]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge branch 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 /*
53 * Move the inode from its current bdi to a new bdi. Make sure the inode
54 * is clean before moving so that it doesn't linger on the old bdi.
55 */
56 static void bdev_inode_switch_bdi(struct inode *inode,
57 struct backing_dev_info *dst)
58 {
59 while (true) {
60 spin_lock(&inode->i_lock);
61 if (!(inode->i_state & I_DIRTY)) {
62 inode->i_data.backing_dev_info = dst;
63 spin_unlock(&inode->i_lock);
64 return;
65 }
66 spin_unlock(&inode->i_lock);
67 WARN_ON_ONCE(write_inode_now(inode, true));
68 }
69 }
70
71 /* Kill _all_ buffers and pagecache , dirty or not.. */
72 void kill_bdev(struct block_device *bdev)
73 {
74 struct address_space *mapping = bdev->bd_inode->i_mapping;
75
76 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
77 return;
78
79 invalidate_bh_lrus();
80 truncate_inode_pages(mapping, 0);
81 }
82 EXPORT_SYMBOL(kill_bdev);
83
84 /* Invalidate clean unused buffers and pagecache. */
85 void invalidate_bdev(struct block_device *bdev)
86 {
87 struct address_space *mapping = bdev->bd_inode->i_mapping;
88
89 if (mapping->nrpages == 0)
90 return;
91
92 invalidate_bh_lrus();
93 lru_add_drain_all(); /* make sure all lru add caches are flushed */
94 invalidate_mapping_pages(mapping, 0, -1);
95 /* 99% of the time, we don't need to flush the cleancache on the bdev.
96 * But, for the strange corners, lets be cautious
97 */
98 cleancache_invalidate_inode(mapping);
99 }
100 EXPORT_SYMBOL(invalidate_bdev);
101
102 int set_blocksize(struct block_device *bdev, int size)
103 {
104 /* Size must be a power of two, and between 512 and PAGE_SIZE */
105 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
106 return -EINVAL;
107
108 /* Size cannot be smaller than the size supported by the device */
109 if (size < bdev_logical_block_size(bdev))
110 return -EINVAL;
111
112 /* Don't change the size if it is same as current */
113 if (bdev->bd_block_size != size) {
114 sync_blockdev(bdev);
115 bdev->bd_block_size = size;
116 bdev->bd_inode->i_blkbits = blksize_bits(size);
117 kill_bdev(bdev);
118 }
119 return 0;
120 }
121
122 EXPORT_SYMBOL(set_blocksize);
123
124 int sb_set_blocksize(struct super_block *sb, int size)
125 {
126 if (set_blocksize(sb->s_bdev, size))
127 return 0;
128 /* If we get here, we know size is power of two
129 * and it's value is between 512 and PAGE_SIZE */
130 sb->s_blocksize = size;
131 sb->s_blocksize_bits = blksize_bits(size);
132 return sb->s_blocksize;
133 }
134
135 EXPORT_SYMBOL(sb_set_blocksize);
136
137 int sb_min_blocksize(struct super_block *sb, int size)
138 {
139 int minsize = bdev_logical_block_size(sb->s_bdev);
140 if (size < minsize)
141 size = minsize;
142 return sb_set_blocksize(sb, size);
143 }
144
145 EXPORT_SYMBOL(sb_min_blocksize);
146
147 static int
148 blkdev_get_block(struct inode *inode, sector_t iblock,
149 struct buffer_head *bh, int create)
150 {
151 bh->b_bdev = I_BDEV(inode);
152 bh->b_blocknr = iblock;
153 set_buffer_mapped(bh);
154 return 0;
155 }
156
157 static ssize_t
158 blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
159 loff_t offset)
160 {
161 struct file *file = iocb->ki_filp;
162 struct inode *inode = file->f_mapping->host;
163
164 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter,
165 offset, blkdev_get_block,
166 NULL, NULL, 0);
167 }
168
169 int __sync_blockdev(struct block_device *bdev, int wait)
170 {
171 if (!bdev)
172 return 0;
173 if (!wait)
174 return filemap_flush(bdev->bd_inode->i_mapping);
175 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
176 }
177
178 /*
179 * Write out and wait upon all the dirty data associated with a block
180 * device via its mapping. Does not take the superblock lock.
181 */
182 int sync_blockdev(struct block_device *bdev)
183 {
184 return __sync_blockdev(bdev, 1);
185 }
186 EXPORT_SYMBOL(sync_blockdev);
187
188 /*
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
192 */
193 int fsync_bdev(struct block_device *bdev)
194 {
195 struct super_block *sb = get_super(bdev);
196 if (sb) {
197 int res = sync_filesystem(sb);
198 drop_super(sb);
199 return res;
200 }
201 return sync_blockdev(bdev);
202 }
203 EXPORT_SYMBOL(fsync_bdev);
204
205 /**
206 * freeze_bdev -- lock a filesystem and force it into a consistent state
207 * @bdev: blockdevice to lock
208 *
209 * If a superblock is found on this device, we take the s_umount semaphore
210 * on it to make sure nobody unmounts until the snapshot creation is done.
211 * The reference counter (bd_fsfreeze_count) guarantees that only the last
212 * unfreeze process can unfreeze the frozen filesystem actually when multiple
213 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
214 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
215 * actually.
216 */
217 struct super_block *freeze_bdev(struct block_device *bdev)
218 {
219 struct super_block *sb;
220 int error = 0;
221
222 mutex_lock(&bdev->bd_fsfreeze_mutex);
223 if (++bdev->bd_fsfreeze_count > 1) {
224 /*
225 * We don't even need to grab a reference - the first call
226 * to freeze_bdev grab an active reference and only the last
227 * thaw_bdev drops it.
