]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/block_dev.c
Merge tag 'hwparam-20170420' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowell...
[mirror_ubuntu-artful-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
58 {
59 struct va_format vaf;
60 va_list args;
61
62 va_start(args, fmt);
63 vaf.fmt = fmt;
64 vaf.va = &args;
65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
66 va_end(args);
67 }
68
69 static void bdev_write_inode(struct block_device *bdev)
70 {
71 struct inode *inode = bdev->bd_inode;
72 int ret;
73
74 spin_lock(&inode->i_lock);
75 while (inode->i_state & I_DIRTY) {
76 spin_unlock(&inode->i_lock);
77 ret = write_inode_now(inode, true);
78 if (ret) {
79 char name[BDEVNAME_SIZE];
80 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
81 "for block device %s (err=%d).\n",
82 bdevname(bdev, name), ret);
83 }
84 spin_lock(&inode->i_lock);
85 }
86 spin_unlock(&inode->i_lock);
87 }
88
89 /* Kill _all_ buffers and pagecache , dirty or not.. */
90 void kill_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
95 return;
96
97 invalidate_bh_lrus();
98 truncate_inode_pages(mapping, 0);
99 }
100 EXPORT_SYMBOL(kill_bdev);
101
102 /* Invalidate clean unused buffers and pagecache. */
103 void invalidate_bdev(struct block_device *bdev)
104 {
105 struct address_space *mapping = bdev->bd_inode->i_mapping;
106
107 if (mapping->nrpages) {
108 invalidate_bh_lrus();
109 lru_add_drain_all(); /* make sure all lru add caches are flushed */
110 invalidate_mapping_pages(mapping, 0, -1);
111 }
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
180 {
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
182
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
185 op |= REQ_FUA;
186 return op;
187 }
188
189 #define DIO_INLINE_BIO_VECS 4
190
191 static void blkdev_bio_end_io_simple(struct bio *bio)
192 {
193 struct task_struct *waiter = bio->bi_private;
194
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
197 }
198
199 static ssize_t
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
201 int nr_pages)
202 {
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
208 struct bio bio;
209 ssize_t ret;
210 blk_qc_t qc;
211 int i;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
221 if (!vecs)
222 return -ENOMEM;
223 }
224
225 bio_init(&bio, vecs, nr_pages);
226 bio.bi_bdev = bdev;
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
230
231 ret = bio_iov_iter_get_pages(&bio, iter);
232 if (unlikely(ret))
233 return ret;
234 ret = bio.bi_iter.bi_size;
235
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
239 should_dirty = true;
240 } else {
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
243 }
244
245 qc = submit_bio(&bio);
246 for (;;) {
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
249 break;
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
252 io_schedule();
253 }
254 __set_current_state(TASK_RUNNING);
255
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
260 }
261
262 if (vecs != inline_vecs)
263 kfree(vecs);
264
265 if (unlikely(bio.bi_error))
266 return bio.bi_error;
267 return ret;
268 }
269
270 struct blkdev_dio {
271 union {
272 struct kiocb *iocb;
273 struct task_struct *waiter;
274 };
275 size_t size;
276 atomic_t ref;
277 bool multi_bio : 1;
278 bool should_dirty : 1;
279 bool is_sync : 1;
280 struct bio bio;
281 };
282
283 static struct bio_set *blkdev_dio_pool __read_mostly;
284
285 static void blkdev_bio_end_io(struct bio *bio)
286 {
287 struct blkdev_dio *dio = bio->bi_private;
288 bool should_dirty = dio->should_dirty;
289
290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
291 if (bio->bi_error && !dio->bio.bi_error)
292 dio->bio.bi_error = bio->bi_error;
293 } else {
294 if (!dio->is_sync) {
295 struct kiocb *iocb = dio->iocb;
296 ssize_t ret = dio->bio.bi_error;
297
298 if (likely(!ret)) {
299 ret = dio->size;
300 iocb->ki_pos += ret;
301 }
302
303 dio->iocb->ki_complete(iocb, ret, 0);
304 bio_put(&dio->bio);
305 } else {
306 struct task_struct *waiter = dio->waiter;
307
308 WRITE_ONCE(dio->waiter, NULL);
309 wake_up_process(waiter);
310 }
311 }
312
313 if (should_dirty) {
314 bio_check_pages_dirty(bio);
315 } else {
316 struct bio_vec *bvec;
317 int i;
318
319 bio_for_each_segment_all(bvec, bio, i)
320 put_page(bvec->bv_page);
321 bio_put(bio);
322 }
323 }
324
325 static ssize_t
326 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
327 {
328 struct file *file = iocb->ki_filp;
329 struct inode *inode = bdev_file_inode(file);
330 struct block_device *bdev = I_BDEV(inode);
331 struct blk_plug plug;
332 struct blkdev_dio *dio;
333 struct bio *bio;
334 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
335 loff_t pos = iocb->ki_pos;
336 blk_qc_t qc = BLK_QC_T_NONE;
337 int ret;
338
339 if ((pos | iov_iter_alignment(iter)) &
340 (bdev_logical_block_size(bdev) - 1))
341 return -EINVAL;
342
343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
344 bio_get(bio); /* extra ref for the completion handler */
345
346 dio = container_of(bio, struct blkdev_dio, bio);
347 dio->is_sync = is_sync = is_sync_kiocb(iocb);
348 if (dio->is_sync)
349 dio->waiter = current;
350 else
351 dio->iocb = iocb;
352
353 dio->size = 0;
354 dio->multi_bio = false;
355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
356
357 blk_start_plug(&plug);
358 for (;;) {
359 bio->bi_bdev = bdev;
360 bio->bi_iter.bi_sector = pos >> 9;
361 bio->bi_private = dio;
362 bio->bi_end_io = blkdev_bio_end_io;
363
364 ret = bio_iov_iter_get_pages(bio, iter);
365 if (unlikely(ret)) {
366 bio->bi_error = ret;
367 bio_endio(bio);
368 break;
369 }
370
371 if (is_read) {
372 bio->bi_opf = REQ_OP_READ;
373 if (dio->should_dirty)
374 bio_set_pages_dirty(bio);
375 } else {
376 bio->bi_opf = dio_bio_write_op(iocb);
377 task_io_account_write(bio->bi_iter.bi_size);
378 }
379
380 dio->size += bio->bi_iter.bi_size;
381 pos += bio->bi_iter.bi_size;
382
383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
384 if (!nr_pages) {
385 qc = submit_bio(bio);
386 break;
387 }
388
389 if (!dio->multi_bio) {
390 dio->multi_bio = true;
391 atomic_set(&dio->ref, 2);
392 } else {
393 atomic_inc(&dio->ref);
394 }
395
396 submit_bio(bio);
397 bio = bio_alloc(GFP_KERNEL, nr_pages);
398 }
399 blk_finish_plug(&plug);
400
401 if (!is_sync)
402 return -EIOCBQUEUED;
403
404 for (;;) {
405 set_current_state(TASK_UNINTERRUPTIBLE);
406 if (!READ_ONCE(dio->waiter))
407 break;
408
409 if (!(iocb->ki_flags & IOCB_HIPRI) ||
410 !blk_mq_poll(bdev_get_queue(bdev), qc))
411 io_schedule();
412 }
413 __set_current_state(TASK_RUNNING);
414
415 ret = dio->bio.bi_error;
416 if (likely(!ret))
417 ret = dio->size;
418
419 bio_put(&dio->bio);
420 return ret;
421 }
422
423 static ssize_t
424 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
425 {
426 int nr_pages;
427
428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
429 if (!nr_pages)
430 return 0;
431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
433
434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
435 }
436
437 static __init int blkdev_init(void)
438 {
439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
440 if (!blkdev_dio_pool)
441 return -ENOMEM;
442 return 0;
443 }
444 module_init(blkdev_init);
445
446 int __sync_blockdev(struct block_device *bdev, int wait)
447 {
448 if (!bdev)
449 return 0;
450 if (!wait)
451 return filemap_flush(bdev->bd_inode->i_mapping);
452 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
453 }
454
455 /*
456 * Write out and wait upon all the dirty data associated with a block
457 * device via its mapping. Does not take the superblock lock.
