]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
Merge branch 'nvme-4.15' of git://git.infradead.org/nvme into for-4.15/block
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 int set_blocksize(struct block_device *bdev, int size)
108 {
109 /* Size must be a power of two, and between 512 and PAGE_SIZE */
110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
111 return -EINVAL;
112
113 /* Size cannot be smaller than the size supported by the device */
114 if (size < bdev_logical_block_size(bdev))
115 return -EINVAL;
116
117 /* Don't change the size if it is same as current */
118 if (bdev->bd_block_size != size) {
119 sync_blockdev(bdev);
120 bdev->bd_block_size = size;
121 bdev->bd_inode->i_blkbits = blksize_bits(size);
122 kill_bdev(bdev);
123 }
124 return 0;
125 }
126
127 EXPORT_SYMBOL(set_blocksize);
128
129 int sb_set_blocksize(struct super_block *sb, int size)
130 {
131 if (set_blocksize(sb->s_bdev, size))
132 return 0;
133 /* If we get here, we know size is power of two
134 * and it's value is between 512 and PAGE_SIZE */
135 sb->s_blocksize = size;
136 sb->s_blocksize_bits = blksize_bits(size);
137 return sb->s_blocksize;
138 }
139
140 EXPORT_SYMBOL(sb_set_blocksize);
141
142 int sb_min_blocksize(struct super_block *sb, int size)
143 {
144 int minsize = bdev_logical_block_size(sb->s_bdev);
145 if (size < minsize)
146 size = minsize;
147 return sb_set_blocksize(sb, size);
148 }
149
150 EXPORT_SYMBOL(sb_min_blocksize);
151
152 static int
153 blkdev_get_block(struct inode *inode, sector_t iblock,
154 struct buffer_head *bh, int create)
155 {
156 bh->b_bdev = I_BDEV(inode);
157 bh->b_blocknr = iblock;
158 set_buffer_mapped(bh);
159 return 0;
160 }
161
162 static struct inode *bdev_file_inode(struct file *file)
163 {
164 return file->f_mapping->host;
165 }
166
167 static unsigned int dio_bio_write_op(struct kiocb *iocb)
168 {
169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
170
171 /* avoid the need for a I/O completion work item */
172 if (iocb->ki_flags & IOCB_DSYNC)
173 op |= REQ_FUA;
174 return op;
175 }
176
177 #define DIO_INLINE_BIO_VECS 4
178
179 static void blkdev_bio_end_io_simple(struct bio *bio)
180 {
181 struct task_struct *waiter = bio->bi_private;
182
183 WRITE_ONCE(bio->bi_private, NULL);
184 wake_up_process(waiter);
185 }
186
187 static ssize_t
188 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
189 int nr_pages)
190 {
191 struct file *file = iocb->ki_filp;
192 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
194 loff_t pos = iocb->ki_pos;
195 bool should_dirty = false;
196 struct bio bio;
197 ssize_t ret;
198 blk_qc_t qc;
199 int i;
200
201 if ((pos | iov_iter_alignment(iter)) &
202 (bdev_logical_block_size(bdev) - 1))
203 return -EINVAL;
204
205 if (nr_pages <= DIO_INLINE_BIO_VECS)
206 vecs = inline_vecs;
207 else {
208 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
209 if (!vecs)
210 return -ENOMEM;
211 }
212
213 bio_init(&bio, vecs, nr_pages);
214 bio_set_dev(&bio, bdev);
215 bio.bi_iter.bi_sector = pos >> 9;
216 bio.bi_write_hint = iocb->ki_hint;
217 bio.bi_private = current;
218 bio.bi_end_io = blkdev_bio_end_io_simple;
219
220 ret = bio_iov_iter_get_pages(&bio, iter);
221 if (unlikely(ret))
222 return ret;
223 ret = bio.bi_iter.bi_size;
224
225 if (iov_iter_rw(iter) == READ) {
226 bio.bi_opf = REQ_OP_READ;
227 if (iter_is_iovec(iter))
228 should_dirty = true;
229 } else {
230 bio.bi_opf = dio_bio_write_op(iocb);
231 task_io_account_write(ret);
232 }
233
234 qc = submit_bio(&bio);
235 for (;;) {
236 set_current_state(TASK_UNINTERRUPTIBLE);
237 if (!READ_ONCE(bio.bi_private))
238 break;
239 if (!(iocb->ki_flags & IOCB_HIPRI) ||
240 !blk_mq_poll(bdev_get_queue(bdev), qc))
241 io_schedule();
242 }
243 __set_current_state(TASK_RUNNING);
244
245 bio_for_each_segment_all(bvec, &bio, i) {
246 if (should_dirty && !PageCompound(bvec->bv_page))
247 set_page_dirty_lock(bvec->bv_page);
248 put_page(bvec->bv_page);
249 }
250
251 if (vecs != inline_vecs)
252 kfree(vecs);
253
254 if (unlikely(bio.bi_status))
255 ret = blk_status_to_errno(bio.bi_status);
256
257 bio_uninit(&bio);
258
259 return ret;
260 }
261
262 struct blkdev_dio {
263 union {
264 struct kiocb *iocb;
265 struct task_struct *waiter;
266 };
267 size_t size;
268 atomic_t ref;
269 bool multi_bio : 1;
270 bool should_dirty : 1;
271 bool is_sync : 1;
272 struct bio bio;
273 };
274
275 static struct bio_set *blkdev_dio_pool __read_mostly;
276
277 static void blkdev_bio_end_io(struct bio *bio)
278 {
279 struct blkdev_dio *dio = bio->bi_private;
280 bool should_dirty = dio->should_dirty;
281
282 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
283 if (bio->bi_status && !dio->bio.bi_status)
284 dio->bio.bi_status = bio->bi_status;
285 } else {
286 if (!dio->is_sync) {
287 struct kiocb *iocb = dio->iocb;
288 ssize_t ret;
289
290 if (likely(!dio->bio.bi_status)) {
291 ret = dio->size;
292 iocb->ki_pos += ret;
293 } else {
294 ret = blk_status_to_errno(dio->bio.bi_status);
295 }
296
297 dio->iocb->ki_complete(iocb, ret, 0);
298 bio_put(&dio->bio);
299 } else {
300 struct task_struct *waiter = dio->waiter;
301
302 WRITE_ONCE(dio->waiter, NULL);
303 wake_up_process(waiter);
304 }
305 }
306
307 if (should_dirty) {
308 bio_check_pages_dirty(bio);
309 } else {
310 struct bio_vec *bvec;
311 int i;
312
313 bio_for_each_segment_all(bvec, bio, i)
314 put_page(bvec->bv_page);
315 bio_put(bio);
316 }
317 }
318
319 static ssize_t
320 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
321 {
322 struct file *file = iocb->ki_filp;
323 struct inode *inode = bdev_file_inode(file);
324 struct block_device *bdev = I_BDEV(inode);
325 struct blk_plug plug;
326 struct blkdev_dio *dio;
327 struct bio *bio;
328 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
329 loff_t pos = iocb->ki_pos;
330 blk_qc_t qc = BLK_QC_T_NONE;
331 int ret = 0;
332
333 if ((pos | iov_iter_alignment(iter)) &
334 (bdev_logical_block_size(bdev) - 1))
335 return -EINVAL;
336
337 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
338 bio_get(bio); /* extra ref for the completion handler */
339
340 dio = container_of(bio, struct blkdev_dio, bio);
341 dio->is_sync = is_sync = is_sync_kiocb(iocb);
342 if (dio->is_sync)
343 dio->waiter = current;
344 else
345 dio->iocb = iocb;
346
347 dio->size = 0;
348 dio->multi_bio = false;
349 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
350
351 blk_start_plug(&plug);
352 for (;;) {
353 bio_set_dev(bio, bdev);
354 bio->bi_iter.bi_sector = pos >> 9;
355 bio->bi_write_hint = iocb->ki_hint;
356 bio->bi_private = dio;
357 bio->bi_end_io = blkdev_bio_end_io;
358
359 ret = bio_iov_iter_get_pages(bio, iter);
360 if (unlikely(ret)) {
361 bio->bi_status = BLK_STS_IOERR;
362 bio_endio(bio);
363 break;
364 }
365
366 if (is_read) {
367 bio->bi_opf = REQ_OP_READ;
368 if (dio->should_dirty)
369 bio_set_pages_dirty(bio);
370 } else {
