]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/block_dev.c
switch {__,}blockdev_direct_IO() to iov_iter
[mirror_ubuntu-focal-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 /*
53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
54 * need to move it onto the dirty list of @dst so that the inode is always on
55 * the right list.
56 */
57 static void bdev_inode_switch_bdi(struct inode *inode,
58 struct backing_dev_info *dst)
59 {
60 struct backing_dev_info *old = inode->i_data.backing_dev_info;
61 bool wakeup_bdi = false;
62
63 if (unlikely(dst == old)) /* deadlock avoidance */
64 return;
65 bdi_lock_two(&old->wb, &dst->wb);
66 spin_lock(&inode->i_lock);
67 inode->i_data.backing_dev_info = dst;
68 if (inode->i_state & I_DIRTY) {
69 if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb))
70 wakeup_bdi = true;
71 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
72 }
73 spin_unlock(&inode->i_lock);
74 spin_unlock(&old->wb.list_lock);
75 spin_unlock(&dst->wb.list_lock);
76
77 if (wakeup_bdi)
78 bdi_wakeup_thread_delayed(dst);
79 }
80
81 /* Kill _all_ buffers and pagecache , dirty or not.. */
82 void kill_bdev(struct block_device *bdev)
83 {
84 struct address_space *mapping = bdev->bd_inode->i_mapping;
85
86 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
87 return;
88
89 invalidate_bh_lrus();
90 truncate_inode_pages(mapping, 0);
91 }
92 EXPORT_SYMBOL(kill_bdev);
93
94 /* Invalidate clean unused buffers and pagecache. */
95 void invalidate_bdev(struct block_device *bdev)
96 {
97 struct address_space *mapping = bdev->bd_inode->i_mapping;
98
99 if (mapping->nrpages == 0)
100 return;
101
102 invalidate_bh_lrus();
103 lru_add_drain_all(); /* make sure all lru add caches are flushed */
104 invalidate_mapping_pages(mapping, 0, -1);
105 /* 99% of the time, we don't need to flush the cleancache on the bdev.
106 * But, for the strange corners, lets be cautious
107 */
108 cleancache_invalidate_inode(mapping);
109 }
110 EXPORT_SYMBOL(invalidate_bdev);
111
112 int set_blocksize(struct block_device *bdev, int size)
113 {
114 /* Size must be a power of two, and between 512 and PAGE_SIZE */
115 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
116 return -EINVAL;
117
118 /* Size cannot be smaller than the size supported by the device */
119 if (size < bdev_logical_block_size(bdev))
120 return -EINVAL;
121
122 /* Don't change the size if it is same as current */
123 if (bdev->bd_block_size != size) {
124 sync_blockdev(bdev);
125 bdev->bd_block_size = size;
126 bdev->bd_inode->i_blkbits = blksize_bits(size);
127 kill_bdev(bdev);
128 }
129 return 0;
130 }
131
132 EXPORT_SYMBOL(set_blocksize);
133
134 int sb_set_blocksize(struct super_block *sb, int size)
135 {
136 if (set_blocksize(sb->s_bdev, size))
137 return 0;
138 /* If we get here, we know size is power of two
139 * and it's value is between 512 and PAGE_SIZE */
140 sb->s_blocksize = size;
141 sb->s_blocksize_bits = blksize_bits(size);
142 return sb->s_blocksize;
143 }
144
145 EXPORT_SYMBOL(sb_set_blocksize);
146
147 int sb_min_blocksize(struct super_block *sb, int size)
148 {
149 int minsize = bdev_logical_block_size(sb->s_bdev);
150 if (size < minsize)
151 size = minsize;
152 return sb_set_blocksize(sb, size);
153 }
154
155 EXPORT_SYMBOL(sb_min_blocksize);
156
157 static int
158 blkdev_get_block(struct inode *inode, sector_t iblock,
159 struct buffer_head *bh, int create)
160 {
161 bh->b_bdev = I_BDEV(inode);
162 bh->b_blocknr = iblock;
163 set_buffer_mapped(bh);
164 return 0;
165 }
166
167 static ssize_t
168 blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
169 loff_t offset)
170 {
171 struct file *file = iocb->ki_filp;
172 struct inode *inode = file->f_mapping->host;
173
174 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter,
175 offset, blkdev_get_block,
176 NULL, NULL, 0);
177 }
178
179 int __sync_blockdev(struct block_device *bdev, int wait)
180 {
181 if (!bdev)
182 return 0;
183 if (!wait)
184 return filemap_flush(bdev->bd_inode->i_mapping);
185 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
186 }
187
188 /*
189 * Write out and wait upon all the dirty data associated with a block
190 * device via its mapping. Does not take the superblock lock.
191 */
192 int sync_blockdev(struct block_device *bdev)
193 {
194 return __sync_blockdev(bdev, 1);
195 }
196 EXPORT_SYMBOL(sync_blockdev);
197
198 /*
199 * Write out and wait upon all dirty data associated with this
200 * device. Filesystem data as well as the underlying block
201 * device. Takes the superblock lock.
202 */
203 int fsync_bdev(struct block_device *bdev)
204 {
205 struct super_block *sb = get_super(bdev);
206 if (sb) {
207 int res = sync_filesystem(sb);
208 drop_super(sb);
209 return res;
210 }
211 return sync_blockdev(bdev);
212 }
213 EXPORT_SYMBOL(fsync_bdev);
214
215 /**
216 * freeze_bdev -- lock a filesystem and force it into a consistent state
217 * @bdev: blockdevice to lock
218 *
219 * If a superblock is found on this device, we take the s_umount semaphore
220 * on it to make sure nobody unmounts until the snapshot creation is done.
221 * The reference counter (bd_fsfreeze_count) guarantees that only the last
222 * unfreeze process can unfreeze the frozen filesystem actually when multiple
223 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
224 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
225 * actually.
226 */
227 struct super_block *freeze_bdev(struct block_device *bdev)
228 {
229 struct super_block *sb;
230 int error = 0;
231
232 mutex_lock(&bdev->bd_fsfreeze_mutex);
233 if (++bdev->bd_fsfreeze_count > 1) {
234 /*
235 * We don't even need to grab a reference - the first call
236 * to freeze_bdev grab an active reference and only the last
237 * thaw_bdev drops it.
