]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
fs/block_dev.c: no need to check inode->i_bdev in bd_forget()
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <asm/uaccess.h>
31 #include "internal.h"
32
33 struct bdev_inode {
34 struct block_device bdev;
35 struct inode vfs_inode;
36 };
37
38 static const struct address_space_operations def_blk_aops;
39
40 static inline struct bdev_inode *BDEV_I(struct inode *inode)
41 {
42 return container_of(inode, struct bdev_inode, vfs_inode);
43 }
44
45 inline struct block_device *I_BDEV(struct inode *inode)
46 {
47 return &BDEV_I(inode)->bdev;
48 }
49 EXPORT_SYMBOL(I_BDEV);
50
51 /*
52 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
53 * need to move it onto the dirty list of @dst so that the inode is always on
54 * the right list.
55 */
56 static void bdev_inode_switch_bdi(struct inode *inode,
57 struct backing_dev_info *dst)
58 {
59 struct backing_dev_info *old = inode->i_data.backing_dev_info;
60
61 if (unlikely(dst == old)) /* deadlock avoidance */
62 return;
63 bdi_lock_two(&old->wb, &dst->wb);
64 spin_lock(&inode->i_lock);
65 inode->i_data.backing_dev_info = dst;
66 if (inode->i_state & I_DIRTY)
67 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
68 spin_unlock(&inode->i_lock);
69 spin_unlock(&old->wb.list_lock);
70 spin_unlock(&dst->wb.list_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static ssize_t
160 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
161 loff_t offset, unsigned long nr_segs)
162 {
163 struct file *file = iocb->ki_filp;
164 struct inode *inode = file->f_mapping->host;
165
166 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
167 nr_segs, blkdev_get_block, NULL, NULL, 0);
168 }
169
170 int __sync_blockdev(struct block_device *bdev, int wait)
171 {
172 if (!bdev)
173 return 0;
174 if (!wait)
175 return filemap_flush(bdev->bd_inode->i_mapping);
176 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
177 }
178
179 /*
180 * Write out and wait upon all the dirty data associated with a block
181 * device via its mapping. Does not take the superblock lock.
182 */
183 int sync_blockdev(struct block_device *bdev)
184 {
185 return __sync_blockdev(bdev, 1);
186 }
187 EXPORT_SYMBOL(sync_blockdev);
188
189 /*
190 * Write out and wait upon all dirty data associated with this
191 * device. Filesystem data as well as the underlying block
192 * device. Takes the superblock lock.
193 */
194 int fsync_bdev(struct block_device *bdev)
195 {
196 struct super_block *sb = get_super(bdev);
197 if (sb) {
198 int res = sync_filesystem(sb);
199 drop_super(sb);
200 return res;
201 }
202 return sync_blockdev(bdev);
203 }
204 EXPORT_SYMBOL(fsync_bdev);
205
206 /**
207 * freeze_bdev -- lock a filesystem and force it into a consistent state
208 * @bdev: blockdevice to lock
209 *
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
212 * The reference counter (bd_fsfreeze_count) guarantees that only the last
213 * unfreeze process can unfreeze the frozen filesystem actually when multiple
214 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
215 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
216 * actually.
217 */
218 struct super_block *freeze_bdev(struct block_device *bdev)
219 {
220 struct super_block *sb;
221 int error = 0;
222
223 mutex_lock(&bdev->bd_fsfreeze_mutex);
224 if (++bdev->bd_fsfreeze_count > 1) {
225 /*
226 * We don't even need to grab a reference - the first call
227 * to freeze_bdev grab an active reference and only the last
228 * thaw_bdev drops it.
229 */
230 sb = get_super(bdev);
231 drop_super(sb);
232 mutex_unlock(&bdev->bd_fsfreeze_mutex);
233 return sb;
234 }
235
236 sb = get_active_super(bdev);
237 if (!sb)
238 goto out;
239 error = freeze_super(sb);
240 if (error) {
241 deactivate_super(sb);
242 bdev->bd_fsfreeze_count--;
243 mutex_unlock(&bdev->bd_fsfreeze_mutex);
244 return ERR_PTR(error);
245 }
246 deactivate_super(sb);
247 out:
248 sync_blockdev(bdev);
249 mutex_unlock(&bdev->bd_fsfreeze_mutex);
250 return sb; /* thaw_bdev releases s->s_umount */
251 }
252 EXPORT_SYMBOL(freeze_bdev);
253
254 /**
255 * thaw_bdev -- unlock filesystem
256 * @bdev: blockdevice to unlock
257 * @sb: associated superblock
258 *
259 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
260 */
261 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
262 {
263 int error = -EINVAL;
264
265 mutex_lock(&bdev->bd_fsfreeze_mutex);
266 if (!bdev->bd_fsfreeze_count)
267 goto out;
268
269 error = 0;
270 if (--bdev->bd_fsfreeze_count > 0)
271 goto out;
272
273 if (!sb)
274 goto out;
275
276 error = thaw_super(sb);
277 if (error) {
278 bdev->bd_fsfreeze_count++;
279 mutex_unlock(&bdev->bd_fsfreeze_mutex);
280 return error;
281 }
282 out:
283 mutex_unlock(&bdev->bd_fsfreeze_mutex);
284 return 0;
285 }
286 EXPORT_SYMBOL(thaw_bdev);
287
288 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
289 {
290 return block_write_full_page(page, blkdev_get_block, wbc);
291 }
292
293 static int blkdev_readpage(struct file * file, struct page * page)
294 {
295 return block_read_full_page(page, blkdev_get_block);
296 }
297
298 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
299 loff_t pos, unsigned len, unsigned flags,
300 struct page **pagep, void **fsdata)
301 {
302 return block_write_begin(mapping, pos, len, flags, pagep,
303 blkdev_get_block);
304 }
305
306 static int blkdev_write_end(struct file *file, struct address_space *mapping,
307 loff_t pos, unsigned len, unsigned copied,
308 struct page *page, void *fsdata)
309 {
310 int ret;
311 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
312
313 unlock_page(page);
314 page_cache_release(page);
315
316 return ret;
317 }
318
319 /*
320 * private llseek:
321 * for a block special file file_inode(file)->i_size is zero
322 * so we compute the size by hand (just as in block_read/write above)
323 */
324 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
325 {
326 struct inode *bd_inode = file->f_mapping->host;
327 loff_t size;
328 loff_t retval;
329
330 mutex_lock(&bd_inode->i_mutex);
331 size = i_size_read(bd_inode);
332
333 retval = -EINVAL;
334 switch (whence) {
335 case SEEK_END:
336 offset += size;
337 break;
338 case SEEK_CUR:
339 offset += file->f_pos;
340 case SEEK_SET:
341 break;
342 default:
343 goto out;
344 }
345 if (offset >= 0 && offset <= size) {
346 if (offset != file->f_pos) {
347 file->f_pos = offset;
348 }
349 retval = offset;
350 }
351 out:
352 mutex_unlock(&bd_inode->i_mutex);
353 return retval;
354 }
355
356 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
357 {
358 struct inode *bd_inode = filp->f_mapping->host;
359 struct block_device *bdev = I_BDEV(bd_inode);
360 int error;
361
362 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
363 if (error)
364 return error;
365
366 /*
367 * There is no need to serialise calls to blkdev_issue_flush with
368 * i_mutex and doing so causes performance issues with concurrent
369 * O_SYNC writers to a block device.