458 */
459 int sync_blockdev(struct block_device *bdev)
460 {
461 return __sync_blockdev(bdev, 1);
462 }
463 EXPORT_SYMBOL(sync_blockdev);
464
465 /*
466 * Write out and wait upon all dirty data associated with this
467 * device. Filesystem data as well as the underlying block
468 * device. Takes the superblock lock.
469 */
470 int fsync_bdev(struct block_device *bdev)
471 {
472 struct super_block *sb = get_super(bdev);
473 if (sb) {
474 int res = sync_filesystem(sb);
475 drop_super(sb);
476 return res;
477 }
478 return sync_blockdev(bdev);
479 }
480 EXPORT_SYMBOL(fsync_bdev);
481
482 /**
483 * freeze_bdev -- lock a filesystem and force it into a consistent state
484 * @bdev: blockdevice to lock
485 *
486 * If a superblock is found on this device, we take the s_umount semaphore
487 * on it to make sure nobody unmounts until the snapshot creation is done.
488 * The reference counter (bd_fsfreeze_count) guarantees that only the last
489 * unfreeze process can unfreeze the frozen filesystem actually when multiple
490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
492 * actually.
493 */
494 struct super_block *freeze_bdev(struct block_device *bdev)
495 {
496 struct super_block *sb;
497 int error = 0;
498
499 mutex_lock(&bdev->bd_fsfreeze_mutex);
500 if (++bdev->bd_fsfreeze_count > 1) {
501 /*
502 * We don't even need to grab a reference - the first call
503 * to freeze_bdev grab an active reference and only the last
504 * thaw_bdev drops it.
505 */
506 sb = get_super(bdev);
507 if (sb)
508 drop_super(sb);
509 mutex_unlock(&bdev->bd_fsfreeze_mutex);
510 return sb;
511 }
512
513 sb = get_active_super(bdev);
514 if (!sb)
515 goto out;
516 if (sb->s_op->freeze_super)
517 error = sb->s_op->freeze_super(sb);
518 else
519 error = freeze_super(sb);
520 if (error) {
521 deactivate_super(sb);
522 bdev->bd_fsfreeze_count--;
523 mutex_unlock(&bdev->bd_fsfreeze_mutex);
524 return ERR_PTR(error);
525 }
526 deactivate_super(sb);
527 out:
528 sync_blockdev(bdev);
529 mutex_unlock(&bdev->bd_fsfreeze_mutex);
530 return sb; /* thaw_bdev releases s->s_umount */
531 }
532 EXPORT_SYMBOL(freeze_bdev);
533
534 /**
535 * thaw_bdev -- unlock filesystem
536 * @bdev: blockdevice to unlock
537 * @sb: associated superblock
538 *
539 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
540 */
541 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
542 {
543 int error = -EINVAL;
544
545 mutex_lock(&bdev->bd_fsfreeze_mutex);
546 if (!bdev->bd_fsfreeze_count)
547 goto out;
548
549 error = 0;
550 if (--bdev->bd_fsfreeze_count > 0)
551 goto out;
552
553 if (!sb)
554 goto out;
555
556 if (sb->s_op->thaw_super)
557 error = sb->s_op->thaw_super(sb);
558 else
559 error = thaw_super(sb);
560 if (error)
561 bdev->bd_fsfreeze_count++;
562 out:
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return error;
565 }
566 EXPORT_SYMBOL(thaw_bdev);
567
568 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
569 {
570 return block_write_full_page(page, blkdev_get_block, wbc);
571 }
572
573 static int blkdev_readpage(struct file * file, struct page * page)
574 {
575 return block_read_full_page(page, blkdev_get_block);
576 }
577
578 static int blkdev_readpages(struct file *file, struct address_space *mapping,
579 struct list_head *pages, unsigned nr_pages)
580 {
581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
582 }
583
584 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
585 loff_t pos, unsigned len, unsigned flags,
586 struct page **pagep, void **fsdata)
587 {
588 return block_write_begin(mapping, pos, len, flags, pagep,
589 blkdev_get_block);
590 }
591
592 static int blkdev_write_end(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned copied,
594 struct page *page, void *fsdata)
595 {
596 int ret;
597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
598
599 unlock_page(page);
600 put_page(page);
601
602 return ret;
603 }
604
605 /*
606 * private llseek:
607 * for a block special file file_inode(file)->i_size is zero
608 * so we compute the size by hand (just as in block_read/write above)
609 */
610 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
611 {
612 struct inode *bd_inode = bdev_file_inode(file);
613 loff_t retval;
614
615 inode_lock(bd_inode);
616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
617 inode_unlock(bd_inode);
618 return retval;
619 }
620
621 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
622 {
623 struct inode *bd_inode = bdev_file_inode(filp);
624 struct block_device *bdev = I_BDEV(bd_inode);
625 int error;
626
627 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
628 if (error)
629 return error;
630
631 /*
632 * There is no need to serialise calls to blkdev_issue_flush with
633 * i_mutex and doing so causes performance issues with concurrent
634 * O_SYNC writers to a block device.
635 */
636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
637 if (error == -EOPNOTSUPP)
638 error = 0;
639
640 return error;
641 }
642 EXPORT_SYMBOL(blkdev_fsync);
643
644 /**
645 * bdev_read_page() - Start reading a page from a block device
646 * @bdev: The device to read the page from
647 * @sector: The offset on the device to read the page to (need not be aligned)
648 * @page: The page to read
649 *
650 * On entry, the page should be locked. It will be unlocked when the page
651 * has been read. If the block driver implements rw_page synchronously,
652 * that will be true on exit from this function, but it need not be.
653 *
654 * Errors returned by this function are usually "soft", eg out of memory, or
655 * queue full; callers should try a different route to read this page rather
656 * than propagate an error back up the stack.
657 *
658 * Return: negative errno if an error occurs, 0 if submission was successful.
659 */
660 int bdev_read_page(struct block_device *bdev, sector_t sector,
661 struct page *page)
662 {
663 const struct block_device_operations *ops = bdev->bd_disk->fops;
664 int result = -EOPNOTSUPP;
665
666 if (!ops->rw_page || bdev_get_integrity(bdev))
667 return result;
668
669 result = blk_queue_enter(bdev->bd_queue, false);
670 if (result)
671 return result;
672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
673 blk_queue_exit(bdev->bd_queue);
674 return result;
675 }
676 EXPORT_SYMBOL_GPL(bdev_read_page);
677
678 /**
679 * bdev_write_page() - Start writing a page to a block device
680 * @bdev: The device to write the page to
681 * @sector: The offset on the device to write the page to (need not be aligned)
682 * @page: The page to write
683 * @wbc: The writeback_control for the write
684 *
685 * On entry, the page should be locked and not currently under writeback.
686 * On exit, if the write started successfully, the page will be unlocked and
687 * under writeback. If the write failed already (eg the driver failed to
688 * queue the page to the device), the page will still be locked. If the
689 * caller is a ->writepage implementation, it will need to unlock the page.
690 *
691 * Errors returned by this function are usually "soft", eg out of memory, or
692 * queue full; callers should try a different route to write this page rather
693 * than propagate an error back up the stack.
694 *
695 * Return: negative errno if an error occurs, 0 if submission was successful.