238 */
239 sb = get_super(bdev);
240 drop_super(sb);
241 mutex_unlock(&bdev->bd_fsfreeze_mutex);
242 return sb;
243 }
244
245 sb = get_active_super(bdev);
246 if (!sb)
247 goto out;
248 error = freeze_super(sb);
249 if (error) {
250 deactivate_super(sb);
251 bdev->bd_fsfreeze_count--;
252 mutex_unlock(&bdev->bd_fsfreeze_mutex);
253 return ERR_PTR(error);
254 }
255 deactivate_super(sb);
256 out:
257 sync_blockdev(bdev);
258 mutex_unlock(&bdev->bd_fsfreeze_mutex);
259 return sb; /* thaw_bdev releases s->s_umount */
260 }
261 EXPORT_SYMBOL(freeze_bdev);
262
263 /**
264 * thaw_bdev -- unlock filesystem
265 * @bdev: blockdevice to unlock
266 * @sb: associated superblock
267 *
268 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
269 */
270 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
271 {
272 int error = -EINVAL;
273
274 mutex_lock(&bdev->bd_fsfreeze_mutex);
275 if (!bdev->bd_fsfreeze_count)
276 goto out;
277
278 error = 0;
279 if (--bdev->bd_fsfreeze_count > 0)
280 goto out;
281
282 if (!sb)
283 goto out;
284
285 error = thaw_super(sb);
286 if (error) {
287 bdev->bd_fsfreeze_count++;
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return error;
290 }
291 out:
292 mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 return 0;
294 }
295 EXPORT_SYMBOL(thaw_bdev);
296
297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298 {
299 return block_write_full_page(page, blkdev_get_block, wbc);
300 }
301
302 static int blkdev_readpage(struct file * file, struct page * page)
303 {
304 return block_read_full_page(page, blkdev_get_block);
305 }
306
307 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
308 loff_t pos, unsigned len, unsigned flags,
309 struct page **pagep, void **fsdata)
310 {
311 return block_write_begin(mapping, pos, len, flags, pagep,
312 blkdev_get_block);
313 }
314
315 static int blkdev_write_end(struct file *file, struct address_space *mapping,
316 loff_t pos, unsigned len, unsigned copied,
317 struct page *page, void *fsdata)
318 {
319 int ret;
320 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
321
322 unlock_page(page);
323 page_cache_release(page);
324
325 return ret;
326 }
327
328 /*
329 * private llseek:
330 * for a block special file file_inode(file)->i_size is zero
331 * so we compute the size by hand (just as in block_read/write above)
332 */
333 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
334 {
335 struct inode *bd_inode = file->f_mapping->host;
336 loff_t retval;
337
338 mutex_lock(&bd_inode->i_mutex);
339 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
340 mutex_unlock(&bd_inode->i_mutex);
341 return retval;
342 }
343
344 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
345 {
346 struct inode *bd_inode = filp->f_mapping->host;
347 struct block_device *bdev = I_BDEV(bd_inode);
348 int error;
349
350 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
351 if (error)
352 return error;
353
354 /*
355 * There is no need to serialise calls to blkdev_issue_flush with
356 * i_mutex and doing so causes performance issues with concurrent
357 * O_SYNC writers to a block device.
358 */
359 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
360 if (error == -EOPNOTSUPP)
361 error = 0;
362
363 return error;
364 }
365 EXPORT_SYMBOL(blkdev_fsync);
366
367 /*
368 * pseudo-fs
369 */
370
371 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
372 static struct kmem_cache * bdev_cachep __read_mostly;
373
374 static struct inode *bdev_alloc_inode(struct super_block *sb)
375 {
376 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
377 if (!ei)
378 return NULL;
379 return &ei->vfs_inode;
380 }
381
382 static void bdev_i_callback(struct rcu_head *head)
383 {
384 struct inode *inode = container_of(head, struct inode, i_rcu);
385 struct bdev_inode *bdi = BDEV_I(inode);
386
387 kmem_cache_free(bdev_cachep, bdi);
388 }
389
390 static void bdev_destroy_inode(struct inode *inode)
391 {
392 call_rcu(&inode->i_rcu, bdev_i_callback);
393 }
394
395 static void init_once(void *foo)
396 {
397 struct bdev_inode *ei = (struct bdev_inode *) foo;
398 struct block_device *bdev = &ei->bdev;
399
400 memset(bdev, 0, sizeof(*bdev));
401 mutex_init(&bdev->bd_mutex);
402 INIT_LIST_HEAD(&bdev->bd_inodes);
403 INIT_LIST_HEAD(&bdev->bd_list);
404 #ifdef CONFIG_SYSFS
405 INIT_LIST_HEAD(&bdev->bd_holder_disks);
406 #endif
407 inode_init_once(&ei->vfs_inode);
408 /* Initialize mutex for freeze. */
409 mutex_init(&bdev->bd_fsfreeze_mutex);
410 }
411
412 static inline void __bd_forget(struct inode *inode)
413 {
414 list_del_init(&inode->i_devices);
415 inode->i_bdev = NULL;
416 inode->i_mapping = &inode->i_data;
417 }
418
419 static void bdev_evict_inode(struct inode *inode)
420 {
421 struct block_device *bdev = &BDEV_I(inode)->bdev;
422 struct list_head *p;
423 truncate_inode_pages_final(&inode->i_data);
424 invalidate_inode_buffers(inode); /* is it needed here? */
425 clear_inode(inode);
426 spin_lock(&bdev_lock);
427 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
428 __bd_forget(list_entry(p, struct inode, i_devices));
429 }
430 list_del_init(&bdev->bd_list);
431 spin_unlock(&bdev_lock);
432 }
433
434 static const struct super_operations bdev_sops = {
435 .statfs = simple_statfs,
436 .alloc_inode = bdev_alloc_inode,
437 .destroy_inode = bdev_destroy_inode,
438 .drop_inode = generic_delete_inode,
439 .evict_inode = bdev_evict_inode,
440 };
441
442 static struct dentry *bd_mount(struct file_system_type *fs_type,
443 int flags, const char *dev_name, void *data)
444 {
445 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
446 }
447
448 static struct file_system_type bd_type = {
449 .name = "bdev",
450 .mount = bd_mount,
451 .kill_sb = kill_anon_super,
452 };
453
454 static struct super_block *blockdev_superblock __read_mostly;
455
456 void __init bdev_cache_init(void)
457 {
458 int err;
459 static struct vfsmount *bd_mnt;
460
461 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
462 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
463 SLAB_MEM_SPREAD|SLAB_PANIC),
464 init_once);
465 err = register_filesystem(&bd_type);
466 if (err)
467 panic("Cannot register bdev pseudo-fs");
468 bd_mnt = kern_mount(&bd_type);
469 if (IS_ERR(bd_mnt))
470 panic("Cannot create bdev pseudo-fs");
471 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
472 }
473
474 /*
475 * Most likely _very_ bad one - but then it's hardly critical for small
476 * /dev and can be fixed when somebody will need really large one.
