]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/block_dev.c
Merge tag 'audit-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[mirror_ubuntu-eoan-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 struct bvec_iter_all iter_all;
214
215 if ((pos | iov_iter_alignment(iter)) &
216 (bdev_logical_block_size(bdev) - 1))
217 return -EINVAL;
218
219 if (nr_pages <= DIO_INLINE_BIO_VECS)
220 vecs = inline_vecs;
221 else {
222 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
223 GFP_KERNEL);
224 if (!vecs)
225 return -ENOMEM;
226 }
227
228 bio_init(&bio, vecs, nr_pages);
229 bio_set_dev(&bio, bdev);
230 bio.bi_iter.bi_sector = pos >> 9;
231 bio.bi_write_hint = iocb->ki_hint;
232 bio.bi_private = current;
233 bio.bi_end_io = blkdev_bio_end_io_simple;
234 bio.bi_ioprio = iocb->ki_ioprio;
235
236 ret = bio_iov_iter_get_pages(&bio, iter);
237 if (unlikely(ret))
238 goto out;
239 ret = bio.bi_iter.bi_size;
240
241 if (iov_iter_rw(iter) == READ) {
242 bio.bi_opf = REQ_OP_READ;
243 if (iter_is_iovec(iter))
244 should_dirty = true;
245 } else {
246 bio.bi_opf = dio_bio_write_op(iocb);
247 task_io_account_write(ret);
248 }
249 if (iocb->ki_flags & IOCB_HIPRI)
250 bio_set_polled(&bio, iocb);
251
252 qc = submit_bio(&bio);
253 for (;;) {
254 set_current_state(TASK_UNINTERRUPTIBLE);
255 if (!READ_ONCE(bio.bi_private))
256 break;
257 if (!(iocb->ki_flags & IOCB_HIPRI) ||
258 !blk_poll(bdev_get_queue(bdev), qc, true))
259 io_schedule();
260 }
261 __set_current_state(TASK_RUNNING);
262
263 bio_for_each_segment_all(bvec, &bio, iter_all) {
264 if (should_dirty && !PageCompound(bvec->bv_page))
265 set_page_dirty_lock(bvec->bv_page);
266 if (!bio_flagged(&bio, BIO_NO_PAGE_REF))
267 put_page(bvec->bv_page);
268 }
269
270 if (unlikely(bio.bi_status))
271 ret = blk_status_to_errno(bio.bi_status);
272
273 out:
274 if (vecs != inline_vecs)
275 kfree(vecs);
276
277 bio_uninit(&bio);
278
279 return ret;
280 }
281
282 struct blkdev_dio {
283 union {
284 struct kiocb *iocb;
285 struct task_struct *waiter;
286 };
287 size_t size;
288 atomic_t ref;
289 bool multi_bio : 1;
290 bool should_dirty : 1;
291 bool is_sync : 1;
292 struct bio bio;
293 };
294
295 static struct bio_set blkdev_dio_pool;
296
297 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
298 {
299 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
300 struct request_queue *q = bdev_get_queue(bdev);
301
302 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
303 }
304
305 static void blkdev_bio_end_io(struct bio *bio)
306 {
307 struct blkdev_dio *dio = bio->bi_private;
308 bool should_dirty = dio->should_dirty;
309
310 if (bio->bi_status && !dio->bio.bi_status)
311 dio->bio.bi_status = bio->bi_status;
312
313 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
314 if (!dio->is_sync) {
315 struct kiocb *iocb = dio->iocb;
316 ssize_t ret;
317
318 if (likely(!dio->bio.bi_status)) {
319 ret = dio->size;
320 iocb->ki_pos += ret;
321 } else {
322 ret = blk_status_to_errno(dio->bio.bi_status);
323 }
324
325 dio->iocb->ki_complete(iocb, ret, 0);
326 if (dio->multi_bio)
327 bio_put(&dio->bio);
328 } else {
329 struct task_struct *waiter = dio->waiter;
330
331 WRITE_ONCE(dio->waiter, NULL);
332 blk_wake_io_task(waiter);
333 }
334 }
335
336 if (should_dirty) {
337 bio_check_pages_dirty(bio);
338 } else {
339 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
340 struct bvec_iter_all iter_all;
341 struct bio_vec *bvec;
342
343 bio_for_each_segment_all(bvec, bio, iter_all)
344 put_page(bvec->bv_page);
345 }
346 bio_put(bio);
347 }
348 }
349
350 static ssize_t
351 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
352 {
353 struct file *file = iocb->ki_filp;
354 struct inode *inode = bdev_file_inode(file);
355 struct block_device *bdev = I_BDEV(inode);
356 struct blk_plug plug;
357 struct blkdev_dio *dio;
358 struct bio *bio;
359 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
360 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
361 loff_t pos = iocb->ki_pos;
362 blk_qc_t qc = BLK_QC_T_NONE;
363 int ret = 0;
364
365 if ((pos | iov_iter_alignment(iter)) &
366 (bdev_logical_block_size(bdev) - 1))
367 return -EINVAL;
368
369 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
370
371 dio = container_of(bio, struct blkdev_dio, bio);
372 dio->is_sync = is_sync = is_sync_kiocb(iocb);
373 if (dio->is_sync) {
374 dio->waiter = current;
375 bio_get(bio);
376 } else {
377 dio->iocb = iocb;
378 }
379
380 dio->size = 0;
381 dio->multi_bio = false;
382 dio->should_dirty = is_read && iter_is_iovec(iter);
383
384 /*
385 * Don't plug for HIPRI/polled IO, as those should go straight
386 * to issue
387 */
388 if (!is_poll)
389 blk_start_plug(&plug);
390
391 for (;;) {
392 bio_set_dev(bio, bdev);
393 bio->bi_iter.bi_sector = pos >> 9;
394 bio->bi_write_hint = iocb->ki_hint;
395 bio->bi_private = dio;
396 bio->bi_end_io = blkdev_bio_end_io;
397 bio->bi_ioprio = iocb->ki_ioprio;
398
399 ret = bio_iov_iter_get_pages(bio, iter);
400 if (unlikely(ret)) {
401 bio->bi_status = BLK_STS_IOERR;
402 bio_endio(bio);
403 break;
404 }
405
406 if (is_read) {
407 bio->bi_opf = REQ_OP_READ;
408 if (dio->should_dirty)
409 bio_set_pages_dirty(bio);
410 } else {
411 bio->bi_opf = dio_bio_write_op(iocb);
412 task_io_account_write(bio->bi_iter.bi_size);
413 }
414
415 dio->size += bio->bi_iter.bi_size;
416 pos += bio->bi_iter.bi_size;
417
418 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
419 if (!nr_pages) {
420 bool polled = false;
421
422 if (iocb->ki_flags & IOCB_HIPRI) {
423 bio_set_polled(bio, iocb);
424 polled = true;
425 }
426
427 qc = submit_bio(bio);
428
429 if (polled)
430 WRITE_ONCE(iocb->ki_cookie, qc);
431 break;
432 }
433
434 if (!dio->multi_bio) {
435 /*
436 * AIO needs an extra reference to ensure the dio
437 * structure which is embedded into the first bio
438 * stays around.
