]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/block_dev.c
lift generic_write_checks() into callers of __generic_file_write_iter()
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <asm/uaccess.h>
31 #include "internal.h"
32
33 struct bdev_inode {
34 struct block_device bdev;
35 struct inode vfs_inode;
36 };
37
38 static const struct address_space_operations def_blk_aops;
39
40 static inline struct bdev_inode *BDEV_I(struct inode *inode)
41 {
42 return container_of(inode, struct bdev_inode, vfs_inode);
43 }
44
45 inline struct block_device *I_BDEV(struct inode *inode)
46 {
47 return &BDEV_I(inode)->bdev;
48 }
49 EXPORT_SYMBOL(I_BDEV);
50
51 static void bdev_write_inode(struct inode *inode)
52 {
53 spin_lock(&inode->i_lock);
54 while (inode->i_state & I_DIRTY) {
55 spin_unlock(&inode->i_lock);
56 WARN_ON_ONCE(write_inode_now(inode, true));
57 spin_lock(&inode->i_lock);
58 }
59 spin_unlock(&inode->i_lock);
60 }
61
62 /* Kill _all_ buffers and pagecache , dirty or not.. */
63 void kill_bdev(struct block_device *bdev)
64 {
65 struct address_space *mapping = bdev->bd_inode->i_mapping;
66
67 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
68 return;
69
70 invalidate_bh_lrus();
71 truncate_inode_pages(mapping, 0);
72 }
73 EXPORT_SYMBOL(kill_bdev);
74
75 /* Invalidate clean unused buffers and pagecache. */
76 void invalidate_bdev(struct block_device *bdev)
77 {
78 struct address_space *mapping = bdev->bd_inode->i_mapping;
79
80 if (mapping->nrpages == 0)
81 return;
82
83 invalidate_bh_lrus();
84 lru_add_drain_all(); /* make sure all lru add caches are flushed */
85 invalidate_mapping_pages(mapping, 0, -1);
86 /* 99% of the time, we don't need to flush the cleancache on the bdev.
87 * But, for the strange corners, lets be cautious
88 */
89 cleancache_invalidate_inode(mapping);
90 }
91 EXPORT_SYMBOL(invalidate_bdev);
92
93 int set_blocksize(struct block_device *bdev, int size)
94 {
95 /* Size must be a power of two, and between 512 and PAGE_SIZE */
96 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
97 return -EINVAL;
98
99 /* Size cannot be smaller than the size supported by the device */
100 if (size < bdev_logical_block_size(bdev))
101 return -EINVAL;
102
103 /* Don't change the size if it is same as current */
104 if (bdev->bd_block_size != size) {
105 sync_blockdev(bdev);
106 bdev->bd_block_size = size;
107 bdev->bd_inode->i_blkbits = blksize_bits(size);
108 kill_bdev(bdev);
109 }
110 return 0;
111 }
112
113 EXPORT_SYMBOL(set_blocksize);
114
115 int sb_set_blocksize(struct super_block *sb, int size)
116 {
117 if (set_blocksize(sb->s_bdev, size))
118 return 0;
119 /* If we get here, we know size is power of two
120 * and it's value is between 512 and PAGE_SIZE */
121 sb->s_blocksize = size;
122 sb->s_blocksize_bits = blksize_bits(size);
123 return sb->s_blocksize;
124 }
125
126 EXPORT_SYMBOL(sb_set_blocksize);
127
128 int sb_min_blocksize(struct super_block *sb, int size)
129 {
130 int minsize = bdev_logical_block_size(sb->s_bdev);
131 if (size < minsize)
132 size = minsize;
133 return sb_set_blocksize(sb, size);
134 }
135
136 EXPORT_SYMBOL(sb_min_blocksize);
137
138 static int
139 blkdev_get_block(struct inode *inode, sector_t iblock,
140 struct buffer_head *bh, int create)
141 {
142 bh->b_bdev = I_BDEV(inode);
143 bh->b_blocknr = iblock;
144 set_buffer_mapped(bh);
145 return 0;
146 }
147
148 static ssize_t
149 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
150 {
151 struct file *file = iocb->ki_filp;
152 struct inode *inode = file->f_mapping->host;
153
154 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
155 blkdev_get_block, NULL, NULL, 0);
156 }
157
158 int __sync_blockdev(struct block_device *bdev, int wait)
159 {
160 if (!bdev)
161 return 0;
162 if (!wait)
163 return filemap_flush(bdev->bd_inode->i_mapping);
164 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
165 }
166
167 /*
168 * Write out and wait upon all the dirty data associated with a block
169 * device via its mapping. Does not take the superblock lock.
170 */
171 int sync_blockdev(struct block_device *bdev)
172 {
173 return __sync_blockdev(bdev, 1);
174 }
175 EXPORT_SYMBOL(sync_blockdev);
176
177 /*
178 * Write out and wait upon all dirty data associated with this
179 * device. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
181 */
182 int fsync_bdev(struct block_device *bdev)
183 {
184 struct super_block *sb = get_super(bdev);
185 if (sb) {
186 int res = sync_filesystem(sb);
187 drop_super(sb);
188 return res;
189 }
190 return sync_blockdev(bdev);
191 }
192 EXPORT_SYMBOL(fsync_bdev);
193
194 /**
195 * freeze_bdev -- lock a filesystem and force it into a consistent state
196 * @bdev: blockdevice to lock
197 *
198 * If a superblock is found on this device, we take the s_umount semaphore
199 * on it to make sure nobody unmounts until the snapshot creation is done.
200 * The reference counter (bd_fsfreeze_count) guarantees that only the last
201 * unfreeze process can unfreeze the frozen filesystem actually when multiple
202 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
203 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
204 * actually.
205 */
206 struct super_block *freeze_bdev(struct block_device *bdev)
207 {
208 struct super_block *sb;
209 int error = 0;
210
211 mutex_lock(&bdev->bd_fsfreeze_mutex);
212 if (++bdev->bd_fsfreeze_count > 1) {
213 /*
214 * We don't even need to grab a reference - the first call
215 * to freeze_bdev grab an active reference and only the last
216 * thaw_bdev drops it.