370 */
371 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
372 if (error == -EOPNOTSUPP)
373 error = 0;
374
375 return error;
376 }
377 EXPORT_SYMBOL(blkdev_fsync);
378
379 /*
380 * pseudo-fs
381 */
382
383 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
384 static struct kmem_cache * bdev_cachep __read_mostly;
385
386 static struct inode *bdev_alloc_inode(struct super_block *sb)
387 {
388 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
389 if (!ei)
390 return NULL;
391 return &ei->vfs_inode;
392 }
393
394 static void bdev_i_callback(struct rcu_head *head)
395 {
396 struct inode *inode = container_of(head, struct inode, i_rcu);
397 struct bdev_inode *bdi = BDEV_I(inode);
398
399 kmem_cache_free(bdev_cachep, bdi);
400 }
401
402 static void bdev_destroy_inode(struct inode *inode)
403 {
404 call_rcu(&inode->i_rcu, bdev_i_callback);
405 }
406
407 static void init_once(void *foo)
408 {
409 struct bdev_inode *ei = (struct bdev_inode *) foo;
410 struct block_device *bdev = &ei->bdev;
411
412 memset(bdev, 0, sizeof(*bdev));
413 mutex_init(&bdev->bd_mutex);
414 INIT_LIST_HEAD(&bdev->bd_inodes);
415 INIT_LIST_HEAD(&bdev->bd_list);
416 #ifdef CONFIG_SYSFS
417 INIT_LIST_HEAD(&bdev->bd_holder_disks);
418 #endif
419 inode_init_once(&ei->vfs_inode);
420 /* Initialize mutex for freeze. */
421 mutex_init(&bdev->bd_fsfreeze_mutex);
422 }
423
424 static inline void __bd_forget(struct inode *inode)
425 {
426 list_del_init(&inode->i_devices);
427 inode->i_bdev = NULL;
428 inode->i_mapping = &inode->i_data;
429 }
430
431 static void bdev_evict_inode(struct inode *inode)
432 {
433 struct block_device *bdev = &BDEV_I(inode)->bdev;
434 struct list_head *p;
435 truncate_inode_pages(&inode->i_data, 0);
436 invalidate_inode_buffers(inode); /* is it needed here? */
437 clear_inode(inode);
438 spin_lock(&bdev_lock);
439 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
440 __bd_forget(list_entry(p, struct inode, i_devices));
441 }
442 list_del_init(&bdev->bd_list);
443 spin_unlock(&bdev_lock);
444 }
445
446 static const struct super_operations bdev_sops = {
447 .statfs = simple_statfs,
448 .alloc_inode = bdev_alloc_inode,
449 .destroy_inode = bdev_destroy_inode,
450 .drop_inode = generic_delete_inode,
451 .evict_inode = bdev_evict_inode,
452 };
453
454 static struct dentry *bd_mount(struct file_system_type *fs_type,
455 int flags, const char *dev_name, void *data)
456 {
457 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
458 }
459
460 static struct file_system_type bd_type = {
461 .name = "bdev",
462 .mount = bd_mount,
463 .kill_sb = kill_anon_super,
464 };
465
466 static struct super_block *blockdev_superblock __read_mostly;
467
468 void __init bdev_cache_init(void)
469 {
470 int err;
471 static struct vfsmount *bd_mnt;
472
473 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
474 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
475 SLAB_MEM_SPREAD|SLAB_PANIC),
476 init_once);
477 err = register_filesystem(&bd_type);
478 if (err)
479 panic("Cannot register bdev pseudo-fs");
480 bd_mnt = kern_mount(&bd_type);
481 if (IS_ERR(bd_mnt))
482 panic("Cannot create bdev pseudo-fs");
483 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
484 }
485
486 /*
487 * Most likely _very_ bad one - but then it's hardly critical for small
488 * /dev and can be fixed when somebody will need really large one.
489 * Keep in mind that it will be fed through icache hash function too.
490 */
491 static inline unsigned long hash(dev_t dev)
492 {
493 return MAJOR(dev)+MINOR(dev);
494 }
495
496 static int bdev_test(struct inode *inode, void *data)
497 {
498 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
499 }
500
501 static int bdev_set(struct inode *inode, void *data)
502 {
503 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
504 return 0;
505 }
506
507 static LIST_HEAD(all_bdevs);
508
509 struct block_device *bdget(dev_t dev)
510 {
511 struct block_device *bdev;
512 struct inode *inode;
513
514 inode = iget5_locked(blockdev_superblock, hash(dev),
515 bdev_test, bdev_set, &dev);
516
517 if (!inode)
518 return NULL;
519
520 bdev = &BDEV_I(inode)->bdev;
521
522 if (inode->i_state & I_NEW) {
523 bdev->bd_contains = NULL;
524 bdev->bd_super = NULL;
525 bdev->bd_inode = inode;
526 bdev->bd_block_size = (1 << inode->i_blkbits);
527 bdev->bd_part_count = 0;
528 bdev->bd_invalidated = 0;
529 inode->i_mode = S_IFBLK;
530 inode->i_rdev = dev;
531 inode->i_bdev = bdev;
532 inode->i_data.a_ops = &def_blk_aops;
533 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
534 inode->i_data.backing_dev_info = &default_backing_dev_info;
535 spin_lock(&bdev_lock);
536 list_add(&bdev->bd_list, &all_bdevs);
537 spin_unlock(&bdev_lock);
538 unlock_new_inode(inode);
539 }
540 return bdev;
541 }
542
543 EXPORT_SYMBOL(bdget);
544
545 /**
546 * bdgrab -- Grab a reference to an already referenced block device
547 * @bdev: Block device to grab a reference to.