696 */
697 int bdev_write_page(struct block_device *bdev, sector_t sector,
698 struct page *page, struct writeback_control *wbc)
699 {
700 int result;
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702
703 if (!ops->rw_page || bdev_get_integrity(bdev))
704 return -EOPNOTSUPP;
705 result = blk_queue_enter(bdev->bd_queue, false);
706 if (result)
707 return result;
708
709 set_page_writeback(page);
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
711 if (result)
712 end_page_writeback(page);
713 else
714 unlock_page(page);
715 blk_queue_exit(bdev->bd_queue);
716 return result;
717 }
718 EXPORT_SYMBOL_GPL(bdev_write_page);
719
720 int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
721 pgoff_t *pgoff)
722 {
723 phys_addr_t phys_off = (get_start_sect(bdev) + sector) * 512;
724
725 if (pgoff)
726 *pgoff = PHYS_PFN(phys_off);
727 if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
728 return -EINVAL;
729 return 0;
730 }
731 EXPORT_SYMBOL(bdev_dax_pgoff);
732
733 /**
734 * bdev_dax_supported() - Check if the device supports dax for filesystem
735 * @sb: The superblock of the device
736 * @blocksize: The block size of the device
737 *
738 * This is a library function for filesystems to check if the block device
739 * can be mounted with dax option.
740 *
741 * Return: negative errno if unsupported, 0 if supported.
742 */
743 int bdev_dax_supported(struct super_block *sb, int blocksize)
744 {
745 struct block_device *bdev = sb->s_bdev;
746 struct dax_device *dax_dev;
747 pgoff_t pgoff;
748 int err, id;
749 void *kaddr;
750 pfn_t pfn;
751 long len;
752
753 if (blocksize != PAGE_SIZE) {
754 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
755 return -EINVAL;
756 }
757
758 err = bdev_dax_pgoff(bdev, 0, PAGE_SIZE, &pgoff);
759 if (err) {
760 vfs_msg(sb, KERN_ERR, "error: unaligned partition for dax");
761 return err;
762 }
763
764 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
765 if (!dax_dev) {
766 vfs_msg(sb, KERN_ERR, "error: device does not support dax");
767 return -EOPNOTSUPP;
768 }
769
770 id = dax_read_lock();
771 len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
772 dax_read_unlock(id);
773
774 put_dax(dax_dev);
775
776 if (len < 1) {
777 vfs_msg(sb, KERN_ERR,
778 "error: dax access failed (%ld)", len);
779 return len < 0 ? len : -EIO;
780 }
781
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(bdev_dax_supported);
785
786 /*
787 * pseudo-fs
788 */
789
790 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
791 static struct kmem_cache * bdev_cachep __read_mostly;
792
793 static struct inode *bdev_alloc_inode(struct super_block *sb)
794 {
795 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
796 if (!ei)
797 return NULL;
798 return &ei->vfs_inode;
799 }
800
801 static void bdev_i_callback(struct rcu_head *head)
802 {
803 struct inode *inode = container_of(head, struct inode, i_rcu);
804 struct bdev_inode *bdi = BDEV_I(inode);
805
806 kmem_cache_free(bdev_cachep, bdi);
807 }
808
809 static void bdev_destroy_inode(struct inode *inode)
810 {
811 call_rcu(&inode->i_rcu, bdev_i_callback);
812 }
813
814 static void init_once(void *foo)
815 {
816 struct bdev_inode *ei = (struct bdev_inode *) foo;
817 struct block_device *bdev = &ei->bdev;
818
819 memset(bdev, 0, sizeof(*bdev));
820 mutex_init(&bdev->bd_mutex);
821 INIT_LIST_HEAD(&bdev->bd_list);
822 #ifdef CONFIG_SYSFS
823 INIT_LIST_HEAD(&bdev->bd_holder_disks);
824 #endif
825 bdev->bd_bdi = &noop_backing_dev_info;
826 inode_init_once(&ei->vfs_inode);
827 /* Initialize mutex for freeze. */
828 mutex_init(&bdev->bd_fsfreeze_mutex);
829 }
830
831 static void bdev_evict_inode(struct inode *inode)
832 {
833 struct block_device *bdev = &BDEV_I(inode)->bdev;
834 truncate_inode_pages_final(&inode->i_data);
835 invalidate_inode_buffers(inode); /* is it needed here? */
836 clear_inode(inode);
837 spin_lock(&bdev_lock);
838 list_del_init(&bdev->bd_list);
839 spin_unlock(&bdev_lock);
840 /* Detach inode from wb early as bdi_put() may free bdi->wb */
841 inode_detach_wb(inode);
842 if (bdev->bd_bdi != &noop_backing_dev_info) {
843 bdi_put(bdev->bd_bdi);
844 bdev->bd_bdi = &noop_backing_dev_info;
845 }
846 }
847
848 static const struct super_operations bdev_sops = {
849 .statfs = simple_statfs,
850 .alloc_inode = bdev_alloc_inode,
851 .destroy_inode = bdev_destroy_inode,
852 .drop_inode = generic_delete_inode,
853 .evict_inode = bdev_evict_inode,
854 };
855
856 static struct dentry *bd_mount(struct file_system_type *fs_type,
857 int flags, const char *dev_name, void *data)
858 {
859 struct dentry *dent;
860 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
861 if (!IS_ERR(dent))
862 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
863 return dent;
864 }
865
866 static struct file_system_type bd_type = {
867 .name = "bdev",
868 .mount = bd_mount,
869 .kill_sb = kill_anon_super,
870 };
871
872 struct super_block *blockdev_superblock __read_mostly;
873 EXPORT_SYMBOL_GPL(blockdev_superblock);
874
875 void __init bdev_cache_init(void)
876 {
877 int err;
878 static struct vfsmount *bd_mnt;
879
880 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
881 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
882 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
883 init_once);
884 err = register_filesystem(&bd_type);
885 if (err)
886 panic("Cannot register bdev pseudo-fs");
887 bd_mnt = kern_mount(&bd_type);
888 if (IS_ERR(bd_mnt))
889 panic("Cannot create bdev pseudo-fs");
890 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
891 }
892
893 /*
894 * Most likely _very_ bad one - but then it's hardly critical for small
895 * /dev and can be fixed when somebody will need really large one.
896 * Keep in mind that it will be fed through icache hash function too.
897 */
898 static inline unsigned long hash(dev_t dev)
899 {
900 return MAJOR(dev)+MINOR(dev);
901 }
902
903 static int bdev_test(struct inode *inode, void *data)
904 {
905 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
906 }
907
908 static int bdev_set(struct inode *inode, void *data)
909 {
910 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
911 return 0;
912 }
913
914 static LIST_HEAD(all_bdevs);
915
916 /*
917 * If there is a bdev inode for this device, unhash it so that it gets evicted
918 * as soon as last inode reference is dropped.
919 */
920 void bdev_unhash_inode(dev_t dev)
921 {
922 struct inode *inode;
923
924 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
925 if (inode) {
926 remove_inode_hash(inode);
927 iput(inode);
928 }
929 }
930
931 struct block_device *bdget(dev_t dev)
932 {
933 struct block_device *bdev;
934 struct inode *inode;
935
936 inode = iget5_locked(blockdev_superblock, hash(dev),
937 bdev_test, bdev_set, &dev);
938
939 if (!inode)
940 return NULL;
941
942 bdev = &BDEV_I(inode)->bdev;
943
944 if (inode->i_state & I_NEW) {
945 bdev->bd_contains = NULL;
946 bdev->bd_super = NULL;
947 bdev->bd_inode = inode;
948 bdev->bd_block_size = i_blocksize(inode);
949 bdev->bd_part_count = 0;
950 bdev->bd_invalidated = 0;
951 inode->i_mode = S_IFBLK;
952 inode->i_rdev = dev;
953 inode->i_bdev = bdev;
954 inode->i_data.a_ops = &def_blk_aops;
955 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
956 spin_lock(&bdev_lock);
957 list_add(&bdev->bd_list, &all_bdevs);
958 spin_unlock(&bdev_lock);
959 unlock_new_inode(inode);
960 }
961 return bdev;
962 }
963
964 EXPORT_SYMBOL(bdget);
965
966 /**
967 * bdgrab -- Grab a reference to an already referenced block device
968 * @bdev: Block device to grab a reference to.