439 */
440 if (!is_sync)
441 bio_get(bio);
442 dio->multi_bio = true;
443 atomic_set(&dio->ref, 2);
444 } else {
445 atomic_inc(&dio->ref);
446 }
447
448 submit_bio(bio);
449 bio = bio_alloc(GFP_KERNEL, nr_pages);
450 }
451
452 if (!is_poll)
453 blk_finish_plug(&plug);
454
455 if (!is_sync)
456 return -EIOCBQUEUED;
457
458 for (;;) {
459 set_current_state(TASK_UNINTERRUPTIBLE);
460 if (!READ_ONCE(dio->waiter))
461 break;
462
463 if (!(iocb->ki_flags & IOCB_HIPRI) ||
464 !blk_poll(bdev_get_queue(bdev), qc, true))
465 io_schedule();
466 }
467 __set_current_state(TASK_RUNNING);
468
469 if (!ret)
470 ret = blk_status_to_errno(dio->bio.bi_status);
471 if (likely(!ret))
472 ret = dio->size;
473
474 bio_put(&dio->bio);
475 return ret;
476 }
477
478 static ssize_t
479 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
480 {
481 int nr_pages;
482
483 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
484 if (!nr_pages)
485 return 0;
486 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
487 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
488
489 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
490 }
491
492 static __init int blkdev_init(void)
493 {
494 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
495 }
496 module_init(blkdev_init);
497
498 int __sync_blockdev(struct block_device *bdev, int wait)
499 {
500 if (!bdev)
501 return 0;
502 if (!wait)
503 return filemap_flush(bdev->bd_inode->i_mapping);
504 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
505 }
506
507 /*
508 * Write out and wait upon all the dirty data associated with a block
509 * device via its mapping. Does not take the superblock lock.
510 */
511 int sync_blockdev(struct block_device *bdev)
512 {
513 return __sync_blockdev(bdev, 1);
514 }
515 EXPORT_SYMBOL(sync_blockdev);
516
517 /*
518 * Write out and wait upon all dirty data associated with this
519 * device. Filesystem data as well as the underlying block
520 * device. Takes the superblock lock.
521 */
522 int fsync_bdev(struct block_device *bdev)
523 {
524 struct super_block *sb = get_super(bdev);
525 if (sb) {
526 int res = sync_filesystem(sb);
527 drop_super(sb);
528 return res;
529 }
530 return sync_blockdev(bdev);
531 }
532 EXPORT_SYMBOL(fsync_bdev);
533
534 /**
535 * freeze_bdev -- lock a filesystem and force it into a consistent state
536 * @bdev: blockdevice to lock
537 *
538 * If a superblock is found on this device, we take the s_umount semaphore
539 * on it to make sure nobody unmounts until the snapshot creation is done.
540 * The reference counter (bd_fsfreeze_count) guarantees that only the last
541 * unfreeze process can unfreeze the frozen filesystem actually when multiple
542 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
543 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
544 * actually.
545 */
546 struct super_block *freeze_bdev(struct block_device *bdev)
547 {
548 struct super_block *sb;
549 int error = 0;
550
551 mutex_lock(&bdev->bd_fsfreeze_mutex);
552 if (++bdev->bd_fsfreeze_count > 1) {
553 /*
554 * We don't even need to grab a reference - the first call
555 * to freeze_bdev grab an active reference and only the last
556 * thaw_bdev drops it.
557 */
558 sb = get_super(bdev);
559 if (sb)
560 drop_super(sb);
561 mutex_unlock(&bdev->bd_fsfreeze_mutex);
562 return sb;
563 }
564
565 sb = get_active_super(bdev);
566 if (!sb)
567 goto out;
568 if (sb->s_op->freeze_super)
569 error = sb->s_op->freeze_super(sb);
570 else
571 error = freeze_super(sb);
572 if (error) {
573 deactivate_super(sb);
574 bdev->bd_fsfreeze_count--;
575 mutex_unlock(&bdev->bd_fsfreeze_mutex);
576 return ERR_PTR(error);
577 }
578 deactivate_super(sb);
579 out:
580 sync_blockdev(bdev);
581 mutex_unlock(&bdev->bd_fsfreeze_mutex);
582 return sb; /* thaw_bdev releases s->s_umount */
583 }
584 EXPORT_SYMBOL(freeze_bdev);
585
586 /**
587 * thaw_bdev -- unlock filesystem
588 * @bdev: blockdevice to unlock
589 * @sb: associated superblock
590 *
591 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
592 */
593 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
594 {
595 int error = -EINVAL;
596
597 mutex_lock(&bdev->bd_fsfreeze_mutex);
598 if (!bdev->bd_fsfreeze_count)
599 goto out;
600
601 error = 0;
602 if (--bdev->bd_fsfreeze_count > 0)
603 goto out;
604
605 if (!sb)
606 goto out;
607
608 if (sb->s_op->thaw_super)
609 error = sb->s_op->thaw_super(sb);
610 else
611 error = thaw_super(sb);
612 if (error)
613 bdev->bd_fsfreeze_count++;
614 out:
615 mutex_unlock(&bdev->bd_fsfreeze_mutex);
616 return error;
617 }
618 EXPORT_SYMBOL(thaw_bdev);
619
620 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
621 {
622 return block_write_full_page(page, blkdev_get_block, wbc);
623 }
624
625 static int blkdev_readpage(struct file * file, struct page * page)
626 {
627 return block_read_full_page(page, blkdev_get_block);
628 }
629
630 static int blkdev_readpages(struct file *file, struct address_space *mapping,
631 struct list_head *pages, unsigned nr_pages)
632 {
633 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
634 }
635
636 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
637 loff_t pos, unsigned len, unsigned flags,
638 struct page **pagep, void **fsdata)
639 {
640 return block_write_begin(mapping, pos, len, flags, pagep,
641 blkdev_get_block);
642 }
643
644 static int blkdev_write_end(struct file *file, struct address_space *mapping,
645 loff_t pos, unsigned len, unsigned copied,
646 struct page *page, void *fsdata)
647 {
648 int ret;
649 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
650
651 unlock_page(page);
652 put_page(page);
653
654 return ret;
655 }
656
657 /*
658 * private llseek:
659 * for a block special file file_inode(file)->i_size is zero
660 * so we compute the size by hand (just as in block_read/write above)
661 */
662 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
663 {
664 struct inode *bd_inode = bdev_file_inode(file);
665 loff_t retval;
666
667 inode_lock(bd_inode);
668 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
669 inode_unlock(bd_inode);
670 return retval;
671 }
672
673 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
674 {
675 struct inode *bd_inode = bdev_file_inode(filp);
676 struct block_device *bdev = I_BDEV(bd_inode);
677 int error;
678
679 error = file_write_and_wait_range(filp, start, end);
680 if (error)
681 return error;
682
683 /*
684 * There is no need to serialise calls to blkdev_issue_flush with
685 * i_mutex and doing so causes performance issues with concurrent
686 * O_SYNC writers to a block device.
687 */
688 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
689 if (error == -EOPNOTSUPP)
690 error = 0;
691
692 return error;
693 }
694 EXPORT_SYMBOL(blkdev_fsync);
695
696 /**
697 * bdev_read_page() - Start reading a page from a block device
698 * @bdev: The device to read the page from
699 * @sector: The offset on the device to read the page to (need not be aligned)
700 * @page: The page to read
701 *
702 * On entry, the page should be locked. It will be unlocked when the page
703 * has been read. If the block driver implements rw_page synchronously,
704 * that will be true on exit from this function, but it need not be.
705 *
706 * Errors returned by this function are usually "soft", eg out of memory, or
707 * queue full; callers should try a different route to read this page rather
708 * than propagate an error back up the stack.
709 *
710 * Return: negative errno if an error occurs, 0 if submission was successful.
711 */
712 int bdev_read_page(struct block_device *bdev, sector_t sector,
713 struct page *page)
714 {
715 const struct block_device_operations *ops = bdev->bd_disk->fops;
716 int result = -EOPNOTSUPP;
717
718 if (!ops->rw_page || bdev_get_integrity(bdev))
719 return result;
720
721 result = blk_queue_enter(bdev->bd_queue, 0);
722 if (result)
723 return result;
724 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
725 REQ_OP_READ);
726 blk_queue_exit(bdev->bd_queue);
727 return result;
728 }
729 EXPORT_SYMBOL_GPL(bdev_read_page);
730
731 /**
732 * bdev_write_page() - Start writing a page to a block device
733 * @bdev: The device to write the page to
734 * @sector: The offset on the device to write the page to (need not be aligned)
735 * @page: The page to write
736 * @wbc: The writeback_control for the write
737 *
738 * On entry, the page should be locked and not currently under writeback.