371 bio->bi_opf = dio_bio_write_op(iocb);
372 task_io_account_write(bio->bi_iter.bi_size);
373 }
374
375 dio->size += bio->bi_iter.bi_size;
376 pos += bio->bi_iter.bi_size;
377
378 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
379 if (!nr_pages) {
380 qc = submit_bio(bio);
381 break;
382 }
383
384 if (!dio->multi_bio) {
385 dio->multi_bio = true;
386 atomic_set(&dio->ref, 2);
387 } else {
388 atomic_inc(&dio->ref);
389 }
390
391 submit_bio(bio);
392 bio = bio_alloc(GFP_KERNEL, nr_pages);
393 }
394 blk_finish_plug(&plug);
395
396 if (!is_sync)
397 return -EIOCBQUEUED;
398
399 for (;;) {
400 set_current_state(TASK_UNINTERRUPTIBLE);
401 if (!READ_ONCE(dio->waiter))
402 break;
403
404 if (!(iocb->ki_flags & IOCB_HIPRI) ||
405 !blk_mq_poll(bdev_get_queue(bdev), qc))
406 io_schedule();
407 }
408 __set_current_state(TASK_RUNNING);
409
410 if (!ret)
411 ret = blk_status_to_errno(dio->bio.bi_status);
412 if (likely(!ret))
413 ret = dio->size;
414
415 bio_put(&dio->bio);
416 return ret;
417 }
418
419 static ssize_t
420 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
421 {
422 int nr_pages;
423
424 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
425 if (!nr_pages)
426 return 0;
427 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
428 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
429
430 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
431 }
432
433 static __init int blkdev_init(void)
434 {
435 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
436 if (!blkdev_dio_pool)
437 return -ENOMEM;
438 return 0;
439 }
440 module_init(blkdev_init);
441
442 int __sync_blockdev(struct block_device *bdev, int wait)
443 {
444 if (!bdev)
445 return 0;
446 if (!wait)
447 return filemap_flush(bdev->bd_inode->i_mapping);
448 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
449 }
450
451 /*
452 * Write out and wait upon all the dirty data associated with a block
453 * device via its mapping. Does not take the superblock lock.
454 */
455 int sync_blockdev(struct block_device *bdev)
456 {
457 return __sync_blockdev(bdev, 1);
458 }
459 EXPORT_SYMBOL(sync_blockdev);
460
461 /*
462 * Write out and wait upon all dirty data associated with this
463 * device. Filesystem data as well as the underlying block
464 * device. Takes the superblock lock.
465 */
466 int fsync_bdev(struct block_device *bdev)
467 {
468 struct super_block *sb = get_super(bdev);
469 if (sb) {
470 int res = sync_filesystem(sb);
471 drop_super(sb);
472 return res;
473 }
474 return sync_blockdev(bdev);
475 }
476 EXPORT_SYMBOL(fsync_bdev);
477
478 /**
479 * freeze_bdev -- lock a filesystem and force it into a consistent state
480 * @bdev: blockdevice to lock
481 *
482 * If a superblock is found on this device, we take the s_umount semaphore
483 * on it to make sure nobody unmounts until the snapshot creation is done.
484 * The reference counter (bd_fsfreeze_count) guarantees that only the last
485 * unfreeze process can unfreeze the frozen filesystem actually when multiple
486 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
487 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
488 * actually.
489 */
490 struct super_block *freeze_bdev(struct block_device *bdev)
491 {
492 struct super_block *sb;
493 int error = 0;
494
495 mutex_lock(&bdev->bd_fsfreeze_mutex);
496 if (++bdev->bd_fsfreeze_count > 1) {
497 /*
498 * We don't even need to grab a reference - the first call
499 * to freeze_bdev grab an active reference and only the last
500 * thaw_bdev drops it.
501 */
502 sb = get_super(bdev);
503 if (sb)
504 drop_super(sb);
505 mutex_unlock(&bdev->bd_fsfreeze_mutex);
506 return sb;
507 }
508
509 sb = get_active_super(bdev);
510 if (!sb)
511 goto out;
512 if (sb->s_op->freeze_super)
513 error = sb->s_op->freeze_super(sb);
514 else
515 error = freeze_super(sb);
516 if (error) {
517 deactivate_super(sb);
518 bdev->bd_fsfreeze_count--;
519 mutex_unlock(&bdev->bd_fsfreeze_mutex);
520 return ERR_PTR(error);
521 }
522 deactivate_super(sb);
523 out:
524 sync_blockdev(bdev);
525 mutex_unlock(&bdev->bd_fsfreeze_mutex);
526 return sb; /* thaw_bdev releases s->s_umount */
527 }
528 EXPORT_SYMBOL(freeze_bdev);
529
530 /**
531 * thaw_bdev -- unlock filesystem
532 * @bdev: blockdevice to unlock
533 * @sb: associated superblock
534 *
535 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
536 */
537 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
538 {
539 int error = -EINVAL;
540
541 mutex_lock(&bdev->bd_fsfreeze_mutex);
542 if (!bdev->bd_fsfreeze_count)
543 goto out;
544
545 error = 0;
546 if (--bdev->bd_fsfreeze_count > 0)
547 goto out;
548
549 if (!sb)
550 goto out;
551
552 if (sb->s_op->thaw_super)
553 error = sb->s_op->thaw_super(sb);
554 else
555 error = thaw_super(sb);
556 if (error)
557 bdev->bd_fsfreeze_count++;
558 out:
559 mutex_unlock(&bdev->bd_fsfreeze_mutex);
560 return error;
561 }
562 EXPORT_SYMBOL(thaw_bdev);
563
564 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
565 {
566 return block_write_full_page(page, blkdev_get_block, wbc);
567 }
568
569 static int blkdev_readpage(struct file * file, struct page * page)
570 {
571 return block_read_full_page(page, blkdev_get_block);
572 }
573
574 static int blkdev_readpages(struct file *file, struct address_space *mapping,
575 struct list_head *pages, unsigned nr_pages)
576 {
577 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
578 }
579
580 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
581 loff_t pos, unsigned len, unsigned flags,
582 struct page **pagep, void **fsdata)
583 {
584 return block_write_begin(mapping, pos, len, flags, pagep,
585 blkdev_get_block);
586 }
587
588 static int blkdev_write_end(struct file *file, struct address_space *mapping,
589 loff_t pos, unsigned len, unsigned copied,
590 struct page *page, void *fsdata)
591 {
592 int ret;
593 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
594
595 unlock_page(page);
596 put_page(page);
597
598 return ret;
599 }
600
601 /*
602 * private llseek:
603 * for a block special file file_inode(file)->i_size is zero
604 * so we compute the size by hand (just as in block_read/write above)
605 */
606 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
607 {
608 struct inode *bd_inode = bdev_file_inode(file);
609 loff_t retval;
610
611 inode_lock(bd_inode);
612 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
613 inode_unlock(bd_inode);
614 return retval;
615 }
616
617 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
618 {
619 struct inode *bd_inode = bdev_file_inode(filp);
620 struct block_device *bdev = I_BDEV(bd_inode);
621 int error;
622
623 error = file_write_and_wait_range(filp, start, end);
624 if (error)
625 return error;
626
627 /*
628 * There is no need to serialise calls to blkdev_issue_flush with
629 * i_mutex and doing so causes performance issues with concurrent
630 * O_SYNC writers to a block device.
