readpages = blkdev_readpages,
1730 .writepage = blkdev_writepage,
1731 .write_begin = blkdev_write_begin,
1732 .write_end = blkdev_write_end,
1733 .writepages = blkdev_writepages,
1734 .releasepage = blkdev_releasepage,
1735 .direct_IO = blkdev_direct_IO,
1736 .is_dirty_writeback = buffer_check_dirty_writeback,
1737 };
1738
1739 #ifdef CONFIG_FS_DAX
1740 /*
1741 * In the raw block case we do not need to contend with truncation nor
1742 * unwritten file extents. Without those concerns there is no need for
1743 * additional locking beyond the mmap_sem context that these routines
1744 * are already executing under.
1745 *
1746 * Note, there is no protection if the block device is dynamically
1747 * resized (partition grow/shrink) during a fault. A stable block device
1748 * size is already not enforced in the blkdev_direct_IO path.
1749 *
1750 * For DAX, it is the responsibility of the block device driver to
1751 * ensure the whole-disk device size is stable while requests are in
1752 * flight.
1753 *
1754 * Finally, unlike the filemap_page_mkwrite() case there is no
1755 * filesystem superblock to sync against freezing. We still include a
1756 * pfn_mkwrite callback for dax drivers to receive write fault
1757 * notifications.
1758 */
1759 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1760 {
1761 return __dax_fault(vma, vmf, blkdev_get_block);
1762 }
1763
1764 static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma,
1765 struct vm_fault *vmf)
1766 {
1767 return dax_pfn_mkwrite(vma, vmf);
1768 }
1769
1770 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1771 pmd_t *pmd, unsigned int flags)
1772 {
1773 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block);
1774 }
1775
1776 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1777 .fault = blkdev_dax_fault,
1778 .pmd_fault = blkdev_dax_pmd_fault,
1779 .pfn_mkwrite = blkdev_dax_pfn_mkwrite,
1780 };
1781
1782 static const struct vm_operations_struct blkdev_default_vm_ops = {
1783 .fault = filemap_fault,
1784 .map_pages = filemap_map_pages,
1785 };
1786
1787 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1788 {
1789 struct inode *bd_inode = bdev_file_inode(file);
1790
1791 file_accessed(file);
1792 if (IS_DAX(bd_inode)) {
1793 vma->vm_ops = &blkdev_dax_vm_ops;
1794 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1795 } else {
1796 vma->vm_ops = &blkdev_default_vm_ops;
1797 }
1798
1799 return 0;
1800 }
1801 #else
1802 #define blkdev_mmap generic_file_mmap
1803 #endif
1804
1805 const struct file_operations def_blk_fops = {
1806 .open = blkdev_open,
1807 .release = blkdev_close,
1808 .llseek = block_llseek,
1809 .read_iter = blkdev_read_iter,
1810 .write_iter = blkdev_write_iter,
1811 .mmap = blkdev_mmap,
1812 .fsync = blkdev_fsync,
1813 .unlocked_ioctl = block_ioctl,
1814 #ifdef CONFIG_COMPAT
1815 .compat_ioctl = compat_blkdev_ioctl,
1816 #endif
1817 .splice_read = generic_file_splice_read,
1818 .splice_write = iter_file_splice_write,
1819 };
1820
1821 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1822 {
1823 int res;
1824 mm_segment_t old_fs = get_fs();
1825 set_fs(KERNEL_DS);
1826 res = blkdev_ioctl(bdev, 0, cmd, arg);
1827 set_fs(old_fs);
1828 return res;
1829 }
1830
1831 EXPORT_SYMBOL(ioctl_by_bdev);
1832
1833 /**
1834 * lookup_bdev - lookup a struct block_device by name
1835 * @pathname: special file representing the block device
1836 *
1837 * Get a reference to the blockdevice at @pathname in the current
1838 * namespace if possible and return it. Return ERR_PTR(error)
1839 * otherwise.
1840 */
1841 struct block_device *lookup_bdev(const char *pathname)
1842 {
1843 struct block_device *bdev;
1844 struct inode *inode;
1845 struct path path;
1846 int error;
1847
1848 if (!pathname || !*pathname)
1849 return ERR_PTR(-EINVAL);
1850
1851 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1852 if (error)
1853 return ERR_PTR(error);
1854
1855 inode = d_backing_inode(path.dentry);
1856 error = -ENOTBLK;
1857 if (!S_ISBLK(inode->i_mode))
1858 goto fail;
1859 error = -EACCES;
1860 if (path.mnt->mnt_flags & MNT_NODEV)
1861 goto fail;
1862 error = -ENOMEM;
1863 bdev = bd_acquire(inode);
1864 if (!bdev)
1865 goto fail;
1866 out:
1867 path_put(&path);
1868 return bdev;
1869 fail:
1870 bdev = ERR_PTR(error);
1871 goto out;
1872 }
1873 EXPORT_SYMBOL(lookup_bdev);
1874
1875 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1876 {
1877 struct super_block *sb = get_super(bdev);
1878 int res = 0;
1879
1880 if (sb) {
1881 /*
1882 * no need to lock the super, get_super holds the
1883 * read mutex so the filesystem cannot go away
1884 * under us (->put_super runs with the write lock
1885 * hold).
1886 */
1887 shrink_dcache_sb(sb);
1888 res = invalidate_inodes(sb, kill_dirty);
1889 drop_super(sb);
1890 }
1891 invalidate_bdev(bdev);
1892 return res;
1893 }
1894 EXPORT_SYMBOL(__invalidate_device);
1895
1896 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1897 {
1898 struct inode *inode, *old_inode = NULL;
1899
1900 spin_lock(&blockdev_superblock->s_inode_list_lock);
1901 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1902 struct address_space *mapping = inode->i_mapping;
1903
1904 spin_lock(&inode->i_lock);
1905 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1906 mapping->nrpages == 0) {
1907 spin_unlock(&inode->i_lock);
1908 continue;
1909 }
1910 __iget(inode);
1911 spin_unlock(&inode->i_lock);
1912 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1913 /*
1914 * We hold a reference to 'inode' so it couldn't have been
1915 * removed from s_inodes list while we dropped the
1916 * s_inode_list_lock We cannot iput the inode now as we can
1917 * be holding the last reference and we cannot iput it under
1918 * s_inode_list_lock. So we keep the reference and iput it
1919 * later.
1920 */
1921 iput(old_inode);
1922 old_inode = inode;
1923
1924 func(I_BDEV(inode), arg);
1925
1926 spin_lock(&blockdev_superblock->s_inode_list_lock);
1927 }
1928 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1929 iput(old_inode);
1930 }