739 * On exit, if the write started successfully, the page will be unlocked and
740 * under writeback. If the write failed already (eg the driver failed to
741 * queue the page to the device), the page will still be locked. If the
742 * caller is a ->writepage implementation, it will need to unlock the page.
743 *
744 * Errors returned by this function are usually "soft", eg out of memory, or
745 * queue full; callers should try a different route to write this page rather
746 * than propagate an error back up the stack.
747 *
748 * Return: negative errno if an error occurs, 0 if submission was successful.
749 */
750 int bdev_write_page(struct block_device *bdev, sector_t sector,
751 struct page *page, struct writeback_control *wbc)
752 {
753 int result;
754 const struct block_device_operations *ops = bdev->bd_disk->fops;
755
756 if (!ops->rw_page || bdev_get_integrity(bdev))
757 return -EOPNOTSUPP;
758 result = blk_queue_enter(bdev->bd_queue, 0);
759 if (result)
760 return result;
761
762 set_page_writeback(page);
763 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
764 REQ_OP_WRITE);
765 if (result) {
766 end_page_writeback(page);
767 } else {
768 clean_page_buffers(page);
769 unlock_page(page);
770 }
771 blk_queue_exit(bdev->bd_queue);
772 return result;
773 }
774 EXPORT_SYMBOL_GPL(bdev_write_page);
775
776 /*
777 * pseudo-fs
778 */
779
780 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
781 static struct kmem_cache * bdev_cachep __read_mostly;
782
783 static struct inode *bdev_alloc_inode(struct super_block *sb)
784 {
785 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
786 if (!ei)
787 return NULL;
788 return &ei->vfs_inode;
789 }
790
791 static void bdev_free_inode(struct inode *inode)
792 {
793 kmem_cache_free(bdev_cachep, BDEV_I(inode));
794 }
795
796 static void init_once(void *foo)
797 {
798 struct bdev_inode *ei = (struct bdev_inode *) foo;
799 struct block_device *bdev = &ei->bdev;
800
801 memset(bdev, 0, sizeof(*bdev));
802 mutex_init(&bdev->bd_mutex);
803 INIT_LIST_HEAD(&bdev->bd_list);
804 #ifdef CONFIG_SYSFS
805 INIT_LIST_HEAD(&bdev->bd_holder_disks);
806 #endif
807 bdev->bd_bdi = &noop_backing_dev_info;
808 inode_init_once(&ei->vfs_inode);
809 /* Initialize mutex for freeze. */
810 mutex_init(&bdev->bd_fsfreeze_mutex);
811 }
812
813 static void bdev_evict_inode(struct inode *inode)
814 {
815 struct block_device *bdev = &BDEV_I(inode)->bdev;
816 truncate_inode_pages_final(&inode->i_data);
817 invalidate_inode_buffers(inode); /* is it needed here? */
818 clear_inode(inode);
819 spin_lock(&bdev_lock);
820 list_del_init(&bdev->bd_list);
821 spin_unlock(&bdev_lock);
822 /* Detach inode from wb early as bdi_put() may free bdi->wb */
823 inode_detach_wb(inode);
824 if (bdev->bd_bdi != &noop_backing_dev_info) {
825 bdi_put(bdev->bd_bdi);
826 bdev->bd_bdi = &noop_backing_dev_info;
827 }
828 }
829
830 static const struct super_operations bdev_sops = {
831 .statfs = simple_statfs,
832 .alloc_inode = bdev_alloc_inode,
833 .free_inode = bdev_free_inode,
834 .drop_inode = generic_delete_inode,
835 .evict_inode = bdev_evict_inode,
836 };
837
838 static struct dentry *bd_mount(struct file_system_type *fs_type,
839 int flags, const char *dev_name, void *data)
840 {
841 struct dentry *dent;
842 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
843 if (!IS_ERR(dent))
844 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
845 return dent;
846 }
847
848 static struct file_system_type bd_type = {
849 .name = "bdev",
850 .mount = bd_mount,
851 .kill_sb = kill_anon_super,
852 };
853
854 struct super_block *blockdev_superblock __read_mostly;
855 EXPORT_SYMBOL_GPL(blockdev_superblock);
856
857 void __init bdev_cache_init(void)
858 {
859 int err;
860 static struct vfsmount *bd_mnt;
861
862 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
863 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
864 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
865 init_once);
866 err = register_filesystem(&bd_type);
867 if (err)
868 panic("Cannot register bdev pseudo-fs");
869 bd_mnt = kern_mount(&bd_type);
870 if (IS_ERR(bd_mnt))
871 panic("Cannot create bdev pseudo-fs");
872 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
873 }
874
875 /*
876 * Most likely _very_ bad one - but then it's hardly critical for small
877 * /dev and can be fixed when somebody will need really large one.
878 * Keep in mind that it will be fed through icache hash function too.
879 */
880 static inline unsigned long hash(dev_t dev)
881 {
882 return MAJOR(dev)+MINOR(dev);
883 }
884
885 static int bdev_test(struct inode *inode, void *data)
886 {
887 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
888 }
889
890 static int bdev_set(struct inode *inode, void *data)
891 {
892 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
893 return 0;
894 }
895
896 static LIST_HEAD(all_bdevs);
897
898 /*
899 * If there is a bdev inode for this device, unhash it so that it gets evicted
900 * as soon as last inode reference is dropped.
901 */
902 void bdev_unhash_inode(dev_t dev)
903 {
904 struct inode *inode;
905
906 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
907 if (inode) {
908 remove_inode_hash(inode);
909 iput(inode);
910 }
911 }
912
913 struct block_device *bdget(dev_t dev)
914 {
915 struct block_device *bdev;
916 struct inode *inode;
917
918 inode = iget5_locked(blockdev_superblock, hash(dev),
919 bdev_test, bdev_set, &dev);
920
921 if (!inode)
922 return NULL;
923
924 bdev = &BDEV_I(inode)->bdev;
925
926 if (inode->i_state & I_NEW) {
927 bdev->bd_contains = NULL;
928 bdev->bd_super = NULL;
929 bdev->bd_inode = inode;
930 bdev->bd_block_size = i_blocksize(inode);
931 bdev->bd_part_count = 0;
932 bdev->bd_invalidated = 0;
933 inode->i_mode = S_IFBLK;
934 inode->i_rdev = dev;
935 inode->i_bdev = bdev;
936 inode->i_data.a_ops = &def_blk_aops;
937 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
938 spin_lock(&bdev_lock);
939 list_add(&bdev->bd_list, &all_bdevs);
940 spin_unlock(&bdev_lock);
941 unlock_new_inode(inode);
942 }
943 return bdev;
944 }
945
946 EXPORT_SYMBOL(bdget);
947
948 /**
949 * bdgrab -- Grab a reference to an already referenced block device
950 * @bdev: Block device to grab a reference to.