217 */
218 sb = get_super(bdev);
219 drop_super(sb);
220 mutex_unlock(&bdev->bd_fsfreeze_mutex);
221 return sb;
222 }
223
224 sb = get_active_super(bdev);
225 if (!sb)
226 goto out;
227 if (sb->s_op->freeze_super)
228 error = sb->s_op->freeze_super(sb);
229 else
230 error = freeze_super(sb);
231 if (error) {
232 deactivate_super(sb);
233 bdev->bd_fsfreeze_count--;
234 mutex_unlock(&bdev->bd_fsfreeze_mutex);
235 return ERR_PTR(error);
236 }
237 deactivate_super(sb);
238 out:
239 sync_blockdev(bdev);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb; /* thaw_bdev releases s->s_umount */
242 }
243 EXPORT_SYMBOL(freeze_bdev);
244
245 /**
246 * thaw_bdev -- unlock filesystem
247 * @bdev: blockdevice to unlock
248 * @sb: associated superblock
249 *
250 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
251 */
252 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
253 {
254 int error = -EINVAL;
255
256 mutex_lock(&bdev->bd_fsfreeze_mutex);
257 if (!bdev->bd_fsfreeze_count)
258 goto out;
259
260 error = 0;
261 if (--bdev->bd_fsfreeze_count > 0)
262 goto out;
263
264 if (!sb)
265 goto out;
266
267 if (sb->s_op->thaw_super)
268 error = sb->s_op->thaw_super(sb);
269 else
270 error = thaw_super(sb);
271 if (error) {
272 bdev->bd_fsfreeze_count++;
273 mutex_unlock(&bdev->bd_fsfreeze_mutex);
274 return error;
275 }
276 out:
277 mutex_unlock(&bdev->bd_fsfreeze_mutex);
278 return 0;
279 }
280 EXPORT_SYMBOL(thaw_bdev);
281
282 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
283 {
284 return block_write_full_page(page, blkdev_get_block, wbc);
285 }
286
287 static int blkdev_readpage(struct file * file, struct page * page)
288 {
289 return block_read_full_page(page, blkdev_get_block);
290 }
291
292 static int blkdev_readpages(struct file *file, struct address_space *mapping,
293 struct list_head *pages, unsigned nr_pages)
294 {
295 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
296 }
297
298 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
299 loff_t pos, unsigned len, unsigned flags,
300 struct page **pagep, void **fsdata)
301 {
302 return block_write_begin(mapping, pos, len, flags, pagep,
303 blkdev_get_block);
304 }
305
306 static int blkdev_write_end(struct file *file, struct address_space *mapping,
307 loff_t pos, unsigned len, unsigned copied,
308 struct page *page, void *fsdata)
309 {
310 int ret;
311 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
312
313 unlock_page(page);
314 page_cache_release(page);
315
316 return ret;
317 }
318
319 /*
320 * private llseek:
321 * for a block special file file_inode(file)->i_size is zero
322 * so we compute the size by hand (just as in block_read/write above)
323 */
324 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
325 {
326 struct inode *bd_inode = file->f_mapping->host;
327 loff_t retval;
328
329 mutex_lock(&bd_inode->i_mutex);
330 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
331 mutex_unlock(&bd_inode->i_mutex);
332 return retval;
333 }
334
335 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
336 {
337 struct inode *bd_inode = filp->f_mapping->host;
338 struct block_device *bdev = I_BDEV(bd_inode);
339 int error;
340
341 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
342 if (error)
343 return error;
344
345 /*
346 * There is no need to serialise calls to blkdev_issue_flush with
347 * i_mutex and doing so causes performance issues with concurrent
348 * O_SYNC writers to a block device.
349 */
350 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
351 if (error == -EOPNOTSUPP)
352 error = 0;
353
354 return error;
355 }
356 EXPORT_SYMBOL(blkdev_fsync);
357
358 /**
359 * bdev_read_page() - Start reading a page from a block device
360 * @bdev: The device to read the page from
361 * @sector: The offset on the device to read the page to (need not be aligned)
362 * @page: The page to read
363 *
364 * On entry, the page should be locked. It will be unlocked when the page
365 * has been read. If the block driver implements rw_page synchronously,
366 * that will be true on exit from this function, but it need not be.
367 *
368 * Errors returned by this function are usually "soft", eg out of memory, or
369 * queue full; callers should try a different route to read this page rather
370 * than propagate an error back up the stack.
371 *
372 * Return: negative errno if an error occurs, 0 if submission was successful.
373 */
374 int bdev_read_page(struct block_device *bdev, sector_t sector,
375 struct page *page)
376 {
377 const struct block_device_operations *ops = bdev->bd_disk->fops;
378 if (!ops->rw_page)
379 return -EOPNOTSUPP;
380 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
381 }
382 EXPORT_SYMBOL_GPL(bdev_read_page);
383
384 /**
385 * bdev_write_page() - Start writing a page to a block device
386 * @bdev: The device to write the page to
387 * @sector: The offset on the device to write the page to (need not be aligned)
388 * @page: The page to write
389 * @wbc: The writeback_control for the write
390 *
391 * On entry, the page should be locked and not currently under writeback.
392 * On exit, if the write started successfully, the page will be unlocked and
393 * under writeback. If the write failed already (eg the driver failed to
394 * queue the page to the device), the page will still be locked. If the
395 * caller is a ->writepage implementation, it will need to unlock the page.
396 *
397 * Errors returned by this function are usually "soft", eg out of memory, or
398 * queue full; callers should try a different route to write this page rather
399 * than propagate an error back up the stack.
400 *
401 * Return: negative errno if an error occurs, 0 if submission was successful.
402 */
403 int bdev_write_page(struct block_device *bdev, sector_t sector,
404 struct page *page, struct writeback_control *wbc)
405 {
406 int result;
407 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
408 const struct block_device_operations *ops = bdev->bd_disk->fops;
409 if (!ops->rw_page)
410 return -EOPNOTSUPP;
411 set_page_writeback(page);
412 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
413 if (result)
414 end_page_writeback(page);
415 else
416 unlock_page(page);
417 return result;
418 }
419 EXPORT_SYMBOL_GPL(bdev_write_page);
420
421 /**
422 * bdev_direct_access() - Get the address for directly-accessibly memory
423 * @bdev: The device containing the memory
424 * @sector: The offset within the device
425 * @addr: Where to put the address of the memory
426 * @pfn: The Page Frame Number for the memory
427 * @size: The number of bytes requested
428 *
429 * If a block device is made up of directly addressable memory, this function
430 * will tell the caller the PFN and the address of the memory. The address
431 * may be directly dereferenced within the kernel without the need to call
432 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
433 * page tables.
434 *
435 * Return: negative errno if an error occurs, otherwise the number of bytes
436 * accessible at this address.