477 * Keep in mind that it will be fed through icache hash function too.
478 */
479 static inline unsigned long hash(dev_t dev)
480 {
481 return MAJOR(dev)+MINOR(dev);
482 }
483
484 static int bdev_test(struct inode *inode, void *data)
485 {
486 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
487 }
488
489 static int bdev_set(struct inode *inode, void *data)
490 {
491 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
492 return 0;
493 }
494
495 static LIST_HEAD(all_bdevs);
496
497 struct block_device *bdget(dev_t dev)
498 {
499 struct block_device *bdev;
500 struct inode *inode;
501
502 inode = iget5_locked(blockdev_superblock, hash(dev),
503 bdev_test, bdev_set, &dev);
504
505 if (!inode)
506 return NULL;
507
508 bdev = &BDEV_I(inode)->bdev;
509
510 if (inode->i_state & I_NEW) {
511 bdev->bd_contains = NULL;
512 bdev->bd_super = NULL;
513 bdev->bd_inode = inode;
514 bdev->bd_block_size = (1 << inode->i_blkbits);
515 bdev->bd_part_count = 0;
516 bdev->bd_invalidated = 0;
517 inode->i_mode = S_IFBLK;
518 inode->i_rdev = dev;
519 inode->i_bdev = bdev;
520 inode->i_data.a_ops = &def_blk_aops;
521 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
522 inode->i_data.backing_dev_info = &default_backing_dev_info;
523 spin_lock(&bdev_lock);
524 list_add(&bdev->bd_list, &all_bdevs);
525 spin_unlock(&bdev_lock);
526 unlock_new_inode(inode);
527 }
528 return bdev;
529 }
530
531 EXPORT_SYMBOL(bdget);
532
533 /**
534 * bdgrab -- Grab a reference to an already referenced block device
535 * @bdev: Block device to grab a reference to.
536 */
537 struct block_device *bdgrab(struct block_device *bdev)
538 {
539 ihold(bdev->bd_inode);
540 return bdev;
541 }
542 EXPORT_SYMBOL(bdgrab);
543
544 long nr_blockdev_pages(void)
545 {
546 struct block_device *bdev;
547 long ret = 0;
548 spin_lock(&bdev_lock);
549 list_for_each_entry(bdev, &all_bdevs, bd_list) {
550 ret += bdev->bd_inode->i_mapping->nrpages;
551 }
552 spin_unlock(&bdev_lock);
553 return ret;
554 }
555
556 void bdput(struct block_device *bdev)
557 {
558 iput(bdev->bd_inode);
559 }
560
561 EXPORT_SYMBOL(bdput);
562
563 static struct block_device *bd_acquire(struct inode *inode)
564 {
565 struct block_device *bdev;
566
567 spin_lock(&bdev_lock);
568 bdev = inode->i_bdev;
569 if (bdev) {
570 ihold(bdev->bd_inode);
571 spin_unlock(&bdev_lock);
572 return bdev;
573 }
574 spin_unlock(&bdev_lock);
575
576 bdev = bdget(inode->i_rdev);
577 if (bdev) {
578 spin_lock(&bdev_lock);
579 if (!inode->i_bdev) {
580 /*
581 * We take an additional reference to bd_inode,
582 * and it's released in clear_inode() of inode.
583 * So, we can access it via ->i_mapping always
584 * without igrab().
585 */
586 ihold(bdev->bd_inode);
587 inode->i_bdev = bdev;
588 inode->i_mapping = bdev->bd_inode->i_mapping;
589 list_add(&inode->i_devices, &bdev->bd_inodes);
590 }
591 spin_unlock(&bdev_lock);
592 }
593 return bdev;
594 }
595
596 int sb_is_blkdev_sb(struct super_block *sb)
597 {
598 return sb == blockdev_superblock;
599 }
600
601 /* Call when you free inode */
602
603 void bd_forget(struct inode *inode)
604 {
605 struct block_device *bdev = NULL;
606
607 spin_lock(&bdev_lock);
608 if (!sb_is_blkdev_sb(inode->i_sb))
609 bdev = inode->i_bdev;
610 __bd_forget(inode);
611 spin_unlock(&bdev_lock);
612
613 if (bdev)
614 iput(bdev->bd_inode);
615 }
616
617 /**
618 * bd_may_claim - test whether a block device can be claimed
619 * @bdev: block device of interest
620 * @whole: whole block device containing @bdev, may equal @bdev
621 * @holder: holder trying to claim @bdev
622 *
623 * Test whether @bdev can be claimed by @holder.
624 *
625 * CONTEXT:
626 * spin_lock(&bdev_lock).
627 *
628 * RETURNS:
629 * %true if @bdev can be claimed, %false otherwise.
630 */
631 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
632 void *holder)
633 {
634 if (bdev->bd_holder == holder)
635 return true; /* already a holder */
636 else if (bdev->bd_holder != NULL)
637 return false; /* held by someone else */
638 else if (bdev->bd_contains == bdev)
639 return true; /* is a whole device which isn't held */
640
641 else if (whole->bd_holder == bd_may_claim)
642 return true; /* is a partition of a device that is being partitioned */
643 else if (whole->bd_holder != NULL)
644 return false; /* is a partition of a held device */
645 else
646 return true; /* is a partition of an un-held device */
647 }
648
649 /**
650 * bd_prepare_to_claim - prepare to claim a block device
651 * @bdev: block device of interest
652 * @whole: the whole device containing @bdev, may equal @bdev
653 * @holder: holder trying to claim @bdev
654 *
655 * Prepare to claim @bdev. This function fails if @bdev is already
656 * claimed by another holder and waits if another claiming is in
657 * progress. This function doesn't actually claim. On successful
658 * return, the caller has ownership of bd_claiming and bd_holder[s].
659 *
660 * CONTEXT:
661 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
662 * it multiple times.
663 *
664 * RETURNS:
665 * 0 if @bdev can be claimed, -EBUSY otherwise.