631 */
632 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
633 if (error == -EOPNOTSUPP)
634 error = 0;
635
636 return error;
637 }
638 EXPORT_SYMBOL(blkdev_fsync);
639
640 /**
641 * bdev_read_page() - Start reading a page from a block device
642 * @bdev: The device to read the page from
643 * @sector: The offset on the device to read the page to (need not be aligned)
644 * @page: The page to read
645 *
646 * On entry, the page should be locked. It will be unlocked when the page
647 * has been read. If the block driver implements rw_page synchronously,
648 * that will be true on exit from this function, but it need not be.
649 *
650 * Errors returned by this function are usually "soft", eg out of memory, or
651 * queue full; callers should try a different route to read this page rather
652 * than propagate an error back up the stack.
653 *
654 * Return: negative errno if an error occurs, 0 if submission was successful.
655 */
656 int bdev_read_page(struct block_device *bdev, sector_t sector,
657 struct page *page)
658 {
659 const struct block_device_operations *ops = bdev->bd_disk->fops;
660 int result = -EOPNOTSUPP;
661
662 if (!ops->rw_page || bdev_get_integrity(bdev))
663 return result;
664
665 result = blk_queue_enter(bdev->bd_queue, false);
666 if (result)
667 return result;
668 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
669 blk_queue_exit(bdev->bd_queue);
670 return result;
671 }
672 EXPORT_SYMBOL_GPL(bdev_read_page);
673
674 /**
675 * bdev_write_page() - Start writing a page to a block device
676 * @bdev: The device to write the page to
677 * @sector: The offset on the device to write the page to (need not be aligned)
678 * @page: The page to write
679 * @wbc: The writeback_control for the write
680 *
681 * On entry, the page should be locked and not currently under writeback.
682 * On exit, if the write started successfully, the page will be unlocked and
683 * under writeback. If the write failed already (eg the driver failed to
684 * queue the page to the device), the page will still be locked. If the
685 * caller is a ->writepage implementation, it will need to unlock the page.
686 *
687 * Errors returned by this function are usually "soft", eg out of memory, or
688 * queue full; callers should try a different route to write this page rather
689 * than propagate an error back up the stack.
690 *
691 * Return: negative errno if an error occurs, 0 if submission was successful.
692 */
693 int bdev_write_page(struct block_device *bdev, sector_t sector,
694 struct page *page, struct writeback_control *wbc)
695 {
696 int result;
697 const struct block_device_operations *ops = bdev->bd_disk->fops;
698
699 if (!ops->rw_page || bdev_get_integrity(bdev))
700 return -EOPNOTSUPP;
701 result = blk_queue_enter(bdev->bd_queue, false);
702 if (result)
703 return result;
704
705 set_page_writeback(page);
706 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
707 if (result)
708 end_page_writeback(page);
709 else
710 unlock_page(page);
711 blk_queue_exit(bdev->bd_queue);
712 return result;
713 }
714 EXPORT_SYMBOL_GPL(bdev_write_page);
715
716 /*
717 * pseudo-fs
718 */
719
720 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
721 static struct kmem_cache * bdev_cachep __read_mostly;
722
723 static struct inode *bdev_alloc_inode(struct super_block *sb)
724 {
725 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
726 if (!ei)
727 return NULL;
728 return &ei->vfs_inode;
729 }
730
731 static void bdev_i_callback(struct rcu_head *head)
732 {
733 struct inode *inode = container_of(head, struct inode, i_rcu);
734 struct bdev_inode *bdi = BDEV_I(inode);
735
736 kmem_cache_free(bdev_cachep, bdi);
737 }
738
739 static void bdev_destroy_inode(struct inode *inode)
740 {
741 call_rcu(&inode->i_rcu, bdev_i_callback);
742 }
743
744 static void init_once(void *foo)
745 {
746 struct bdev_inode *ei = (struct bdev_inode *) foo;
747 struct block_device *bdev = &ei->bdev;
748
749 memset(bdev, 0, sizeof(*bdev));
750 mutex_init(&bdev->bd_mutex);
751 INIT_LIST_HEAD(&bdev->bd_list);
752 #ifdef CONFIG_SYSFS
753 INIT_LIST_HEAD(&bdev->bd_holder_disks);
754 #endif
755 bdev->bd_bdi = &noop_backing_dev_info;
756 inode_init_once(&ei->vfs_inode);
757 /* Initialize mutex for freeze. */
758 mutex_init(&bdev->bd_fsfreeze_mutex);
759 }
760
761 static void bdev_evict_inode(struct inode *inode)
762 {
763 struct block_device *bdev = &BDEV_I(inode)->bdev;
764 truncate_inode_pages_final(&inode->i_data);
765 invalidate_inode_buffers(inode); /* is it needed here? */
766 clear_inode(inode);
767 spin_lock(&bdev_lock);
768 list_del_init(&bdev->bd_list);
769 spin_unlock(&bdev_lock);
770 /* Detach inode from wb early as bdi_put() may free bdi->wb */
771 inode_detach_wb(inode);
772 if (bdev->bd_bdi != &noop_backing_dev_info) {
773 bdi_put(bdev->bd_bdi);
774 bdev->bd_bdi = &noop_backing_dev_info;
775 }
776 }
777
778 static const struct super_operations bdev_sops = {
779 .statfs = simple_statfs,
780 .alloc_inode = bdev_alloc_inode,
781 .destroy_inode = bdev_destroy_inode,
782 .drop_inode = generic_delete_inode,
783 .evict_inode = bdev_evict_inode,
784 };
785
786 static struct dentry *bd_mount(struct file_system_type *fs_type,
787 int flags, const char *dev_name, void *data)
788 {
789 struct dentry *dent;
790 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
791 if (!IS_ERR(dent))
792 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
793 return dent;
794 }
795
796 static struct file_system_type bd_type = {
797 .name = "bdev",
798 .mount = bd_mount,
799 .kill_sb = kill_anon_super,
800 };
801
802 struct super_block *blockdev_superblock __read_mostly;
803 EXPORT_SYMBOL_GPL(blockdev_superblock);
804
805 void __init bdev_cache_init(void)
806 {
807 int err;
808 static struct vfsmount *bd_mnt;
809
810 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
811 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
812 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
813 init_once);
814 err = register_filesystem(&bd_type);
815 if (err)
816 panic("Cannot register bdev pseudo-fs");
817 bd_mnt = kern_mount(&bd_type);
818 if (IS_ERR(bd_mnt))
819 panic("Cannot create bdev pseudo-fs");
820 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
821 }
822
823 /*
824 * Most likely _very_ bad one - but then it's hardly critical for small
825 * /dev and can be fixed when somebody will need really large one.
826 * Keep in mind that it will be fed through icache hash function too.
827 */
828 static inline unsigned long hash(dev_t dev)
829 {
830 return MAJOR(dev)+MINOR(dev);
831 }
832
833 static int bdev_test(struct inode *inode, void *data)
834 {
835 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
836 }
837
838 static int bdev_set(struct inode *inode, void *data)
839 {
840 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
841 return 0;
842 }
843
844 static LIST_HEAD(all_bdevs);
845
846 /*
847 * If there is a bdev inode for this device, unhash it so that it gets evicted
848 * as soon as last inode reference is dropped.
849 */
850 void bdev_unhash_inode(dev_t dev)
851 {
852 struct inode *inode;
853
854 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
855 if (inode) {
856 remove_inode_hash(inode);
857 iput(inode);
858 }
859 }
860
861 struct block_device *bdget(dev_t dev)
862 {
863 struct block_device *bdev;
864 struct inode *inode;
865
866 inode = iget5_locked(blockdev_superblock, hash(dev),
867 bdev_test, bdev_set, &dev);
868
869 if (!inode)
870 return NULL;
871
872 bdev = &BDEV_I(inode)->bdev;
873
874 if (inode->i_state & I_NEW) {
875 bdev->bd_contains = NULL;
876 bdev->bd_super = NULL;
877 bdev->bd_inode = inode;
878 bdev->bd_block_size = i_blocksize(inode);
879 bdev->bd_part_count = 0;
880 bdev->bd_invalidated = 0;
881 inode->i_mode = S_IFBLK;
882 inode->i_rdev = dev;
883 inode->i_bdev = bdev;
884 inode->i_data.a_ops = &def_blk_aops;
885 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
886 spin_lock(&bdev_lock);
887 list_add(&bdev->bd_list, &all_bdevs);
888 spin_unlock(&bdev_lock);
889 unlock_new_inode(inode);
890 }
891 return bdev;
892 }
893
894 EXPORT_SYMBOL(bdget);
895
896 /**
897 * bdgrab -- Grab a reference to an already referenced block device
898 * @bdev: Block device to grab a reference to.