548 */
549 struct block_device *bdgrab(struct block_device *bdev)
550 {
551 ihold(bdev->bd_inode);
552 return bdev;
553 }
554 EXPORT_SYMBOL(bdgrab);
555
556 long nr_blockdev_pages(void)
557 {
558 struct block_device *bdev;
559 long ret = 0;
560 spin_lock(&bdev_lock);
561 list_for_each_entry(bdev, &all_bdevs, bd_list) {
562 ret += bdev->bd_inode->i_mapping->nrpages;
563 }
564 spin_unlock(&bdev_lock);
565 return ret;
566 }
567
568 void bdput(struct block_device *bdev)
569 {
570 iput(bdev->bd_inode);
571 }
572
573 EXPORT_SYMBOL(bdput);
574
575 static struct block_device *bd_acquire(struct inode *inode)
576 {
577 struct block_device *bdev;
578
579 spin_lock(&bdev_lock);
580 bdev = inode->i_bdev;
581 if (bdev) {
582 ihold(bdev->bd_inode);
583 spin_unlock(&bdev_lock);
584 return bdev;
585 }
586 spin_unlock(&bdev_lock);
587
588 bdev = bdget(inode->i_rdev);
589 if (bdev) {
590 spin_lock(&bdev_lock);
591 if (!inode->i_bdev) {
592 /*
593 * We take an additional reference to bd_inode,
594 * and it's released in clear_inode() of inode.
595 * So, we can access it via ->i_mapping always
596 * without igrab().
597 */
598 ihold(bdev->bd_inode);
599 inode->i_bdev = bdev;
600 inode->i_mapping = bdev->bd_inode->i_mapping;
601 list_add(&inode->i_devices, &bdev->bd_inodes);
602 }
603 spin_unlock(&bdev_lock);
604 }
605 return bdev;
606 }
607
608 static inline int sb_is_blkdev_sb(struct super_block *sb)
609 {
610 return sb == blockdev_superblock;
611 }
612
613 /* Call when you free inode */
614
615 void bd_forget(struct inode *inode)
616 {
617 struct block_device *bdev = NULL;
618
619 spin_lock(&bdev_lock);
620 if (!sb_is_blkdev_sb(inode->i_sb))
621 bdev = inode->i_bdev;
622 __bd_forget(inode);
623 spin_unlock(&bdev_lock);
624
625 if (bdev)
626 iput(bdev->bd_inode);
627 }
628
629 /**
630 * bd_may_claim - test whether a block device can be claimed
631 * @bdev: block device of interest
632 * @whole: whole block device containing @bdev, may equal @bdev
633 * @holder: holder trying to claim @bdev
634 *
635 * Test whether @bdev can be claimed by @holder.
636 *
637 * CONTEXT:
638 * spin_lock(&bdev_lock).
639 *
640 * RETURNS:
641 * %true if @bdev can be claimed, %false otherwise.
642 */
643 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
644 void *holder)
645 {
646 if (bdev->bd_holder == holder)
647 return true; /* already a holder */
648 else if (bdev->bd_holder != NULL)
649 return false; /* held by someone else */
650 else if (bdev->bd_contains == bdev)
651 return true; /* is a whole device which isn't held */
652
653 else if (whole->bd_holder == bd_may_claim)
654 return true; /* is a partition of a device that is being partitioned */
655 else if (whole->bd_holder != NULL)
656 return false; /* is a partition of a held device */
657 else
658 return true; /* is a partition of an un-held device */
659 }
660
661 /**
662 * bd_prepare_to_claim - prepare to claim a block device
663 * @bdev: block device of interest
664 * @whole: the whole device containing @bdev, may equal @bdev
665 * @holder: holder trying to claim @bdev
666 *
667 * Prepare to claim @bdev. This function fails if @bdev is already
668 * claimed by another holder and waits if another claiming is in
669 * progress. This function doesn't actually claim. On successful
670 * return, the caller has ownership of bd_claiming and bd_holder[s].
671 *
672 * CONTEXT:
673 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
674 * it multiple times.
675 *
676 * RETURNS:
677 * 0 if @bdev can be claimed, -EBUSY otherwise.
678 */
679 static int bd_prepare_to_claim(struct block_device *bdev,
680 struct block_device *whole, void *holder)
681 {
682 retry:
683 /* if someone else claimed, fail */
684 if (!bd_may_claim(bdev, whole, holder))
685 return -EBUSY;
686
687 /* if claiming is already in progress, wait for it to finish */
688 if (whole->bd_claiming) {
689 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
690 DEFINE_WAIT(wait);
691
692 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
693 spin_unlock(&bdev_lock);
694 schedule();
695 finish_wait(wq, &wait);
696 spin_lock(&bdev_lock);
697 goto retry;
698 }
699
700 /* yay, all mine */
701 return 0;
702 }
703
704 /**
705 * bd_start_claiming - start claiming a block device
706 * @bdev: block device of interest
707 * @holder: holder trying to claim @bdev
708 *
709 * @bdev is about to be opened exclusively. Check @bdev can be opened
710 * exclusively and mark that an exclusive open is in progress. Each
711 * successful call to this function must be matched with a call to
712 * either bd_finish_claiming() or bd_abort_claiming() (which do not
713 * fail).
714 *
715 * This function is used to gain exclusive access to the block device
716 * without actually causing other exclusive open attempts to fail. It
717 * should be used when the open sequence itself requires exclusive
718 * access but may subsequently fail.
719 *
720 * CONTEXT:
721 * Might sleep.