228 */
229 sb = get_super(bdev);
230 drop_super(sb);
231 mutex_unlock(&bdev->bd_fsfreeze_mutex);
232 return sb;
233 }
234
235 sb = get_active_super(bdev);
236 if (!sb)
237 goto out;
238 if (sb->s_op->freeze_super)
239 error = sb->s_op->freeze_super(sb);
240 else
241 error = freeze_super(sb);
242 if (error) {
243 deactivate_super(sb);
244 bdev->bd_fsfreeze_count--;
245 mutex_unlock(&bdev->bd_fsfreeze_mutex);
246 return ERR_PTR(error);
247 }
248 deactivate_super(sb);
249 out:
250 sync_blockdev(bdev);
251 mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 return sb; /* thaw_bdev releases s->s_umount */
253 }
254 EXPORT_SYMBOL(freeze_bdev);
255
256 /**
257 * thaw_bdev -- unlock filesystem
258 * @bdev: blockdevice to unlock
259 * @sb: associated superblock
260 *
261 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
262 */
263 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
264 {
265 int error = -EINVAL;
266
267 mutex_lock(&bdev->bd_fsfreeze_mutex);
268 if (!bdev->bd_fsfreeze_count)
269 goto out;
270
271 error = 0;
272 if (--bdev->bd_fsfreeze_count > 0)
273 goto out;
274
275 if (!sb)
276 goto out;
277
278 if (sb->s_op->thaw_super)
279 error = sb->s_op->thaw_super(sb);
280 else
281 error = thaw_super(sb);
282 if (error) {
283 bdev->bd_fsfreeze_count++;
284 mutex_unlock(&bdev->bd_fsfreeze_mutex);
285 return error;
286 }
287 out:
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return 0;
290 }
291 EXPORT_SYMBOL(thaw_bdev);
292
293 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
294 {
295 return block_write_full_page(page, blkdev_get_block, wbc);
296 }
297
298 static int blkdev_readpage(struct file * file, struct page * page)
299 {
300 return block_read_full_page(page, blkdev_get_block);
301 }
302
303 static int blkdev_readpages(struct file *file, struct address_space *mapping,
304 struct list_head *pages, unsigned nr_pages)
305 {
306 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
307 }
308
309 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
310 loff_t pos, unsigned len, unsigned flags,
311 struct page **pagep, void **fsdata)
312 {
313 return block_write_begin(mapping, pos, len, flags, pagep,
314 blkdev_get_block);
315 }
316
317 static int blkdev_write_end(struct file *file, struct address_space *mapping,
318 loff_t pos, unsigned len, unsigned copied,
319 struct page *page, void *fsdata)
320 {
321 int ret;
322 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
323
324 unlock_page(page);
325 page_cache_release(page);
326
327 return ret;
328 }
329
330 /*
331 * private llseek:
332 * for a block special file file_inode(file)->i_size is zero
333 * so we compute the size by hand (just as in block_read/write above)
334 */
335 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
336 {
337 struct inode *bd_inode = file->f_mapping->host;
338 loff_t retval;
339
340 mutex_lock(&bd_inode->i_mutex);
341 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
342 mutex_unlock(&bd_inode->i_mutex);
343 return retval;
344 }
345
346 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
347 {
348 struct inode *bd_inode = filp->f_mapping->host;
349 struct block_device *bdev = I_BDEV(bd_inode);
350 int error;
351
352 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
353 if (error)
354 return error;
355
356 /*
357 * There is no need to serialise calls to blkdev_issue_flush with
358 * i_mutex and doing so causes performance issues with concurrent
359 * O_SYNC writers to a block device.
360 */
361 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
362 if (error == -EOPNOTSUPP)
363 error = 0;
364
365 return error;
366 }
367 EXPORT_SYMBOL(blkdev_fsync);
368
369 /**
370 * bdev_read_page() - Start reading a page from a block device
371 * @bdev: The device to read the page from
372 * @sector: The offset on the device to read the page to (need not be aligned)
373 * @page: The page to read
374 *
375 * On entry, the page should be locked. It will be unlocked when the page
376 * has been read. If the block driver implements rw_page synchronously,
377 * that will be true on exit from this function, but it need not be.
378 *
379 * Errors returned by this function are usually "soft", eg out of memory, or
380 * queue full; callers should try a different route to read this page rather
381 * than propagate an error back up the stack.
382 *
383 * Return: negative errno if an error occurs, 0 if submission was successful.
384 */
385 int bdev_read_page(struct block_device *bdev, sector_t sector,
386 struct page *page)
387 {
388 const struct block_device_operations *ops = bdev->bd_disk->fops;
389 if (!ops->rw_page)
390 return -EOPNOTSUPP;
391 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
392 }
393 EXPORT_SYMBOL_GPL(bdev_read_page);
394
395 /**
396 * bdev_write_page() - Start writing a page to a block device
397 * @bdev: The device to write the page to
398 * @sector: The offset on the device to write the page to (need not be aligned)
399 * @page: The page to write
400 * @wbc: The writeback_control for the write
401 *
402 * On entry, the page should be locked and not currently under writeback.
403 * On exit, if the write started successfully, the page will be unlocked and
404 * under writeback. If the write failed already (eg the driver failed to
405 * queue the page to the device), the page will still be locked. If the
406 * caller is a ->writepage implementation, it will need to unlock the page.
407 *
408 * Errors returned by this function are usually "soft", eg out of memory, or
409 * queue full; callers should try a different route to write this page rather
410 * than propagate an error back up the stack.
411 *
412 * Return: negative errno if an error occurs, 0 if submission was successful.
413 */
414 int bdev_write_page(struct block_device *bdev, sector_t sector,
415 struct page *page, struct writeback_control *wbc)
416 {
417 int result;
418 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
419 const struct block_device_operations *ops = bdev->bd_disk->fops;
420 if (!ops->rw_page)
421 return -EOPNOTSUPP;
422 set_page_writeback(page);
423 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
424 if (result)
425 end_page_writeback(page);
426 else
427 unlock_page(page);
428 return result;
429 }
430 EXPORT_SYMBOL_GPL(bdev_write_page);
431
432 /*
433 * pseudo-fs
434 */
435
436 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
437 static struct kmem_cache * bdev_cachep __read_mostly;
438
439 static struct inode *bdev_alloc_inode(struct super_block *sb)
440 {
441 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
442 if (!ei)
443 return NULL;
444 return &ei->vfs_inode;