899 */
900 struct block_device *bdgrab(struct block_device *bdev)
901 {
902 ihold(bdev->bd_inode);
903 return bdev;
904 }
905 EXPORT_SYMBOL(bdgrab);
906
907 long nr_blockdev_pages(void)
908 {
909 struct block_device *bdev;
910 long ret = 0;
911 spin_lock(&bdev_lock);
912 list_for_each_entry(bdev, &all_bdevs, bd_list) {
913 ret += bdev->bd_inode->i_mapping->nrpages;
914 }
915 spin_unlock(&bdev_lock);
916 return ret;
917 }
918
919 void bdput(struct block_device *bdev)
920 {
921 iput(bdev->bd_inode);
922 }
923
924 EXPORT_SYMBOL(bdput);
925
926 static struct block_device *bd_acquire(struct inode *inode)
927 {
928 struct block_device *bdev;
929
930 spin_lock(&bdev_lock);
931 bdev = inode->i_bdev;
932 if (bdev && !inode_unhashed(bdev->bd_inode)) {
933 bdgrab(bdev);
934 spin_unlock(&bdev_lock);
935 return bdev;
936 }
937 spin_unlock(&bdev_lock);
938
939 /*
940 * i_bdev references block device inode that was already shut down
941 * (corresponding device got removed). Remove the reference and look
942 * up block device inode again just in case new device got
943 * reestablished under the same device number.
944 */
945 if (bdev)
946 bd_forget(inode);
947
948 bdev = bdget(inode->i_rdev);
949 if (bdev) {
950 spin_lock(&bdev_lock);
951 if (!inode->i_bdev) {
952 /*
953 * We take an additional reference to bd_inode,
954 * and it's released in clear_inode() of inode.
955 * So, we can access it via ->i_mapping always
956 * without igrab().
957 */
958 bdgrab(bdev);
959 inode->i_bdev = bdev;
960 inode->i_mapping = bdev->bd_inode->i_mapping;
961 }
962 spin_unlock(&bdev_lock);
963 }
964 return bdev;
965 }
966
967 /* Call when you free inode */
968
969 void bd_forget(struct inode *inode)
970 {
971 struct block_device *bdev = NULL;
972
973 spin_lock(&bdev_lock);
974 if (!sb_is_blkdev_sb(inode->i_sb))
975 bdev = inode->i_bdev;
976 inode->i_bdev = NULL;
977 inode->i_mapping = &inode->i_data;
978 spin_unlock(&bdev_lock);
979
980 if (bdev)
981 bdput(bdev);
982 }
983
984 /**
985 * bd_may_claim - test whether a block device can be claimed
986 * @bdev: block device of interest
987 * @whole: whole block device containing @bdev, may equal @bdev
988 * @holder: holder trying to claim @bdev
989 *
990 * Test whether @bdev can be claimed by @holder.
991 *
992 * CONTEXT:
993 * spin_lock(&bdev_lock).
994 *
995 * RETURNS:
996 * %true if @bdev can be claimed, %false otherwise.
997 */
998 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
999 void *holder)
1000 {
1001 if (bdev->bd_holder == holder)
1002 return true; /* already a holder */
1003 else if (bdev->bd_holder != NULL)
1004 return false; /* held by someone else */
1005 else if (whole == bdev)
1006 return true; /* is a whole device which isn't held */
1007
1008 else if (whole->bd_holder == bd_may_claim)
1009 return true; /* is a partition of a device that is being partitioned */
1010 else if (whole->bd_holder != NULL)
1011 return false; /* is a partition of a held device */
1012 else
1013 return true; /* is a partition of an un-held device */
1014 }
1015
1016 /**
1017 * bd_prepare_to_claim - prepare to claim a block device
1018 * @bdev: block device of interest
1019 * @whole: the whole device containing @bdev, may equal @bdev
1020 * @holder: holder trying to claim @bdev
1021 *
1022 * Prepare to claim @bdev. This function fails if @bdev is already
1023 * claimed by another holder and waits if another claiming is in
1024 * progress. This function doesn't actually claim. On successful
1025 * return, the caller has ownership of bd_claiming and bd_holder[s].
1026 *
1027 * CONTEXT:
1028 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1029 * it multiple times.
1030 *
1031 * RETURNS:
1032 * 0 if @bdev can be claimed, -EBUSY otherwise.
1033 */
1034 static int bd_prepare_to_claim(struct block_device *bdev,
1035 struct block_device *whole, void *holder)
1036 {
1037 retry:
1038 /* if someone else claimed, fail */
1039 if (!bd_may_claim(bdev, whole, holder))
1040 return -EBUSY;
1041
1042 /* if claiming is already in progress, wait for it to finish */
1043 if (whole->bd_claiming) {
1044 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1045 DEFINE_WAIT(wait);
1046
1047 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1048 spin_unlock(&bdev_lock);
1049 schedule();
1050 finish_wait(wq, &wait);
1051 spin_lock(&bdev_lock);
1052 goto retry;
1053 }
1054
1055 /* yay, all mine */
1056 return 0;
1057 }
1058
1059 /**
1060 * bd_start_claiming - start claiming a block device
1061 * @bdev: block device of interest
1062 * @holder: holder trying to claim @bdev
1063 *
1064 * @bdev is about to be opened exclusively. Check @bdev can be opened
1065 * exclusively and mark that an exclusive open is in progress. Each
1066 * successful call to this function must be matched with a call to
1067 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1068 * fail).
1069 *
1070 * This function is used to gain exclusive access to the block device
1071 * without actually causing other exclusive open attempts to fail. It
1072 * should be used when the open sequence itself requires exclusive
1073 * access but may subsequently fail.
1074 *
1075 * CONTEXT:
1076 * Might sleep.
1077 *
1078 * RETURNS:
1079 * Pointer to the block device containing @bdev on success, ERR_PTR()
1080 * value on failure.
1081 */
1082 static struct block_device *bd_start_claiming(struct block_device *bdev,
1083 void *holder)
1084 {
1085 struct gendisk *disk;
1086 struct block_device *whole;
1087 int partno, err;
1088
1089 might_sleep();
1090
1091 /*
1092 * @bdev might not have been initialized properly yet, look up
1093 * and grab the outer block device the hard way.
1094 */
1095 disk = get_gendisk(bdev->bd_dev, &partno);
1096 if (!disk)
1097 return ERR_PTR(-ENXIO);
1098
1099 /*
1100 * Normally, @bdev should equal what's returned from bdget_disk()
1101 * if partno is 0; however, some drivers (floppy) use multiple
1102 * bdev's for the same physical device and @bdev may be one of the
1103 * aliases. Keep @bdev if partno is 0. This means claimer
1104 * tracking is broken for those devices but it has always been that
1105 * way.