951 */
952 struct block_device *bdgrab(struct block_device *bdev)
953 {
954 ihold(bdev->bd_inode);
955 return bdev;
956 }
957 EXPORT_SYMBOL(bdgrab);
958
959 long nr_blockdev_pages(void)
960 {
961 struct block_device *bdev;
962 long ret = 0;
963 spin_lock(&bdev_lock);
964 list_for_each_entry(bdev, &all_bdevs, bd_list) {
965 ret += bdev->bd_inode->i_mapping->nrpages;
966 }
967 spin_unlock(&bdev_lock);
968 return ret;
969 }
970
971 void bdput(struct block_device *bdev)
972 {
973 iput(bdev->bd_inode);
974 }
975
976 EXPORT_SYMBOL(bdput);
977
978 static struct block_device *bd_acquire(struct inode *inode)
979 {
980 struct block_device *bdev;
981
982 spin_lock(&bdev_lock);
983 bdev = inode->i_bdev;
984 if (bdev && !inode_unhashed(bdev->bd_inode)) {
985 bdgrab(bdev);
986 spin_unlock(&bdev_lock);
987 return bdev;
988 }
989 spin_unlock(&bdev_lock);
990
991 /*
992 * i_bdev references block device inode that was already shut down
993 * (corresponding device got removed). Remove the reference and look
994 * up block device inode again just in case new device got
995 * reestablished under the same device number.
996 */
997 if (bdev)
998 bd_forget(inode);
999
1000 bdev = bdget(inode->i_rdev);
1001 if (bdev) {
1002 spin_lock(&bdev_lock);
1003 if (!inode->i_bdev) {
1004 /*
1005 * We take an additional reference to bd_inode,
1006 * and it's released in clear_inode() of inode.
1007 * So, we can access it via ->i_mapping always
1008 * without igrab().
1009 */
1010 bdgrab(bdev);
1011 inode->i_bdev = bdev;
1012 inode->i_mapping = bdev->bd_inode->i_mapping;
1013 }
1014 spin_unlock(&bdev_lock);
1015 }
1016 return bdev;
1017 }
1018
1019 /* Call when you free inode */
1020
1021 void bd_forget(struct inode *inode)
1022 {
1023 struct block_device *bdev = NULL;
1024
1025 spin_lock(&bdev_lock);
1026 if (!sb_is_blkdev_sb(inode->i_sb))
1027 bdev = inode->i_bdev;
1028 inode->i_bdev = NULL;
1029 inode->i_mapping = &inode->i_data;
1030 spin_unlock(&bdev_lock);
1031
1032 if (bdev)
1033 bdput(bdev);
1034 }
1035
1036 /**
1037 * bd_may_claim - test whether a block device can be claimed
1038 * @bdev: block device of interest
1039 * @whole: whole block device containing @bdev, may equal @bdev
1040 * @holder: holder trying to claim @bdev
1041 *
1042 * Test whether @bdev can be claimed by @holder.
1043 *
1044 * CONTEXT:
1045 * spin_lock(&bdev_lock).
1046 *
1047 * RETURNS:
1048 * %true if @bdev can be claimed, %false otherwise.
1049 */
1050 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1051 void *holder)
1052 {
1053 if (bdev->bd_holder == holder)
1054 return true; /* already a holder */
1055 else if (bdev->bd_holder != NULL)
1056 return false; /* held by someone else */
1057 else if (whole == bdev)
1058 return true; /* is a whole device which isn't held */
1059
1060 else if (whole->bd_holder == bd_may_claim)
1061 return true; /* is a partition of a device that is being partitioned */
1062 else if (whole->bd_holder != NULL)
1063 return false; /* is a partition of a held device */
1064 else
1065 return true; /* is a partition of an un-held device */
1066 }
1067
1068 /**
1069 * bd_prepare_to_claim - prepare to claim a block device
1070 * @bdev: block device of interest
1071 * @whole: the whole device containing @bdev, may equal @bdev
1072 * @holder: holder trying to claim @bdev
1073 *
1074 * Prepare to claim @bdev. This function fails if @bdev is already
1075 * claimed by another holder and waits if another claiming is in
1076 * progress. This function doesn't actually claim. On successful
1077 * return, the caller has ownership of bd_claiming and bd_holder[s].
1078 *
1079 * CONTEXT:
1080 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1081 * it multiple times.
1082 *
1083 * RETURNS:
1084 * 0 if @bdev can be claimed, -EBUSY otherwise.
1085 */
1086 static int bd_prepare_to_claim(struct block_device *bdev,
1087 struct block_device *whole, void *holder)
1088 {
1089 retry:
1090 /* if someone else claimed, fail */
1091 if (!bd_may_claim(bdev, whole, holder))
1092 return -EBUSY;
1093
1094 /* if claiming is already in progress, wait for it to finish */
1095 if (whole->bd_claiming) {
1096 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1097 DEFINE_WAIT(wait);
1098
1099 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1100 spin_unlock(&bdev_lock);
1101 schedule();
1102 finish_wait(wq, &wait);
1103 spin_lock(&bdev_lock);
1104 goto retry;
1105 }
1106
1107 /* yay, all mine */
1108 return 0;
1109 }
1110
1111 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1112 {
1113 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1114
1115 if (!disk)
1116 return NULL;
1117 /*
1118 * Now that we hold gendisk reference we make sure bdev we looked up is
1119 * not stale. If it is, it means device got removed and created before
1120 * we looked up gendisk and we fail open in such case. Associating
1121 * unhashed bdev with newly created gendisk could lead to two bdevs
1122 * (and thus two independent caches) being associated with one device
1123 * which is bad.
1124 */
1125 if (inode_unhashed(bdev->bd_inode)) {
1126 put_disk_and_module(disk);
1127 return NULL;
1128 }
1129 return disk;
1130 }
1131
1132 /**
1133 * bd_start_claiming - start claiming a block device
1134 * @bdev: block device of interest
1135 * @holder: holder trying to claim @bdev
1136 *
1137 * @bdev is about to be opened exclusively. Check @bdev can be opened
1138 * exclusively and mark that an exclusive open is in progress. Each
1139 * successful call to this function must be matched with a call to
1140 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1141 * fail).
1142 *
1143 * This function is used to gain exclusive access to the block device
1144 * without actually causing other exclusive open attempts to fail. It
1145 * should be used when the open sequence itself requires exclusive
1146 * access but may subsequently fail.
1147 *
1148 * CONTEXT:
1149 * Might sleep.
1150 *
1151 * RETURNS:
1152 * Pointer to the block device containing @bdev on success, ERR_PTR()
1153 * value on failure.
1154 */
1155 static struct block_device *bd_start_claiming(struct block_device *bdev,
1156 void *holder)
1157 {
1158 struct gendisk *disk;
1159 struct block_device *whole;
1160 int partno, err;
1161
1162 might_sleep();
1163
1164 /*
1165 * @bdev might not have been initialized properly yet, look up
1166 * and grab the outer block device the hard way.
1167 */
1168 disk = bdev_get_gendisk(bdev, &partno);
1169 if (!disk)
1170 return ERR_PTR(-ENXIO);
1171
1172 /*
1173 * Normally, @bdev should equal what's returned from bdget_disk()
1174 * if partno is 0; however, some drivers (floppy) use multiple
1175 * bdev's for the same physical device and @bdev may be one of the
1176 * aliases. Keep @bdev if partno is 0. This means claimer
1177 * tracking is broken for those devices but it has always been that
1178 * way.
1179 */
1180 if (partno)
1181 whole = bdget_disk(disk, 0);
1182 else
1183 whole = bdgrab(bdev);
1184
1185 put_disk_and_module(disk);
1186 if (!whole)
1187 return ERR_PTR(-ENOMEM);
1188
1189 /* prepare to claim, if successful, mark claiming in progress */
1190 spin_lock(&bdev_lock);
1191
1192 err = bd_prepare_to_claim(bdev, whole, holder);
1193 if (err == 0) {
1194 whole->bd_claiming = holder;
1195 spin_unlock(&bdev_lock);
1196 return whole;
1197 } else {
1198 spin_unlock(&bdev_lock);
1199 bdput(whole);
1200 return ERR_PTR(err);
1201 }
1202 }
1203
1204 #ifdef CONFIG_SYSFS
1205 struct bd_holder_disk {
1206 struct list_head list;
1207 struct gendisk *disk;
1208 int refcnt;
1209 };
1210
1211 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1212 struct gendisk *disk)
1213 {
1214 struct bd_holder_disk *holder;
1215
1216 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1217 if (holder->disk == disk)
1218 return holder;
1219 return NULL;
1220 }
1221
1222 static int add_symlink(struct kobject *from, struct kobject *to)
1223 {
1224 return sysfs_create_link(from, to, kobject_name(to));
1225 }
1226
1227 static void del_symlink(struct kobject *from, struct kobject *to)
1228 {
1229 sysfs_remove_link(from, kobject_name(to));
1230 }
1231
1232 /**
1233 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1234 * @bdev: the claimed slave bdev
1235 * @disk: the holding disk
1236 *
1237 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1238 *
1239 * This functions creates the following sysfs symlinks.