666 */
667 static int bd_prepare_to_claim(struct block_device *bdev,
668 struct block_device *whole, void *holder)
669 {
670 retry:
671 /* if someone else claimed, fail */
672 if (!bd_may_claim(bdev, whole, holder))
673 return -EBUSY;
674
675 /* if claiming is already in progress, wait for it to finish */
676 if (whole->bd_claiming) {
677 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
678 DEFINE_WAIT(wait);
679
680 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
681 spin_unlock(&bdev_lock);
682 schedule();
683 finish_wait(wq, &wait);
684 spin_lock(&bdev_lock);
685 goto retry;
686 }
687
688 /* yay, all mine */
689 return 0;
690 }
691
692 /**
693 * bd_start_claiming - start claiming a block device
694 * @bdev: block device of interest
695 * @holder: holder trying to claim @bdev
696 *
697 * @bdev is about to be opened exclusively. Check @bdev can be opened
698 * exclusively and mark that an exclusive open is in progress. Each
699 * successful call to this function must be matched with a call to
700 * either bd_finish_claiming() or bd_abort_claiming() (which do not
701 * fail).
702 *
703 * This function is used to gain exclusive access to the block device
704 * without actually causing other exclusive open attempts to fail. It
705 * should be used when the open sequence itself requires exclusive
706 * access but may subsequently fail.
707 *
708 * CONTEXT:
709 * Might sleep.
710 *
711 * RETURNS:
712 * Pointer to the block device containing @bdev on success, ERR_PTR()
713 * value on failure.
714 */
715 static struct block_device *bd_start_claiming(struct block_device *bdev,
716 void *holder)
717 {
718 struct gendisk *disk;
719 struct block_device *whole;
720 int partno, err;
721
722 might_sleep();
723
724 /*
725 * @bdev might not have been initialized properly yet, look up
726 * and grab the outer block device the hard way.
727 */
728 disk = get_gendisk(bdev->bd_dev, &partno);
729 if (!disk)
730 return ERR_PTR(-ENXIO);
731
732 /*
733 * Normally, @bdev should equal what's returned from bdget_disk()
734 * if partno is 0; however, some drivers (floppy) use multiple
735 * bdev's for the same physical device and @bdev may be one of the
736 * aliases. Keep @bdev if partno is 0. This means claimer
737 * tracking is broken for those devices but it has always been that
738 * way.
739 */
740 if (partno)
741 whole = bdget_disk(disk, 0);
742 else
743 whole = bdgrab(bdev);
744
745 module_put(disk->fops->owner);
746 put_disk(disk);
747 if (!whole)
748 return ERR_PTR(-ENOMEM);
749
750 /* prepare to claim, if successful, mark claiming in progress */
751 spin_lock(&bdev_lock);
752
753 err = bd_prepare_to_claim(bdev, whole, holder);
754 if (err == 0) {
755 whole->bd_claiming = holder;
756 spin_unlock(&bdev_lock);
757 return whole;
758 } else {
759 spin_unlock(&bdev_lock);
760 bdput(whole);
761 return ERR_PTR(err);
762 }
763 }
764
765 #ifdef CONFIG_SYSFS
766 struct bd_holder_disk {
767 struct list_head list;
768 struct gendisk *disk;
769 int refcnt;
770 };
771
772 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
773 struct gendisk *disk)
774 {
775 struct bd_holder_disk *holder;
776
777 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
778 if (holder->disk == disk)
779 return holder;
780 return NULL;
781 }
782
783 static int add_symlink(struct kobject *from, struct kobject *to)
784 {
785 return sysfs_create_link(from, to, kobject_name(to));
786 }
787
788 static void del_symlink(struct kobject *from, struct kobject *to)
789 {
790 sysfs_remove_link(from, kobject_name(to));
791 }
792
793 /**
794 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
795 * @bdev: the claimed slave bdev
796 * @disk: the holding disk
797 *
798 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
799 *
800 * This functions creates the following sysfs symlinks.
801 *
802 * - from "slaves" directory of the holder @disk to the claimed @bdev
803 * - from "holders" directory of the @bdev to the holder @disk
804 *
805 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
806 * passed to bd_link_disk_holder(), then:
807 *
808 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
809 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
810 *
811 * The caller must have claimed @bdev before calling this function and
812 * ensure that both @bdev and @disk are valid during the creation and
813 * lifetime of these symlinks.
814 *
815 * CONTEXT:
816 * Might sleep.
817 *
818 * RETURNS:
819 * 0 on success, -errno on failure.
820 */
821 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
822 {
823 struct bd_holder_disk *holder;
824 int ret = 0;
825
826 mutex_lock(&bdev->bd_mutex);
827
828 WARN_ON_ONCE(!bdev->bd_holder);
829
830 /* FIXME: remove the following once add_disk() handles errors */
831 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
832 goto out_unlock;
833
834 holder = bd_find_holder_disk(bdev, disk);
835 if (holder) {
836 holder->refcnt++;
837 goto out_unlock;
838 }
839
840 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
841 if (!holder) {
842 ret = -ENOMEM;
843 goto out_unlock;
844 }
845
846 INIT_LIST_HEAD(&holder->list);
847 holder->disk = disk;
848 holder->refcnt = 1;
849
850 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
851 if (ret)
852 goto out_free;
853
854 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
855 if (ret)
856 goto out_del;
857 /*
858 * bdev could be deleted beneath us which would implicitly destroy
859 * the holder directory. Hold on to it.
860 */
861 kobject_get(bdev->bd_part->holder_dir);
862
863 list_add(&holder->list, &bdev->bd_holder_disks);
864 goto out_unlock;
865
866 out_del:
867 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
868 out_free:
869 kfree(holder);
870 out_unlock:
871 mutex_unlock(&bdev->bd_mutex);
872 return ret;
873 }
874 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
875
876 /**
877 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
878 * @bdev: the calimed slave bdev
879 * @disk: the holding disk
880 *
881 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
882 *
883 * CONTEXT:
884 * Might sleep.
885 */
886 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
887 {
888 struct bd_holder_disk *holder;
889
890 mutex_lock(&bdev->bd_mutex);
891
892 holder = bd_find_holder_disk(bdev, disk);
893
894 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
895 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
896 del_symlink(bdev->bd_part->holder_dir,
897 &disk_to_dev(disk)->kobj);
898 kobject_put(bdev->bd_part->holder_dir);
899 list_del_init(&holder->list);
900 kfree(holder);
901 }
902
903 mutex_unlock(&bdev->bd_mutex);
904 }
905 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
906 #endif
907
908 /**
909 * flush_disk - invalidates all buffer-cache entries on a disk
910 *
911 * @bdev: struct block device to be flushed
912 * @kill_dirty: flag to guide handling of dirty inodes
913 *
914 * Invalidates all buffer-cache entries on a disk. It should be called
915 * when a disk has been changed -- either by a media change or online
916 * resize.