722 *
723 * RETURNS:
724 * Pointer to the block device containing @bdev on success, ERR_PTR()
725 * value on failure.
726 */
727 static struct block_device *bd_start_claiming(struct block_device *bdev,
728 void *holder)
729 {
730 struct gendisk *disk;
731 struct block_device *whole;
732 int partno, err;
733
734 might_sleep();
735
736 /*
737 * @bdev might not have been initialized properly yet, look up
738 * and grab the outer block device the hard way.
739 */
740 disk = get_gendisk(bdev->bd_dev, &partno);
741 if (!disk)
742 return ERR_PTR(-ENXIO);
743
744 /*
745 * Normally, @bdev should equal what's returned from bdget_disk()
746 * if partno is 0; however, some drivers (floppy) use multiple
747 * bdev's for the same physical device and @bdev may be one of the
748 * aliases. Keep @bdev if partno is 0. This means claimer
749 * tracking is broken for those devices but it has always been that
750 * way.
751 */
752 if (partno)
753 whole = bdget_disk(disk, 0);
754 else
755 whole = bdgrab(bdev);
756
757 module_put(disk->fops->owner);
758 put_disk(disk);
759 if (!whole)
760 return ERR_PTR(-ENOMEM);
761
762 /* prepare to claim, if successful, mark claiming in progress */
763 spin_lock(&bdev_lock);
764
765 err = bd_prepare_to_claim(bdev, whole, holder);
766 if (err == 0) {
767 whole->bd_claiming = holder;
768 spin_unlock(&bdev_lock);
769 return whole;
770 } else {
771 spin_unlock(&bdev_lock);
772 bdput(whole);
773 return ERR_PTR(err);
774 }
775 }
776
777 #ifdef CONFIG_SYSFS
778 struct bd_holder_disk {
779 struct list_head list;
780 struct gendisk *disk;
781 int refcnt;
782 };
783
784 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
785 struct gendisk *disk)
786 {
787 struct bd_holder_disk *holder;
788
789 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
790 if (holder->disk == disk)
791 return holder;
792 return NULL;
793 }
794
795 static int add_symlink(struct kobject *from, struct kobject *to)
796 {
797 return sysfs_create_link(from, to, kobject_name(to));
798 }
799
800 static void del_symlink(struct kobject *from, struct kobject *to)
801 {
802 sysfs_remove_link(from, kobject_name(to));
803 }
804
805 /**
806 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
807 * @bdev: the claimed slave bdev
808 * @disk: the holding disk
809 *
810 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
811 *
812 * This functions creates the following sysfs symlinks.
813 *
814 * - from "slaves" directory of the holder @disk to the claimed @bdev
815 * - from "holders" directory of the @bdev to the holder @disk
816 *
817 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
818 * passed to bd_link_disk_holder(), then:
819 *
820 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
821 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
822 *
823 * The caller must have claimed @bdev before calling this function and
824 * ensure that both @bdev and @disk are valid during the creation and
825 * lifetime of these symlinks.
826 *
827 * CONTEXT:
828 * Might sleep.
829 *
830 * RETURNS:
831 * 0 on success, -errno on failure.
832 */
833 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
834 {
835 struct bd_holder_disk *holder;
836 int ret = 0;
837
838 mutex_lock(&bdev->bd_mutex);
839
840 WARN_ON_ONCE(!bdev->bd_holder);
841
842 /* FIXME: remove the following once add_disk() handles errors */
843 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
844 goto out_unlock;
845
846 holder = bd_find_holder_disk(bdev, disk);
847 if (holder) {
848 holder->refcnt++;
849 goto out_unlock;
850 }
851
852 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
853 if (!holder) {
854 ret = -ENOMEM;
855 goto out_unlock;
856 }
857
858 INIT_LIST_HEAD(&holder->list);
859 holder->disk = disk;
860 holder->refcnt = 1;
861
862 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
863 if (ret)
864 goto out_free;
865
866 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
867 if (ret)
868 goto out_del;
869 /*
870 * bdev could be deleted beneath us which would implicitly destroy
871 * the holder directory. Hold on to it.
872 */
873 kobject_get(bdev->bd_part->holder_dir);
874
875 list_add(&holder->list, &bdev->bd_holder_disks);
876 goto out_unlock;
877
878 out_del:
879 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
880 out_free:
881 kfree(holder);
882 out_unlock:
883 mutex_unlock(&bdev->bd_mutex);
884 return ret;
885 }
886 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
887
888 /**
889 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
890 * @bdev: the calimed slave bdev
891 * @disk: the holding disk
892 *
893 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
894 *
895 * CONTEXT:
896 * Might sleep.
897 */
898 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
899 {
900 struct bd_holder_disk *holder;
901
902 mutex_lock(&bdev->bd_mutex);
903
904 holder = bd_find_holder_disk(bdev, disk);
905
906 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
907 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
908 del_symlink(bdev->bd_part->holder_dir,
909 &disk_to_dev(disk)->kobj);
910 kobject_put(bdev->bd_part->holder_dir);
911 list_del_init(&holder->list);
912 kfree(holder);
913 }
914
915 mutex_unlock(&bdev->bd_mutex);
916 }
917 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
918 #endif
919
920 /**
921 * flush_disk - invalidates all buffer-cache entries on a disk
922 *
923 * @bdev: struct block device to be flushed
924 * @kill_dirty: flag to guide handling of dirty inodes
925 *
926 * Invalidates all buffer-cache entries on a disk. It should be called
927 * when a disk has been changed -- either by a media change or online
928 * resize.
929 */
930 static void flush_disk(struct block_device *bdev, bool kill_dirty)
931 {
932 if (__invalidate_device(bdev, kill_dirty)) {
933 char name[BDEVNAME_SIZE] = "";
934
935 if (bdev->bd_disk)
936 disk_name(bdev->bd_disk, 0, name);
937 printk(KERN_WARNING "VFS: busy inodes on changed media or "
938 "resized disk %s\n", name);
939 }
940
941 if (!bdev->bd_disk)
942 return;
943 if (disk_part_scan_enabled(bdev->bd_disk))
944 bdev->bd_invalidated = 1;
945 }
946
947 /**
948 * check_disk_size_change - checks for disk size change and adjusts bdev size.