445 }
446
447 static void bdev_i_callback(struct rcu_head *head)
448 {
449 struct inode *inode = container_of(head, struct inode, i_rcu);
450 struct bdev_inode *bdi = BDEV_I(inode);
451
452 kmem_cache_free(bdev_cachep, bdi);
453 }
454
455 static void bdev_destroy_inode(struct inode *inode)
456 {
457 call_rcu(&inode->i_rcu, bdev_i_callback);
458 }
459
460 static void init_once(void *foo)
461 {
462 struct bdev_inode *ei = (struct bdev_inode *) foo;
463 struct block_device *bdev = &ei->bdev;
464
465 memset(bdev, 0, sizeof(*bdev));
466 mutex_init(&bdev->bd_mutex);
467 INIT_LIST_HEAD(&bdev->bd_inodes);
468 INIT_LIST_HEAD(&bdev->bd_list);
469 #ifdef CONFIG_SYSFS
470 INIT_LIST_HEAD(&bdev->bd_holder_disks);
471 #endif
472 inode_init_once(&ei->vfs_inode);
473 /* Initialize mutex for freeze. */
474 mutex_init(&bdev->bd_fsfreeze_mutex);
475 }
476
477 static inline void __bd_forget(struct inode *inode)
478 {
479 list_del_init(&inode->i_devices);
480 inode->i_bdev = NULL;
481 inode->i_mapping = &inode->i_data;
482 }
483
484 static void bdev_evict_inode(struct inode *inode)
485 {
486 struct block_device *bdev = &BDEV_I(inode)->bdev;
487 struct list_head *p;
488 truncate_inode_pages_final(&inode->i_data);
489 invalidate_inode_buffers(inode); /* is it needed here? */
490 clear_inode(inode);
491 spin_lock(&bdev_lock);
492 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
493 __bd_forget(list_entry(p, struct inode, i_devices));
494 }
495 list_del_init(&bdev->bd_list);
496 spin_unlock(&bdev_lock);
497 }
498
499 static const struct super_operations bdev_sops = {
500 .statfs = simple_statfs,
501 .alloc_inode = bdev_alloc_inode,
502 .destroy_inode = bdev_destroy_inode,
503 .drop_inode = generic_delete_inode,
504 .evict_inode = bdev_evict_inode,
505 };
506
507 static struct dentry *bd_mount(struct file_system_type *fs_type,
508 int flags, const char *dev_name, void *data)
509 {
510 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
511 }
512
513 static struct file_system_type bd_type = {
514 .name = "bdev",
515 .mount = bd_mount,
516 .kill_sb = kill_anon_super,
517 };
518
519 static struct super_block *blockdev_superblock __read_mostly;
520
521 void __init bdev_cache_init(void)
522 {
523 int err;
524 static struct vfsmount *bd_mnt;
525
526 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
527 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
528 SLAB_MEM_SPREAD|SLAB_PANIC),
529 init_once);
530 err = register_filesystem(&bd_type);
531 if (err)
532 panic("Cannot register bdev pseudo-fs");
533 bd_mnt = kern_mount(&bd_type);
534 if (IS_ERR(bd_mnt))
535 panic("Cannot create bdev pseudo-fs");
536 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
537 }
538
539 /*
540 * Most likely _very_ bad one - but then it's hardly critical for small
541 * /dev and can be fixed when somebody will need really large one.
542 * Keep in mind that it will be fed through icache hash function too.
543 */
544 static inline unsigned long hash(dev_t dev)
545 {
546 return MAJOR(dev)+MINOR(dev);
547 }
548
549 static int bdev_test(struct inode *inode, void *data)
550 {
551 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
552 }
553
554 static int bdev_set(struct inode *inode, void *data)
555 {
556 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
557 return 0;
558 }
559
560 static LIST_HEAD(all_bdevs);
561
562 struct block_device *bdget(dev_t dev)
563 {
564 struct block_device *bdev;
565 struct inode *inode;
566
567 inode = iget5_locked(blockdev_superblock, hash(dev),
568 bdev_test, bdev_set, &dev);
569
570 if (!inode)
571 return NULL;
572
573 bdev = &BDEV_I(inode)->bdev;
574
575 if (inode->i_state & I_NEW) {
576 bdev->bd_contains = NULL;
577 bdev->bd_super = NULL;
578 bdev->bd_inode = inode;
579 bdev->bd_block_size = (1 << inode->i_blkbits);
580 bdev->bd_part_count = 0;
581 bdev->bd_invalidated = 0;
582 inode->i_mode = S_IFBLK;
583 inode->i_rdev = dev;
584 inode->i_bdev = bdev;
585 inode->i_data.a_ops = &def_blk_aops;
586 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
587 inode->i_data.backing_dev_info = &default_backing_dev_info;
588 spin_lock(&bdev_lock);
589 list_add(&bdev->bd_list, &all_bdevs);
590 spin_unlock(&bdev_lock);
591 unlock_new_inode(inode);
592 }
593 return bdev;
594 }
595
596 EXPORT_SYMBOL(bdget);
597
598 /**
599 * bdgrab -- Grab a reference to an already referenced block device
600 * @bdev: Block device to grab a reference to.
601 */
602 struct block_device *bdgrab(struct block_device *bdev)
603 {
604 ihold(bdev->bd_inode);
605 return bdev;
606 }
607 EXPORT_SYMBOL(bdgrab);
608
609 long nr_blockdev_pages(void)
610 {
611 struct block_device *bdev;
612 long ret = 0;
613 spin_lock(&bdev_lock);
614 list_for_each_entry(bdev, &all_bdevs, bd_list) {
615 ret += bdev->bd_inode->i_mapping->nrpages;
616 }
617 spin_unlock(&bdev_lock);
618 return ret;
619 }
620
621 void bdput(struct block_device *bdev)
622 {
623 iput(bdev->bd_inode);
624 }
625
626 EXPORT_SYMBOL(bdput);
627
628 static struct block_device *bd_acquire(struct inode *inode)
629 {
630 struct block_device *bdev;
631
632 spin_lock(&bdev_lock);
633 bdev = inode->i_bdev;
634 if (bdev) {
635 ihold(bdev->bd_inode);
636 spin_unlock(&bdev_lock);
637 return bdev;
638 }
639 spin_unlock(&bdev_lock);
640
641 bdev = bdget(inode->i_rdev);
642 if (bdev) {
643 spin_lock(&bdev_lock);
644 if (!inode->i_bdev) {
645 /*
646 * We take an additional reference to bd_inode,
647 * and it's released in clear_inode() of inode.
648 * So, we can access it via ->i_mapping always
649 * without igrab().
650 */
651 ihold(bdev->bd_inode);
652 inode->i_bdev = bdev;
653 inode->i_mapping = bdev->bd_inode->i_mapping;
654 list_add(&inode->i_devices, &bdev->bd_inodes);
655 }
656 spin_unlock(&bdev_lock);
657 }
658 return bdev;
659 }
660
661 int sb_is_blkdev_sb(struct super_block *sb)
662 {
663 return sb == blockdev_superblock;
664 }
665
666 /* Call when you free inode */
667
668 void bd_forget(struct inode *inode)
669 {
670 struct block_device *bdev = NULL;
671
672 spin_lock(&bdev_lock);
673 if (!sb_is_blkdev_sb(inode->i_sb))
674 bdev = inode->i_bdev;
675 __bd_forget(inode);
676 spin_unlock(&bdev_lock);
677
678 if (bdev)
679 iput(bdev->bd_inode);
680 }
681
682 /**
683 * bd_may_claim - test whether a block device can be claimed
684 * @bdev: block device of interest
685 * @whole: whole block device containing @bdev, may equal @bdev
686 * @holder: holder trying to claim @bdev
687 *
688 * Test whether @bdev can be claimed by @holder.
689 *
690 * CONTEXT:
691 * spin_lock(&bdev_lock).
692 *
693 * RETURNS:
694 * %true if @bdev can be claimed, %false otherwise.