917 */
918 static void flush_disk(struct block_device *bdev, bool kill_dirty)
919 {
920 if (__invalidate_device(bdev, kill_dirty)) {
921 char name[BDEVNAME_SIZE] = "";
922
923 if (bdev->bd_disk)
924 disk_name(bdev->bd_disk, 0, name);
925 printk(KERN_WARNING "VFS: busy inodes on changed media or "
926 "resized disk %s\n", name);
927 }
928
929 if (!bdev->bd_disk)
930 return;
931 if (disk_part_scan_enabled(bdev->bd_disk))
932 bdev->bd_invalidated = 1;
933 }
934
935 /**
936 * check_disk_size_change - checks for disk size change and adjusts bdev size.
937 * @disk: struct gendisk to check
938 * @bdev: struct bdev to adjust.
939 *
940 * This routine checks to see if the bdev size does not match the disk size
941 * and adjusts it if it differs.
942 */
943 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
944 {
945 loff_t disk_size, bdev_size;
946
947 disk_size = (loff_t)get_capacity(disk) << 9;
948 bdev_size = i_size_read(bdev->bd_inode);
949 if (disk_size != bdev_size) {
950 char name[BDEVNAME_SIZE];
951
952 disk_name(disk, 0, name);
953 printk(KERN_INFO
954 "%s: detected capacity change from %lld to %lld\n",
955 name, bdev_size, disk_size);
956 i_size_write(bdev->bd_inode, disk_size);
957 flush_disk(bdev, false);
958 }
959 }
960 EXPORT_SYMBOL(check_disk_size_change);
961
962 /**
963 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
964 * @disk: struct gendisk to be revalidated
965 *
966 * This routine is a wrapper for lower-level driver's revalidate_disk
967 * call-backs. It is used to do common pre and post operations needed
968 * for all revalidate_disk operations.
969 */
970 int revalidate_disk(struct gendisk *disk)
971 {
972 struct block_device *bdev;
973 int ret = 0;
974
975 if (disk->fops->revalidate_disk)
976 ret = disk->fops->revalidate_disk(disk);
977
978 bdev = bdget_disk(disk, 0);
979 if (!bdev)
980 return ret;
981
982 mutex_lock(&bdev->bd_mutex);
983 check_disk_size_change(disk, bdev);
984 bdev->bd_invalidated = 0;
985 mutex_unlock(&bdev->bd_mutex);
986 bdput(bdev);
987 return ret;
988 }
989 EXPORT_SYMBOL(revalidate_disk);
990
991 /*
992 * This routine checks whether a removable media has been changed,
993 * and invalidates all buffer-cache-entries in that case. This
994 * is a relatively slow routine, so we have to try to minimize using
995 * it. Thus it is called only upon a 'mount' or 'open'. This
996 * is the best way of combining speed and utility, I think.
997 * People changing diskettes in the middle of an operation deserve
998 * to lose :-)
999 */
1000 int check_disk_change(struct block_device *bdev)
1001 {
1002 struct gendisk *disk = bdev->bd_disk;
1003 const struct block_device_operations *bdops = disk->fops;
1004 unsigned int events;
1005
1006 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1007 DISK_EVENT_EJECT_REQUEST);
1008 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1009 return 0;
1010
1011 flush_disk(bdev, true);
1012 if (bdops->revalidate_disk)
1013 bdops->revalidate_disk(bdev->bd_disk);
1014 return 1;
1015 }
1016
1017 EXPORT_SYMBOL(check_disk_change);
1018
1019 void bd_set_size(struct block_device *bdev, loff_t size)
1020 {
1021 unsigned bsize = bdev_logical_block_size(bdev);
1022
1023 mutex_lock(&bdev->bd_inode->i_mutex);
1024 i_size_write(bdev->bd_inode, size);
1025 mutex_unlock(&bdev->bd_inode->i_mutex);
1026 while (bsize < PAGE_CACHE_SIZE) {
1027 if (size & bsize)
1028 break;
1029 bsize <<= 1;
1030 }
1031 bdev->bd_block_size = bsize;
1032 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1033 }
1034 EXPORT_SYMBOL(bd_set_size);
1035
1036 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1037
1038 /*
1039 * bd_mutex locking:
1040 *
1041 * mutex_lock(part->bd_mutex)
1042 * mutex_lock_nested(whole->bd_mutex, 1)
1043 */
1044
1045 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1046 {
1047 struct gendisk *disk;
1048 struct module *owner;
1049 int ret;
1050 int partno;
1051 int perm = 0;
1052
1053 if (mode & FMODE_READ)
1054 perm |= MAY_READ;
1055 if (mode & FMODE_WRITE)
1056 perm |= MAY_WRITE;
1057 /*
1058 * hooks: /n/, see "layering violations".
1059 */
1060 if (!for_part) {
1061 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1062 if (ret != 0) {
1063 bdput(bdev);
1064 return ret;
1065 }
1066 }
1067
1068 restart:
1069
1070 ret = -ENXIO;
1071 disk = get_gendisk(bdev->bd_dev, &partno);
1072 if (!disk)
1073 goto out;
1074 owner = disk->fops->owner;
1075
1076 disk_block_events(disk);
1077 mutex_lock_nested(&bdev->bd_mutex, for_part);
1078 if (!bdev->bd_openers) {
1079 bdev->bd_disk = disk;
1080 bdev->bd_queue = disk->queue;
1081 bdev->bd_contains = bdev;
1082 if (!partno) {
1083 struct backing_dev_info *bdi;
1084
1085 ret = -ENXIO;
1086 bdev->bd_part = disk_get_part(disk, partno);
1087 if (!bdev->bd_part)
1088 goto out_clear;
1089
1090 ret = 0;
1091 if (disk->fops->open) {
1092 ret = disk->fops->open(bdev, mode);
1093 if (ret == -ERESTARTSYS) {
1094 /* Lost a race with 'disk' being
1095 * deleted, try again.