1240 *
1241 * - from "slaves" directory of the holder @disk to the claimed @bdev
1242 * - from "holders" directory of the @bdev to the holder @disk
1243 *
1244 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1245 * passed to bd_link_disk_holder(), then:
1246 *
1247 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1248 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1249 *
1250 * The caller must have claimed @bdev before calling this function and
1251 * ensure that both @bdev and @disk are valid during the creation and
1252 * lifetime of these symlinks.
1253 *
1254 * CONTEXT:
1255 * Might sleep.
1256 *
1257 * RETURNS:
1258 * 0 on success, -errno on failure.
1259 */
1260 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1261 {
1262 struct bd_holder_disk *holder;
1263 int ret = 0;
1264
1265 mutex_lock(&bdev->bd_mutex);
1266
1267 WARN_ON_ONCE(!bdev->bd_holder);
1268
1269 /* FIXME: remove the following once add_disk() handles errors */
1270 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1271 goto out_unlock;
1272
1273 holder = bd_find_holder_disk(bdev, disk);
1274 if (holder) {
1275 holder->refcnt++;
1276 goto out_unlock;
1277 }
1278
1279 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1280 if (!holder) {
1281 ret = -ENOMEM;
1282 goto out_unlock;
1283 }
1284
1285 INIT_LIST_HEAD(&holder->list);
1286 holder->disk = disk;
1287 holder->refcnt = 1;
1288
1289 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1290 if (ret)
1291 goto out_free;
1292
1293 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1294 if (ret)
1295 goto out_del;
1296 /*
1297 * bdev could be deleted beneath us which would implicitly destroy
1298 * the holder directory. Hold on to it.
1299 */
1300 kobject_get(bdev->bd_part->holder_dir);
1301
1302 list_add(&holder->list, &bdev->bd_holder_disks);
1303 goto out_unlock;
1304
1305 out_del:
1306 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1307 out_free:
1308 kfree(holder);
1309 out_unlock:
1310 mutex_unlock(&bdev->bd_mutex);
1311 return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1314
1315 /**
1316 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1317 * @bdev: the calimed slave bdev
1318 * @disk: the holding disk
1319 *
1320 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1321 *
1322 * CONTEXT:
1323 * Might sleep.
1324 */
1325 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1326 {
1327 struct bd_holder_disk *holder;
1328
1329 mutex_lock(&bdev->bd_mutex);
1330
1331 holder = bd_find_holder_disk(bdev, disk);
1332
1333 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1334 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1335 del_symlink(bdev->bd_part->holder_dir,
1336 &disk_to_dev(disk)->kobj);
1337 kobject_put(bdev->bd_part->holder_dir);
1338 list_del_init(&holder->list);
1339 kfree(holder);
1340 }
1341
1342 mutex_unlock(&bdev->bd_mutex);
1343 }
1344 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1345 #endif
1346
1347 /**
1348 * flush_disk - invalidates all buffer-cache entries on a disk
1349 *
1350 * @bdev: struct block device to be flushed
1351 * @kill_dirty: flag to guide handling of dirty inodes
1352 *
1353 * Invalidates all buffer-cache entries on a disk. It should be called
1354 * when a disk has been changed -- either by a media change or online
1355 * resize.
1356 */
1357 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1358 {
1359 if (__invalidate_device(bdev, kill_dirty)) {
1360 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1361 "resized disk %s\n",
1362 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1363 }
1364
1365 if (!bdev->bd_disk)
1366 return;
1367 if (disk_part_scan_enabled(bdev->bd_disk))
1368 bdev->bd_invalidated = 1;
1369 }
1370
1371 /**
1372 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1373 * @disk: struct gendisk to check
1374 * @bdev: struct bdev to adjust.
1375 * @verbose: if %true log a message about a size change if there is any
1376 *
1377 * This routine checks to see if the bdev size does not match the disk size
1378 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1379 * are freed.
1380 */
1381 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1382 bool verbose)
1383 {
1384 loff_t disk_size, bdev_size;
1385
1386 disk_size = (loff_t)get_capacity(disk) << 9;
1387 bdev_size = i_size_read(bdev->bd_inode);
1388 if (disk_size != bdev_size) {
1389 if (verbose) {
1390 printk(KERN_INFO
1391 "%s: detected capacity change from %lld to %lld\n",
1392 disk->disk_name, bdev_size, disk_size);
1393 }
1394 i_size_write(bdev->bd_inode, disk_size);
1395 if (bdev_size > disk_size)
1396 flush_disk(bdev, false);
1397 }
1398 }
1399
1400 /**
1401 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1402 * @disk: struct gendisk to be revalidated
1403 *
1404 * This routine is a wrapper for lower-level driver's revalidate_disk
1405 * call-backs. It is used to do common pre and post operations needed
1406 * for all revalidate_disk operations.
1407 */
1408 int revalidate_disk(struct gendisk *disk)
1409 {
1410 struct block_device *bdev;
1411 int ret = 0;
1412
1413 if (disk->fops->revalidate_disk)
1414 ret = disk->fops->revalidate_disk(disk);
1415 bdev = bdget_disk(disk, 0);
1416 if (!bdev)
1417 return ret;
1418
1419 mutex_lock(&bdev->bd_mutex);
1420 check_disk_size_change(disk, bdev, ret == 0);
1421 bdev->bd_invalidated = 0;
1422 mutex_unlock(&bdev->bd_mutex);
1423 bdput(bdev);
1424 return ret;
1425 }
1426 EXPORT_SYMBOL(revalidate_disk);
1427
1428 /*
1429 * This routine checks whether a removable media has been changed,
1430 * and invalidates all buffer-cache-entries in that case. This
1431 * is a relatively slow routine, so we have to try to minimize using
1432 * it. Thus it is called only upon a 'mount' or 'open'. This
1433 * is the best way of combining speed and utility, I think.
1434 * People changing diskettes in the middle of an operation deserve
1435 * to lose :-)
1436 */
1437 int check_disk_change(struct block_device *bdev)
1438 {
1439 struct gendisk *disk = bdev->bd_disk;
1440 const struct block_device_operations *bdops = disk->fops;
1441 unsigned int events;
1442
1443 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1444 DISK_EVENT_EJECT_REQUEST);
1445 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1446 return 0;
1447
1448 flush_disk(bdev, true);
1449 if (bdops->revalidate_disk)
1450 bdops->revalidate_disk(bdev->bd_disk);
1451 return 1;
1452 }
1453
1454 EXPORT_SYMBOL(check_disk_change);
1455
1456 void bd_set_size(struct block_device *bdev, loff_t size)
1457 {
1458 inode_lock(bdev->bd_inode);
1459 i_size_write(bdev->bd_inode, size);
1460 inode_unlock(bdev->bd_inode);
1461 }
1462 EXPORT_SYMBOL(bd_set_size);
1463
1464 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1465
1466 /*
1467 * bd_mutex locking:
1468 *
1469 * mutex_lock(part->bd_mutex)
1470 * mutex_lock_nested(whole->bd_mutex, 1)
1471 */
1472
1473 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1474 {
1475 struct gendisk *disk;
1476 int ret;
1477 int partno;
1478 int perm = 0;
1479 bool first_open = false;
1480
1481 if (mode & FMODE_READ)
1482 perm |= MAY_READ;
1483 if (mode & FMODE_WRITE)
1484 perm |= MAY_WRITE;
1485 /*
1486 * hooks: /n/, see "layering violations".