437 */
438 long bdev_direct_access(struct block_device *bdev, sector_t sector,
439 void **addr, unsigned long *pfn, long size)
440 {
441 long avail;
442 const struct block_device_operations *ops = bdev->bd_disk->fops;
443
444 if (size < 0)
445 return size;
446 if (!ops->direct_access)
447 return -EOPNOTSUPP;
448 if ((sector + DIV_ROUND_UP(size, 512)) >
449 part_nr_sects_read(bdev->bd_part))
450 return -ERANGE;
451 sector += get_start_sect(bdev);
452 if (sector % (PAGE_SIZE / 512))
453 return -EINVAL;
454 avail = ops->direct_access(bdev, sector, addr, pfn, size);
455 if (!avail)
456 return -ERANGE;
457 return min(avail, size);
458 }
459 EXPORT_SYMBOL_GPL(bdev_direct_access);
460
461 /*
462 * pseudo-fs
463 */
464
465 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
466 static struct kmem_cache * bdev_cachep __read_mostly;
467
468 static struct inode *bdev_alloc_inode(struct super_block *sb)
469 {
470 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
471 if (!ei)
472 return NULL;
473 return &ei->vfs_inode;
474 }
475
476 static void bdev_i_callback(struct rcu_head *head)
477 {
478 struct inode *inode = container_of(head, struct inode, i_rcu);
479 struct bdev_inode *bdi = BDEV_I(inode);
480
481 kmem_cache_free(bdev_cachep, bdi);
482 }
483
484 static void bdev_destroy_inode(struct inode *inode)
485 {
486 call_rcu(&inode->i_rcu, bdev_i_callback);
487 }
488
489 static void init_once(void *foo)
490 {
491 struct bdev_inode *ei = (struct bdev_inode *) foo;
492 struct block_device *bdev = &ei->bdev;
493
494 memset(bdev, 0, sizeof(*bdev));
495 mutex_init(&bdev->bd_mutex);
496 INIT_LIST_HEAD(&bdev->bd_inodes);
497 INIT_LIST_HEAD(&bdev->bd_list);
498 #ifdef CONFIG_SYSFS
499 INIT_LIST_HEAD(&bdev->bd_holder_disks);
500 #endif
501 inode_init_once(&ei->vfs_inode);
502 /* Initialize mutex for freeze. */
503 mutex_init(&bdev->bd_fsfreeze_mutex);
504 }
505
506 static inline void __bd_forget(struct inode *inode)
507 {
508 list_del_init(&inode->i_devices);
509 inode->i_bdev = NULL;
510 inode->i_mapping = &inode->i_data;
511 }
512
513 static void bdev_evict_inode(struct inode *inode)
514 {
515 struct block_device *bdev = &BDEV_I(inode)->bdev;
516 struct list_head *p;
517 truncate_inode_pages_final(&inode->i_data);
518 invalidate_inode_buffers(inode); /* is it needed here? */
519 clear_inode(inode);
520 spin_lock(&bdev_lock);
521 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
522 __bd_forget(list_entry(p, struct inode, i_devices));
523 }
524 list_del_init(&bdev->bd_list);
525 spin_unlock(&bdev_lock);
526 }
527
528 static const struct super_operations bdev_sops = {
529 .statfs = simple_statfs,
530 .alloc_inode = bdev_alloc_inode,
531 .destroy_inode = bdev_destroy_inode,
532 .drop_inode = generic_delete_inode,
533 .evict_inode = bdev_evict_inode,
534 };
535
536 static struct dentry *bd_mount(struct file_system_type *fs_type,
537 int flags, const char *dev_name, void *data)
538 {
539 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
540 }
541
542 static struct file_system_type bd_type = {
543 .name = "bdev",
544 .mount = bd_mount,
545 .kill_sb = kill_anon_super,
546 };
547
548 static struct super_block *blockdev_superblock __read_mostly;
549
550 void __init bdev_cache_init(void)
551 {
552 int err;
553 static struct vfsmount *bd_mnt;
554
555 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
556 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
557 SLAB_MEM_SPREAD|SLAB_PANIC),
558 init_once);
559 err = register_filesystem(&bd_type);
560 if (err)
561 panic("Cannot register bdev pseudo-fs");
562 bd_mnt = kern_mount(&bd_type);
563 if (IS_ERR(bd_mnt))
564 panic("Cannot create bdev pseudo-fs");
565 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
566 }
567
568 /*
569 * Most likely _very_ bad one - but then it's hardly critical for small
570 * /dev and can be fixed when somebody will need really large one.
571 * Keep in mind that it will be fed through icache hash function too.
572 */
573 static inline unsigned long hash(dev_t dev)
574 {
575 return MAJOR(dev)+MINOR(dev);
576 }
577
578 static int bdev_test(struct inode *inode, void *data)
579 {
580 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
581 }
582
583 static int bdev_set(struct inode *inode, void *data)
584 {
585 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
586 return 0;
587 }
588
589 static LIST_HEAD(all_bdevs);
590
591 struct block_device *bdget(dev_t dev)
592 {
593 struct block_device *bdev;
594 struct inode *inode;
595
596 inode = iget5_locked(blockdev_superblock, hash(dev),
597 bdev_test, bdev_set, &dev);
598
599 if (!inode)
600 return NULL;
601
602 bdev = &BDEV_I(inode)->bdev;
603
604 if (inode->i_state & I_NEW) {
605 bdev->bd_contains = NULL;
606 bdev->bd_super = NULL;
607 bdev->bd_inode = inode;
608 bdev->bd_block_size = (1 << inode->i_blkbits);
609 bdev->bd_part_count = 0;
610 bdev->bd_invalidated = 0;
611 inode->i_mode = S_IFBLK;
612 inode->i_rdev = dev;
613 inode->i_bdev = bdev;
614 inode->i_data.a_ops = &def_blk_aops;
615 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
616 spin_lock(&bdev_lock);
617 list_add(&bdev->bd_list, &all_bdevs);
618 spin_unlock(&bdev_lock);
619 unlock_new_inode(inode);
620 }
621 return bdev;
622 }
623
624 EXPORT_SYMBOL(bdget);
625
626 /**
627 * bdgrab -- Grab a reference to an already referenced block device
628 * @bdev: Block device to grab a reference to.
629 */
630 struct block_device *bdgrab(struct block_device *bdev)
631 {
632 ihold(bdev->bd_inode);
633 return bdev;
634 }
635 EXPORT_SYMBOL(bdgrab);
636
637 long nr_blockdev_pages(void)
638 {
639 struct block_device *bdev;
640 long ret = 0;
641 spin_lock(&bdev_lock);
642 list_for_each_entry(bdev, &all_bdevs, bd_list) {
643 ret += bdev->bd_inode->i_mapping->nrpages;
644 }
645 spin_unlock(&bdev_lock);
646 return ret;
647 }
648
649 void bdput(struct block_device *bdev)
650 {
651 iput(bdev->bd_inode);
652 }
653
654 EXPORT_SYMBOL(bdput);
655
656 static struct block_device *bd_acquire(struct inode *inode)
657 {
658 struct block_device *bdev;
659
660 spin_lock(&bdev_lock);
661 bdev = inode->i_bdev;
662 if (bdev) {
663 ihold(bdev->bd_inode);
664 spin_unlock(&bdev_lock);
665 return bdev;
666 }
667 spin_unlock(&bdev_lock);
668
669 bdev = bdget(inode->i_rdev);
670 if (bdev) {
671 spin_lock(&bdev_lock);
672 if (!inode->i_bdev) {
673 /*
674 * We take an additional reference to bd_inode,
675 * and it's released in clear_inode() of inode.
676 * So, we can access it via ->i_mapping always
677 * without igrab().