695 */
696 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
697 void *holder)
698 {
699 if (bdev->bd_holder == holder)
700 return true; /* already a holder */
701 else if (bdev->bd_holder != NULL)
702 return false; /* held by someone else */
703 else if (bdev->bd_contains == bdev)
704 return true; /* is a whole device which isn't held */
705
706 else if (whole->bd_holder == bd_may_claim)
707 return true; /* is a partition of a device that is being partitioned */
708 else if (whole->bd_holder != NULL)
709 return false; /* is a partition of a held device */
710 else
711 return true; /* is a partition of an un-held device */
712 }
713
714 /**
715 * bd_prepare_to_claim - prepare to claim a block device
716 * @bdev: block device of interest
717 * @whole: the whole device containing @bdev, may equal @bdev
718 * @holder: holder trying to claim @bdev
719 *
720 * Prepare to claim @bdev. This function fails if @bdev is already
721 * claimed by another holder and waits if another claiming is in
722 * progress. This function doesn't actually claim. On successful
723 * return, the caller has ownership of bd_claiming and bd_holder[s].
724 *
725 * CONTEXT:
726 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
727 * it multiple times.
728 *
729 * RETURNS:
730 * 0 if @bdev can be claimed, -EBUSY otherwise.
731 */
732 static int bd_prepare_to_claim(struct block_device *bdev,
733 struct block_device *whole, void *holder)
734 {
735 retry:
736 /* if someone else claimed, fail */
737 if (!bd_may_claim(bdev, whole, holder))
738 return -EBUSY;
739
740 /* if claiming is already in progress, wait for it to finish */
741 if (whole->bd_claiming) {
742 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
743 DEFINE_WAIT(wait);
744
745 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&bdev_lock);
747 schedule();
748 finish_wait(wq, &wait);
749 spin_lock(&bdev_lock);
750 goto retry;
751 }
752
753 /* yay, all mine */
754 return 0;
755 }
756
757 /**
758 * bd_start_claiming - start claiming a block device
759 * @bdev: block device of interest
760 * @holder: holder trying to claim @bdev
761 *
762 * @bdev is about to be opened exclusively. Check @bdev can be opened
763 * exclusively and mark that an exclusive open is in progress. Each
764 * successful call to this function must be matched with a call to
765 * either bd_finish_claiming() or bd_abort_claiming() (which do not
766 * fail).
767 *
768 * This function is used to gain exclusive access to the block device
769 * without actually causing other exclusive open attempts to fail. It
770 * should be used when the open sequence itself requires exclusive
771 * access but may subsequently fail.
772 *
773 * CONTEXT:
774 * Might sleep.
775 *
776 * RETURNS:
777 * Pointer to the block device containing @bdev on success, ERR_PTR()
778 * value on failure.
779 */
780 static struct block_device *bd_start_claiming(struct block_device *bdev,
781 void *holder)
782 {
783 struct gendisk *disk;
784 struct block_device *whole;
785 int partno, err;
786
787 might_sleep();
788
789 /*
790 * @bdev might not have been initialized properly yet, look up
791 * and grab the outer block device the hard way.
792 */
793 disk = get_gendisk(bdev->bd_dev, &partno);
794 if (!disk)
795 return ERR_PTR(-ENXIO);
796
797 /*
798 * Normally, @bdev should equal what's returned from bdget_disk()
799 * if partno is 0; however, some drivers (floppy) use multiple
800 * bdev's for the same physical device and @bdev may be one of the
801 * aliases. Keep @bdev if partno is 0. This means claimer
802 * tracking is broken for those devices but it has always been that
803 * way.
804 */
805 if (partno)
806 whole = bdget_disk(disk, 0);
807 else
808 whole = bdgrab(bdev);
809
810 module_put(disk->fops->owner);
811 put_disk(disk);
812 if (!whole)
813 return ERR_PTR(-ENOMEM);
814
815 /* prepare to claim, if successful, mark claiming in progress */
816 spin_lock(&bdev_lock);
817
818 err = bd_prepare_to_claim(bdev, whole, holder);
819 if (err == 0) {
820 whole->bd_claiming = holder;
821 spin_unlock(&bdev_lock);
822 return whole;
823 } else {
824 spin_unlock(&bdev_lock);
825 bdput(whole);
826 return ERR_PTR(err);
827 }
828 }
829
830 #ifdef CONFIG_SYSFS
831 struct bd_holder_disk {
832 struct list_head list;
833 struct gendisk *disk;
834 int refcnt;
835 };
836
837 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
838 struct gendisk *disk)
839 {
840 struct bd_holder_disk *holder;
841
842 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
843 if (holder->disk == disk)
844 return holder;
845 return NULL;
846 }
847
848 static int add_symlink(struct kobject *from, struct kobject *to)
849 {
850 return sysfs_create_link(from, to, kobject_name(to));
851 }
852
853 static void del_symlink(struct kobject *from, struct kobject *to)
854 {
855 sysfs_remove_link(from, kobject_name(to));
856 }
857
858 /**
859 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
860 * @bdev: the claimed slave bdev
861 * @disk: the holding disk
862 *
863 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
864 *
865 * This functions creates the following sysfs symlinks.
866 *
867 * - from "slaves" directory of the holder @disk to the claimed @bdev
868 * - from "holders" directory of the @bdev to the holder @disk
869 *
870 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
871 * passed to bd_link_disk_holder(), then:
872 *
873 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
874 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
875 *
876 * The caller must have claimed @bdev before calling this function and
877 * ensure that both @bdev and @disk are valid during the creation and
878 * lifetime of these symlinks.
879 *
880 * CONTEXT:
881 * Might sleep.
882 *
883 * RETURNS:
884 * 0 on success, -errno on failure.
885 */
886 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
887 {
888 struct bd_holder_disk *holder;
889 int ret = 0;
890
891 mutex_lock(&bdev->bd_mutex);
892
893 WARN_ON_ONCE(!bdev->bd_holder);
894
895 /* FIXME: remove the following once add_disk() handles errors */
896 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
897 goto out_unlock;
898
899 holder = bd_find_holder_disk(bdev, disk);
900 if (holder) {
901 holder->refcnt++;
902 goto out_unlock;
903 }
904
905 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
906 if (!holder) {
907 ret = -ENOMEM;
908 goto out_unlock;
909 }
910
911 INIT_LIST_HEAD(&holder->list);
912 holder->disk = disk;
913 holder->refcnt = 1;
914
915 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
916 if (ret)
917 goto out_free;
918
919 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
920 if (ret)
921 goto out_del;
922 /*
923 * bdev could be deleted beneath us which would implicitly destroy
924 * the holder directory. Hold on to it.