1096 * See md.c
1097 */
1098 disk_put_part(bdev->bd_part);
1099 bdev->bd_part = NULL;
1100 bdev->bd_disk = NULL;
1101 bdev->bd_queue = NULL;
1102 mutex_unlock(&bdev->bd_mutex);
1103 disk_unblock_events(disk);
1104 put_disk(disk);
1105 module_put(owner);
1106 goto restart;
1107 }
1108 }
1109
1110 if (!ret) {
1111 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1112 bdi = blk_get_backing_dev_info(bdev);
1113 if (bdi == NULL)
1114 bdi = &default_backing_dev_info;
1115 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1116 }
1117
1118 /*
1119 * If the device is invalidated, rescan partition
1120 * if open succeeded or failed with -ENOMEDIUM.
1121 * The latter is necessary to prevent ghost
1122 * partitions on a removed medium.
1123 */
1124 if (bdev->bd_invalidated) {
1125 if (!ret)
1126 rescan_partitions(disk, bdev);
1127 else if (ret == -ENOMEDIUM)
1128 invalidate_partitions(disk, bdev);
1129 }
1130 if (ret)
1131 goto out_clear;
1132 } else {
1133 struct block_device *whole;
1134 whole = bdget_disk(disk, 0);
1135 ret = -ENOMEM;
1136 if (!whole)
1137 goto out_clear;
1138 BUG_ON(for_part);
1139 ret = __blkdev_get(whole, mode, 1);
1140 if (ret)
1141 goto out_clear;
1142 bdev->bd_contains = whole;
1143 bdev_inode_switch_bdi(bdev->bd_inode,
1144 whole->bd_inode->i_data.backing_dev_info);
1145 bdev->bd_part = disk_get_part(disk, partno);
1146 if (!(disk->flags & GENHD_FL_UP) ||
1147 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1148 ret = -ENXIO;
1149 goto out_clear;
1150 }
1151 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1152 }
1153 } else {
1154 if (bdev->bd_contains == bdev) {
1155 ret = 0;
1156 if (bdev->bd_disk->fops->open)
1157 ret = bdev->bd_disk->fops->open(bdev, mode);
1158 /* the same as first opener case, read comment there */
1159 if (bdev->bd_invalidated) {
1160 if (!ret)
1161 rescan_partitions(bdev->bd_disk, bdev);
1162 else if (ret == -ENOMEDIUM)
1163 invalidate_partitions(bdev->bd_disk, bdev);
1164 }
1165 if (ret)
1166 goto out_unlock_bdev;
1167 }
1168 /* only one opener holds refs to the module and disk */
1169 put_disk(disk);
1170 module_put(owner);
1171 }
1172 bdev->bd_openers++;
1173 if (for_part)
1174 bdev->bd_part_count++;
1175 mutex_unlock(&bdev->bd_mutex);
1176 disk_unblock_events(disk);
1177 return 0;
1178
1179 out_clear:
1180 disk_put_part(bdev->bd_part);
1181 bdev->bd_disk = NULL;
1182 bdev->bd_part = NULL;
1183 bdev->bd_queue = NULL;
1184 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1185 if (bdev != bdev->bd_contains)
1186 __blkdev_put(bdev->bd_contains, mode, 1);
1187 bdev->bd_contains = NULL;
1188 out_unlock_bdev:
1189 mutex_unlock(&bdev->bd_mutex);
1190 disk_unblock_events(disk);
1191 put_disk(disk);
1192 module_put(owner);
1193 out:
1194 bdput(bdev);
1195
1196 return ret;
1197 }
1198
1199 /**
1200 * blkdev_get - open a block device
1201 * @bdev: block_device to open
1202 * @mode: FMODE_* mask
1203 * @holder: exclusive holder identifier
1204 *
1205 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1206 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1207 * @holder is invalid. Exclusive opens may nest for the same @holder.
1208 *
1209 * On success, the reference count of @bdev is unchanged. On failure,
1210 * @bdev is put.
1211 *
1212 * CONTEXT:
1213 * Might sleep.
1214 *
1215 * RETURNS:
1216 * 0 on success, -errno on failure.
1217 */
1218 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1219 {
1220 struct block_device *whole = NULL;
1221 int res;
1222
1223 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1224
1225 if ((mode & FMODE_EXCL) && holder) {
1226 whole = bd_start_claiming(bdev, holder);
1227 if (IS_ERR(whole)) {
1228 bdput(bdev);
1229 return PTR_ERR(whole);
1230 }
1231 }
1232
1233 res = __blkdev_get(bdev, mode, 0);
1234
1235 if (whole) {
1236 struct gendisk *disk = whole->bd_disk;
1237
1238 /* finish claiming */
1239 mutex_lock(&bdev->bd_mutex);
1240 spin_lock(&bdev_lock);
1241
1242 if (!res) {
1243 BUG_ON(!bd_may_claim(bdev, whole, holder));
1244 /*
1245 * Note that for a whole device bd_holders
1246 * will be incremented twice, and bd_holder
1247 * will be set to bd_may_claim before being
1248 * set to holder
1249 */
1250 whole->bd_holders++;
1251 whole->bd_holder = bd_may_claim;
1252 bdev->bd_holders++;
1253 bdev->bd_holder = holder;
1254 }
1255
1256 /* tell others that we're done */
1257 BUG_ON(whole->bd_claiming != holder);
1258 whole->bd_claiming = NULL;
1259 wake_up_bit(&whole->bd_claiming, 0);
1260
1261 spin_unlock(&bdev_lock);
1262
1263 /*
1264 * Block event polling for write claims if requested. Any
1265 * write holder makes the write_holder state stick until
1266 * all are released. This is good enough and tracking
1267 * individual writeable reference is too fragile given the
1268 * way @mode is used in blkdev_get/put().
1269 */
1270 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1271 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1272 bdev->bd_write_holder = true;
1273 disk_block_events(disk);
1274 }
1275
1276 mutex_unlock(&bdev->bd_mutex);
1277 bdput(whole);
1278 }
1279
1280 return res;
1281 }
1282 EXPORT_SYMBOL(blkdev_get);
1283
1284 /**
1285 * blkdev_get_by_path - open a block device by name
1286 * @path: path to the block device to open
1287 * @mode: FMODE_* mask
1288 * @holder: exclusive holder identifier
1289 *
1290 * Open the blockdevice described by the device file at @path. @mode
1291 * and @holder are identical to blkdev_get().
1292 *
1293 * On success, the returned block_device has reference count of one.
1294 *
1295 * CONTEXT:
1296 * Might sleep.