678 */
679 ihold(bdev->bd_inode);
680 inode->i_bdev = bdev;
681 inode->i_mapping = bdev->bd_inode->i_mapping;
682 list_add(&inode->i_devices, &bdev->bd_inodes);
683 }
684 spin_unlock(&bdev_lock);
685 }
686 return bdev;
687 }
688
689 int sb_is_blkdev_sb(struct super_block *sb)
690 {
691 return sb == blockdev_superblock;
692 }
693
694 /* Call when you free inode */
695
696 void bd_forget(struct inode *inode)
697 {
698 struct block_device *bdev = NULL;
699
700 spin_lock(&bdev_lock);
701 if (!sb_is_blkdev_sb(inode->i_sb))
702 bdev = inode->i_bdev;
703 __bd_forget(inode);
704 spin_unlock(&bdev_lock);
705
706 if (bdev)
707 iput(bdev->bd_inode);
708 }
709
710 /**
711 * bd_may_claim - test whether a block device can be claimed
712 * @bdev: block device of interest
713 * @whole: whole block device containing @bdev, may equal @bdev
714 * @holder: holder trying to claim @bdev
715 *
716 * Test whether @bdev can be claimed by @holder.
717 *
718 * CONTEXT:
719 * spin_lock(&bdev_lock).
720 *
721 * RETURNS:
722 * %true if @bdev can be claimed, %false otherwise.
723 */
724 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
725 void *holder)
726 {
727 if (bdev->bd_holder == holder)
728 return true; /* already a holder */
729 else if (bdev->bd_holder != NULL)
730 return false; /* held by someone else */
731 else if (bdev->bd_contains == bdev)
732 return true; /* is a whole device which isn't held */
733
734 else if (whole->bd_holder == bd_may_claim)
735 return true; /* is a partition of a device that is being partitioned */
736 else if (whole->bd_holder != NULL)
737 return false; /* is a partition of a held device */
738 else
739 return true; /* is a partition of an un-held device */
740 }
741
742 /**
743 * bd_prepare_to_claim - prepare to claim a block device
744 * @bdev: block device of interest
745 * @whole: the whole device containing @bdev, may equal @bdev
746 * @holder: holder trying to claim @bdev
747 *
748 * Prepare to claim @bdev. This function fails if @bdev is already
749 * claimed by another holder and waits if another claiming is in
750 * progress. This function doesn't actually claim. On successful
751 * return, the caller has ownership of bd_claiming and bd_holder[s].
752 *
753 * CONTEXT:
754 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
755 * it multiple times.
756 *
757 * RETURNS:
758 * 0 if @bdev can be claimed, -EBUSY otherwise.
759 */
760 static int bd_prepare_to_claim(struct block_device *bdev,
761 struct block_device *whole, void *holder)
762 {
763 retry:
764 /* if someone else claimed, fail */
765 if (!bd_may_claim(bdev, whole, holder))
766 return -EBUSY;
767
768 /* if claiming is already in progress, wait for it to finish */
769 if (whole->bd_claiming) {
770 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
771 DEFINE_WAIT(wait);
772
773 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
774 spin_unlock(&bdev_lock);
775 schedule();
776 finish_wait(wq, &wait);
777 spin_lock(&bdev_lock);
778 goto retry;
779 }
780
781 /* yay, all mine */
782 return 0;
783 }
784
785 /**
786 * bd_start_claiming - start claiming a block device
787 * @bdev: block device of interest
788 * @holder: holder trying to claim @bdev
789 *
790 * @bdev is about to be opened exclusively. Check @bdev can be opened
791 * exclusively and mark that an exclusive open is in progress. Each
792 * successful call to this function must be matched with a call to
793 * either bd_finish_claiming() or bd_abort_claiming() (which do not
794 * fail).
795 *
796 * This function is used to gain exclusive access to the block device
797 * without actually causing other exclusive open attempts to fail. It
798 * should be used when the open sequence itself requires exclusive
799 * access but may subsequently fail.
800 *
801 * CONTEXT:
802 * Might sleep.
803 *
804 * RETURNS:
805 * Pointer to the block device containing @bdev on success, ERR_PTR()
806 * value on failure.
807 */
808 static struct block_device *bd_start_claiming(struct block_device *bdev,
809 void *holder)
810 {
811 struct gendisk *disk;
812 struct block_device *whole;
813 int partno, err;
814
815 might_sleep();
816
817 /*
818 * @bdev might not have been initialized properly yet, look up
819 * and grab the outer block device the hard way.
820 */
821 disk = get_gendisk(bdev->bd_dev, &partno);
822 if (!disk)
823 return ERR_PTR(-ENXIO);
824
825 /*
826 * Normally, @bdev should equal what's returned from bdget_disk()
827 * if partno is 0; however, some drivers (floppy) use multiple
828 * bdev's for the same physical device and @bdev may be one of the
829 * aliases. Keep @bdev if partno is 0. This means claimer
830 * tracking is broken for those devices but it has always been that
831 * way.
832 */
833 if (partno)
834 whole = bdget_disk(disk, 0);
835 else
836 whole = bdgrab(bdev);
837
838 module_put(disk->fops->owner);
839 put_disk(disk);
840 if (!whole)
841 return ERR_PTR(-ENOMEM);
842
843 /* prepare to claim, if successful, mark claiming in progress */
844 spin_lock(&bdev_lock);
845
846 err = bd_prepare_to_claim(bdev, whole, holder);
847 if (err == 0) {
848 whole->bd_claiming = holder;
849 spin_unlock(&bdev_lock);
850 return whole;
851 } else {
852 spin_unlock(&bdev_lock);
853 bdput(whole);
854 return ERR_PTR(err);
855 }
856 }
857
858 #ifdef CONFIG_SYSFS
859 struct bd_holder_disk {
860 struct list_head list;
861 struct gendisk *disk;
862 int refcnt;
863 };
864
865 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
866 struct gendisk *disk)
867 {
868 struct bd_holder_disk *holder;
869
870 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
871 if (holder->disk == disk)
872 return holder;
873 return NULL;
874 }
875
876 static int add_symlink(struct kobject *from, struct kobject *to)
877 {
878 return sysfs_create_link(from, to, kobject_name(to));
879 }
880
881 static void del_symlink(struct kobject *from, struct kobject *to)
882 {
883 sysfs_remove_link(from, kobject_name(to));
884 }
885
886 /**
887 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
888 * @bdev: the claimed slave bdev
889 * @disk: the holding disk
890 *
891 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
892 *
893 * This functions creates the following sysfs symlinks.
894 *
895 * - from "slaves" directory of the holder @disk to the claimed @bdev
896 * - from "holders" directory of the @bdev to the holder @disk
897 *
898 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
899 * passed to bd_link_disk_holder(), then:
900 *
901 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
902 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
903 *
904 * The caller must have claimed @bdev before calling this function and
905 * ensure that both @bdev and @disk are valid during the creation and
906 * lifetime of these symlinks.