1106 */
1107 if (partno)
1108 whole = bdget_disk(disk, 0);
1109 else
1110 whole = bdgrab(bdev);
1111
1112 module_put(disk->fops->owner);
1113 put_disk(disk);
1114 if (!whole)
1115 return ERR_PTR(-ENOMEM);
1116
1117 /* prepare to claim, if successful, mark claiming in progress */
1118 spin_lock(&bdev_lock);
1119
1120 err = bd_prepare_to_claim(bdev, whole, holder);
1121 if (err == 0) {
1122 whole->bd_claiming = holder;
1123 spin_unlock(&bdev_lock);
1124 return whole;
1125 } else {
1126 spin_unlock(&bdev_lock);
1127 bdput(whole);
1128 return ERR_PTR(err);
1129 }
1130 }
1131
1132 #ifdef CONFIG_SYSFS
1133 struct bd_holder_disk {
1134 struct list_head list;
1135 struct gendisk *disk;
1136 int refcnt;
1137 };
1138
1139 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1140 struct gendisk *disk)
1141 {
1142 struct bd_holder_disk *holder;
1143
1144 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1145 if (holder->disk == disk)
1146 return holder;
1147 return NULL;
1148 }
1149
1150 static int add_symlink(struct kobject *from, struct kobject *to)
1151 {
1152 return sysfs_create_link(from, to, kobject_name(to));
1153 }
1154
1155 static void del_symlink(struct kobject *from, struct kobject *to)
1156 {
1157 sysfs_remove_link(from, kobject_name(to));
1158 }
1159
1160 /**
1161 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1162 * @bdev: the claimed slave bdev
1163 * @disk: the holding disk
1164 *
1165 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1166 *
1167 * This functions creates the following sysfs symlinks.
1168 *
1169 * - from "slaves" directory of the holder @disk to the claimed @bdev
1170 * - from "holders" directory of the @bdev to the holder @disk
1171 *
1172 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1173 * passed to bd_link_disk_holder(), then:
1174 *
1175 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1176 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1177 *
1178 * The caller must have claimed @bdev before calling this function and
1179 * ensure that both @bdev and @disk are valid during the creation and
1180 * lifetime of these symlinks.
1181 *
1182 * CONTEXT:
1183 * Might sleep.
1184 *
1185 * RETURNS:
1186 * 0 on success, -errno on failure.
1187 */
1188 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1189 {
1190 struct bd_holder_disk *holder;
1191 int ret = 0;
1192
1193 mutex_lock(&bdev->bd_mutex);
1194
1195 WARN_ON_ONCE(!bdev->bd_holder);
1196
1197 /* FIXME: remove the following once add_disk() handles errors */
1198 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1199 goto out_unlock;
1200
1201 holder = bd_find_holder_disk(bdev, disk);
1202 if (holder) {
1203 holder->refcnt++;
1204 goto out_unlock;
1205 }
1206
1207 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1208 if (!holder) {
1209 ret = -ENOMEM;
1210 goto out_unlock;
1211 }
1212
1213 INIT_LIST_HEAD(&holder->list);
1214 holder->disk = disk;
1215 holder->refcnt = 1;
1216
1217 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1218 if (ret)
1219 goto out_free;
1220
1221 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1222 if (ret)
1223 goto out_del;
1224 /*
1225 * bdev could be deleted beneath us which would implicitly destroy
1226 * the holder directory. Hold on to it.
1227 */
1228 kobject_get(bdev->bd_part->holder_dir);
1229
1230 list_add(&holder->list, &bdev->bd_holder_disks);
1231 goto out_unlock;
1232
1233 out_del:
1234 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1235 out_free:
1236 kfree(holder);
1237 out_unlock:
1238 mutex_unlock(&bdev->bd_mutex);
1239 return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1242
1243 /**
1244 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1245 * @bdev: the calimed slave bdev
1246 * @disk: the holding disk
1247 *
1248 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1249 *
1250 * CONTEXT:
1251 * Might sleep.
1252 */
1253 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1254 {
1255 struct bd_holder_disk *holder;
1256
1257 mutex_lock(&bdev->bd_mutex);
1258
1259 holder = bd_find_holder_disk(bdev, disk);
1260
1261 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1262 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1263 del_symlink(bdev->bd_part->holder_dir,
1264 &disk_to_dev(disk)->kobj);
1265 kobject_put(bdev->bd_part->holder_dir);
1266 list_del_init(&holder->list);
1267 kfree(holder);
1268 }
1269
1270 mutex_unlock(&bdev->bd_mutex);
1271 }
1272 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1273 #endif
1274
1275 /**
1276 * flush_disk - invalidates all buffer-cache entries on a disk
1277 *
1278 * @bdev: struct block device to be flushed
1279 * @kill_dirty: flag to guide handling of dirty inodes
1280 *
1281 * Invalidates all buffer-cache entries on a disk. It should be called
1282 * when a disk has been changed -- either by a media change or online
1283 * resize.
1284 */
1285 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1286 {
1287 if (__invalidate_device(bdev, kill_dirty)) {
1288 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1289 "resized disk %s\n",
1290 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1291 }
1292
1293 if (!bdev->bd_disk)
1294 return;
1295 if (disk_part_scan_enabled(bdev->bd_disk))
1296 bdev->bd_invalidated = 1;
1297 }
1298
1299 /**
1300 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1301 * @disk: struct gendisk to check
1302 * @bdev: struct bdev to adjust.
1303 *
1304 * This routine checks to see if the bdev size does not match the disk size
1305 * and adjusts it if it differs.
1306 */
1307 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1308 {
1309 loff_t disk_size, bdev_size;
1310
1311 disk_size = (loff_t)get_capacity(disk) << 9;
1312 bdev_size = i_size_read(bdev->bd_inode);
1313 if (disk_size != bdev_size) {
1314 printk(KERN_INFO
1315 "%s: detected capacity change from %lld to %lld\n",
1316 disk->disk_name, bdev_size, disk_size);
1317 i_size_write(bdev->bd_inode, disk_size);
1318 flush_disk(bdev, false);
1319 }
1320 }
1321 EXPORT_SYMBOL(check_disk_size_change);
1322
1323 /**
1324 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1325 * @disk: struct gendisk to be revalidated
1326 *
1327 * This routine is a wrapper for lower-level driver's revalidate_disk
1328 * call-backs. It is used to do common pre and post operations needed
1329 * for all revalidate_disk operations.
1330 */
1331 int revalidate_disk(struct gendisk *disk)
1332 {
1333 struct block_device *bdev;
1334 int ret = 0;
1335
1336 if (disk->fops->revalidate_disk)
1337 ret = disk->fops->revalidate_disk(disk);
1338 bdev = bdget_disk(disk, 0);
1339 if (!bdev)
1340 return ret;
1341
1342 mutex_lock(&bdev->bd_mutex);
1343 check_disk_size_change(disk, bdev);
1344 bdev->bd_invalidated = 0;
1345 mutex_unlock(&bdev->bd_mutex);
1346 bdput(bdev);
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(revalidate_disk);
1350
1351 /*
1352 * This routine checks whether a removable media has been changed,
1353 * and invalidates all buffer-cache-entries in that case. This
1354 * is a relatively slow routine, so we have to try to minimize using
1355 * it. Thus it is called only upon a 'mount' or 'open'. This
1356 * is the best way of combining speed and utility, I think.
1357 * People changing diskettes in the middle of an operation deserve
1358 * to lose :-)
1359 */
1360 int check_disk_change(struct block_device *bdev)
1361 {
1362 struct gendisk *disk = bdev->bd_disk;
1363 const struct block_device_operations *bdops = disk->fops;
1364 unsigned int events;
1365
1366 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1367 DISK_EVENT_EJECT_REQUEST);
1368 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1369 return 0;
1370
1371 flush_disk(bdev, true);
1372 if (bdops->revalidate_disk)
1373 bdops->revalidate_disk(bdev->bd_disk);
1374 return 1;
1375 }
1376
1377 EXPORT_SYMBOL(check_disk_change);
1378
1379 void bd_set_size(struct block_device *bdev, loff_t size)
1380 {
1381 unsigned bsize = bdev_logical_block_size(bdev);
1382
1383 inode_lock(bdev->bd_inode);
1384 i_size_write(bdev->bd_inode, size);
1385 inode_unlock(bdev->bd_inode);
1386 while (bsize < PAGE_SIZE) {
1387 if (size & bsize)
1388 break;
1389 bsize <<= 1;
1390 }
1391 bdev->bd_block_size = bsize;
1392 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1393 }
1394 EXPORT_SYMBOL(bd_set_size);
1395
1396 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1397
1398 /*
1399 * bd_mutex locking:
1400 *
1401 * mutex_lock(part->bd_mutex)
1402 * mutex_lock_nested(whole->bd_mutex, 1)
1403 */
1404
1405 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1406 {
1407 struct gendisk *disk;
1408 struct module *owner;
1409 int ret;
1410 int partno;
1411 int perm = 0;
1412
1413 if (mode & FMODE_READ)
1414 perm |= MAY_READ;
1415 if (mode & FMODE_WRITE)
1416 perm |= MAY_WRITE;
1417 /*
1418 * hooks: /n/, see "layering violations".