1297 *
1298 * RETURNS:
1299 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1300 */
1301 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1302 void *holder)
1303 {
1304 struct block_device *bdev;
1305 int err;
1306
1307 bdev = lookup_bdev(path);
1308 if (IS_ERR(bdev))
1309 return bdev;
1310
1311 err = blkdev_get(bdev, mode, holder);
1312 if (err)
1313 return ERR_PTR(err);
1314
1315 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1316 blkdev_put(bdev, mode);
1317 return ERR_PTR(-EACCES);
1318 }
1319
1320 return bdev;
1321 }
1322 EXPORT_SYMBOL(blkdev_get_by_path);
1323
1324 /**
1325 * blkdev_get_by_dev - open a block device by device number
1326 * @dev: device number of block device to open
1327 * @mode: FMODE_* mask
1328 * @holder: exclusive holder identifier
1329 *
1330 * Open the blockdevice described by device number @dev. @mode and
1331 * @holder are identical to blkdev_get().
1332 *
1333 * Use it ONLY if you really do not have anything better - i.e. when
1334 * you are behind a truly sucky interface and all you are given is a
1335 * device number. _Never_ to be used for internal purposes. If you
1336 * ever need it - reconsider your API.
1337 *
1338 * On success, the returned block_device has reference count of one.
1339 *
1340 * CONTEXT:
1341 * Might sleep.
1342 *
1343 * RETURNS:
1344 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1345 */
1346 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1347 {
1348 struct block_device *bdev;
1349 int err;
1350
1351 bdev = bdget(dev);
1352 if (!bdev)
1353 return ERR_PTR(-ENOMEM);
1354
1355 err = blkdev_get(bdev, mode, holder);
1356 if (err)
1357 return ERR_PTR(err);
1358
1359 return bdev;
1360 }
1361 EXPORT_SYMBOL(blkdev_get_by_dev);
1362
1363 static int blkdev_open(struct inode * inode, struct file * filp)
1364 {
1365 struct block_device *bdev;
1366
1367 /*
1368 * Preserve backwards compatibility and allow large file access
1369 * even if userspace doesn't ask for it explicitly. Some mkfs
1370 * binary needs it. We might want to drop this workaround
1371 * during an unstable branch.
1372 */
1373 filp->f_flags |= O_LARGEFILE;
1374
1375 if (filp->f_flags & O_NDELAY)
1376 filp->f_mode |= FMODE_NDELAY;
1377 if (filp->f_flags & O_EXCL)
1378 filp->f_mode |= FMODE_EXCL;
1379 if ((filp->f_flags & O_ACCMODE) == 3)
1380 filp->f_mode |= FMODE_WRITE_IOCTL;
1381
1382 bdev = bd_acquire(inode);
1383 if (bdev == NULL)
1384 return -ENOMEM;
1385
1386 filp->f_mapping = bdev->bd_inode->i_mapping;
1387
1388 return blkdev_get(bdev, filp->f_mode, filp);
1389 }
1390
1391 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1392 {
1393 struct gendisk *disk = bdev->bd_disk;
1394 struct block_device *victim = NULL;
1395
1396 mutex_lock_nested(&bdev->bd_mutex, for_part);
1397 if (for_part)
1398 bdev->bd_part_count--;
1399
1400 if (!--bdev->bd_openers) {
1401 WARN_ON_ONCE(bdev->bd_holders);
1402 sync_blockdev(bdev);
1403 kill_bdev(bdev);
1404 /* ->release can cause the old bdi to disappear,
1405 * so must switch it out first
1406 */
1407 bdev_inode_switch_bdi(bdev->bd_inode,
1408 &default_backing_dev_info);
1409 }
1410 if (bdev->bd_contains == bdev) {
1411 if (disk->fops->release)
1412 disk->fops->release(disk, mode);
1413 }
1414 if (!bdev->bd_openers) {
1415 struct module *owner = disk->fops->owner;
1416
1417 disk_put_part(bdev->bd_part);
1418 bdev->bd_part = NULL;
1419 bdev->bd_disk = NULL;
1420 if (bdev != bdev->bd_contains)
1421 victim = bdev->bd_contains;
1422 bdev->bd_contains = NULL;
1423
1424 put_disk(disk);
1425 module_put(owner);
1426 }
1427 mutex_unlock(&bdev->bd_mutex);
1428 bdput(bdev);
1429 if (victim)
1430 __blkdev_put(victim, mode, 1);
1431 }
1432
1433 void blkdev_put(struct block_device *bdev, fmode_t mode)
1434 {
1435 mutex_lock(&bdev->bd_mutex);
1436
1437 if (mode & FMODE_EXCL) {
1438 bool bdev_free;
1439
1440 /*
1441 * Release a claim on the device. The holder fields
1442 * are protected with bdev_lock. bd_mutex is to
1443 * synchronize disk_holder unlinking.
1444 */
1445 spin_lock(&bdev_lock);
1446
1447 WARN_ON_ONCE(--bdev->bd_holders < 0);
1448 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1449
1450 /* bd_contains might point to self, check in a separate step */
1451 if ((bdev_free = !bdev->bd_holders))
1452 bdev->bd_holder = NULL;
1453 if (!bdev->bd_contains->bd_holders)
1454 bdev->bd_contains->bd_holder = NULL;
1455
1456 spin_unlock(&bdev_lock);
1457
1458 /*
1459 * If this was the last claim, remove holder link and
1460 * unblock evpoll if it was a write holder.
1461 */
1462 if (bdev_free && bdev->bd_write_holder) {
1463 disk_unblock_events(bdev->bd_disk);
1464 bdev->bd_write_holder = false;
1465 }
1466 }
1467
1468 /*
1469 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1470 * event. This is to ensure detection of media removal commanded
1471 * from userland - e.g. eject(1).
1472 */
1473 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1474
1475 mutex_unlock(&bdev->bd_mutex);
1476
1477 __blkdev_put(bdev, mode, 0);
1478 }
1479 EXPORT_SYMBOL(blkdev_put);
1480
1481 static int blkdev_close(struct inode * inode, struct file * filp)
1482 {
1483 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1484 blkdev_put(bdev, filp->f_mode);
1485 return 0;
1486 }
1487
1488 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1489 {
1490 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1491 fmode_t mode = file->f_mode;
1492
1493 /*
1494 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1495 * to updated it before every ioctl.
1496 */
1497 if (file->f_flags & O_NDELAY)
1498 mode |= FMODE_NDELAY;
1499 else
1500 mode &= ~FMODE_NDELAY;
1501
1502 return blkdev_ioctl(bdev, mode, cmd, arg);
1503 }
1504
1505 /*
1506 * Write data to the block device. Only intended for the block device itself
1507 * and the raw driver which basically is a fake block device.