907 *
908 * CONTEXT:
909 * Might sleep.
910 *
911 * RETURNS:
912 * 0 on success, -errno on failure.
913 */
914 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
915 {
916 struct bd_holder_disk *holder;
917 int ret = 0;
918
919 mutex_lock(&bdev->bd_mutex);
920
921 WARN_ON_ONCE(!bdev->bd_holder);
922
923 /* FIXME: remove the following once add_disk() handles errors */
924 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
925 goto out_unlock;
926
927 holder = bd_find_holder_disk(bdev, disk);
928 if (holder) {
929 holder->refcnt++;
930 goto out_unlock;
931 }
932
933 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
934 if (!holder) {
935 ret = -ENOMEM;
936 goto out_unlock;
937 }
938
939 INIT_LIST_HEAD(&holder->list);
940 holder->disk = disk;
941 holder->refcnt = 1;
942
943 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
944 if (ret)
945 goto out_free;
946
947 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
948 if (ret)
949 goto out_del;
950 /*
951 * bdev could be deleted beneath us which would implicitly destroy
952 * the holder directory. Hold on to it.
953 */
954 kobject_get(bdev->bd_part->holder_dir);
955
956 list_add(&holder->list, &bdev->bd_holder_disks);
957 goto out_unlock;
958
959 out_del:
960 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
961 out_free:
962 kfree(holder);
963 out_unlock:
964 mutex_unlock(&bdev->bd_mutex);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
968
969 /**
970 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
971 * @bdev: the calimed slave bdev
972 * @disk: the holding disk
973 *
974 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
975 *
976 * CONTEXT:
977 * Might sleep.
978 */
979 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
980 {
981 struct bd_holder_disk *holder;
982
983 mutex_lock(&bdev->bd_mutex);
984
985 holder = bd_find_holder_disk(bdev, disk);
986
987 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
988 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
989 del_symlink(bdev->bd_part->holder_dir,
990 &disk_to_dev(disk)->kobj);
991 kobject_put(bdev->bd_part->holder_dir);
992 list_del_init(&holder->list);
993 kfree(holder);
994 }
995
996 mutex_unlock(&bdev->bd_mutex);
997 }
998 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
999 #endif
1000
1001 /**
1002 * flush_disk - invalidates all buffer-cache entries on a disk
1003 *
1004 * @bdev: struct block device to be flushed
1005 * @kill_dirty: flag to guide handling of dirty inodes
1006 *
1007 * Invalidates all buffer-cache entries on a disk. It should be called
1008 * when a disk has been changed -- either by a media change or online
1009 * resize.
1010 */
1011 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1012 {
1013 if (__invalidate_device(bdev, kill_dirty)) {
1014 char name[BDEVNAME_SIZE] = "";
1015
1016 if (bdev->bd_disk)
1017 disk_name(bdev->bd_disk, 0, name);
1018 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1019 "resized disk %s\n", name);
1020 }
1021
1022 if (!bdev->bd_disk)
1023 return;
1024 if (disk_part_scan_enabled(bdev->bd_disk))
1025 bdev->bd_invalidated = 1;
1026 }
1027
1028 /**
1029 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1030 * @disk: struct gendisk to check
1031 * @bdev: struct bdev to adjust.
1032 *
1033 * This routine checks to see if the bdev size does not match the disk size
1034 * and adjusts it if it differs.
1035 */
1036 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1037 {
1038 loff_t disk_size, bdev_size;
1039
1040 disk_size = (loff_t)get_capacity(disk) << 9;
1041 bdev_size = i_size_read(bdev->bd_inode);
1042 if (disk_size != bdev_size) {
1043 char name[BDEVNAME_SIZE];
1044
1045 disk_name(disk, 0, name);
1046 printk(KERN_INFO
1047 "%s: detected capacity change from %lld to %lld\n",
1048 name, bdev_size, disk_size);
1049 i_size_write(bdev->bd_inode, disk_size);
1050 flush_disk(bdev, false);
1051 }
1052 }
1053 EXPORT_SYMBOL(check_disk_size_change);
1054
1055 /**
1056 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1057 * @disk: struct gendisk to be revalidated
1058 *
1059 * This routine is a wrapper for lower-level driver's revalidate_disk
1060 * call-backs. It is used to do common pre and post operations needed
1061 * for all revalidate_disk operations.
1062 */
1063 int revalidate_disk(struct gendisk *disk)
1064 {
1065 struct block_device *bdev;
1066 int ret = 0;
1067
1068 if (disk->fops->revalidate_disk)
1069 ret = disk->fops->revalidate_disk(disk);
1070
1071 bdev = bdget_disk(disk, 0);
1072 if (!bdev)
1073 return ret;
1074
1075 mutex_lock(&bdev->bd_mutex);
1076 check_disk_size_change(disk, bdev);
1077 bdev->bd_invalidated = 0;
1078 mutex_unlock(&bdev->bd_mutex);
1079 bdput(bdev);
1080 return ret;
1081 }
1082 EXPORT_SYMBOL(revalidate_disk);
1083
1084 /*
1085 * This routine checks whether a removable media has been changed,
1086 * and invalidates all buffer-cache-entries in that case. This
1087 * is a relatively slow routine, so we have to try to minimize using
1088 * it. Thus it is called only upon a 'mount' or 'open'. This
1089 * is the best way of combining speed and utility, I think.
1090 * People changing diskettes in the middle of an operation deserve
1091 * to lose :-)
1092 */
1093 int check_disk_change(struct block_device *bdev)
1094 {
1095 struct gendisk *disk = bdev->bd_disk;
1096 const struct block_device_operations *bdops = disk->fops;
1097 unsigned int events;
1098
1099 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1100 DISK_EVENT_EJECT_REQUEST);
1101 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1102 return 0;
1103
1104 flush_disk(bdev, true);
1105 if (bdops->revalidate_disk)
1106 bdops->revalidate_disk(bdev->bd_disk);
1107 return 1;
1108 }
1109
1110 EXPORT_SYMBOL(check_disk_change);
1111
1112 void bd_set_size(struct block_device *bdev, loff_t size)
1113 {
1114 unsigned bsize = bdev_logical_block_size(bdev);
1115
1116 mutex_lock(&bdev->bd_inode->i_mutex);
1117 i_size_write(bdev->bd_inode, size);
1118 mutex_unlock(&bdev->bd_inode->i_mutex);
1119 while (bsize < PAGE_CACHE_SIZE) {
1120 if (size & bsize)
1121 break;
1122 bsize <<= 1;
1123 }
1124 bdev->bd_block_size = bsize;
1125 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1126 }
1127 EXPORT_SYMBOL(bd_set_size);
1128
1129 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1130
1131 /*
1132 * bd_mutex locking:
1133 *
1134 * mutex_lock(part->bd_mutex)
1135 * mutex_lock_nested(whole->bd_mutex, 1)
1136 */
1137
1138 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1139 {
1140 struct gendisk *disk;
1141 struct module *owner;
1142 int ret;
1143 int partno;
1144 int perm = 0;
1145
1146 if (mode & FMODE_READ)
1147 perm |= MAY_READ;
1148 if (mode & FMODE_WRITE)
1149 perm |= MAY_WRITE;
1150 /*
1151 * hooks: /n/, see "layering violations".