1419 */
1420 if (!for_part) {
1421 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1422 if (ret != 0) {
1423 bdput(bdev);
1424 return ret;
1425 }
1426 }
1427
1428 restart:
1429
1430 ret = -ENXIO;
1431 disk = get_gendisk(bdev->bd_dev, &partno);
1432 if (!disk)
1433 goto out;
1434 owner = disk->fops->owner;
1435
1436 disk_block_events(disk);
1437 mutex_lock_nested(&bdev->bd_mutex, for_part);
1438 if (!bdev->bd_openers) {
1439 bdev->bd_disk = disk;
1440 bdev->bd_queue = disk->queue;
1441 bdev->bd_contains = bdev;
1442 bdev->bd_partno = partno;
1443
1444 if (!partno) {
1445 ret = -ENXIO;
1446 bdev->bd_part = disk_get_part(disk, partno);
1447 if (!bdev->bd_part)
1448 goto out_clear;
1449
1450 ret = 0;
1451 if (disk->fops->open) {
1452 ret = disk->fops->open(bdev, mode);
1453 if (ret == -ERESTARTSYS) {
1454 /* Lost a race with 'disk' being
1455 * deleted, try again.
1456 * See md.c
1457 */
1458 disk_put_part(bdev->bd_part);
1459 bdev->bd_part = NULL;
1460 bdev->bd_disk = NULL;
1461 bdev->bd_queue = NULL;
1462 mutex_unlock(&bdev->bd_mutex);
1463 disk_unblock_events(disk);
1464 put_disk(disk);
1465 module_put(owner);
1466 goto restart;
1467 }
1468 }
1469
1470 if (!ret)
1471 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1472
1473 /*
1474 * If the device is invalidated, rescan partition
1475 * if open succeeded or failed with -ENOMEDIUM.
1476 * The latter is necessary to prevent ghost
1477 * partitions on a removed medium.
1478 */
1479 if (bdev->bd_invalidated) {
1480 if (!ret)
1481 rescan_partitions(disk, bdev);
1482 else if (ret == -ENOMEDIUM)
1483 invalidate_partitions(disk, bdev);
1484 }
1485
1486 if (ret)
1487 goto out_clear;
1488 } else {
1489 struct block_device *whole;
1490 whole = bdget_disk(disk, 0);
1491 ret = -ENOMEM;
1492 if (!whole)
1493 goto out_clear;
1494 BUG_ON(for_part);
1495 ret = __blkdev_get(whole, mode, 1);
1496 if (ret)
1497 goto out_clear;
1498 bdev->bd_contains = whole;
1499 bdev->bd_part = disk_get_part(disk, partno);
1500 if (!(disk->flags & GENHD_FL_UP) ||
1501 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1502 ret = -ENXIO;
1503 goto out_clear;
1504 }
1505 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1506 }
1507
1508 if (bdev->bd_bdi == &noop_backing_dev_info)
1509 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1510 } else {
1511 if (bdev->bd_contains == bdev) {
1512 ret = 0;
1513 if (bdev->bd_disk->fops->open)
1514 ret = bdev->bd_disk->fops->open(bdev, mode);
1515 /* the same as first opener case, read comment there */
1516 if (bdev->bd_invalidated) {
1517 if (!ret)
1518 rescan_partitions(bdev->bd_disk, bdev);
1519 else if (ret == -ENOMEDIUM)
1520 invalidate_partitions(bdev->bd_disk, bdev);
1521 }
1522 if (ret)
1523 goto out_unlock_bdev;
1524 }
1525 /* only one opener holds refs to the module and disk */
1526 put_disk(disk);
1527 module_put(owner);
1528 }
1529 bdev->bd_openers++;
1530 if (for_part)
1531 bdev->bd_part_count++;
1532 mutex_unlock(&bdev->bd_mutex);
1533 disk_unblock_events(disk);
1534 return 0;
1535
1536 out_clear:
1537 disk_put_part(bdev->bd_part);
1538 bdev->bd_disk = NULL;
1539 bdev->bd_part = NULL;
1540 bdev->bd_queue = NULL;
1541 if (bdev != bdev->bd_contains)
1542 __blkdev_put(bdev->bd_contains, mode, 1);
1543 bdev->bd_contains = NULL;
1544 out_unlock_bdev:
1545 mutex_unlock(&bdev->bd_mutex);
1546 disk_unblock_events(disk);
1547 put_disk(disk);
1548 module_put(owner);
1549 out:
1550 bdput(bdev);
1551
1552 return ret;
1553 }
1554
1555 /**
1556 * blkdev_get - open a block device
1557 * @bdev: block_device to open
1558 * @mode: FMODE_* mask
1559 * @holder: exclusive holder identifier
1560 *
1561 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1562 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1563 * @holder is invalid. Exclusive opens may nest for the same @holder.
1564 *
1565 * On success, the reference count of @bdev is unchanged. On failure,
1566 * @bdev is put.
1567 *
1568 * CONTEXT:
1569 * Might sleep.
1570 *
1571 * RETURNS:
1572 * 0 on success, -errno on failure.
1573 */
1574 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1575 {
1576 struct block_device *whole = NULL;
1577 int res;
1578
1579 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1580
1581 if ((mode & FMODE_EXCL) && holder) {
1582 whole = bd_start_claiming(bdev, holder);
1583 if (IS_ERR(whole)) {
1584 bdput(bdev);
1585 return PTR_ERR(whole);
1586 }
1587 }
1588
1589 res = __blkdev_get(bdev, mode, 0);
1590
1591 if (whole) {
1592 struct gendisk *disk = whole->bd_disk;
1593
1594 /* finish claiming */
1595 mutex_lock(&bdev->bd_mutex);
1596 spin_lock(&bdev_lock);
1597
1598 if (!res) {
1599 BUG_ON(!bd_may_claim(bdev, whole, holder));
1600 /*
1601 * Note that for a whole device bd_holders
1602 * will be incremented twice, and bd_holder
1603 * will be set to bd_may_claim before being
1604 * set to holder
1605 */
1606 whole->bd_holders++;
1607 whole->bd_holder = bd_may_claim;
1608 bdev->bd_holders++;
1609 bdev->bd_holder = holder;
1610 }
1611
1612 /* tell others that we're done */
1613 BUG_ON(whole->bd_claiming != holder);
1614 whole->bd_claiming = NULL;
1615 wake_up_bit(&whole->bd_claiming, 0);
1616
1617 spin_unlock(&bdev_lock);
1618
1619 /*
1620 * Block event polling for write claims if requested. Any
1621 * write holder makes the write_holder state stick until
1622 * all are released. This is good enough and tracking
1623 * individual writeable reference is too fragile given the
1624 * way @mode is used in blkdev_get/put().
1625 */
1626 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1627 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1628 bdev->bd_write_holder = true;
1629 disk_block_events(disk);
1630 }
1631
1632 mutex_unlock(&bdev->bd_mutex);
1633 bdput(whole);
1634 }
1635
1636 return res;
1637 }
1638 EXPORT_SYMBOL(blkdev_get);
1639
1640 /**
1641 * blkdev_get_by_path - open a block device by name
1642 * @path: path to the block device to open
1643 * @mode: FMODE_* mask
1644 * @holder: exclusive holder identifier
1645 *
1646 * Open the blockdevice described by the device file at @path. @mode
1647 * and @holder are identical to blkdev_get().