1487 */
1488 if (!for_part) {
1489 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1490 if (ret != 0) {
1491 bdput(bdev);
1492 return ret;
1493 }
1494 }
1495
1496 restart:
1497
1498 ret = -ENXIO;
1499 disk = bdev_get_gendisk(bdev, &partno);
1500 if (!disk)
1501 goto out;
1502
1503 disk_block_events(disk);
1504 mutex_lock_nested(&bdev->bd_mutex, for_part);
1505 if (!bdev->bd_openers) {
1506 first_open = true;
1507 bdev->bd_disk = disk;
1508 bdev->bd_queue = disk->queue;
1509 bdev->bd_contains = bdev;
1510 bdev->bd_partno = partno;
1511
1512 if (!partno) {
1513 ret = -ENXIO;
1514 bdev->bd_part = disk_get_part(disk, partno);
1515 if (!bdev->bd_part)
1516 goto out_clear;
1517
1518 ret = 0;
1519 if (disk->fops->open) {
1520 ret = disk->fops->open(bdev, mode);
1521 if (ret == -ERESTARTSYS) {
1522 /* Lost a race with 'disk' being
1523 * deleted, try again.
1524 * See md.c
1525 */
1526 disk_put_part(bdev->bd_part);
1527 bdev->bd_part = NULL;
1528 bdev->bd_disk = NULL;
1529 bdev->bd_queue = NULL;
1530 mutex_unlock(&bdev->bd_mutex);
1531 disk_unblock_events(disk);
1532 put_disk_and_module(disk);
1533 goto restart;
1534 }
1535 }
1536
1537 if (!ret) {
1538 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1539 set_init_blocksize(bdev);
1540 }
1541
1542 /*
1543 * If the device is invalidated, rescan partition
1544 * if open succeeded or failed with -ENOMEDIUM.
1545 * The latter is necessary to prevent ghost
1546 * partitions on a removed medium.
1547 */
1548 if (bdev->bd_invalidated) {
1549 if (!ret)
1550 rescan_partitions(disk, bdev);
1551 else if (ret == -ENOMEDIUM)
1552 invalidate_partitions(disk, bdev);
1553 }
1554
1555 if (ret)
1556 goto out_clear;
1557 } else {
1558 struct block_device *whole;
1559 whole = bdget_disk(disk, 0);
1560 ret = -ENOMEM;
1561 if (!whole)
1562 goto out_clear;
1563 BUG_ON(for_part);
1564 ret = __blkdev_get(whole, mode, 1);
1565 if (ret)
1566 goto out_clear;
1567 bdev->bd_contains = whole;
1568 bdev->bd_part = disk_get_part(disk, partno);
1569 if (!(disk->flags & GENHD_FL_UP) ||
1570 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1571 ret = -ENXIO;
1572 goto out_clear;
1573 }
1574 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1575 set_init_blocksize(bdev);
1576 }
1577
1578 if (bdev->bd_bdi == &noop_backing_dev_info)
1579 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1580 } else {
1581 if (bdev->bd_contains == bdev) {
1582 ret = 0;
1583 if (bdev->bd_disk->fops->open)
1584 ret = bdev->bd_disk->fops->open(bdev, mode);
1585 /* the same as first opener case, read comment there */
1586 if (bdev->bd_invalidated) {
1587 if (!ret)
1588 rescan_partitions(bdev->bd_disk, bdev);
1589 else if (ret == -ENOMEDIUM)
1590 invalidate_partitions(bdev->bd_disk, bdev);
1591 }
1592 if (ret)
1593 goto out_unlock_bdev;
1594 }
1595 }
1596 bdev->bd_openers++;
1597 if (for_part)
1598 bdev->bd_part_count++;
1599 mutex_unlock(&bdev->bd_mutex);
1600 disk_unblock_events(disk);
1601 /* only one opener holds refs to the module and disk */
1602 if (!first_open)
1603 put_disk_and_module(disk);
1604 return 0;
1605
1606 out_clear:
1607 disk_put_part(bdev->bd_part);
1608 bdev->bd_disk = NULL;
1609 bdev->bd_part = NULL;
1610 bdev->bd_queue = NULL;
1611 if (bdev != bdev->bd_contains)
1612 __blkdev_put(bdev->bd_contains, mode, 1);
1613 bdev->bd_contains = NULL;
1614 out_unlock_bdev:
1615 mutex_unlock(&bdev->bd_mutex);
1616 disk_unblock_events(disk);
1617 put_disk_and_module(disk);
1618 out:
1619 bdput(bdev);
1620
1621 return ret;
1622 }
1623
1624 /**
1625 * blkdev_get - open a block device
1626 * @bdev: block_device to open
1627 * @mode: FMODE_* mask
1628 * @holder: exclusive holder identifier
1629 *
1630 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1631 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1632 * @holder is invalid. Exclusive opens may nest for the same @holder.
1633 *
1634 * On success, the reference count of @bdev is unchanged. On failure,
1635 * @bdev is put.
1636 *
1637 * CONTEXT:
1638 * Might sleep.
1639 *
1640 * RETURNS:
1641 * 0 on success, -errno on failure.
1642 */
1643 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1644 {
1645 struct block_device *whole = NULL;
1646 int res;
1647
1648 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1649
1650 if ((mode & FMODE_EXCL) && holder) {
1651 whole = bd_start_claiming(bdev, holder);
1652 if (IS_ERR(whole)) {
1653 bdput(bdev);
1654 return PTR_ERR(whole);
1655 }
1656 }
1657
1658 res = __blkdev_get(bdev, mode, 0);
1659
1660 if (whole) {
1661 struct gendisk *disk = whole->bd_disk;
1662
1663 /* finish claiming */
1664 mutex_lock(&bdev->bd_mutex);
1665 spin_lock(&bdev_lock);
1666
1667 if (!res) {
1668 BUG_ON(!bd_may_claim(bdev, whole, holder));
1669 /*
1670 * Note that for a whole device bd_holders
1671 * will be incremented twice, and bd_holder
1672 * will be set to bd_may_claim before being
1673 * set to holder
1674 */
1675 whole->bd_holders++;
1676 whole->bd_holder = bd_may_claim;
1677 bdev->bd_holders++;
1678 bdev->bd_holder = holder;
1679 }
1680
1681 /* tell others that we're done */
1682 BUG_ON(whole->bd_claiming != holder);
1683 whole->bd_claiming = NULL;
1684 wake_up_bit(&whole->bd_claiming, 0);
1685
1686 spin_unlock(&bdev_lock);
1687
1688 /*
1689 * Block event polling for write claims if requested. Any
1690 * write holder makes the write_holder state stick until
1691 * all are released. This is good enough and tracking
1692 * individual writeable reference is too fragile given the
1693 * way @mode is used in blkdev_get/put().
1694 */
1695 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1696 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1697 bdev->bd_write_holder = true;
1698 disk_block_events(disk);
1699 }
1700
1701 mutex_unlock(&bdev->bd_mutex);
1702 bdput(whole);
1703 }
1704
1705 return res;
1706 }
1707 EXPORT_SYMBOL(blkdev_get);
1708
1709 /**
1710 * blkdev_get_by_path - open a block device by name
1711 * @path: path to the block device to open
1712 * @mode: FMODE_* mask
1713 * @holder: exclusive holder identifier
1714 *
1715 * Open the blockdevice described by the device file at @path. @mode
1716 * and @holder are identical to blkdev_get().