949 * @disk: struct gendisk to check
950 * @bdev: struct bdev to adjust.
951 *
952 * This routine checks to see if the bdev size does not match the disk size
953 * and adjusts it if it differs.
954 */
955 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
956 {
957 loff_t disk_size, bdev_size;
958
959 disk_size = (loff_t)get_capacity(disk) << 9;
960 bdev_size = i_size_read(bdev->bd_inode);
961 if (disk_size != bdev_size) {
962 char name[BDEVNAME_SIZE];
963
964 disk_name(disk, 0, name);
965 printk(KERN_INFO
966 "%s: detected capacity change from %lld to %lld\n",
967 name, bdev_size, disk_size);
968 i_size_write(bdev->bd_inode, disk_size);
969 flush_disk(bdev, false);
970 }
971 }
972 EXPORT_SYMBOL(check_disk_size_change);
973
974 /**
975 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
976 * @disk: struct gendisk to be revalidated
977 *
978 * This routine is a wrapper for lower-level driver's revalidate_disk
979 * call-backs. It is used to do common pre and post operations needed
980 * for all revalidate_disk operations.
981 */
982 int revalidate_disk(struct gendisk *disk)
983 {
984 struct block_device *bdev;
985 int ret = 0;
986
987 if (disk->fops->revalidate_disk)
988 ret = disk->fops->revalidate_disk(disk);
989
990 bdev = bdget_disk(disk, 0);
991 if (!bdev)
992 return ret;
993
994 mutex_lock(&bdev->bd_mutex);
995 check_disk_size_change(disk, bdev);
996 bdev->bd_invalidated = 0;
997 mutex_unlock(&bdev->bd_mutex);
998 bdput(bdev);
999 return ret;
1000 }
1001 EXPORT_SYMBOL(revalidate_disk);
1002
1003 /*
1004 * This routine checks whether a removable media has been changed,
1005 * and invalidates all buffer-cache-entries in that case. This
1006 * is a relatively slow routine, so we have to try to minimize using
1007 * it. Thus it is called only upon a 'mount' or 'open'. This
1008 * is the best way of combining speed and utility, I think.
1009 * People changing diskettes in the middle of an operation deserve
1010 * to lose :-)
1011 */
1012 int check_disk_change(struct block_device *bdev)
1013 {
1014 struct gendisk *disk = bdev->bd_disk;
1015 const struct block_device_operations *bdops = disk->fops;
1016 unsigned int events;
1017
1018 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1019 DISK_EVENT_EJECT_REQUEST);
1020 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1021 return 0;
1022
1023 flush_disk(bdev, true);
1024 if (bdops->revalidate_disk)
1025 bdops->revalidate_disk(bdev->bd_disk);
1026 return 1;
1027 }
1028
1029 EXPORT_SYMBOL(check_disk_change);
1030
1031 void bd_set_size(struct block_device *bdev, loff_t size)
1032 {
1033 unsigned bsize = bdev_logical_block_size(bdev);
1034
1035 mutex_lock(&bdev->bd_inode->i_mutex);
1036 i_size_write(bdev->bd_inode, size);
1037 mutex_unlock(&bdev->bd_inode->i_mutex);
1038 while (bsize < PAGE_CACHE_SIZE) {
1039 if (size & bsize)
1040 break;
1041 bsize <<= 1;
1042 }
1043 bdev->bd_block_size = bsize;
1044 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1045 }
1046 EXPORT_SYMBOL(bd_set_size);
1047
1048 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1049
1050 /*
1051 * bd_mutex locking:
1052 *
1053 * mutex_lock(part->bd_mutex)
1054 * mutex_lock_nested(whole->bd_mutex, 1)
1055 */
1056
1057 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1058 {
1059 struct gendisk *disk;
1060 struct module *owner;
1061 int ret;
1062 int partno;
1063 int perm = 0;
1064
1065 if (mode & FMODE_READ)
1066 perm |= MAY_READ;
1067 if (mode & FMODE_WRITE)
1068 perm |= MAY_WRITE;
1069 /*
1070 * hooks: /n/, see "layering violations".
1071 */
1072 if (!for_part) {
1073 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1074 if (ret != 0) {
1075 bdput(bdev);
1076 return ret;
1077 }
1078 }
1079
1080 restart:
1081
1082 ret = -ENXIO;
1083 disk = get_gendisk(bdev->bd_dev, &partno);
1084 if (!disk)
1085 goto out;
1086 owner = disk->fops->owner;
1087
1088 disk_block_events(disk);
1089 mutex_lock_nested(&bdev->bd_mutex, for_part);
1090 if (!bdev->bd_openers) {
1091 bdev->bd_disk = disk;
1092 bdev->bd_queue = disk->queue;
1093 bdev->bd_contains = bdev;
1094 if (!partno) {
1095 struct backing_dev_info *bdi;
1096
1097 ret = -ENXIO;
1098 bdev->bd_part = disk_get_part(disk, partno);
1099 if (!bdev->bd_part)
1100 goto out_clear;
1101
1102 ret = 0;
1103 if (disk->fops->open) {
1104 ret = disk->fops->open(bdev, mode);
1105 if (ret == -ERESTARTSYS) {
1106 /* Lost a race with 'disk' being
1107 * deleted, try again.
1108 * See md.c
1109 */
1110 disk_put_part(bdev->bd_part);
1111 bdev->bd_part = NULL;
1112 bdev->bd_disk = NULL;
1113 bdev->bd_queue = NULL;
1114 mutex_unlock(&bdev->bd_mutex);
1115 disk_unblock_events(disk);
1116 put_disk(disk);
1117 module_put(owner);
1118 goto restart;
1119 }
1120 }
1121
1122 if (!ret) {
1123 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1124 bdi = blk_get_backing_dev_info(bdev);
1125 if (bdi == NULL)
1126 bdi = &default_backing_dev_info;
1127 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1128 }
1129
1130 /*
1131 * If the device is invalidated, rescan partition
1132 * if open succeeded or failed with -ENOMEDIUM.
1133 * The latter is necessary to prevent ghost
1134 * partitions on a removed medium.