969 */
970 struct block_device *bdgrab(struct block_device *bdev)
971 {
972 ihold(bdev->bd_inode);
973 return bdev;
974 }
975 EXPORT_SYMBOL(bdgrab);
976
977 long nr_blockdev_pages(void)
978 {
979 struct block_device *bdev;
980 long ret = 0;
981 spin_lock(&bdev_lock);
982 list_for_each_entry(bdev, &all_bdevs, bd_list) {
983 ret += bdev->bd_inode->i_mapping->nrpages;
984 }
985 spin_unlock(&bdev_lock);
986 return ret;
987 }
988
989 void bdput(struct block_device *bdev)
990 {
991 iput(bdev->bd_inode);
992 }
993
994 EXPORT_SYMBOL(bdput);
995
996 static struct block_device *bd_acquire(struct inode *inode)
997 {
998 struct block_device *bdev;
999
1000 spin_lock(&bdev_lock);
1001 bdev = inode->i_bdev;
1002 if (bdev && !inode_unhashed(bdev->bd_inode)) {
1003 bdgrab(bdev);
1004 spin_unlock(&bdev_lock);
1005 return bdev;
1006 }
1007 spin_unlock(&bdev_lock);
1008
1009 /*
1010 * i_bdev references block device inode that was already shut down
1011 * (corresponding device got removed). Remove the reference and look
1012 * up block device inode again just in case new device got
1013 * reestablished under the same device number.
1014 */
1015 if (bdev)
1016 bd_forget(inode);
1017
1018 bdev = bdget(inode->i_rdev);
1019 if (bdev) {
1020 spin_lock(&bdev_lock);
1021 if (!inode->i_bdev) {
1022 /*
1023 * We take an additional reference to bd_inode,
1024 * and it's released in clear_inode() of inode.
1025 * So, we can access it via ->i_mapping always
1026 * without igrab().
1027 */
1028 bdgrab(bdev);
1029 inode->i_bdev = bdev;
1030 inode->i_mapping = bdev->bd_inode->i_mapping;
1031 }
1032 spin_unlock(&bdev_lock);
1033 }
1034 return bdev;
1035 }
1036
1037 /* Call when you free inode */
1038
1039 void bd_forget(struct inode *inode)
1040 {
1041 struct block_device *bdev = NULL;
1042
1043 spin_lock(&bdev_lock);
1044 if (!sb_is_blkdev_sb(inode->i_sb))
1045 bdev = inode->i_bdev;
1046 inode->i_bdev = NULL;
1047 inode->i_mapping = &inode->i_data;
1048 spin_unlock(&bdev_lock);
1049
1050 if (bdev)
1051 bdput(bdev);
1052 }
1053
1054 /**
1055 * bd_may_claim - test whether a block device can be claimed
1056 * @bdev: block device of interest
1057 * @whole: whole block device containing @bdev, may equal @bdev
1058 * @holder: holder trying to claim @bdev
1059 *
1060 * Test whether @bdev can be claimed by @holder.
1061 *
1062 * CONTEXT:
1063 * spin_lock(&bdev_lock).
1064 *
1065 * RETURNS:
1066 * %true if @bdev can be claimed, %false otherwise.
1067 */
1068 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1069 void *holder)
1070 {
1071 if (bdev->bd_holder == holder)
1072 return true; /* already a holder */
1073 else if (bdev->bd_holder != NULL)
1074 return false; /* held by someone else */
1075 else if (whole == bdev)
1076 return true; /* is a whole device which isn't held */
1077
1078 else if (whole->bd_holder == bd_may_claim)
1079 return true; /* is a partition of a device that is being partitioned */
1080 else if (whole->bd_holder != NULL)
1081 return false; /* is a partition of a held device */
1082 else
1083 return true; /* is a partition of an un-held device */
1084 }
1085
1086 /**
1087 * bd_prepare_to_claim - prepare to claim a block device
1088 * @bdev: block device of interest
1089 * @whole: the whole device containing @bdev, may equal @bdev
1090 * @holder: holder trying to claim @bdev
1091 *
1092 * Prepare to claim @bdev. This function fails if @bdev is already
1093 * claimed by another holder and waits if another claiming is in
1094 * progress. This function doesn't actually claim. On successful
1095 * return, the caller has ownership of bd_claiming and bd_holder[s].
1096 *
1097 * CONTEXT:
1098 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1099 * it multiple times.
1100 *
1101 * RETURNS:
1102 * 0 if @bdev can be claimed, -EBUSY otherwise.
1103 */
1104 static int bd_prepare_to_claim(struct block_device *bdev,
1105 struct block_device *whole, void *holder)
1106 {
1107 retry:
1108 /* if someone else claimed, fail */
1109 if (!bd_may_claim(bdev, whole, holder))
1110 return -EBUSY;
1111
1112 /* if claiming is already in progress, wait for it to finish */
1113 if (whole->bd_claiming) {
1114 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1115 DEFINE_WAIT(wait);
1116
1117 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1118 spin_unlock(&bdev_lock);
1119 schedule();
1120 finish_wait(wq, &wait);
1121 spin_lock(&bdev_lock);
1122 goto retry;
1123 }
1124
1125 /* yay, all mine */
1126 return 0;
1127 }
1128
1129 /**
1130 * bd_start_claiming - start claiming a block device
1131 * @bdev: block device of interest
1132 * @holder: holder trying to claim @bdev
1133 *
1134 * @bdev is about to be opened exclusively. Check @bdev can be opened
1135 * exclusively and mark that an exclusive open is in progress. Each
1136 * successful call to this function must be matched with a call to
1137 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1138 * fail).
1139 *
1140 * This function is used to gain exclusive access to the block device
1141 * without actually causing other exclusive open attempts to fail. It
1142 * should be used when the open sequence itself requires exclusive
1143 * access but may subsequently fail.
1144 *
1145 * CONTEXT:
1146 * Might sleep.
1147 *
1148 * RETURNS:
1149 * Pointer to the block device containing @bdev on success, ERR_PTR()
1150 * value on failure.
1151 */
1152 static struct block_device *bd_start_claiming(struct block_device *bdev,
1153 void *holder)
1154 {
1155 struct gendisk *disk;
1156 struct block_device *whole;
1157 int partno, err;
1158
1159 might_sleep();
1160
1161 /*
1162 * @bdev might not have been initialized properly yet, look up
1163 * and grab the outer block device the hard way.
1164 */
1165 disk = get_gendisk(bdev->bd_dev, &partno);
1166 if (!disk)
1167 return ERR_PTR(-ENXIO);
1168
1169 /*
1170 * Normally, @bdev should equal what's returned from bdget_disk()
1171 * if partno is 0; however, some drivers (floppy) use multiple
1172 * bdev's for the same physical device and @bdev may be one of the
1173 * aliases. Keep @bdev if partno is 0. This means claimer
1174 * tracking is broken for those devices but it has always been that
1175 * way.