1152 */
1153 if (!for_part) {
1154 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1155 if (ret != 0) {
1156 bdput(bdev);
1157 return ret;
1158 }
1159 }
1160
1161 restart:
1162
1163 ret = -ENXIO;
1164 disk = get_gendisk(bdev->bd_dev, &partno);
1165 if (!disk)
1166 goto out;
1167 owner = disk->fops->owner;
1168
1169 disk_block_events(disk);
1170 mutex_lock_nested(&bdev->bd_mutex, for_part);
1171 if (!bdev->bd_openers) {
1172 bdev->bd_disk = disk;
1173 bdev->bd_queue = disk->queue;
1174 bdev->bd_contains = bdev;
1175 if (!partno) {
1176 ret = -ENXIO;
1177 bdev->bd_part = disk_get_part(disk, partno);
1178 if (!bdev->bd_part)
1179 goto out_clear;
1180
1181 ret = 0;
1182 if (disk->fops->open) {
1183 ret = disk->fops->open(bdev, mode);
1184 if (ret == -ERESTARTSYS) {
1185 /* Lost a race with 'disk' being
1186 * deleted, try again.
1187 * See md.c
1188 */
1189 disk_put_part(bdev->bd_part);
1190 bdev->bd_part = NULL;
1191 bdev->bd_disk = NULL;
1192 bdev->bd_queue = NULL;
1193 mutex_unlock(&bdev->bd_mutex);
1194 disk_unblock_events(disk);
1195 put_disk(disk);
1196 module_put(owner);
1197 goto restart;
1198 }
1199 }
1200
1201 if (!ret)
1202 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1203
1204 /*
1205 * If the device is invalidated, rescan partition
1206 * if open succeeded or failed with -ENOMEDIUM.
1207 * The latter is necessary to prevent ghost
1208 * partitions on a removed medium.
1209 */
1210 if (bdev->bd_invalidated) {
1211 if (!ret)
1212 rescan_partitions(disk, bdev);
1213 else if (ret == -ENOMEDIUM)
1214 invalidate_partitions(disk, bdev);
1215 }
1216 if (ret)
1217 goto out_clear;
1218 } else {
1219 struct block_device *whole;
1220 whole = bdget_disk(disk, 0);
1221 ret = -ENOMEM;
1222 if (!whole)
1223 goto out_clear;
1224 BUG_ON(for_part);
1225 ret = __blkdev_get(whole, mode, 1);
1226 if (ret)
1227 goto out_clear;
1228 bdev->bd_contains = whole;
1229 bdev->bd_part = disk_get_part(disk, partno);
1230 if (!(disk->flags & GENHD_FL_UP) ||
1231 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1232 ret = -ENXIO;
1233 goto out_clear;
1234 }
1235 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1236 }
1237 } else {
1238 if (bdev->bd_contains == bdev) {
1239 ret = 0;
1240 if (bdev->bd_disk->fops->open)
1241 ret = bdev->bd_disk->fops->open(bdev, mode);
1242 /* the same as first opener case, read comment there */
1243 if (bdev->bd_invalidated) {
1244 if (!ret)
1245 rescan_partitions(bdev->bd_disk, bdev);
1246 else if (ret == -ENOMEDIUM)
1247 invalidate_partitions(bdev->bd_disk, bdev);
1248 }
1249 if (ret)
1250 goto out_unlock_bdev;
1251 }
1252 /* only one opener holds refs to the module and disk */
1253 put_disk(disk);
1254 module_put(owner);
1255 }
1256 bdev->bd_openers++;
1257 if (for_part)
1258 bdev->bd_part_count++;
1259 mutex_unlock(&bdev->bd_mutex);
1260 disk_unblock_events(disk);
1261 return 0;
1262
1263 out_clear:
1264 disk_put_part(bdev->bd_part);
1265 bdev->bd_disk = NULL;
1266 bdev->bd_part = NULL;
1267 bdev->bd_queue = NULL;
1268 if (bdev != bdev->bd_contains)
1269 __blkdev_put(bdev->bd_contains, mode, 1);
1270 bdev->bd_contains = NULL;
1271 out_unlock_bdev:
1272 mutex_unlock(&bdev->bd_mutex);
1273 disk_unblock_events(disk);
1274 put_disk(disk);
1275 module_put(owner);
1276 out:
1277 bdput(bdev);
1278
1279 return ret;
1280 }
1281
1282 /**
1283 * blkdev_get - open a block device
1284 * @bdev: block_device to open
1285 * @mode: FMODE_* mask
1286 * @holder: exclusive holder identifier
1287 *
1288 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1289 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1290 * @holder is invalid. Exclusive opens may nest for the same @holder.
1291 *
1292 * On success, the reference count of @bdev is unchanged. On failure,
1293 * @bdev is put.
1294 *
1295 * CONTEXT:
1296 * Might sleep.
1297 *
1298 * RETURNS:
1299 * 0 on success, -errno on failure.
1300 */
1301 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1302 {
1303 struct block_device *whole = NULL;
1304 int res;
1305
1306 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1307
1308 if ((mode & FMODE_EXCL) && holder) {
1309 whole = bd_start_claiming(bdev, holder);
1310 if (IS_ERR(whole)) {
1311 bdput(bdev);
1312 return PTR_ERR(whole);
1313 }
1314 }
1315
1316 res = __blkdev_get(bdev, mode, 0);
1317
1318 if (whole) {
1319 struct gendisk *disk = whole->bd_disk;
1320
1321 /* finish claiming */
1322 mutex_lock(&bdev->bd_mutex);
1323 spin_lock(&bdev_lock);
1324
1325 if (!res) {
1326 BUG_ON(!bd_may_claim(bdev, whole, holder));
1327 /*
1328 * Note that for a whole device bd_holders
1329 * will be incremented twice, and bd_holder
1330 * will be set to bd_may_claim before being
1331 * set to holder
1332 */
1333 whole->bd_holders++;
1334 whole->bd_holder = bd_may_claim;
1335 bdev->bd_holders++;
1336 bdev->bd_holder = holder;
1337 }
1338
1339 /* tell others that we're done */
1340 BUG_ON(whole->bd_claiming != holder);
1341 whole->bd_claiming = NULL;
1342 wake_up_bit(&whole->bd_claiming, 0);
1343
1344 spin_unlock(&bdev_lock);
1345
1346 /*
1347 * Block event polling for write claims if requested. Any
1348 * write holder makes the write_holder state stick until
1349 * all are released. This is good enough and tracking
1350 * individual writeable reference is too fragile given the
1351 * way @mode is used in blkdev_get/put().