925 */
926 kobject_get(bdev->bd_part->holder_dir);
927
928 list_add(&holder->list, &bdev->bd_holder_disks);
929 goto out_unlock;
930
931 out_del:
932 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
933 out_free:
934 kfree(holder);
935 out_unlock:
936 mutex_unlock(&bdev->bd_mutex);
937 return ret;
938 }
939 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
940
941 /**
942 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
943 * @bdev: the calimed slave bdev
944 * @disk: the holding disk
945 *
946 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
947 *
948 * CONTEXT:
949 * Might sleep.
950 */
951 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
952 {
953 struct bd_holder_disk *holder;
954
955 mutex_lock(&bdev->bd_mutex);
956
957 holder = bd_find_holder_disk(bdev, disk);
958
959 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
960 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
961 del_symlink(bdev->bd_part->holder_dir,
962 &disk_to_dev(disk)->kobj);
963 kobject_put(bdev->bd_part->holder_dir);
964 list_del_init(&holder->list);
965 kfree(holder);
966 }
967
968 mutex_unlock(&bdev->bd_mutex);
969 }
970 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
971 #endif
972
973 /**
974 * flush_disk - invalidates all buffer-cache entries on a disk
975 *
976 * @bdev: struct block device to be flushed
977 * @kill_dirty: flag to guide handling of dirty inodes
978 *
979 * Invalidates all buffer-cache entries on a disk. It should be called
980 * when a disk has been changed -- either by a media change or online
981 * resize.
982 */
983 static void flush_disk(struct block_device *bdev, bool kill_dirty)
984 {
985 if (__invalidate_device(bdev, kill_dirty)) {
986 char name[BDEVNAME_SIZE] = "";
987
988 if (bdev->bd_disk)
989 disk_name(bdev->bd_disk, 0, name);
990 printk(KERN_WARNING "VFS: busy inodes on changed media or "
991 "resized disk %s\n", name);
992 }
993
994 if (!bdev->bd_disk)
995 return;
996 if (disk_part_scan_enabled(bdev->bd_disk))
997 bdev->bd_invalidated = 1;
998 }
999
1000 /**
1001 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1002 * @disk: struct gendisk to check
1003 * @bdev: struct bdev to adjust.
1004 *
1005 * This routine checks to see if the bdev size does not match the disk size
1006 * and adjusts it if it differs.
1007 */
1008 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1009 {
1010 loff_t disk_size, bdev_size;
1011
1012 disk_size = (loff_t)get_capacity(disk) << 9;
1013 bdev_size = i_size_read(bdev->bd_inode);
1014 if (disk_size != bdev_size) {
1015 char name[BDEVNAME_SIZE];
1016
1017 disk_name(disk, 0, name);
1018 printk(KERN_INFO
1019 "%s: detected capacity change from %lld to %lld\n",
1020 name, bdev_size, disk_size);
1021 i_size_write(bdev->bd_inode, disk_size);
1022 flush_disk(bdev, false);
1023 }
1024 }
1025 EXPORT_SYMBOL(check_disk_size_change);
1026
1027 /**
1028 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1029 * @disk: struct gendisk to be revalidated
1030 *
1031 * This routine is a wrapper for lower-level driver's revalidate_disk
1032 * call-backs. It is used to do common pre and post operations needed
1033 * for all revalidate_disk operations.
1034 */
1035 int revalidate_disk(struct gendisk *disk)
1036 {
1037 struct block_device *bdev;
1038 int ret = 0;
1039
1040 if (disk->fops->revalidate_disk)
1041 ret = disk->fops->revalidate_disk(disk);
1042
1043 bdev = bdget_disk(disk, 0);
1044 if (!bdev)
1045 return ret;
1046
1047 mutex_lock(&bdev->bd_mutex);
1048 check_disk_size_change(disk, bdev);
1049 bdev->bd_invalidated = 0;
1050 mutex_unlock(&bdev->bd_mutex);
1051 bdput(bdev);
1052 return ret;
1053 }
1054 EXPORT_SYMBOL(revalidate_disk);
1055
1056 /*
1057 * This routine checks whether a removable media has been changed,
1058 * and invalidates all buffer-cache-entries in that case. This
1059 * is a relatively slow routine, so we have to try to minimize using
1060 * it. Thus it is called only upon a 'mount' or 'open'. This
1061 * is the best way of combining speed and utility, I think.
1062 * People changing diskettes in the middle of an operation deserve
1063 * to lose :-)
1064 */
1065 int check_disk_change(struct block_device *bdev)
1066 {
1067 struct gendisk *disk = bdev->bd_disk;
1068 const struct block_device_operations *bdops = disk->fops;
1069 unsigned int events;
1070
1071 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1072 DISK_EVENT_EJECT_REQUEST);
1073 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1074 return 0;
1075
1076 flush_disk(bdev, true);
1077 if (bdops->revalidate_disk)
1078 bdops->revalidate_disk(bdev->bd_disk);
1079 return 1;
1080 }
1081
1082 EXPORT_SYMBOL(check_disk_change);
1083
1084 void bd_set_size(struct block_device *bdev, loff_t size)
1085 {
1086 unsigned bsize = bdev_logical_block_size(bdev);
1087
1088 mutex_lock(&bdev->bd_inode->i_mutex);
1089 i_size_write(bdev->bd_inode, size);
1090 mutex_unlock(&bdev->bd_inode->i_mutex);
1091 while (bsize < PAGE_CACHE_SIZE) {
1092 if (size & bsize)
1093 break;
1094 bsize <<= 1;
1095 }
1096 bdev->bd_block_size = bsize;
1097 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1098 }
1099 EXPORT_SYMBOL(bd_set_size);
1100
1101 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1102
1103 /*
1104 * bd_mutex locking:
1105 *
1106 * mutex_lock(part->bd_mutex)
1107 * mutex_lock_nested(whole->bd_mutex, 1)
1108 */
1109
1110 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1111 {
1112 struct gendisk *disk;
1113 struct module *owner;
1114 int ret;
1115 int partno;
1116 int perm = 0;
1117
1118 if (mode & FMODE_READ)
1119 perm |= MAY_READ;
1120 if (mode & FMODE_WRITE)
1121 perm |= MAY_WRITE;
1122 /*
1123 * hooks: /n/, see "layering violations".