1648 *
1649 * On success, the returned block_device has reference count of one.
1650 *
1651 * CONTEXT:
1652 * Might sleep.
1653 *
1654 * RETURNS:
1655 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1656 */
1657 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1658 void *holder)
1659 {
1660 struct block_device *bdev;
1661 int err;
1662
1663 bdev = lookup_bdev(path);
1664 if (IS_ERR(bdev))
1665 return bdev;
1666
1667 err = blkdev_get(bdev, mode, holder);
1668 if (err)
1669 return ERR_PTR(err);
1670
1671 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1672 blkdev_put(bdev, mode);
1673 return ERR_PTR(-EACCES);
1674 }
1675
1676 return bdev;
1677 }
1678 EXPORT_SYMBOL(blkdev_get_by_path);
1679
1680 /**
1681 * blkdev_get_by_dev - open a block device by device number
1682 * @dev: device number of block device to open
1683 * @mode: FMODE_* mask
1684 * @holder: exclusive holder identifier
1685 *
1686 * Open the blockdevice described by device number @dev. @mode and
1687 * @holder are identical to blkdev_get().
1688 *
1689 * Use it ONLY if you really do not have anything better - i.e. when
1690 * you are behind a truly sucky interface and all you are given is a
1691 * device number. _Never_ to be used for internal purposes. If you
1692 * ever need it - reconsider your API.
1693 *
1694 * On success, the returned block_device has reference count of one.
1695 *
1696 * CONTEXT:
1697 * Might sleep.
1698 *
1699 * RETURNS:
1700 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1701 */
1702 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1703 {
1704 struct block_device *bdev;
1705 int err;
1706
1707 bdev = bdget(dev);
1708 if (!bdev)
1709 return ERR_PTR(-ENOMEM);
1710
1711 err = blkdev_get(bdev, mode, holder);
1712 if (err)
1713 return ERR_PTR(err);
1714
1715 return bdev;
1716 }
1717 EXPORT_SYMBOL(blkdev_get_by_dev);
1718
1719 static int blkdev_open(struct inode * inode, struct file * filp)
1720 {
1721 struct block_device *bdev;
1722
1723 /*
1724 * Preserve backwards compatibility and allow large file access
1725 * even if userspace doesn't ask for it explicitly. Some mkfs
1726 * binary needs it. We might want to drop this workaround
1727 * during an unstable branch.
1728 */
1729 filp->f_flags |= O_LARGEFILE;
1730
1731 filp->f_mode |= FMODE_NOWAIT;
1732
1733 if (filp->f_flags & O_NDELAY)
1734 filp->f_mode |= FMODE_NDELAY;
1735 if (filp->f_flags & O_EXCL)
1736 filp->f_mode |= FMODE_EXCL;
1737 if ((filp->f_flags & O_ACCMODE) == 3)
1738 filp->f_mode |= FMODE_WRITE_IOCTL;
1739
1740 bdev = bd_acquire(inode);
1741 if (bdev == NULL)
1742 return -ENOMEM;
1743
1744 filp->f_mapping = bdev->bd_inode->i_mapping;
1745 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1746
1747 return blkdev_get(bdev, filp->f_mode, filp);
1748 }
1749
1750 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1751 {
1752 struct gendisk *disk = bdev->bd_disk;
1753 struct block_device *victim = NULL;
1754
1755 mutex_lock_nested(&bdev->bd_mutex, for_part);
1756 if (for_part)
1757 bdev->bd_part_count--;
1758
1759 if (!--bdev->bd_openers) {
1760 WARN_ON_ONCE(bdev->bd_holders);
1761 sync_blockdev(bdev);
1762 kill_bdev(bdev);
1763
1764 bdev_write_inode(bdev);
1765 }
1766 if (bdev->bd_contains == bdev) {
1767 if (disk->fops->release)
1768 disk->fops->release(disk, mode);
1769 }
1770 if (!bdev->bd_openers) {
1771 struct module *owner = disk->fops->owner;
1772
1773 disk_put_part(bdev->bd_part);
1774 bdev->bd_part = NULL;
1775 bdev->bd_disk = NULL;
1776 if (bdev != bdev->bd_contains)
1777 victim = bdev->bd_contains;
1778 bdev->bd_contains = NULL;
1779
1780 put_disk(disk);
1781 module_put(owner);
1782 }
1783 mutex_unlock(&bdev->bd_mutex);
1784 bdput(bdev);
1785 if (victim)
1786 __blkdev_put(victim, mode, 1);
1787 }
1788
1789 void blkdev_put(struct block_device *bdev, fmode_t mode)
1790 {
1791 mutex_lock(&bdev->bd_mutex);
1792
1793 if (mode & FMODE_EXCL) {
1794 bool bdev_free;
1795
1796 /*
1797 * Release a claim on the device. The holder fields
1798 * are protected with bdev_lock. bd_mutex is to
1799 * synchronize disk_holder unlinking.
1800 */
1801 spin_lock(&bdev_lock);
1802
1803 WARN_ON_ONCE(--bdev->bd_holders < 0);
1804 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1805
1806 /* bd_contains might point to self, check in a separate step */
1807 if ((bdev_free = !bdev->bd_holders))
1808 bdev->bd_holder = NULL;
1809 if (!bdev->bd_contains->bd_holders)
1810 bdev->bd_contains->bd_holder = NULL;
1811
1812 spin_unlock(&bdev_lock);
1813
1814 /*
1815 * If this was the last claim, remove holder link and
1816 * unblock evpoll if it was a write holder.
1817 */
1818 if (bdev_free && bdev->bd_write_holder) {
1819 disk_unblock_events(bdev->bd_disk);
1820 bdev->bd_write_holder = false;
1821 }
1822 }
1823
1824 /*
1825 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1826 * event. This is to ensure detection of media removal commanded
1827 * from userland - e.g. eject(1).
1828 */
1829 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1830
1831 mutex_unlock(&bdev->bd_mutex);
1832
1833 __blkdev_put(bdev, mode, 0);
1834 }
1835 EXPORT_SYMBOL(blkdev_put);
1836
1837 static int blkdev_close(struct inode * inode, struct file * filp)
1838 {
1839 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1840 blkdev_put(bdev, filp->f_mode);
1841 return 0;
1842 }
1843
1844 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1845 {
1846 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1847 fmode_t mode = file->f_mode;
1848
1849 /*
1850 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1851 * to updated it before every ioctl.
1852 */
1853 if (file->f_flags & O_NDELAY)
1854 mode |= FMODE_NDELAY;
1855 else
1856 mode &= ~FMODE_NDELAY;
1857
1858 return blkdev_ioctl(bdev, mode, cmd, arg);
1859 }
1860
1861 /*
1862 * Write data to the block device. Only intended for the block device itself
1863 * and the raw driver which basically is a fake block device.
1864 *
1865 * Does not take i_mutex for the write and thus is not for general purpose
1866 * use.
1867 */
1868 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1869 {
1870 struct file *file = iocb->ki_filp;
1871 struct inode *bd_inode = bdev_file_inode(file);
1872 loff_t size = i_size_read(bd_inode);
1873 struct blk_plug plug;
1874 ssize_t ret;
1875
1876 if (bdev_read_only(I_BDEV(bd_inode)))
1877 return -EPERM;
1878
1879 if (!iov_iter_count(from))
1880 return 0;
1881
1882 if (iocb->ki_pos >= size)
1883 return -ENOSPC;
1884
1885 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1886 return -EOPNOTSUPP;
1887
1888 iov_iter_truncate(from, size - iocb->ki_pos);
1889
1890 blk_start_plug(&plug);
1891 ret = __generic_file_write_iter(iocb, from);
1892 if (ret > 0)
1893 ret = generic_write_sync(iocb, ret);
1894 blk_finish_plug(&plug);
1895 return ret;
1896 }
1897 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1898
1899 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1900 {
1901 struct file *file = iocb->ki_filp;
1902 struct inode *bd_inode = bdev_file_inode(file);
1903 loff_t size = i_size_read(bd_inode);
1904 loff_t pos = iocb->ki_pos;
1905
1906 if (pos >= size)
1907 return 0;
1908
1909 size -= pos;
1910 iov_iter_truncate(to, size);
1911 return generic_file_read_iter(iocb, to);
1912 }
1913 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1914
1915 /*
1916 * Try to release a page associated with block device when the system
1917 * is under memory pressure.