1352 */
1353 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1354 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1355 bdev->bd_write_holder = true;
1356 disk_block_events(disk);
1357 }
1358
1359 mutex_unlock(&bdev->bd_mutex);
1360 bdput(whole);
1361 }
1362
1363 return res;
1364 }
1365 EXPORT_SYMBOL(blkdev_get);
1366
1367 /**
1368 * blkdev_get_by_path - open a block device by name
1369 * @path: path to the block device to open
1370 * @mode: FMODE_* mask
1371 * @holder: exclusive holder identifier
1372 *
1373 * Open the blockdevice described by the device file at @path. @mode
1374 * and @holder are identical to blkdev_get().
1375 *
1376 * On success, the returned block_device has reference count of one.
1377 *
1378 * CONTEXT:
1379 * Might sleep.
1380 *
1381 * RETURNS:
1382 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1383 */
1384 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1385 void *holder)
1386 {
1387 struct block_device *bdev;
1388 int err;
1389
1390 bdev = lookup_bdev(path);
1391 if (IS_ERR(bdev))
1392 return bdev;
1393
1394 err = blkdev_get(bdev, mode, holder);
1395 if (err)
1396 return ERR_PTR(err);
1397
1398 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1399 blkdev_put(bdev, mode);
1400 return ERR_PTR(-EACCES);
1401 }
1402
1403 return bdev;
1404 }
1405 EXPORT_SYMBOL(blkdev_get_by_path);
1406
1407 /**
1408 * blkdev_get_by_dev - open a block device by device number
1409 * @dev: device number of block device to open
1410 * @mode: FMODE_* mask
1411 * @holder: exclusive holder identifier
1412 *
1413 * Open the blockdevice described by device number @dev. @mode and
1414 * @holder are identical to blkdev_get().
1415 *
1416 * Use it ONLY if you really do not have anything better - i.e. when
1417 * you are behind a truly sucky interface and all you are given is a
1418 * device number. _Never_ to be used for internal purposes. If you
1419 * ever need it - reconsider your API.
1420 *
1421 * On success, the returned block_device has reference count of one.
1422 *
1423 * CONTEXT:
1424 * Might sleep.
1425 *
1426 * RETURNS:
1427 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1428 */
1429 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1430 {
1431 struct block_device *bdev;
1432 int err;
1433
1434 bdev = bdget(dev);
1435 if (!bdev)
1436 return ERR_PTR(-ENOMEM);
1437
1438 err = blkdev_get(bdev, mode, holder);
1439 if (err)
1440 return ERR_PTR(err);
1441
1442 return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_dev);
1445
1446 static int blkdev_open(struct inode * inode, struct file * filp)
1447 {
1448 struct block_device *bdev;
1449
1450 /*
1451 * Preserve backwards compatibility and allow large file access
1452 * even if userspace doesn't ask for it explicitly. Some mkfs
1453 * binary needs it. We might want to drop this workaround
1454 * during an unstable branch.
1455 */
1456 filp->f_flags |= O_LARGEFILE;
1457
1458 if (filp->f_flags & O_NDELAY)
1459 filp->f_mode |= FMODE_NDELAY;
1460 if (filp->f_flags & O_EXCL)
1461 filp->f_mode |= FMODE_EXCL;
1462 if ((filp->f_flags & O_ACCMODE) == 3)
1463 filp->f_mode |= FMODE_WRITE_IOCTL;
1464
1465 bdev = bd_acquire(inode);
1466 if (bdev == NULL)
1467 return -ENOMEM;
1468
1469 filp->f_mapping = bdev->bd_inode->i_mapping;
1470
1471 return blkdev_get(bdev, filp->f_mode, filp);
1472 }
1473
1474 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1475 {
1476 struct gendisk *disk = bdev->bd_disk;
1477 struct block_device *victim = NULL;
1478
1479 mutex_lock_nested(&bdev->bd_mutex, for_part);
1480 if (for_part)
1481 bdev->bd_part_count--;
1482
1483 if (!--bdev->bd_openers) {
1484 WARN_ON_ONCE(bdev->bd_holders);
1485 sync_blockdev(bdev);
1486 kill_bdev(bdev);
1487 /*
1488 * ->release can cause the queue to disappear, so flush all
1489 * dirty data before.
1490 */
1491 bdev_write_inode(bdev->bd_inode);
1492 }
1493 if (bdev->bd_contains == bdev) {
1494 if (disk->fops->release)
1495 disk->fops->release(disk, mode);
1496 }
1497 if (!bdev->bd_openers) {
1498 struct module *owner = disk->fops->owner;
1499
1500 disk_put_part(bdev->bd_part);
1501 bdev->bd_part = NULL;
1502 bdev->bd_disk = NULL;
1503 if (bdev != bdev->bd_contains)
1504 victim = bdev->bd_contains;
1505 bdev->bd_contains = NULL;
1506
1507 put_disk(disk);
1508 module_put(owner);
1509 }
1510 mutex_unlock(&bdev->bd_mutex);
1511 bdput(bdev);
1512 if (victim)
1513 __blkdev_put(victim, mode, 1);
1514 }
1515
1516 void blkdev_put(struct block_device *bdev, fmode_t mode)
1517 {
1518 mutex_lock(&bdev->bd_mutex);
1519
1520 if (mode & FMODE_EXCL) {
1521 bool bdev_free;
1522
1523 /*
1524 * Release a claim on the device. The holder fields
1525 * are protected with bdev_lock. bd_mutex is to
1526 * synchronize disk_holder unlinking.
1527 */
1528 spin_lock(&bdev_lock);
1529
1530 WARN_ON_ONCE(--bdev->bd_holders < 0);
1531 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1532
1533 /* bd_contains might point to self, check in a separate step */
1534 if ((bdev_free = !bdev->bd_holders))
1535 bdev->bd_holder = NULL;
1536 if (!bdev->bd_contains->bd_holders)
1537 bdev->bd_contains->bd_holder = NULL;
1538
1539 spin_unlock(&bdev_lock);
1540
1541 /*
1542 * If this was the last claim, remove holder link and
1543 * unblock evpoll if it was a write holder.
1544 */
1545 if (bdev_free && bdev->bd_write_holder) {
1546 disk_unblock_events(bdev->bd_disk);
1547 bdev->bd_write_holder = false;
1548 }
1549 }
1550
1551 /*
1552 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1553 * event. This is to ensure detection of media removal commanded
1554 * from userland - e.g. eject(1).
1555 */
1556 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1557
1558 mutex_unlock(&bdev->bd_mutex);
1559
1560 __blkdev_put(bdev, mode, 0);
1561 }
1562 EXPORT_SYMBOL(blkdev_put);
1563
1564 static int blkdev_close(struct inode * inode, struct file * filp)
1565 {
1566 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1567 blkdev_put(bdev, filp->f_mode);
1568 return 0;
1569 }
1570
1571 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1572 {
1573 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1574 fmode_t mode = file->f_mode;
1575
1576 /*
1577 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1578 * to updated it before every ioctl.