1508 *
1509 * Does not take i_mutex for the write and thus is not for general purpose
1510 * use.
1511 */
1512 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1513 unsigned long nr_segs, loff_t pos)
1514 {
1515 struct file *file = iocb->ki_filp;
1516 struct blk_plug plug;
1517 ssize_t ret;
1518
1519 BUG_ON(iocb->ki_pos != pos);
1520
1521 blk_start_plug(&plug);
1522 ret = __generic_file_aio_write(iocb, iov, nr_segs);
1523 if (ret > 0) {
1524 ssize_t err;
1525
1526 err = generic_write_sync(file, pos, ret);
1527 if (err < 0)
1528 ret = err;
1529 }
1530 blk_finish_plug(&plug);
1531 return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1534
1535 static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov,
1536 unsigned long nr_segs, loff_t pos)
1537 {
1538 struct file *file = iocb->ki_filp;
1539 struct inode *bd_inode = file->f_mapping->host;
1540 loff_t size = i_size_read(bd_inode);
1541
1542 if (pos >= size)
1543 return 0;
1544
1545 size -= pos;
1546 if (size < iocb->ki_nbytes)
1547 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size);
1548 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1549 }
1550
1551 /*
1552 * Try to release a page associated with block device when the system
1553 * is under memory pressure.
1554 */
1555 static int blkdev_releasepage(struct page *page, gfp_t wait)
1556 {
1557 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1558
1559 if (super && super->s_op->bdev_try_to_free_page)
1560 return super->s_op->bdev_try_to_free_page(super, page, wait);
1561
1562 return try_to_free_buffers(page);
1563 }
1564
1565 static const struct address_space_operations def_blk_aops = {
1566 .readpage = blkdev_readpage,
1567 .writepage = blkdev_writepage,
1568 .write_begin = blkdev_write_begin,
1569 .write_end = blkdev_write_end,
1570 .writepages = generic_writepages,
1571 .releasepage = blkdev_releasepage,
1572 .direct_IO = blkdev_direct_IO,
1573 .is_dirty_writeback = buffer_check_dirty_writeback,
1574 };
1575
1576 const struct file_operations def_blk_fops = {
1577 .open = blkdev_open,
1578 .release = blkdev_close,
1579 .llseek = block_llseek,
1580 .read = do_sync_read,
1581 .write = do_sync_write,
1582 .aio_read = blkdev_aio_read,
1583 .aio_write = blkdev_aio_write,
1584 .mmap = generic_file_mmap,
1585 .fsync = blkdev_fsync,
1586 .unlocked_ioctl = block_ioctl,
1587 #ifdef CONFIG_COMPAT
1588 .compat_ioctl = compat_blkdev_ioctl,
1589 #endif
1590 .splice_read = generic_file_splice_read,
1591 .splice_write = generic_file_splice_write,
1592 };
1593
1594 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1595 {
1596 int res;
1597 mm_segment_t old_fs = get_fs();
1598 set_fs(KERNEL_DS);
1599 res = blkdev_ioctl(bdev, 0, cmd, arg);
1600 set_fs(old_fs);
1601 return res;
1602 }
1603
1604 EXPORT_SYMBOL(ioctl_by_bdev);
1605
1606 /**
1607 * lookup_bdev - lookup a struct block_device by name
1608 * @pathname: special file representing the block device
1609 *
1610 * Get a reference to the blockdevice at @pathname in the current
1611 * namespace if possible and return it. Return ERR_PTR(error)
1612 * otherwise.
1613 */
1614 struct block_device *lookup_bdev(const char *pathname)
1615 {
1616 struct block_device *bdev;
1617 struct inode *inode;
1618 struct path path;
1619 int error;
1620
1621 if (!pathname || !*pathname)
1622 return ERR_PTR(-EINVAL);
1623
1624 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1625 if (error)
1626 return ERR_PTR(error);
1627
1628 inode = path.dentry->d_inode;
1629 error = -ENOTBLK;
1630 if (!S_ISBLK(inode->i_mode))
1631 goto fail;
1632 error = -EACCES;
1633 if (path.mnt->mnt_flags & MNT_NODEV)
1634 goto fail;
1635 error = -ENOMEM;
1636 bdev = bd_acquire(inode);
1637 if (!bdev)
1638 goto fail;
1639 out:
1640 path_put(&path);
1641 return bdev;
1642 fail:
1643 bdev = ERR_PTR(error);
1644 goto out;
1645 }
1646 EXPORT_SYMBOL(lookup_bdev);
1647
1648 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1649 {
1650 struct super_block *sb = get_super(bdev);
1651 int res = 0;
1652
1653 if (sb) {
1654 /*
1655 * no need to lock the super, get_super holds the
1656 * read mutex so the filesystem cannot go away
1657 * under us (->put_super runs with the write lock
1658 * hold).
1659 */
1660 shrink_dcache_sb(sb);
1661 res = invalidate_inodes(sb, kill_dirty);
1662 drop_super(sb);
1663 }
1664 invalidate_bdev(bdev);
1665 return res;
1666 }
1667 EXPORT_SYMBOL(__invalidate_device);
1668
1669 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1670 {
1671 struct inode *inode, *old_inode = NULL;
1672
1673 spin_lock(&inode_sb_list_lock);
1674 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1675 struct address_space *mapping = inode->i_mapping;
1676
1677 spin_lock(&inode->i_lock);
1678 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1679 mapping->nrpages == 0) {
1680 spin_unlock(&inode->i_lock);
1681 continue;
1682 }
1683 __iget(inode);
1684 spin_unlock(&inode->i_lock);
1685 spin_unlock(&inode_sb_list_lock);
1686 /*
1687 * We hold a reference to 'inode' so it couldn't have been
1688 * removed from s_inodes list while we dropped the
1689 * inode_sb_list_lock. We cannot iput the inode now as we can
1690 * be holding the last reference and we cannot iput it under
1691 * inode_sb_list_lock. So we keep the reference and iput it
1692 * later.
1693 */
1694 iput(old_inode);
1695 old_inode = inode;
1696
1697 func(I_BDEV(inode), arg);
1698
1699 spin_lock(&inode_sb_list_lock);
1700 }
1701 spin_unlock(&inode_sb_list_lock);
1702 iput(old_inode);
1703 }