1176 */
1177 if (partno)
1178 whole = bdget_disk(disk, 0);
1179 else
1180 whole = bdgrab(bdev);
1181
1182 module_put(disk->fops->owner);
1183 put_disk(disk);
1184 if (!whole)
1185 return ERR_PTR(-ENOMEM);
1186
1187 /* prepare to claim, if successful, mark claiming in progress */
1188 spin_lock(&bdev_lock);
1189
1190 err = bd_prepare_to_claim(bdev, whole, holder);
1191 if (err == 0) {
1192 whole->bd_claiming = holder;
1193 spin_unlock(&bdev_lock);
1194 return whole;
1195 } else {
1196 spin_unlock(&bdev_lock);
1197 bdput(whole);
1198 return ERR_PTR(err);
1199 }
1200 }
1201
1202 #ifdef CONFIG_SYSFS
1203 struct bd_holder_disk {
1204 struct list_head list;
1205 struct gendisk *disk;
1206 int refcnt;
1207 };
1208
1209 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1210 struct gendisk *disk)
1211 {
1212 struct bd_holder_disk *holder;
1213
1214 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1215 if (holder->disk == disk)
1216 return holder;
1217 return NULL;
1218 }
1219
1220 static int add_symlink(struct kobject *from, struct kobject *to)
1221 {
1222 return sysfs_create_link(from, to, kobject_name(to));
1223 }
1224
1225 static void del_symlink(struct kobject *from, struct kobject *to)
1226 {
1227 sysfs_remove_link(from, kobject_name(to));
1228 }
1229
1230 /**
1231 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1232 * @bdev: the claimed slave bdev
1233 * @disk: the holding disk
1234 *
1235 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1236 *
1237 * This functions creates the following sysfs symlinks.
1238 *
1239 * - from "slaves" directory of the holder @disk to the claimed @bdev
1240 * - from "holders" directory of the @bdev to the holder @disk
1241 *
1242 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1243 * passed to bd_link_disk_holder(), then:
1244 *
1245 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1246 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1247 *
1248 * The caller must have claimed @bdev before calling this function and
1249 * ensure that both @bdev and @disk are valid during the creation and
1250 * lifetime of these symlinks.
1251 *
1252 * CONTEXT:
1253 * Might sleep.
1254 *
1255 * RETURNS:
1256 * 0 on success, -errno on failure.
1257 */
1258 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1259 {
1260 struct bd_holder_disk *holder;
1261 int ret = 0;
1262
1263 mutex_lock(&bdev->bd_mutex);
1264
1265 WARN_ON_ONCE(!bdev->bd_holder);
1266
1267 /* FIXME: remove the following once add_disk() handles errors */
1268 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1269 goto out_unlock;
1270
1271 holder = bd_find_holder_disk(bdev, disk);
1272 if (holder) {
1273 holder->refcnt++;
1274 goto out_unlock;
1275 }
1276
1277 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1278 if (!holder) {
1279 ret = -ENOMEM;
1280 goto out_unlock;
1281 }
1282
1283 INIT_LIST_HEAD(&holder->list);
1284 holder->disk = disk;
1285 holder->refcnt = 1;
1286
1287 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1288 if (ret)
1289 goto out_free;
1290
1291 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1292 if (ret)
1293 goto out_del;
1294 /*
1295 * bdev could be deleted beneath us which would implicitly destroy
1296 * the holder directory. Hold on to it.
1297 */
1298 kobject_get(bdev->bd_part->holder_dir);
1299
1300 list_add(&holder->list, &bdev->bd_holder_disks);
1301 goto out_unlock;
1302
1303 out_del:
1304 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1305 out_free:
1306 kfree(holder);
1307 out_unlock:
1308 mutex_unlock(&bdev->bd_mutex);
1309 return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1312
1313 /**
1314 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1315 * @bdev: the calimed slave bdev
1316 * @disk: the holding disk
1317 *
1318 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1319 *
1320 * CONTEXT:
1321 * Might sleep.
1322 */
1323 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1324 {
1325 struct bd_holder_disk *holder;
1326
1327 mutex_lock(&bdev->bd_mutex);
1328
1329 holder = bd_find_holder_disk(bdev, disk);
1330
1331 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1332 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1333 del_symlink(bdev->bd_part->holder_dir,
1334 &disk_to_dev(disk)->kobj);
1335 kobject_put(bdev->bd_part->holder_dir);
1336 list_del_init(&holder->list);
1337 kfree(holder);
1338 }
1339
1340 mutex_unlock(&bdev->bd_mutex);
1341 }
1342 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1343 #endif
1344
1345 /**
1346 * flush_disk - invalidates all buffer-cache entries on a disk
1347 *
1348 * @bdev: struct block device to be flushed
1349 * @kill_dirty: flag to guide handling of dirty inodes
1350 *
1351 * Invalidates all buffer-cache entries on a disk. It should be called
1352 * when a disk has been changed -- either by a media change or online
1353 * resize.
1354 */
1355 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1356 {
1357 if (__invalidate_device(bdev, kill_dirty)) {
1358 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1359 "resized disk %s\n",
1360 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1361 }
1362
1363 if (!bdev->bd_disk)
1364 return;
1365 if (disk_part_scan_enabled(bdev->bd_disk))
1366 bdev->bd_invalidated = 1;
1367 }
1368
1369 /**
1370 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1371 * @disk: struct gendisk to check
1372 * @bdev: struct bdev to adjust.
1373 *
1374 * This routine checks to see if the bdev size does not match the disk size
1375 * and adjusts it if it differs.
1376 */
1377 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1378 {
1379 loff_t disk_size, bdev_size;
1380
1381 disk_size = (loff_t)get_capacity(disk) << 9;
1382 bdev_size = i_size_read(bdev->bd_inode);
1383 if (disk_size != bdev_size) {
1384 printk(KERN_INFO
1385 "%s: detected capacity change from %lld to %lld\n",
1386 disk->disk_name, bdev_size, disk_size);
1387 i_size_write(bdev->bd_inode, disk_size);
1388 flush_disk(bdev, false);
1389 }
1390 }
1391 EXPORT_SYMBOL(check_disk_size_change);
1392
1393 /**
1394 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1395 * @disk: struct gendisk to be revalidated
1396 *
1397 * This routine is a wrapper for lower-level driver's revalidate_disk
1398 * call-backs. It is used to do common pre and post operations needed
1399 * for all revalidate_disk operations.
1400 */
1401 int revalidate_disk(struct gendisk *disk)
1402 {
1403 struct block_device *bdev;
1404 int ret = 0;
1405
1406 if (disk->fops->revalidate_disk)
1407 ret = disk->fops->revalidate_disk(disk);
1408 bdev = bdget_disk(disk, 0);
1409 if (!bdev)
1410 return ret;
1411
1412 mutex_lock(&bdev->bd_mutex);
1413 check_disk_size_change(disk, bdev);
1414 bdev->bd_invalidated = 0;
1415 mutex_unlock(&bdev->bd_mutex);
1416 bdput(bdev);
1417 return ret;
1418 }
1419 EXPORT_SYMBOL(revalidate_disk);
1420
1421 /*
1422 * This routine checks whether a removable media has been changed,
1423 * and invalidates all buffer-cache-entries in that case. This
1424 * is a relatively slow routine, so we have to try to minimize using
1425 * it. Thus it is called only upon a 'mount' or 'open'. This
1426 * is the best way of combining speed and utility, I think.
1427 * People changing diskettes in the middle of an operation deserve
1428 * to lose :-)
1429 */
1430 int check_disk_change(struct block_device *bdev)
1431 {
1432 struct gendisk *disk = bdev->bd_disk;
1433 const struct block_device_operations *bdops = disk->fops;
1434 unsigned int events;
1435
1436 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1437 DISK_EVENT_EJECT_REQUEST);
1438 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1439 return 0;
1440
1441 flush_disk(bdev, true);
1442 if (bdops->revalidate_disk)
1443 bdops->revalidate_disk(bdev->bd_disk);
1444 return 1;
1445 }
1446
1447 EXPORT_SYMBOL(check_disk_change);
1448
1449 void bd_set_size(struct block_device *bdev, loff_t size)
1450 {
1451 unsigned bsize = bdev_logical_block_size(bdev);
1452
1453 inode_lock(bdev->bd_inode);
1454 i_size_write(bdev->bd_inode, size);
1455 inode_unlock(bdev->bd_inode);
1456 while (bsize < PAGE_SIZE) {
1457 if (size & bsize)
1458 break;
1459 bsize <<= 1;
1460 }
1461 bdev->bd_block_size = bsize;
1462 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1463 }
1464 EXPORT_SYMBOL(bd_set_size);
1465
1466 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1467
1468 /*
1469 * bd_mutex locking:
1470 *
1471 * mutex_lock(part->bd_mutex)
1472 * mutex_lock_nested(whole->bd_mutex, 1)
1473 */
1474
1475 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1476 {
1477 struct gendisk *disk;
1478 struct module *owner;
1479 int ret;
1480 int partno;
1481 int perm = 0;
1482
1483 if (mode & FMODE_READ)
1484 perm |= MAY_READ;
1485 if (mode & FMODE_WRITE)
1486 perm |= MAY_WRITE;
1487 /*
1488 * hooks: /n/, see "layering violations".