1135 */
1136 if (bdev->bd_invalidated) {
1137 if (!ret)
1138 rescan_partitions(disk, bdev);
1139 else if (ret == -ENOMEDIUM)
1140 invalidate_partitions(disk, bdev);
1141 }
1142 if (ret)
1143 goto out_clear;
1144 } else {
1145 struct block_device *whole;
1146 whole = bdget_disk(disk, 0);
1147 ret = -ENOMEM;
1148 if (!whole)
1149 goto out_clear;
1150 BUG_ON(for_part);
1151 ret = __blkdev_get(whole, mode, 1);
1152 if (ret)
1153 goto out_clear;
1154 bdev->bd_contains = whole;
1155 bdev_inode_switch_bdi(bdev->bd_inode,
1156 whole->bd_inode->i_data.backing_dev_info);
1157 bdev->bd_part = disk_get_part(disk, partno);
1158 if (!(disk->flags & GENHD_FL_UP) ||
1159 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1160 ret = -ENXIO;
1161 goto out_clear;
1162 }
1163 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1164 }
1165 } else {
1166 if (bdev->bd_contains == bdev) {
1167 ret = 0;
1168 if (bdev->bd_disk->fops->open)
1169 ret = bdev->bd_disk->fops->open(bdev, mode);
1170 /* the same as first opener case, read comment there */
1171 if (bdev->bd_invalidated) {
1172 if (!ret)
1173 rescan_partitions(bdev->bd_disk, bdev);
1174 else if (ret == -ENOMEDIUM)
1175 invalidate_partitions(bdev->bd_disk, bdev);
1176 }
1177 if (ret)
1178 goto out_unlock_bdev;
1179 }
1180 /* only one opener holds refs to the module and disk */
1181 put_disk(disk);
1182 module_put(owner);
1183 }
1184 bdev->bd_openers++;
1185 if (for_part)
1186 bdev->bd_part_count++;
1187 mutex_unlock(&bdev->bd_mutex);
1188 disk_unblock_events(disk);
1189 return 0;
1190
1191 out_clear:
1192 disk_put_part(bdev->bd_part);
1193 bdev->bd_disk = NULL;
1194 bdev->bd_part = NULL;
1195 bdev->bd_queue = NULL;
1196 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1197 if (bdev != bdev->bd_contains)
1198 __blkdev_put(bdev->bd_contains, mode, 1);
1199 bdev->bd_contains = NULL;
1200 out_unlock_bdev:
1201 mutex_unlock(&bdev->bd_mutex);
1202 disk_unblock_events(disk);
1203 put_disk(disk);
1204 module_put(owner);
1205 out:
1206 bdput(bdev);
1207
1208 return ret;
1209 }
1210
1211 /**
1212 * blkdev_get - open a block device
1213 * @bdev: block_device to open
1214 * @mode: FMODE_* mask
1215 * @holder: exclusive holder identifier
1216 *
1217 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1218 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1219 * @holder is invalid. Exclusive opens may nest for the same @holder.
1220 *
1221 * On success, the reference count of @bdev is unchanged. On failure,
1222 * @bdev is put.
1223 *
1224 * CONTEXT:
1225 * Might sleep.
1226 *
1227 * RETURNS:
1228 * 0 on success, -errno on failure.
1229 */
1230 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1231 {
1232 struct block_device *whole = NULL;
1233 int res;
1234
1235 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1236
1237 if ((mode & FMODE_EXCL) && holder) {
1238 whole = bd_start_claiming(bdev, holder);
1239 if (IS_ERR(whole)) {
1240 bdput(bdev);
1241 return PTR_ERR(whole);
1242 }
1243 }
1244
1245 res = __blkdev_get(bdev, mode, 0);
1246
1247 if (whole) {
1248 struct gendisk *disk = whole->bd_disk;
1249
1250 /* finish claiming */
1251 mutex_lock(&bdev->bd_mutex);
1252 spin_lock(&bdev_lock);
1253
1254 if (!res) {
1255 BUG_ON(!bd_may_claim(bdev, whole, holder));
1256 /*
1257 * Note that for a whole device bd_holders
1258 * will be incremented twice, and bd_holder
1259 * will be set to bd_may_claim before being
1260 * set to holder
1261 */
1262 whole->bd_holders++;
1263 whole->bd_holder = bd_may_claim;
1264 bdev->bd_holders++;
1265 bdev->bd_holder = holder;
1266 }
1267
1268 /* tell others that we're done */
1269 BUG_ON(whole->bd_claiming != holder);
1270 whole->bd_claiming = NULL;
1271 wake_up_bit(&whole->bd_claiming, 0);
1272
1273 spin_unlock(&bdev_lock);
1274
1275 /*
1276 * Block event polling for write claims if requested. Any
1277 * write holder makes the write_holder state stick until
1278 * all are released. This is good enough and tracking
1279 * individual writeable reference is too fragile given the
1280 * way @mode is used in blkdev_get/put().
1281 */
1282 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1283 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1284 bdev->bd_write_holder = true;
1285 disk_block_events(disk);
1286 }
1287
1288 mutex_unlock(&bdev->bd_mutex);
1289 bdput(whole);
1290 }
1291
1292 return res;
1293 }
1294 EXPORT_SYMBOL(blkdev_get);
1295
1296 /**
1297 * blkdev_get_by_path - open a block device by name
1298 * @path: path to the block device to open
1299 * @mode: FMODE_* mask
1300 * @holder: exclusive holder identifier
1301 *
1302 * Open the blockdevice described by the device file at @path. @mode
1303 * and @holder are identical to blkdev_get().
1304 *
1305 * On success, the returned block_device has reference count of one.
1306 *
1307 * CONTEXT:
1308 * Might sleep.
1309 *
1310 * RETURNS:
1311 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1312 */
1313 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1314 void *holder)
1315 {
1316 struct block_device *bdev;
1317 int err;
1318
1319 bdev = lookup_bdev(path);
1320 if (IS_ERR(bdev))
1321 return bdev;
1322
1323 err = blkdev_get(bdev, mode, holder);
1324 if (err)
1325 return ERR_PTR(err);
1326
1327 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1328 blkdev_put(bdev, mode);
1329 return ERR_PTR(-EACCES);
1330 }
1331
1332 return bdev;
1333 }
1334 EXPORT_SYMBOL(blkdev_get_by_path);
1335
1336 /**
1337 * blkdev_get_by_dev - open a block device by device number
1338 * @dev: device number of block device to open
1339 * @mode: FMODE_* mask
1340 * @holder: exclusive holder identifier
1341 *
1342 * Open the blockdevice described by device number @dev. @mode and
1343 * @holder are identical to blkdev_get().