1124 */
1125 if (!for_part) {
1126 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1127 if (ret != 0) {
1128 bdput(bdev);
1129 return ret;
1130 }
1131 }
1132
1133 restart:
1134
1135 ret = -ENXIO;
1136 disk = get_gendisk(bdev->bd_dev, &partno);
1137 if (!disk)
1138 goto out;
1139 owner = disk->fops->owner;
1140
1141 disk_block_events(disk);
1142 mutex_lock_nested(&bdev->bd_mutex, for_part);
1143 if (!bdev->bd_openers) {
1144 bdev->bd_disk = disk;
1145 bdev->bd_queue = disk->queue;
1146 bdev->bd_contains = bdev;
1147 if (!partno) {
1148 struct backing_dev_info *bdi;
1149
1150 ret = -ENXIO;
1151 bdev->bd_part = disk_get_part(disk, partno);
1152 if (!bdev->bd_part)
1153 goto out_clear;
1154
1155 ret = 0;
1156 if (disk->fops->open) {
1157 ret = disk->fops->open(bdev, mode);
1158 if (ret == -ERESTARTSYS) {
1159 /* Lost a race with 'disk' being
1160 * deleted, try again.
1161 * See md.c
1162 */
1163 disk_put_part(bdev->bd_part);
1164 bdev->bd_part = NULL;
1165 bdev->bd_disk = NULL;
1166 bdev->bd_queue = NULL;
1167 mutex_unlock(&bdev->bd_mutex);
1168 disk_unblock_events(disk);
1169 put_disk(disk);
1170 module_put(owner);
1171 goto restart;
1172 }
1173 }
1174
1175 if (!ret) {
1176 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1177 bdi = blk_get_backing_dev_info(bdev);
1178 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1179 }
1180
1181 /*
1182 * If the device is invalidated, rescan partition
1183 * if open succeeded or failed with -ENOMEDIUM.
1184 * The latter is necessary to prevent ghost
1185 * partitions on a removed medium.
1186 */
1187 if (bdev->bd_invalidated) {
1188 if (!ret)
1189 rescan_partitions(disk, bdev);
1190 else if (ret == -ENOMEDIUM)
1191 invalidate_partitions(disk, bdev);
1192 }
1193 if (ret)
1194 goto out_clear;
1195 } else {
1196 struct block_device *whole;
1197 whole = bdget_disk(disk, 0);
1198 ret = -ENOMEM;
1199 if (!whole)
1200 goto out_clear;
1201 BUG_ON(for_part);
1202 ret = __blkdev_get(whole, mode, 1);
1203 if (ret)
1204 goto out_clear;
1205 bdev->bd_contains = whole;
1206 bdev_inode_switch_bdi(bdev->bd_inode,
1207 whole->bd_inode->i_data.backing_dev_info);
1208 bdev->bd_part = disk_get_part(disk, partno);
1209 if (!(disk->flags & GENHD_FL_UP) ||
1210 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1211 ret = -ENXIO;
1212 goto out_clear;
1213 }
1214 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1215 }
1216 } else {
1217 if (bdev->bd_contains == bdev) {
1218 ret = 0;
1219 if (bdev->bd_disk->fops->open)
1220 ret = bdev->bd_disk->fops->open(bdev, mode);
1221 /* the same as first opener case, read comment there */
1222 if (bdev->bd_invalidated) {
1223 if (!ret)
1224 rescan_partitions(bdev->bd_disk, bdev);
1225 else if (ret == -ENOMEDIUM)
1226 invalidate_partitions(bdev->bd_disk, bdev);
1227 }
1228 if (ret)
1229 goto out_unlock_bdev;
1230 }
1231 /* only one opener holds refs to the module and disk */
1232 put_disk(disk);
1233 module_put(owner);
1234 }
1235 bdev->bd_openers++;
1236 if (for_part)
1237 bdev->bd_part_count++;
1238 mutex_unlock(&bdev->bd_mutex);
1239 disk_unblock_events(disk);
1240 return 0;
1241
1242 out_clear:
1243 disk_put_part(bdev->bd_part);
1244 bdev->bd_disk = NULL;
1245 bdev->bd_part = NULL;
1246 bdev->bd_queue = NULL;
1247 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1248 if (bdev != bdev->bd_contains)
1249 __blkdev_put(bdev->bd_contains, mode, 1);
1250 bdev->bd_contains = NULL;
1251 out_unlock_bdev:
1252 mutex_unlock(&bdev->bd_mutex);
1253 disk_unblock_events(disk);
1254 put_disk(disk);
1255 module_put(owner);
1256 out:
1257 bdput(bdev);
1258
1259 return ret;
1260 }
1261
1262 /**
1263 * blkdev_get - open a block device
1264 * @bdev: block_device to open
1265 * @mode: FMODE_* mask
1266 * @holder: exclusive holder identifier
1267 *
1268 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1269 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1270 * @holder is invalid. Exclusive opens may nest for the same @holder.
1271 *
1272 * On success, the reference count of @bdev is unchanged. On failure,
1273 * @bdev is put.
1274 *
1275 * CONTEXT:
1276 * Might sleep.
1277 *
1278 * RETURNS:
1279 * 0 on success, -errno on failure.
1280 */
1281 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1282 {
1283 struct block_device *whole = NULL;
1284 int res;
1285
1286 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1287
1288 if ((mode & FMODE_EXCL) && holder) {
1289 whole = bd_start_claiming(bdev, holder);
1290 if (IS_ERR(whole)) {
1291 bdput(bdev);
1292 return PTR_ERR(whole);
1293 }
1294 }
1295
1296 res = __blkdev_get(bdev, mode, 0);
1297
1298 if (whole) {
1299 struct gendisk *disk = whole->bd_disk;
1300
1301 /* finish claiming */
1302 mutex_lock(&bdev->bd_mutex);
1303 spin_lock(&bdev_lock);
1304
1305 if (!res) {
1306 BUG_ON(!bd_may_claim(bdev, whole, holder));
1307 /*
1308 * Note that for a whole device bd_holders
1309 * will be incremented twice, and bd_holder
1310 * will be set to bd_may_claim before being
1311 * set to holder
1312 */
1313 whole->bd_holders++;
1314 whole->bd_holder = bd_may_claim;
1315 bdev->bd_holders++;
1316 bdev->bd_holder = holder;
1317 }
1318
1319 /* tell others that we're done */
1320 BUG_ON(whole->bd_claiming != holder);
1321 whole->bd_claiming = NULL;
1322 wake_up_bit(&whole->bd_claiming, 0);
1323
1324 spin_unlock(&bdev_lock);
1325
1326 /*
1327 * Block event polling for write claims if requested. Any
1328 * write holder makes the write_holder state stick until
1329 * all are released. This is good enough and tracking
1330 * individual writeable reference is too fragile given the
1331 * way @mode is used in blkdev_get/put().