1489 */
1490 if (!for_part) {
1491 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1492 if (ret != 0) {
1493 bdput(bdev);
1494 return ret;
1495 }
1496 }
1497
1498 restart:
1499
1500 ret = -ENXIO;
1501 disk = get_gendisk(bdev->bd_dev, &partno);
1502 if (!disk)
1503 goto out;
1504 owner = disk->fops->owner;
1505
1506 disk_block_events(disk);
1507 mutex_lock_nested(&bdev->bd_mutex, for_part);
1508 if (!bdev->bd_openers) {
1509 bdev->bd_disk = disk;
1510 bdev->bd_queue = disk->queue;
1511 bdev->bd_contains = bdev;
1512
1513 if (!partno) {
1514 ret = -ENXIO;
1515 bdev->bd_part = disk_get_part(disk, partno);
1516 if (!bdev->bd_part)
1517 goto out_clear;
1518
1519 ret = 0;
1520 if (disk->fops->open) {
1521 ret = disk->fops->open(bdev, mode);
1522 if (ret == -ERESTARTSYS) {
1523 /* Lost a race with 'disk' being
1524 * deleted, try again.
1525 * See md.c
1526 */
1527 disk_put_part(bdev->bd_part);
1528 bdev->bd_part = NULL;
1529 bdev->bd_disk = NULL;
1530 bdev->bd_queue = NULL;
1531 mutex_unlock(&bdev->bd_mutex);
1532 disk_unblock_events(disk);
1533 put_disk(disk);
1534 module_put(owner);
1535 goto restart;
1536 }
1537 }
1538
1539 if (!ret)
1540 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1541
1542 /*
1543 * If the device is invalidated, rescan partition
1544 * if open succeeded or failed with -ENOMEDIUM.
1545 * The latter is necessary to prevent ghost
1546 * partitions on a removed medium.
1547 */
1548 if (bdev->bd_invalidated) {
1549 if (!ret)
1550 rescan_partitions(disk, bdev);
1551 else if (ret == -ENOMEDIUM)
1552 invalidate_partitions(disk, bdev);
1553 }
1554
1555 if (ret)
1556 goto out_clear;
1557 } else {
1558 struct block_device *whole;
1559 whole = bdget_disk(disk, 0);
1560 ret = -ENOMEM;
1561 if (!whole)
1562 goto out_clear;
1563 BUG_ON(for_part);
1564 ret = __blkdev_get(whole, mode, 1);
1565 if (ret)
1566 goto out_clear;
1567 bdev->bd_contains = whole;
1568 bdev->bd_part = disk_get_part(disk, partno);
1569 if (!(disk->flags & GENHD_FL_UP) ||
1570 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1571 ret = -ENXIO;
1572 goto out_clear;
1573 }
1574 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1575 }
1576
1577 if (bdev->bd_bdi == &noop_backing_dev_info)
1578 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1579 } else {
1580 if (bdev->bd_contains == bdev) {
1581 ret = 0;
1582 if (bdev->bd_disk->fops->open)
1583 ret = bdev->bd_disk->fops->open(bdev, mode);
1584 /* the same as first opener case, read comment there */
1585 if (bdev->bd_invalidated) {
1586 if (!ret)
1587 rescan_partitions(bdev->bd_disk, bdev);
1588 else if (ret == -ENOMEDIUM)
1589 invalidate_partitions(bdev->bd_disk, bdev);
1590 }
1591 if (ret)
1592 goto out_unlock_bdev;
1593 }
1594 /* only one opener holds refs to the module and disk */
1595 put_disk(disk);
1596 module_put(owner);
1597 }
1598 bdev->bd_openers++;
1599 if (for_part)
1600 bdev->bd_part_count++;
1601 mutex_unlock(&bdev->bd_mutex);
1602 disk_unblock_events(disk);
1603 return 0;
1604
1605 out_clear:
1606 disk_put_part(bdev->bd_part);
1607 bdev->bd_disk = NULL;
1608 bdev->bd_part = NULL;
1609 bdev->bd_queue = NULL;
1610 if (bdev != bdev->bd_contains)
1611 __blkdev_put(bdev->bd_contains, mode, 1);
1612 bdev->bd_contains = NULL;
1613 out_unlock_bdev:
1614 mutex_unlock(&bdev->bd_mutex);
1615 disk_unblock_events(disk);
1616 put_disk(disk);
1617 module_put(owner);
1618 out:
1619 bdput(bdev);
1620
1621 return ret;
1622 }
1623
1624 /**
1625 * blkdev_get - open a block device
1626 * @bdev: block_device to open
1627 * @mode: FMODE_* mask
1628 * @holder: exclusive holder identifier
1629 *
1630 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1631 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1632 * @holder is invalid. Exclusive opens may nest for the same @holder.
1633 *
1634 * On success, the reference count of @bdev is unchanged. On failure,
1635 * @bdev is put.
1636 *
1637 * CONTEXT:
1638 * Might sleep.
1639 *
1640 * RETURNS:
1641 * 0 on success, -errno on failure.
1642 */
1643 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1644 {
1645 struct block_device *whole = NULL;
1646 int res;
1647
1648 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1649
1650 if ((mode & FMODE_EXCL) && holder) {
1651 whole = bd_start_claiming(bdev, holder);
1652 if (IS_ERR(whole)) {
1653 bdput(bdev);
1654 return PTR_ERR(whole);
1655 }
1656 }
1657
1658 res = __blkdev_get(bdev, mode, 0);
1659
1660 if (whole) {
1661 struct gendisk *disk = whole->bd_disk;
1662
1663 /* finish claiming */
1664 mutex_lock(&bdev->bd_mutex);
1665 spin_lock(&bdev_lock);
1666
1667 if (!res) {
1668 BUG_ON(!bd_may_claim(bdev, whole, holder));
1669 /*
1670 * Note that for a whole device bd_holders
1671 * will be incremented twice, and bd_holder
1672 * will be set to bd_may_claim before being
1673 * set to holder
1674 */
1675 whole->bd_holders++;
1676 whole->bd_holder = bd_may_claim;
1677 bdev->bd_holders++;
1678 bdev->bd_holder = holder;
1679 }
1680
1681 /* tell others that we're done */
1682 BUG_ON(whole->bd_claiming != holder);
1683 whole->bd_claiming = NULL;
1684 wake_up_bit(&whole->bd_claiming, 0);
1685
1686 spin_unlock(&bdev_lock);
1687
1688 /*
1689 * Block event polling for write claims if requested. Any
1690 * write holder makes the write_holder state stick until
1691 * all are released. This is good enough and tracking
1692 * individual writeable reference is too fragile given the
1693 * way @mode is used in blkdev_get/put().
1694 */
1695 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1696 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1697 bdev->bd_write_holder = true;
1698 disk_block_events(disk);
1699 }
1700
1701 mutex_unlock(&bdev->bd_mutex);
1702 bdput(whole);
1703 }
1704
1705 return res;
1706 }
1707 EXPORT_SYMBOL(blkdev_get);
1708
1709 /**
1710 * blkdev_get_by_path - open a block device by name
1711 * @path: path to the block device to open
1712 * @mode: FMODE_* mask
1713 * @holder: exclusive holder identifier
1714 *
1715 * Open the blockdevice described by the device file at @path. @mode
1716 * and @holder are identical to blkdev_get().