1717 *
1718 * On success, the returned block_device has reference count of one.
1719 *
1720 * CONTEXT:
1721 * Might sleep.
1722 *
1723 * RETURNS:
1724 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1725 */
1726 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1727 void *holder)
1728 {
1729 struct block_device *bdev;
1730 int err;
1731
1732 bdev = lookup_bdev(path);
1733 if (IS_ERR(bdev))
1734 return bdev;
1735
1736 err = blkdev_get(bdev, mode, holder);
1737 if (err)
1738 return ERR_PTR(err);
1739
1740 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1741 blkdev_put(bdev, mode);
1742 return ERR_PTR(-EACCES);
1743 }
1744
1745 return bdev;
1746 }
1747 EXPORT_SYMBOL(blkdev_get_by_path);
1748
1749 /**
1750 * blkdev_get_by_dev - open a block device by device number
1751 * @dev: device number of block device to open
1752 * @mode: FMODE_* mask
1753 * @holder: exclusive holder identifier
1754 *
1755 * Open the blockdevice described by device number @dev. @mode and
1756 * @holder are identical to blkdev_get().
1757 *
1758 * Use it ONLY if you really do not have anything better - i.e. when
1759 * you are behind a truly sucky interface and all you are given is a
1760 * device number. _Never_ to be used for internal purposes. If you
1761 * ever need it - reconsider your API.
1762 *
1763 * On success, the returned block_device has reference count of one.
1764 *
1765 * CONTEXT:
1766 * Might sleep.
1767 *
1768 * RETURNS:
1769 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1770 */
1771 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1772 {
1773 struct block_device *bdev;
1774 int err;
1775
1776 bdev = bdget(dev);
1777 if (!bdev)
1778 return ERR_PTR(-ENOMEM);
1779
1780 err = blkdev_get(bdev, mode, holder);
1781 if (err)
1782 return ERR_PTR(err);
1783
1784 return bdev;
1785 }
1786 EXPORT_SYMBOL(blkdev_get_by_dev);
1787
1788 static int blkdev_open(struct inode * inode, struct file * filp)
1789 {
1790 struct block_device *bdev;
1791
1792 /*
1793 * Preserve backwards compatibility and allow large file access
1794 * even if userspace doesn't ask for it explicitly. Some mkfs
1795 * binary needs it. We might want to drop this workaround
1796 * during an unstable branch.
1797 */
1798 filp->f_flags |= O_LARGEFILE;
1799
1800 filp->f_mode |= FMODE_NOWAIT;
1801
1802 if (filp->f_flags & O_NDELAY)
1803 filp->f_mode |= FMODE_NDELAY;
1804 if (filp->f_flags & O_EXCL)
1805 filp->f_mode |= FMODE_EXCL;
1806 if ((filp->f_flags & O_ACCMODE) == 3)
1807 filp->f_mode |= FMODE_WRITE_IOCTL;
1808
1809 bdev = bd_acquire(inode);
1810 if (bdev == NULL)
1811 return -ENOMEM;
1812
1813 filp->f_mapping = bdev->bd_inode->i_mapping;
1814 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1815
1816 return blkdev_get(bdev, filp->f_mode, filp);
1817 }
1818
1819 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1820 {
1821 struct gendisk *disk = bdev->bd_disk;
1822 struct block_device *victim = NULL;
1823
1824 mutex_lock_nested(&bdev->bd_mutex, for_part);
1825 if (for_part)
1826 bdev->bd_part_count--;
1827
1828 if (!--bdev->bd_openers) {
1829 WARN_ON_ONCE(bdev->bd_holders);
1830 sync_blockdev(bdev);
1831 kill_bdev(bdev);
1832
1833 bdev_write_inode(bdev);
1834 }
1835 if (bdev->bd_contains == bdev) {
1836 if (disk->fops->release)
1837 disk->fops->release(disk, mode);
1838 }
1839 if (!bdev->bd_openers) {
1840 disk_put_part(bdev->bd_part);
1841 bdev->bd_part = NULL;
1842 bdev->bd_disk = NULL;
1843 if (bdev != bdev->bd_contains)
1844 victim = bdev->bd_contains;
1845 bdev->bd_contains = NULL;
1846
1847 put_disk_and_module(disk);
1848 }
1849 mutex_unlock(&bdev->bd_mutex);
1850 bdput(bdev);
1851 if (victim)
1852 __blkdev_put(victim, mode, 1);
1853 }
1854
1855 void blkdev_put(struct block_device *bdev, fmode_t mode)
1856 {
1857 mutex_lock(&bdev->bd_mutex);
1858
1859 if (mode & FMODE_EXCL) {
1860 bool bdev_free;
1861
1862 /*
1863 * Release a claim on the device. The holder fields
1864 * are protected with bdev_lock. bd_mutex is to
1865 * synchronize disk_holder unlinking.
1866 */
1867 spin_lock(&bdev_lock);
1868
1869 WARN_ON_ONCE(--bdev->bd_holders < 0);
1870 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1871
1872 /* bd_contains might point to self, check in a separate step */
1873 if ((bdev_free = !bdev->bd_holders))
1874 bdev->bd_holder = NULL;
1875 if (!bdev->bd_contains->bd_holders)
1876 bdev->bd_contains->bd_holder = NULL;
1877
1878 spin_unlock(&bdev_lock);
1879
1880 /*
1881 * If this was the last claim, remove holder link and
1882 * unblock evpoll if it was a write holder.
1883 */
1884 if (bdev_free && bdev->bd_write_holder) {
1885 disk_unblock_events(bdev->bd_disk);
1886 bdev->bd_write_holder = false;
1887 }
1888 }
1889
1890 /*
1891 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1892 * event. This is to ensure detection of media removal commanded
1893 * from userland - e.g. eject(1).
1894 */
1895 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1896
1897 mutex_unlock(&bdev->bd_mutex);
1898
1899 __blkdev_put(bdev, mode, 0);
1900 }
1901 EXPORT_SYMBOL(blkdev_put);
1902
1903 static int blkdev_close(struct inode * inode, struct file * filp)
1904 {
1905 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1906 blkdev_put(bdev, filp->f_mode);
1907 return 0;
1908 }
1909
1910 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1911 {
1912 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1913 fmode_t mode = file->f_mode;
1914
1915 /*
1916 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1917 * to updated it before every ioctl.
1918 */
1919 if (file->f_flags & O_NDELAY)
1920 mode |= FMODE_NDELAY;
1921 else
1922 mode &= ~FMODE_NDELAY;
1923
1924 return blkdev_ioctl(bdev, mode, cmd, arg);
1925 }
1926
1927 /*
1928 * Write data to the block device. Only intended for the block device itself
1929 * and the raw driver which basically is a fake block device.
1930 *
1931 * Does not take i_mutex for the write and thus is not for general purpose
1932 * use.
1933 */
1934 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1935 {
1936 struct file *file = iocb->ki_filp;
1937 struct inode *bd_inode = bdev_file_inode(file);
1938 loff_t size = i_size_read(bd_inode);
1939 struct blk_plug plug;
1940 ssize_t ret;
1941
1942 if (bdev_read_only(I_BDEV(bd_inode)))
1943 return -EPERM;
1944
1945 if (!iov_iter_count(from))
1946 return 0;
1947
1948 if (iocb->ki_pos >= size)
1949 return -ENOSPC;
1950
1951 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1952 return -EOPNOTSUPP;
1953
1954 iov_iter_truncate(from, size - iocb->ki_pos);
1955
1956 blk_start_plug(&plug);
1957 ret = __generic_file_write_iter(iocb, from);
1958 if (ret > 0)
1959 ret = generic_write_sync(iocb, ret);
1960 blk_finish_plug(&plug);
1961 return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1964
1965 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1966 {
1967 struct file *file = iocb->ki_filp;
1968 struct inode *bd_inode = bdev_file_inode(file);
1969 loff_t size = i_size_read(bd_inode);
1970 loff_t pos = iocb->ki_pos;
1971
1972 if (pos >= size)
1973 return 0;
1974
1975 size -= pos;
1976 iov_iter_truncate(to, size);
1977 return generic_file_read_iter(iocb, to);
1978 }
1979 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1980
1981 /*
1982 * Try to release a page associated with block device when the system
1983 * is under memory pressure.