1332 */
1333 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1334 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1335 bdev->bd_write_holder = true;
1336 disk_block_events(disk);
1337 }
1338
1339 mutex_unlock(&bdev->bd_mutex);
1340 bdput(whole);
1341 }
1342
1343 return res;
1344 }
1345 EXPORT_SYMBOL(blkdev_get);
1346
1347 /**
1348 * blkdev_get_by_path - open a block device by name
1349 * @path: path to the block device to open
1350 * @mode: FMODE_* mask
1351 * @holder: exclusive holder identifier
1352 *
1353 * Open the blockdevice described by the device file at @path. @mode
1354 * and @holder are identical to blkdev_get().
1355 *
1356 * On success, the returned block_device has reference count of one.
1357 *
1358 * CONTEXT:
1359 * Might sleep.
1360 *
1361 * RETURNS:
1362 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1363 */
1364 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1365 void *holder)
1366 {
1367 struct block_device *bdev;
1368 int err;
1369
1370 bdev = lookup_bdev(path);
1371 if (IS_ERR(bdev))
1372 return bdev;
1373
1374 err = blkdev_get(bdev, mode, holder);
1375 if (err)
1376 return ERR_PTR(err);
1377
1378 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1379 blkdev_put(bdev, mode);
1380 return ERR_PTR(-EACCES);
1381 }
1382
1383 return bdev;
1384 }
1385 EXPORT_SYMBOL(blkdev_get_by_path);
1386
1387 /**
1388 * blkdev_get_by_dev - open a block device by device number
1389 * @dev: device number of block device to open
1390 * @mode: FMODE_* mask
1391 * @holder: exclusive holder identifier
1392 *
1393 * Open the blockdevice described by device number @dev. @mode and
1394 * @holder are identical to blkdev_get().
1395 *
1396 * Use it ONLY if you really do not have anything better - i.e. when
1397 * you are behind a truly sucky interface and all you are given is a
1398 * device number. _Never_ to be used for internal purposes. If you
1399 * ever need it - reconsider your API.
1400 *
1401 * On success, the returned block_device has reference count of one.
1402 *
1403 * CONTEXT:
1404 * Might sleep.
1405 *
1406 * RETURNS:
1407 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1408 */
1409 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1410 {
1411 struct block_device *bdev;
1412 int err;
1413
1414 bdev = bdget(dev);
1415 if (!bdev)
1416 return ERR_PTR(-ENOMEM);
1417
1418 err = blkdev_get(bdev, mode, holder);
1419 if (err)
1420 return ERR_PTR(err);
1421
1422 return bdev;
1423 }
1424 EXPORT_SYMBOL(blkdev_get_by_dev);
1425
1426 static int blkdev_open(struct inode * inode, struct file * filp)
1427 {
1428 struct block_device *bdev;
1429
1430 /*
1431 * Preserve backwards compatibility and allow large file access
1432 * even if userspace doesn't ask for it explicitly. Some mkfs
1433 * binary needs it. We might want to drop this workaround
1434 * during an unstable branch.
1435 */
1436 filp->f_flags |= O_LARGEFILE;
1437
1438 if (filp->f_flags & O_NDELAY)
1439 filp->f_mode |= FMODE_NDELAY;
1440 if (filp->f_flags & O_EXCL)
1441 filp->f_mode |= FMODE_EXCL;
1442 if ((filp->f_flags & O_ACCMODE) == 3)
1443 filp->f_mode |= FMODE_WRITE_IOCTL;
1444
1445 bdev = bd_acquire(inode);
1446 if (bdev == NULL)
1447 return -ENOMEM;
1448
1449 filp->f_mapping = bdev->bd_inode->i_mapping;
1450
1451 return blkdev_get(bdev, filp->f_mode, filp);
1452 }
1453
1454 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1455 {
1456 struct gendisk *disk = bdev->bd_disk;
1457 struct block_device *victim = NULL;
1458
1459 mutex_lock_nested(&bdev->bd_mutex, for_part);
1460 if (for_part)
1461 bdev->bd_part_count--;
1462
1463 if (!--bdev->bd_openers) {
1464 WARN_ON_ONCE(bdev->bd_holders);
1465 sync_blockdev(bdev);
1466 kill_bdev(bdev);
1467 /* ->release can cause the old bdi to disappear,
1468 * so must switch it out first
1469 */
1470 bdev_inode_switch_bdi(bdev->bd_inode,
1471 &default_backing_dev_info);
1472 }
1473 if (bdev->bd_contains == bdev) {
1474 if (disk->fops->release)
1475 disk->fops->release(disk, mode);
1476 }
1477 if (!bdev->bd_openers) {
1478 struct module *owner = disk->fops->owner;
1479
1480 disk_put_part(bdev->bd_part);
1481 bdev->bd_part = NULL;
1482 bdev->bd_disk = NULL;
1483 if (bdev != bdev->bd_contains)
1484 victim = bdev->bd_contains;
1485 bdev->bd_contains = NULL;
1486
1487 put_disk(disk);
1488 module_put(owner);
1489 }
1490 mutex_unlock(&bdev->bd_mutex);
1491 bdput(bdev);
1492 if (victim)
1493 __blkdev_put(victim, mode, 1);
1494 }
1495
1496 void blkdev_put(struct block_device *bdev, fmode_t mode)
1497 {
1498 mutex_lock(&bdev->bd_mutex);
1499
1500 if (mode & FMODE_EXCL) {
1501 bool bdev_free;
1502
1503 /*
1504 * Release a claim on the device. The holder fields
1505 * are protected with bdev_lock. bd_mutex is to
1506 * synchronize disk_holder unlinking.
1507 */
1508 spin_lock(&bdev_lock);
1509
1510 WARN_ON_ONCE(--bdev->bd_holders < 0);
1511 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1512
1513 /* bd_contains might point to self, check in a separate step */
1514 if ((bdev_free = !bdev->bd_holders))
1515 bdev->bd_holder = NULL;
1516 if (!bdev->bd_contains->bd_holders)
1517 bdev->bd_contains->bd_holder = NULL;
1518
1519 spin_unlock(&bdev_lock);
1520
1521 /*
1522 * If this was the last claim, remove holder link and
1523 * unblock evpoll if it was a write holder.
1524 */
1525 if (bdev_free && bdev->bd_write_holder) {
1526 disk_unblock_events(bdev->bd_disk);
1527 bdev->bd_write_holder = false;
1528 }
1529 }
1530
1531 /*
1532 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1533 * event. This is to ensure detection of media removal commanded
1534 * from userland - e.g. eject(1).
1535 */
1536 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1537
1538 mutex_unlock(&bdev->bd_mutex);
1539
1540 __blkdev_put(bdev, mode, 0);
1541 }
1542 EXPORT_SYMBOL(blkdev_put);
1543
1544 static int blkdev_close(struct inode * inode, struct file * filp)
1545 {
1546 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1547 blkdev_put(bdev, filp->f_mode);
1548 return 0;
1549 }
1550
1551 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1552 {
1553 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1554 fmode_t mode = file->f_mode;
1555
1556 /*
1557 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1558 * to updated it before every ioctl.