1717 *
1718 * On success, the returned block_device has reference count of one.
1719 *
1720 * CONTEXT:
1721 * Might sleep.
1722 *
1723 * RETURNS:
1724 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1725 */
1726 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1727 void *holder)
1728 {
1729 struct block_device *bdev;
1730 int err;
1731
1732 bdev = lookup_bdev(path);
1733 if (IS_ERR(bdev))
1734 return bdev;
1735
1736 err = blkdev_get(bdev, mode, holder);
1737 if (err)
1738 return ERR_PTR(err);
1739
1740 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1741 blkdev_put(bdev, mode);
1742 return ERR_PTR(-EACCES);
1743 }
1744
1745 return bdev;
1746 }
1747 EXPORT_SYMBOL(blkdev_get_by_path);
1748
1749 /**
1750 * blkdev_get_by_dev - open a block device by device number
1751 * @dev: device number of block device to open
1752 * @mode: FMODE_* mask
1753 * @holder: exclusive holder identifier
1754 *
1755 * Open the blockdevice described by device number @dev. @mode and
1756 * @holder are identical to blkdev_get().
1757 *
1758 * Use it ONLY if you really do not have anything better - i.e. when
1759 * you are behind a truly sucky interface and all you are given is a
1760 * device number. _Never_ to be used for internal purposes. If you
1761 * ever need it - reconsider your API.
1762 *
1763 * On success, the returned block_device has reference count of one.
1764 *
1765 * CONTEXT:
1766 * Might sleep.
1767 *
1768 * RETURNS:
1769 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1770 */
1771 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1772 {
1773 struct block_device *bdev;
1774 int err;
1775
1776 bdev = bdget(dev);
1777 if (!bdev)
1778 return ERR_PTR(-ENOMEM);
1779
1780 err = blkdev_get(bdev, mode, holder);
1781 if (err)
1782 return ERR_PTR(err);
1783
1784 return bdev;
1785 }
1786 EXPORT_SYMBOL(blkdev_get_by_dev);
1787
1788 static int blkdev_open(struct inode * inode, struct file * filp)
1789 {
1790 struct block_device *bdev;
1791
1792 /*
1793 * Preserve backwards compatibility and allow large file access
1794 * even if userspace doesn't ask for it explicitly. Some mkfs
1795 * binary needs it. We might want to drop this workaround
1796 * during an unstable branch.
1797 */
1798 filp->f_flags |= O_LARGEFILE;
1799
1800 if (filp->f_flags & O_NDELAY)
1801 filp->f_mode |= FMODE_NDELAY;
1802 if (filp->f_flags & O_EXCL)
1803 filp->f_mode |= FMODE_EXCL;
1804 if ((filp->f_flags & O_ACCMODE) == 3)
1805 filp->f_mode |= FMODE_WRITE_IOCTL;
1806
1807 bdev = bd_acquire(inode);
1808 if (bdev == NULL)
1809 return -ENOMEM;
1810
1811 filp->f_mapping = bdev->bd_inode->i_mapping;
1812
1813 return blkdev_get(bdev, filp->f_mode, filp);
1814 }
1815
1816 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1817 {
1818 struct gendisk *disk = bdev->bd_disk;
1819 struct block_device *victim = NULL;
1820
1821 mutex_lock_nested(&bdev->bd_mutex, for_part);
1822 if (for_part)
1823 bdev->bd_part_count--;
1824
1825 if (!--bdev->bd_openers) {
1826 WARN_ON_ONCE(bdev->bd_holders);
1827 sync_blockdev(bdev);
1828 kill_bdev(bdev);
1829
1830 bdev_write_inode(bdev);
1831 }
1832 if (bdev->bd_contains == bdev) {
1833 if (disk->fops->release)
1834 disk->fops->release(disk, mode);
1835 }
1836 if (!bdev->bd_openers) {
1837 struct module *owner = disk->fops->owner;
1838
1839 disk_put_part(bdev->bd_part);
1840 bdev->bd_part = NULL;
1841 bdev->bd_disk = NULL;
1842 if (bdev != bdev->bd_contains)
1843 victim = bdev->bd_contains;
1844 bdev->bd_contains = NULL;
1845
1846 put_disk(disk);
1847 module_put(owner);
1848 }
1849 mutex_unlock(&bdev->bd_mutex);
1850 bdput(bdev);
1851 if (victim)
1852 __blkdev_put(victim, mode, 1);
1853 }
1854
1855 void blkdev_put(struct block_device *bdev, fmode_t mode)
1856 {
1857 mutex_lock(&bdev->bd_mutex);
1858
1859 if (mode & FMODE_EXCL) {
1860 bool bdev_free;
1861
1862 /*
1863 * Release a claim on the device. The holder fields
1864 * are protected with bdev_lock. bd_mutex is to
1865 * synchronize disk_holder unlinking.
1866 */
1867 spin_lock(&bdev_lock);
1868
1869 WARN_ON_ONCE(--bdev->bd_holders < 0);
1870 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1871
1872 /* bd_contains might point to self, check in a separate step */
1873 if ((bdev_free = !bdev->bd_holders))
1874 bdev->bd_holder = NULL;
1875 if (!bdev->bd_contains->bd_holders)
1876 bdev->bd_contains->bd_holder = NULL;
1877
1878 spin_unlock(&bdev_lock);
1879
1880 /*
1881 * If this was the last claim, remove holder link and
1882 * unblock evpoll if it was a write holder.
1883 */
1884 if (bdev_free && bdev->bd_write_holder) {
1885 disk_unblock_events(bdev->bd_disk);
1886 bdev->bd_write_holder = false;
1887 }
1888 }
1889
1890 /*
1891 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1892 * event. This is to ensure detection of media removal commanded
1893 * from userland - e.g. eject(1).
1894 */
1895 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1896
1897 mutex_unlock(&bdev->bd_mutex);
1898
1899 __blkdev_put(bdev, mode, 0);
1900 }
1901 EXPORT_SYMBOL(blkdev_put);
1902
1903 static int blkdev_close(struct inode * inode, struct file * filp)
1904 {
1905 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1906 blkdev_put(bdev, filp->f_mode);
1907 return 0;
1908 }
1909
1910 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1911 {
1912 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1913 fmode_t mode = file->f_mode;
1914
1915 /*
1916 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1917 * to updated it before every ioctl.
1918 */
1919 if (file->f_flags & O_NDELAY)
1920 mode |= FMODE_NDELAY;
1921 else
1922 mode &= ~FMODE_NDELAY;
1923
1924 return blkdev_ioctl(bdev, mode, cmd, arg);
1925 }
1926
1927 /*
1928 * Write data to the block device. Only intended for the block device itself
1929 * and the raw driver which basically is a fake block device.
1930 *
1931 * Does not take i_mutex for the write and thus is not for general purpose
1932 * use.
1933 */
1934 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1935 {
1936 struct file *file = iocb->ki_filp;
1937 struct inode *bd_inode = bdev_file_inode(file);
1938 loff_t size = i_size_read(bd_inode);
1939 struct blk_plug plug;
1940 ssize_t ret;
1941
1942 if (bdev_read_only(I_BDEV(bd_inode)))
1943 return -EPERM;
1944
1945 if (!iov_iter_count(from))
1946 return 0;
1947
1948 if (iocb->ki_pos >= size)
1949 return -ENOSPC;
1950
1951 iov_iter_truncate(from, size - iocb->ki_pos);
1952
1953 blk_start_plug(&plug);
1954 ret = __generic_file_write_iter(iocb, from);
1955 if (ret > 0)
1956 ret = generic_write_sync(iocb, ret);
1957 blk_finish_plug(&plug);
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1961
1962 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1963 {
1964 struct file *file = iocb->ki_filp;
1965 struct inode *bd_inode = bdev_file_inode(file);
1966 loff_t size = i_size_read(bd_inode);
1967 loff_t pos = iocb->ki_pos;
1968
1969 if (pos >= size)
1970 return 0;
1971
1972 size -= pos;
1973 iov_iter_truncate(to, size);
1974 return generic_file_read_iter(iocb, to);
1975 }
1976 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1977
1978 /*
1979 * Try to release a page associated with block device when the system
1980 * is under memory pressure.