1984 */
1985 static int blkdev_releasepage(struct page *page, gfp_t wait)
1986 {
1987 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1988
1989 if (super && super->s_op->bdev_try_to_free_page)
1990 return super->s_op->bdev_try_to_free_page(super, page, wait);
1991
1992 return try_to_free_buffers(page);
1993 }
1994
1995 static int blkdev_writepages(struct address_space *mapping,
1996 struct writeback_control *wbc)
1997 {
1998 return generic_writepages(mapping, wbc);
1999 }
2000
2001 static const struct address_space_operations def_blk_aops = {
2002 .readpage = blkdev_readpage,
2003 .readpages = blkdev_readpages,
2004 .writepage = blkdev_writepage,
2005 .write_begin = blkdev_write_begin,
2006 .write_end = blkdev_write_end,
2007 .writepages = blkdev_writepages,
2008 .releasepage = blkdev_releasepage,
2009 .direct_IO = blkdev_direct_IO,
2010 .migratepage = buffer_migrate_page_norefs,
2011 .is_dirty_writeback = buffer_check_dirty_writeback,
2012 };
2013
2014 #define BLKDEV_FALLOC_FL_SUPPORTED \
2015 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2016 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2017
2018 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2019 loff_t len)
2020 {
2021 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2022 struct address_space *mapping;
2023 loff_t end = start + len - 1;
2024 loff_t isize;
2025 int error;
2026
2027 /* Fail if we don't recognize the flags. */
2028 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2029 return -EOPNOTSUPP;
2030
2031 /* Don't go off the end of the device. */
2032 isize = i_size_read(bdev->bd_inode);
2033 if (start >= isize)
2034 return -EINVAL;
2035 if (end >= isize) {
2036 if (mode & FALLOC_FL_KEEP_SIZE) {
2037 len = isize - start;
2038 end = start + len - 1;
2039 } else
2040 return -EINVAL;
2041 }
2042
2043 /*
2044 * Don't allow IO that isn't aligned to logical block size.
2045 */
2046 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2047 return -EINVAL;
2048
2049 /* Invalidate the page cache, including dirty pages. */
2050 mapping = bdev->bd_inode->i_mapping;
2051 truncate_inode_pages_range(mapping, start, end);
2052
2053 switch (mode) {
2054 case FALLOC_FL_ZERO_RANGE:
2055 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2056 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2057 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2058 break;
2059 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2060 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2061 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2062 break;
2063 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2064 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2065 GFP_KERNEL, 0);
2066 break;
2067 default:
2068 return -EOPNOTSUPP;
2069 }
2070 if (error)
2071 return error;
2072
2073 /*
2074 * Invalidate again; if someone wandered in and dirtied a page,
2075 * the caller will be given -EBUSY. The third argument is
2076 * inclusive, so the rounding here is safe.
2077 */
2078 return invalidate_inode_pages2_range(mapping,
2079 start >> PAGE_SHIFT,
2080 end >> PAGE_SHIFT);
2081 }
2082
2083 const struct file_operations def_blk_fops = {
2084 .open = blkdev_open,
2085 .release = blkdev_close,
2086 .llseek = block_llseek,
2087 .read_iter = blkdev_read_iter,
2088 .write_iter = blkdev_write_iter,
2089 .iopoll = blkdev_iopoll,
2090 .mmap = generic_file_mmap,
2091 .fsync = blkdev_fsync,
2092 .unlocked_ioctl = block_ioctl,
2093 #ifdef CONFIG_COMPAT
2094 .compat_ioctl = compat_blkdev_ioctl,
2095 #endif
2096 .splice_read = generic_file_splice_read,
2097 .splice_write = iter_file_splice_write,
2098 .fallocate = blkdev_fallocate,
2099 };
2100
2101 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2102 {
2103 int res;
2104 mm_segment_t old_fs = get_fs();
2105 set_fs(KERNEL_DS);
2106 res = blkdev_ioctl(bdev, 0, cmd, arg);
2107 set_fs(old_fs);
2108 return res;
2109 }
2110
2111 EXPORT_SYMBOL(ioctl_by_bdev);
2112
2113 /**
2114 * lookup_bdev - lookup a struct block_device by name
2115 * @pathname: special file representing the block device
2116 *
2117 * Get a reference to the blockdevice at @pathname in the current
2118 * namespace if possible and return it. Return ERR_PTR(error)
2119 * otherwise.
2120 */
2121 struct block_device *lookup_bdev(const char *pathname)
2122 {
2123 struct block_device *bdev;
2124 struct inode *inode;
2125 struct path path;
2126 int error;
2127
2128 if (!pathname || !*pathname)
2129 return ERR_PTR(-EINVAL);
2130
2131 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2132 if (error)
2133 return ERR_PTR(error);
2134
2135 inode = d_backing_inode(path.dentry);
2136 error = -ENOTBLK;
2137 if (!S_ISBLK(inode->i_mode))
2138 goto fail;
2139 error = -EACCES;
2140 if (!may_open_dev(&path))
2141 goto fail;
2142 error = -ENOMEM;
2143 bdev = bd_acquire(inode);
2144 if (!bdev)
2145 goto fail;
2146 out:
2147 path_put(&path);
2148 return bdev;
2149 fail:
2150 bdev = ERR_PTR(error);
2151 goto out;
2152 }
2153 EXPORT_SYMBOL(lookup_bdev);
2154
2155 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2156 {
2157 struct super_block *sb = get_super(bdev);
2158 int res = 0;
2159
2160 if (sb) {
2161 /*
2162 * no need to lock the super, get_super holds the
2163 * read mutex so the filesystem cannot go away
2164 * under us (->put_super runs with the write lock
2165 * hold).
2166 */
2167 shrink_dcache_sb(sb);
2168 res = invalidate_inodes(sb, kill_dirty);
2169 drop_super(sb);
2170 }
2171 invalidate_bdev(bdev);
2172 return res;
2173 }
2174 EXPORT_SYMBOL(__invalidate_device);
2175
2176 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2177 {
2178 struct inode *inode, *old_inode = NULL;
2179
2180 spin_lock(&blockdev_superblock->s_inode_list_lock);
2181 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2182 struct address_space *mapping = inode->i_mapping;
2183 struct block_device *bdev;
2184
2185 spin_lock(&inode->i_lock);
2186 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2187 mapping->nrpages == 0) {
2188 spin_unlock(&inode->i_lock);
2189 continue;
2190 }
2191 __iget(inode);
2192 spin_unlock(&inode->i_lock);
2193 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2194 /*
2195 * We hold a reference to 'inode' so it couldn't have been
2196 * removed from s_inodes list while we dropped the
2197 * s_inode_list_lock We cannot iput the inode now as we can
2198 * be holding the last reference and we cannot iput it under
2199 * s_inode_list_lock. So we keep the reference and iput it
2200 * later.
2201 */
2202 iput(old_inode);
2203 old_inode = inode;
2204 bdev = I_BDEV(inode);
2205
2206 mutex_lock(&bdev->bd_mutex);
2207 if (bdev->bd_openers)
2208 func(bdev, arg);
2209 mutex_unlock(&bdev->bd_mutex);
2210
2211 spin_lock(&blockdev_superblock->s_inode_list_lock);
2212 }
2213 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2214 iput(old_inode);
2215 }