1559 */
1560 if (file->f_flags & O_NDELAY)
1561 mode |= FMODE_NDELAY;
1562 else
1563 mode &= ~FMODE_NDELAY;
1564
1565 return blkdev_ioctl(bdev, mode, cmd, arg);
1566 }
1567
1568 /*
1569 * Write data to the block device. Only intended for the block device itself
1570 * and the raw driver which basically is a fake block device.
1571 *
1572 * Does not take i_mutex for the write and thus is not for general purpose
1573 * use.
1574 */
1575 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1576 {
1577 struct file *file = iocb->ki_filp;
1578 struct blk_plug plug;
1579 ssize_t ret;
1580
1581 blk_start_plug(&plug);
1582 ret = __generic_file_write_iter(iocb, from);
1583 if (ret > 0) {
1584 ssize_t err;
1585 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1586 if (err < 0)
1587 ret = err;
1588 }
1589 blk_finish_plug(&plug);
1590 return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1593
1594 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1595 {
1596 struct file *file = iocb->ki_filp;
1597 struct inode *bd_inode = file->f_mapping->host;
1598 loff_t size = i_size_read(bd_inode);
1599 loff_t pos = iocb->ki_pos;
1600
1601 if (pos >= size)
1602 return 0;
1603
1604 size -= pos;
1605 iov_iter_truncate(to, size);
1606 return generic_file_read_iter(iocb, to);
1607 }
1608 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1609
1610 /*
1611 * Try to release a page associated with block device when the system
1612 * is under memory pressure.
1613 */
1614 static int blkdev_releasepage(struct page *page, gfp_t wait)
1615 {
1616 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1617
1618 if (super && super->s_op->bdev_try_to_free_page)
1619 return super->s_op->bdev_try_to_free_page(super, page, wait);
1620
1621 return try_to_free_buffers(page);
1622 }
1623
1624 static const struct address_space_operations def_blk_aops = {
1625 .readpage = blkdev_readpage,
1626 .readpages = blkdev_readpages,
1627 .writepage = blkdev_writepage,
1628 .write_begin = blkdev_write_begin,
1629 .write_end = blkdev_write_end,
1630 .writepages = generic_writepages,
1631 .releasepage = blkdev_releasepage,
1632 .direct_IO = blkdev_direct_IO,
1633 .is_dirty_writeback = buffer_check_dirty_writeback,
1634 };
1635
1636 const struct file_operations def_blk_fops = {
1637 .open = blkdev_open,
1638 .release = blkdev_close,
1639 .llseek = block_llseek,
1640 .read = new_sync_read,
1641 .write = new_sync_write,
1642 .read_iter = blkdev_read_iter,
1643 .write_iter = blkdev_write_iter,
1644 .mmap = generic_file_mmap,
1645 .fsync = blkdev_fsync,
1646 .unlocked_ioctl = block_ioctl,
1647 #ifdef CONFIG_COMPAT
1648 .compat_ioctl = compat_blkdev_ioctl,
1649 #endif
1650 .splice_read = generic_file_splice_read,
1651 .splice_write = iter_file_splice_write,
1652 };
1653
1654 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1655 {
1656 int res;
1657 mm_segment_t old_fs = get_fs();
1658 set_fs(KERNEL_DS);
1659 res = blkdev_ioctl(bdev, 0, cmd, arg);
1660 set_fs(old_fs);
1661 return res;
1662 }
1663
1664 EXPORT_SYMBOL(ioctl_by_bdev);
1665
1666 /**
1667 * lookup_bdev - lookup a struct block_device by name
1668 * @pathname: special file representing the block device
1669 *
1670 * Get a reference to the blockdevice at @pathname in the current
1671 * namespace if possible and return it. Return ERR_PTR(error)
1672 * otherwise.
1673 */
1674 struct block_device *lookup_bdev(const char *pathname)
1675 {
1676 struct block_device *bdev;
1677 struct inode *inode;
1678 struct path path;
1679 int error;
1680
1681 if (!pathname || !*pathname)
1682 return ERR_PTR(-EINVAL);
1683
1684 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1685 if (error)
1686 return ERR_PTR(error);
1687
1688 inode = path.dentry->d_inode;
1689 error = -ENOTBLK;
1690 if (!S_ISBLK(inode->i_mode))
1691 goto fail;
1692 error = -EACCES;
1693 if (path.mnt->mnt_flags & MNT_NODEV)
1694 goto fail;
1695 error = -ENOMEM;
1696 bdev = bd_acquire(inode);
1697 if (!bdev)
1698 goto fail;
1699 out:
1700 path_put(&path);
1701 return bdev;
1702 fail:
1703 bdev = ERR_PTR(error);
1704 goto out;
1705 }
1706 EXPORT_SYMBOL(lookup_bdev);
1707
1708 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1709 {
1710 struct super_block *sb = get_super(bdev);
1711 int res = 0;
1712
1713 if (sb) {
1714 /*
1715 * no need to lock the super, get_super holds the
1716 * read mutex so the filesystem cannot go away
1717 * under us (->put_super runs with the write lock
1718 * hold).
1719 */
1720 shrink_dcache_sb(sb);
1721 res = invalidate_inodes(sb, kill_dirty);
1722 drop_super(sb);
1723 }
1724 invalidate_bdev(bdev);
1725 return res;
1726 }
1727 EXPORT_SYMBOL(__invalidate_device);
1728
1729 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1730 {
1731 struct inode *inode, *old_inode = NULL;
1732
1733 spin_lock(&inode_sb_list_lock);
1734 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1735 struct address_space *mapping = inode->i_mapping;
1736
1737 spin_lock(&inode->i_lock);
1738 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1739 mapping->nrpages == 0) {
1740 spin_unlock(&inode->i_lock);
1741 continue;
1742 }
1743 __iget(inode);
1744 spin_unlock(&inode->i_lock);
1745 spin_unlock(&inode_sb_list_lock);
1746 /*
1747 * We hold a reference to 'inode' so it couldn't have been
1748 * removed from s_inodes list while we dropped the
1749 * inode_sb_list_lock. We cannot iput the inode now as we can
1750 * be holding the last reference and we cannot iput it under
1751 * inode_sb_list_lock. So we keep the reference and iput it
1752 * later.
1753 */
1754 iput(old_inode);
1755 old_inode = inode;
1756
1757 func(I_BDEV(inode), arg);
1758
1759 spin_lock(&inode_sb_list_lock);
1760 }
1761 spin_unlock(&inode_sb_list_lock);
1762 iput(old_inode);
1763 }