1579 */
1580 if (file->f_flags & O_NDELAY)
1581 mode |= FMODE_NDELAY;
1582 else
1583 mode &= ~FMODE_NDELAY;
1584
1585 return blkdev_ioctl(bdev, mode, cmd, arg);
1586 }
1587
1588 /*
1589 * Write data to the block device. Only intended for the block device itself
1590 * and the raw driver which basically is a fake block device.
1591 *
1592 * Does not take i_mutex for the write and thus is not for general purpose
1593 * use.
1594 */
1595 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1596 {
1597 struct file *file = iocb->ki_filp;
1598 struct blk_plug plug;
1599 ssize_t ret;
1600 size_t count = iov_iter_count(from);
1601
1602 ret = generic_write_checks(file, &iocb->ki_pos, &count, 1);
1603 if (ret)
1604 return ret;
1605
1606 if (count == 0)
1607 return 0;
1608
1609 iov_iter_truncate(from, count);
1610
1611 blk_start_plug(&plug);
1612 ret = __generic_file_write_iter(iocb, from);
1613 if (ret > 0) {
1614 ssize_t err;
1615 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1616 if (err < 0)
1617 ret = err;
1618 }
1619 blk_finish_plug(&plug);
1620 return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1623
1624 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1625 {
1626 struct file *file = iocb->ki_filp;
1627 struct inode *bd_inode = file->f_mapping->host;
1628 loff_t size = i_size_read(bd_inode);
1629 loff_t pos = iocb->ki_pos;
1630
1631 if (pos >= size)
1632 return 0;
1633
1634 size -= pos;
1635 iov_iter_truncate(to, size);
1636 return generic_file_read_iter(iocb, to);
1637 }
1638 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1639
1640 /*
1641 * Try to release a page associated with block device when the system
1642 * is under memory pressure.
1643 */
1644 static int blkdev_releasepage(struct page *page, gfp_t wait)
1645 {
1646 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1647
1648 if (super && super->s_op->bdev_try_to_free_page)
1649 return super->s_op->bdev_try_to_free_page(super, page, wait);
1650
1651 return try_to_free_buffers(page);
1652 }
1653
1654 static const struct address_space_operations def_blk_aops = {
1655 .readpage = blkdev_readpage,
1656 .readpages = blkdev_readpages,
1657 .writepage = blkdev_writepage,
1658 .write_begin = blkdev_write_begin,
1659 .write_end = blkdev_write_end,
1660 .writepages = generic_writepages,
1661 .releasepage = blkdev_releasepage,
1662 .direct_IO = blkdev_direct_IO,
1663 .is_dirty_writeback = buffer_check_dirty_writeback,
1664 };
1665
1666 const struct file_operations def_blk_fops = {
1667 .open = blkdev_open,
1668 .release = blkdev_close,
1669 .llseek = block_llseek,
1670 .read_iter = blkdev_read_iter,
1671 .write_iter = blkdev_write_iter,
1672 .mmap = generic_file_mmap,
1673 .fsync = blkdev_fsync,
1674 .unlocked_ioctl = block_ioctl,
1675 #ifdef CONFIG_COMPAT
1676 .compat_ioctl = compat_blkdev_ioctl,
1677 #endif
1678 .splice_read = generic_file_splice_read,
1679 .splice_write = iter_file_splice_write,
1680 };
1681
1682 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1683 {
1684 int res;
1685 mm_segment_t old_fs = get_fs();
1686 set_fs(KERNEL_DS);
1687 res = blkdev_ioctl(bdev, 0, cmd, arg);
1688 set_fs(old_fs);
1689 return res;
1690 }
1691
1692 EXPORT_SYMBOL(ioctl_by_bdev);
1693
1694 /**
1695 * lookup_bdev - lookup a struct block_device by name
1696 * @pathname: special file representing the block device
1697 *
1698 * Get a reference to the blockdevice at @pathname in the current
1699 * namespace if possible and return it. Return ERR_PTR(error)
1700 * otherwise.
1701 */
1702 struct block_device *lookup_bdev(const char *pathname)
1703 {
1704 struct block_device *bdev;
1705 struct inode *inode;
1706 struct path path;
1707 int error;
1708
1709 if (!pathname || !*pathname)
1710 return ERR_PTR(-EINVAL);
1711
1712 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1713 if (error)
1714 return ERR_PTR(error);
1715
1716 inode = path.dentry->d_inode;
1717 error = -ENOTBLK;
1718 if (!S_ISBLK(inode->i_mode))
1719 goto fail;
1720 error = -EACCES;
1721 if (path.mnt->mnt_flags & MNT_NODEV)
1722 goto fail;
1723 error = -ENOMEM;
1724 bdev = bd_acquire(inode);
1725 if (!bdev)
1726 goto fail;
1727 out:
1728 path_put(&path);
1729 return bdev;
1730 fail:
1731 bdev = ERR_PTR(error);
1732 goto out;
1733 }
1734 EXPORT_SYMBOL(lookup_bdev);
1735
1736 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1737 {
1738 struct super_block *sb = get_super(bdev);
1739 int res = 0;
1740
1741 if (sb) {
1742 /*
1743 * no need to lock the super, get_super holds the
1744 * read mutex so the filesystem cannot go away
1745 * under us (->put_super runs with the write lock
1746 * hold).
1747 */
1748 shrink_dcache_sb(sb);
1749 res = invalidate_inodes(sb, kill_dirty);
1750 drop_super(sb);
1751 }
1752 invalidate_bdev(bdev);
1753 return res;
1754 }
1755 EXPORT_SYMBOL(__invalidate_device);
1756
1757 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1758 {
1759 struct inode *inode, *old_inode = NULL;
1760
1761 spin_lock(&inode_sb_list_lock);
1762 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1763 struct address_space *mapping = inode->i_mapping;
1764
1765 spin_lock(&inode->i_lock);
1766 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1767 mapping->nrpages == 0) {
1768 spin_unlock(&inode->i_lock);
1769 continue;
1770 }
1771 __iget(inode);
1772 spin_unlock(&inode->i_lock);
1773 spin_unlock(&inode_sb_list_lock);
1774 /*
1775 * We hold a reference to 'inode' so it couldn't have been
1776 * removed from s_inodes list while we dropped the
1777 * inode_sb_list_lock. We cannot iput the inode now as we can
1778 * be holding the last reference and we cannot iput it under
1779 * inode_sb_list_lock. So we keep the reference and iput it
1780 * later.
1781 */
1782 iput(old_inode);
1783 old_inode = inode;
1784
1785 func(I_BDEV(inode), arg);
1786
1787 spin_lock(&inode_sb_list_lock);
1788 }
1789 spin_unlock(&inode_sb_list_lock);
1790 iput(old_inode);
1791 }