1344 *
1345 * Use it ONLY if you really do not have anything better - i.e. when
1346 * you are behind a truly sucky interface and all you are given is a
1347 * device number. _Never_ to be used for internal purposes. If you
1348 * ever need it - reconsider your API.
1349 *
1350 * On success, the returned block_device has reference count of one.
1351 *
1352 * CONTEXT:
1353 * Might sleep.
1354 *
1355 * RETURNS:
1356 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1357 */
1358 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1359 {
1360 struct block_device *bdev;
1361 int err;
1362
1363 bdev = bdget(dev);
1364 if (!bdev)
1365 return ERR_PTR(-ENOMEM);
1366
1367 err = blkdev_get(bdev, mode, holder);
1368 if (err)
1369 return ERR_PTR(err);
1370
1371 return bdev;
1372 }
1373 EXPORT_SYMBOL(blkdev_get_by_dev);
1374
1375 static int blkdev_open(struct inode * inode, struct file * filp)
1376 {
1377 struct block_device *bdev;
1378
1379 /*
1380 * Preserve backwards compatibility and allow large file access
1381 * even if userspace doesn't ask for it explicitly. Some mkfs
1382 * binary needs it. We might want to drop this workaround
1383 * during an unstable branch.
1384 */
1385 filp->f_flags |= O_LARGEFILE;
1386
1387 if (filp->f_flags & O_NDELAY)
1388 filp->f_mode |= FMODE_NDELAY;
1389 if (filp->f_flags & O_EXCL)
1390 filp->f_mode |= FMODE_EXCL;
1391 if ((filp->f_flags & O_ACCMODE) == 3)
1392 filp->f_mode |= FMODE_WRITE_IOCTL;
1393
1394 bdev = bd_acquire(inode);
1395 if (bdev == NULL)
1396 return -ENOMEM;
1397
1398 filp->f_mapping = bdev->bd_inode->i_mapping;
1399
1400 return blkdev_get(bdev, filp->f_mode, filp);
1401 }
1402
1403 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1404 {
1405 int ret = 0;
1406 struct gendisk *disk = bdev->bd_disk;
1407 struct block_device *victim = NULL;
1408
1409 mutex_lock_nested(&bdev->bd_mutex, for_part);
1410 if (for_part)
1411 bdev->bd_part_count--;
1412
1413 if (!--bdev->bd_openers) {
1414 WARN_ON_ONCE(bdev->bd_holders);
1415 sync_blockdev(bdev);
1416 kill_bdev(bdev);
1417 /* ->release can cause the old bdi to disappear,
1418 * so must switch it out first
1419 */
1420 bdev_inode_switch_bdi(bdev->bd_inode,
1421 &default_backing_dev_info);
1422 }
1423 if (bdev->bd_contains == bdev) {
1424 if (disk->fops->release)
1425 ret = disk->fops->release(disk, mode);
1426 }
1427 if (!bdev->bd_openers) {
1428 struct module *owner = disk->fops->owner;
1429
1430 disk_put_part(bdev->bd_part);
1431 bdev->bd_part = NULL;
1432 bdev->bd_disk = NULL;
1433 if (bdev != bdev->bd_contains)
1434 victim = bdev->bd_contains;
1435 bdev->bd_contains = NULL;
1436
1437 put_disk(disk);
1438 module_put(owner);
1439 }
1440 mutex_unlock(&bdev->bd_mutex);
1441 bdput(bdev);
1442 if (victim)
1443 __blkdev_put(victim, mode, 1);
1444 return ret;
1445 }
1446
1447 int blkdev_put(struct block_device *bdev, fmode_t mode)
1448 {
1449 mutex_lock(&bdev->bd_mutex);
1450
1451 if (mode & FMODE_EXCL) {
1452 bool bdev_free;
1453
1454 /*
1455 * Release a claim on the device. The holder fields
1456 * are protected with bdev_lock. bd_mutex is to
1457 * synchronize disk_holder unlinking.
1458 */
1459 spin_lock(&bdev_lock);
1460
1461 WARN_ON_ONCE(--bdev->bd_holders < 0);
1462 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1463
1464 /* bd_contains might point to self, check in a separate step */
1465 if ((bdev_free = !bdev->bd_holders))
1466 bdev->bd_holder = NULL;
1467 if (!bdev->bd_contains->bd_holders)
1468 bdev->bd_contains->bd_holder = NULL;
1469
1470 spin_unlock(&bdev_lock);
1471
1472 /*
1473 * If this was the last claim, remove holder link and
1474 * unblock evpoll if it was a write holder.
1475 */
1476 if (bdev_free && bdev->bd_write_holder) {
1477 disk_unblock_events(bdev->bd_disk);
1478 bdev->bd_write_holder = false;
1479 }
1480 }
1481
1482 /*
1483 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1484 * event. This is to ensure detection of media removal commanded
1485 * from userland - e.g. eject(1).
1486 */
1487 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1488
1489 mutex_unlock(&bdev->bd_mutex);
1490
1491 return __blkdev_put(bdev, mode, 0);
1492 }
1493 EXPORT_SYMBOL(blkdev_put);
1494
1495 static int blkdev_close(struct inode * inode, struct file * filp)
1496 {
1497 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1498
1499 return blkdev_put(bdev, filp->f_mode);
1500 }
1501
1502 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1503 {
1504 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1505 fmode_t mode = file->f_mode;
1506
1507 /*
1508 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1509 * to updated it before every ioctl.
1510 */
1511 if (file->f_flags & O_NDELAY)
1512 mode |= FMODE_NDELAY;
1513 else
1514 mode &= ~FMODE_NDELAY;
1515
1516 return blkdev_ioctl(bdev, mode, cmd, arg);
1517 }
1518
1519 /*
1520 * Write data to the block device. Only intended for the block device itself
1521 * and the raw driver which basically is a fake block device.