1918 */
1919 static int blkdev_releasepage(struct page *page, gfp_t wait)
1920 {
1921 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1922
1923 if (super && super->s_op->bdev_try_to_free_page)
1924 return super->s_op->bdev_try_to_free_page(super, page, wait);
1925
1926 return try_to_free_buffers(page);
1927 }
1928
1929 static int blkdev_writepages(struct address_space *mapping,
1930 struct writeback_control *wbc)
1931 {
1932 if (dax_mapping(mapping)) {
1933 struct block_device *bdev = I_BDEV(mapping->host);
1934
1935 return dax_writeback_mapping_range(mapping, bdev, wbc);
1936 }
1937 return generic_writepages(mapping, wbc);
1938 }
1939
1940 static const struct address_space_operations def_blk_aops = {
1941 .readpage = blkdev_readpage,
1942 .readpages = blkdev_readpages,
1943 .writepage = blkdev_writepage,
1944 .write_begin = blkdev_write_begin,
1945 .write_end = blkdev_write_end,
1946 .writepages = blkdev_writepages,
1947 .releasepage = blkdev_releasepage,
1948 .direct_IO = blkdev_direct_IO,
1949 .is_dirty_writeback = buffer_check_dirty_writeback,
1950 };
1951
1952 #define BLKDEV_FALLOC_FL_SUPPORTED \
1953 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1954 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1955
1956 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1957 loff_t len)
1958 {
1959 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1960 struct address_space *mapping;
1961 loff_t end = start + len - 1;
1962 loff_t isize;
1963 int error;
1964
1965 /* Fail if we don't recognize the flags. */
1966 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1967 return -EOPNOTSUPP;
1968
1969 /* Don't go off the end of the device. */
1970 isize = i_size_read(bdev->bd_inode);
1971 if (start >= isize)
1972 return -EINVAL;
1973 if (end >= isize) {
1974 if (mode & FALLOC_FL_KEEP_SIZE) {
1975 len = isize - start;
1976 end = start + len - 1;
1977 } else
1978 return -EINVAL;
1979 }
1980
1981 /*
1982 * Don't allow IO that isn't aligned to logical block size.
1983 */
1984 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1985 return -EINVAL;
1986
1987 /* Invalidate the page cache, including dirty pages. */
1988 mapping = bdev->bd_inode->i_mapping;
1989 truncate_inode_pages_range(mapping, start, end);
1990
1991 switch (mode) {
1992 case FALLOC_FL_ZERO_RANGE:
1993 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1994 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1995 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
1996 break;
1997 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1998 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1999 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2000 break;
2001 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2002 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2003 GFP_KERNEL, 0);
2004 break;
2005 default:
2006 return -EOPNOTSUPP;
2007 }
2008 if (error)
2009 return error;
2010
2011 /*
2012 * Invalidate again; if someone wandered in and dirtied a page,
2013 * the caller will be given -EBUSY. The third argument is
2014 * inclusive, so the rounding here is safe.
2015 */
2016 return invalidate_inode_pages2_range(mapping,
2017 start >> PAGE_SHIFT,
2018 end >> PAGE_SHIFT);
2019 }
2020
2021 const struct file_operations def_blk_fops = {
2022 .open = blkdev_open,
2023 .release = blkdev_close,
2024 .llseek = block_llseek,
2025 .read_iter = blkdev_read_iter,
2026 .write_iter = blkdev_write_iter,
2027 .mmap = generic_file_mmap,
2028 .fsync = blkdev_fsync,
2029 .unlocked_ioctl = block_ioctl,
2030 #ifdef CONFIG_COMPAT
2031 .compat_ioctl = compat_blkdev_ioctl,
2032 #endif
2033 .splice_read = generic_file_splice_read,
2034 .splice_write = iter_file_splice_write,
2035 .fallocate = blkdev_fallocate,
2036 };
2037
2038 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2039 {
2040 int res;
2041 mm_segment_t old_fs = get_fs();
2042 set_fs(KERNEL_DS);
2043 res = blkdev_ioctl(bdev, 0, cmd, arg);
2044 set_fs(old_fs);
2045 return res;
2046 }
2047
2048 EXPORT_SYMBOL(ioctl_by_bdev);
2049
2050 /**
2051 * lookup_bdev - lookup a struct block_device by name
2052 * @pathname: special file representing the block device
2053 *
2054 * Get a reference to the blockdevice at @pathname in the current
2055 * namespace if possible and return it. Return ERR_PTR(error)
2056 * otherwise.
2057 */
2058 struct block_device *lookup_bdev(const char *pathname)
2059 {
2060 struct block_device *bdev;
2061 struct inode *inode;
2062 struct path path;
2063 int error;
2064
2065 if (!pathname || !*pathname)
2066 return ERR_PTR(-EINVAL);
2067
2068 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2069 if (error)
2070 return ERR_PTR(error);
2071
2072 inode = d_backing_inode(path.dentry);
2073 error = -ENOTBLK;
2074 if (!S_ISBLK(inode->i_mode))
2075 goto fail;
2076 error = -EACCES;
2077 if (!may_open_dev(&path))
2078 goto fail;
2079 error = -ENOMEM;
2080 bdev = bd_acquire(inode);
2081 if (!bdev)
2082 goto fail;
2083 out:
2084 path_put(&path);
2085 return bdev;
2086 fail:
2087 bdev = ERR_PTR(error);
2088 goto out;
2089 }
2090 EXPORT_SYMBOL(lookup_bdev);
2091
2092 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2093 {
2094 struct super_block *sb = get_super(bdev);
2095 int res = 0;
2096
2097 if (sb) {
2098 /*
2099 * no need to lock the super, get_super holds the
2100 * read mutex so the filesystem cannot go away
2101 * under us (->put_super runs with the write lock
2102 * hold).
2103 */
2104 shrink_dcache_sb(sb);
2105 res = invalidate_inodes(sb, kill_dirty);
2106 drop_super(sb);
2107 }
2108 invalidate_bdev(bdev);
2109 return res;
2110 }
2111 EXPORT_SYMBOL(__invalidate_device);
2112
2113 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2114 {
2115 struct inode *inode, *old_inode = NULL;
2116
2117 spin_lock(&blockdev_superblock->s_inode_list_lock);
2118 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2119 struct address_space *mapping = inode->i_mapping;
2120 struct block_device *bdev;
2121
2122 spin_lock(&inode->i_lock);
2123 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2124 mapping->nrpages == 0) {
2125 spin_unlock(&inode->i_lock);
2126 continue;
2127 }
2128 __iget(inode);
2129 spin_unlock(&inode->i_lock);
2130 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2131 /*
2132 * We hold a reference to 'inode' so it couldn't have been
2133 * removed from s_inodes list while we dropped the
2134 * s_inode_list_lock We cannot iput the inode now as we can
2135 * be holding the last reference and we cannot iput it under
2136 * s_inode_list_lock. So we keep the reference and iput it
2137 * later.
2138 */
2139 iput(old_inode);
2140 old_inode = inode;
2141 bdev = I_BDEV(inode);
2142
2143 mutex_lock(&bdev->bd_mutex);
2144 if (bdev->bd_openers)
2145 func(bdev, arg);
2146 mutex_unlock(&bdev->bd_mutex);
2147
2148 spin_lock(&blockdev_superblock->s_inode_list_lock);
2149 }
2150 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2151 iput(old_inode);
2152 }