1981 */
1982 static int blkdev_releasepage(struct page *page, gfp_t wait)
1983 {
1984 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1985
1986 if (super && super->s_op->bdev_try_to_free_page)
1987 return super->s_op->bdev_try_to_free_page(super, page, wait);
1988
1989 return try_to_free_buffers(page);
1990 }
1991
1992 static int blkdev_writepages(struct address_space *mapping,
1993 struct writeback_control *wbc)
1994 {
1995 if (dax_mapping(mapping)) {
1996 struct block_device *bdev = I_BDEV(mapping->host);
1997
1998 return dax_writeback_mapping_range(mapping, bdev, wbc);
1999 }
2000 return generic_writepages(mapping, wbc);
2001 }
2002
2003 static const struct address_space_operations def_blk_aops = {
2004 .readpage = blkdev_readpage,
2005 .readpages = blkdev_readpages,
2006 .writepage = blkdev_writepage,
2007 .write_begin = blkdev_write_begin,
2008 .write_end = blkdev_write_end,
2009 .writepages = blkdev_writepages,
2010 .releasepage = blkdev_releasepage,
2011 .direct_IO = blkdev_direct_IO,
2012 .is_dirty_writeback = buffer_check_dirty_writeback,
2013 };
2014
2015 #define BLKDEV_FALLOC_FL_SUPPORTED \
2016 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2017 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2018
2019 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2020 loff_t len)
2021 {
2022 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2023 struct address_space *mapping;
2024 loff_t end = start + len - 1;
2025 loff_t isize;
2026 int error;
2027
2028 /* Fail if we don't recognize the flags. */
2029 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2030 return -EOPNOTSUPP;
2031
2032 /* Don't go off the end of the device. */
2033 isize = i_size_read(bdev->bd_inode);
2034 if (start >= isize)
2035 return -EINVAL;
2036 if (end >= isize) {
2037 if (mode & FALLOC_FL_KEEP_SIZE) {
2038 len = isize - start;
2039 end = start + len - 1;
2040 } else
2041 return -EINVAL;
2042 }
2043
2044 /*
2045 * Don't allow IO that isn't aligned to logical block size.
2046 */
2047 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2048 return -EINVAL;
2049
2050 /* Invalidate the page cache, including dirty pages. */
2051 mapping = bdev->bd_inode->i_mapping;
2052 truncate_inode_pages_range(mapping, start, end);
2053
2054 switch (mode) {
2055 case FALLOC_FL_ZERO_RANGE:
2056 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2057 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2058 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2059 break;
2060 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2061 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2062 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2063 break;
2064 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2065 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2066 GFP_KERNEL, 0);
2067 break;
2068 default:
2069 return -EOPNOTSUPP;
2070 }
2071 if (error)
2072 return error;
2073
2074 /*
2075 * Invalidate again; if someone wandered in and dirtied a page,
2076 * the caller will be given -EBUSY. The third argument is
2077 * inclusive, so the rounding here is safe.
2078 */
2079 return invalidate_inode_pages2_range(mapping,
2080 start >> PAGE_SHIFT,
2081 end >> PAGE_SHIFT);
2082 }
2083
2084 const struct file_operations def_blk_fops = {
2085 .open = blkdev_open,
2086 .release = blkdev_close,
2087 .llseek = block_llseek,
2088 .read_iter = blkdev_read_iter,
2089 .write_iter = blkdev_write_iter,
2090 .mmap = generic_file_mmap,
2091 .fsync = blkdev_fsync,
2092 .unlocked_ioctl = block_ioctl,
2093 #ifdef CONFIG_COMPAT
2094 .compat_ioctl = compat_blkdev_ioctl,
2095 #endif
2096 .splice_read = generic_file_splice_read,
2097 .splice_write = iter_file_splice_write,
2098 .fallocate = blkdev_fallocate,
2099 };
2100
2101 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2102 {
2103 int res;
2104 mm_segment_t old_fs = get_fs();
2105 set_fs(KERNEL_DS);
2106 res = blkdev_ioctl(bdev, 0, cmd, arg);
2107 set_fs(old_fs);
2108 return res;
2109 }
2110
2111 EXPORT_SYMBOL(ioctl_by_bdev);
2112
2113 /**
2114 * lookup_bdev - lookup a struct block_device by name
2115 * @pathname: special file representing the block device
2116 *
2117 * Get a reference to the blockdevice at @pathname in the current
2118 * namespace if possible and return it. Return ERR_PTR(error)
2119 * otherwise.
2120 */
2121 struct block_device *lookup_bdev(const char *pathname)
2122 {
2123 struct block_device *bdev;
2124 struct inode *inode;
2125 struct path path;
2126 int error;
2127
2128 if (!pathname || !*pathname)
2129 return ERR_PTR(-EINVAL);
2130
2131 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2132 if (error)
2133 return ERR_PTR(error);
2134
2135 inode = d_backing_inode(path.dentry);
2136 error = -ENOTBLK;
2137 if (!S_ISBLK(inode->i_mode))
2138 goto fail;
2139 error = -EACCES;
2140 if (!may_open_dev(&path))
2141 goto fail;
2142 error = -ENOMEM;
2143 bdev = bd_acquire(inode);
2144 if (!bdev)
2145 goto fail;
2146 out:
2147 path_put(&path);
2148 return bdev;
2149 fail:
2150 bdev = ERR_PTR(error);
2151 goto out;
2152 }
2153 EXPORT_SYMBOL(lookup_bdev);
2154
2155 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2156 {
2157 struct super_block *sb = get_super(bdev);
2158 int res = 0;
2159
2160 if (sb) {
2161 /*
2162 * no need to lock the super, get_super holds the
2163 * read mutex so the filesystem cannot go away
2164 * under us (->put_super runs with the write lock
2165 * hold).
2166 */
2167 shrink_dcache_sb(sb);
2168 res = invalidate_inodes(sb, kill_dirty);
2169 drop_super(sb);
2170 }
2171 invalidate_bdev(bdev);
2172 return res;
2173 }
2174 EXPORT_SYMBOL(__invalidate_device);
2175
2176 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2177 {
2178 struct inode *inode, *old_inode = NULL;
2179
2180 spin_lock(&blockdev_superblock->s_inode_list_lock);
2181 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2182 struct address_space *mapping = inode->i_mapping;
2183 struct block_device *bdev;
2184
2185 spin_lock(&inode->i_lock);
2186 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2187 mapping->nrpages == 0) {
2188 spin_unlock(&inode->i_lock);
2189 continue;
2190 }
2191 __iget(inode);
2192 spin_unlock(&inode->i_lock);
2193 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2194 /*
2195 * We hold a reference to 'inode' so it couldn't have been
2196 * removed from s_inodes list while we dropped the
2197 * s_inode_list_lock We cannot iput the inode now as we can
2198 * be holding the last reference and we cannot iput it under
2199 * s_inode_list_lock. So we keep the reference and iput it
2200 * later.
2201 */
2202 iput(old_inode);
2203 old_inode = inode;
2204 bdev = I_BDEV(inode);
2205
2206 mutex_lock(&bdev->bd_mutex);
2207 if (bdev->bd_openers)
2208 func(bdev, arg);
2209 mutex_unlock(&bdev->bd_mutex);
2210
2211 spin_lock(&blockdev_superblock->s_inode_list_lock);
2212 }
2213 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2214 iput(old_inode);
2215 }