1522 *
1523 * Does not take i_mutex for the write and thus is not for general purpose
1524 * use.
1525 */
1526 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1527 unsigned long nr_segs, loff_t pos)
1528 {
1529 struct file *file = iocb->ki_filp;
1530 struct blk_plug plug;
1531 ssize_t ret;
1532
1533 BUG_ON(iocb->ki_pos != pos);
1534
1535 blk_start_plug(&plug);
1536 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1537 if (ret > 0 || ret == -EIOCBQUEUED) {
1538 ssize_t err;
1539
1540 err = generic_write_sync(file, pos, ret);
1541 if (err < 0 && ret > 0)
1542 ret = err;
1543 }
1544 blk_finish_plug(&plug);
1545 return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1548
1549 static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov,
1550 unsigned long nr_segs, loff_t pos)
1551 {
1552 struct file *file = iocb->ki_filp;
1553 struct inode *bd_inode = file->f_mapping->host;
1554 loff_t size = i_size_read(bd_inode);
1555
1556 if (pos >= size)
1557 return 0;
1558
1559 size -= pos;
1560 if (size < INT_MAX)
1561 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size);
1562 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1563 }
1564
1565 /*
1566 * Try to release a page associated with block device when the system
1567 * is under memory pressure.
1568 */
1569 static int blkdev_releasepage(struct page *page, gfp_t wait)
1570 {
1571 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1572
1573 if (super && super->s_op->bdev_try_to_free_page)
1574 return super->s_op->bdev_try_to_free_page(super, page, wait);
1575
1576 return try_to_free_buffers(page);
1577 }
1578
1579 static const struct address_space_operations def_blk_aops = {
1580 .readpage = blkdev_readpage,
1581 .writepage = blkdev_writepage,
1582 .write_begin = blkdev_write_begin,
1583 .write_end = blkdev_write_end,
1584 .writepages = generic_writepages,
1585 .releasepage = blkdev_releasepage,
1586 .direct_IO = blkdev_direct_IO,
1587 };
1588
1589 const struct file_operations def_blk_fops = {
1590 .open = blkdev_open,
1591 .release = blkdev_close,
1592 .llseek = block_llseek,
1593 .read = do_sync_read,
1594 .write = do_sync_write,
1595 .aio_read = blkdev_aio_read,
1596 .aio_write = blkdev_aio_write,
1597 .mmap = generic_file_mmap,
1598 .fsync = blkdev_fsync,
1599 .unlocked_ioctl = block_ioctl,
1600 #ifdef CONFIG_COMPAT
1601 .compat_ioctl = compat_blkdev_ioctl,
1602 #endif
1603 .splice_read = generic_file_splice_read,
1604 .splice_write = generic_file_splice_write,
1605 };
1606
1607 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1608 {
1609 int res;
1610 mm_segment_t old_fs = get_fs();
1611 set_fs(KERNEL_DS);
1612 res = blkdev_ioctl(bdev, 0, cmd, arg);
1613 set_fs(old_fs);
1614 return res;
1615 }
1616
1617 EXPORT_SYMBOL(ioctl_by_bdev);
1618
1619 /**
1620 * lookup_bdev - lookup a struct block_device by name
1621 * @pathname: special file representing the block device
1622 *
1623 * Get a reference to the blockdevice at @pathname in the current
1624 * namespace if possible and return it. Return ERR_PTR(error)
1625 * otherwise.
1626 */
1627 struct block_device *lookup_bdev(const char *pathname)
1628 {
1629 struct block_device *bdev;
1630 struct inode *inode;
1631 struct path path;
1632 int error;
1633
1634 if (!pathname || !*pathname)
1635 return ERR_PTR(-EINVAL);
1636
1637 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1638 if (error)
1639 return ERR_PTR(error);
1640
1641 inode = path.dentry->d_inode;
1642 error = -ENOTBLK;
1643 if (!S_ISBLK(inode->i_mode))
1644 goto fail;
1645 error = -EACCES;
1646 if (path.mnt->mnt_flags & MNT_NODEV)
1647 goto fail;
1648 error = -ENOMEM;
1649 bdev = bd_acquire(inode);
1650 if (!bdev)
1651 goto fail;
1652 out:
1653 path_put(&path);
1654 return bdev;
1655 fail:
1656 bdev = ERR_PTR(error);
1657 goto out;
1658 }
1659 EXPORT_SYMBOL(lookup_bdev);
1660
1661 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1662 {
1663 struct super_block *sb = get_super(bdev);
1664 int res = 0;
1665
1666 if (sb) {
1667 /*
1668 * no need to lock the super, get_super holds the
1669 * read mutex so the filesystem cannot go away
1670 * under us (->put_super runs with the write lock
1671 * hold).
1672 */
1673 shrink_dcache_sb(sb);
1674 res = invalidate_inodes(sb, kill_dirty);
1675 drop_super(sb);
1676 }
1677 invalidate_bdev(bdev);
1678 return res;
1679 }
1680 EXPORT_SYMBOL(__invalidate_device);
1681
1682 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1683 {
1684 struct inode *inode, *old_inode = NULL;
1685
1686 spin_lock(&inode_sb_list_lock);
1687 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1688 struct address_space *mapping = inode->i_mapping;
1689
1690 spin_lock(&inode->i_lock);
1691 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1692 mapping->nrpages == 0) {
1693 spin_unlock(&inode->i_lock);
1694 continue;
1695 }
1696 __iget(inode);
1697 spin_unlock(&inode->i_lock);
1698 spin_unlock(&inode_sb_list_lock);
1699 /*
1700 * We hold a reference to 'inode' so it couldn't have been
1701 * removed from s_inodes list while we dropped the
1702 * inode_sb_list_lock. We cannot iput the inode now as we can
1703 * be holding the last reference and we cannot iput it under
1704 * inode_sb_list_lock. So we keep the reference and iput it
1705 * later.
1706 */
1707 iput(old_inode);
1708 old_inode = inode;
1709
1710 func(I_BDEV(inode), arg);
1711
1712 spin_lock(&inode_sb_list_lock);
1713 }
1714 spin_unlock(&inode_sb_list_lock);
1715 iput(old_inode);
1716 }