]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/block_dev.c
block: support a full bio worth of IO for simplified bdev direct-io
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <asm/uaccess.h>
36 #include "internal.h"
37
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
41 };
42
43 static const struct address_space_operations def_blk_aops;
44
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 {
47 return container_of(inode, struct bdev_inode, vfs_inode);
48 }
49
50 struct block_device *I_BDEV(struct inode *inode)
51 {
52 return &BDEV_I(inode)->bdev;
53 }
54 EXPORT_SYMBOL(I_BDEV);
55
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
57 {
58 struct va_format vaf;
59 va_list args;
60
61 va_start(args, fmt);
62 vaf.fmt = fmt;
63 vaf.va = &args;
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
65 va_end(args);
66 }
67
68 static void bdev_write_inode(struct block_device *bdev)
69 {
70 struct inode *inode = bdev->bd_inode;
71 int ret;
72
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
77 if (ret) {
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
82 }
83 spin_lock(&inode->i_lock);
84 }
85 spin_unlock(&inode->i_lock);
86 }
87
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
90 {
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
92
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
94 return;
95
96 invalidate_bh_lrus();
97 truncate_inode_pages(mapping, 0);
98 }
99 EXPORT_SYMBOL(kill_bdev);
100
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
103 {
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
105
106 if (mapping->nrpages == 0)
107 return;
108
109 invalidate_bh_lrus();
110 lru_add_drain_all(); /* make sure all lru add caches are flushed */
111 invalidate_mapping_pages(mapping, 0, -1);
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
114 */
115 cleancache_invalidate_inode(mapping);
116 }
117 EXPORT_SYMBOL(invalidate_bdev);
118
119 int set_blocksize(struct block_device *bdev, int size)
120 {
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
123 return -EINVAL;
124
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
127 return -EINVAL;
128
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
131 sync_blockdev(bdev);
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
134 kill_bdev(bdev);
135 }
136 return 0;
137 }
138
139 EXPORT_SYMBOL(set_blocksize);
140
141 int sb_set_blocksize(struct super_block *sb, int size)
142 {
143 if (set_blocksize(sb->s_bdev, size))
144 return 0;
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
150 }
151
152 EXPORT_SYMBOL(sb_set_blocksize);
153
154 int sb_min_blocksize(struct super_block *sb, int size)
155 {
156 int minsize = bdev_logical_block_size(sb->s_bdev);
157 if (size < minsize)
158 size = minsize;
159 return sb_set_blocksize(sb, size);
160 }
161
162 EXPORT_SYMBOL(sb_min_blocksize);
163
164 static int
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
167 {
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
171 return 0;
172 }
173
174 static struct inode *bdev_file_inode(struct file *file)
175 {
176 return file->f_mapping->host;
177 }
178
179 #define DIO_INLINE_BIO_VECS 4
180
181 static void blkdev_bio_end_io_simple(struct bio *bio)
182 {
183 struct task_struct *waiter = bio->bi_private;
184
185 WRITE_ONCE(bio->bi_private, NULL);
186 wake_up_process(waiter);
187 }
188
189 static ssize_t
190 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
191 int nr_pages)
192 {
193 struct file *file = iocb->ki_filp;
194 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
195 unsigned blkbits = blksize_bits(bdev_logical_block_size(bdev));
196 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
197 loff_t pos = iocb->ki_pos;
198 bool should_dirty = false;
199 struct bio bio;
200 ssize_t ret;
201 blk_qc_t qc;
202 int i;
203
204 if ((pos | iov_iter_alignment(iter)) & ((1 << blkbits) - 1))
205 return -EINVAL;
206
207 if (nr_pages <= DIO_INLINE_BIO_VECS)
208 vecs = inline_vecs;
209 else {
210 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
211 if (!vecs)
212 return -ENOMEM;
213 }
214
215 bio_init(&bio);
216 bio.bi_max_vecs = nr_pages;
217 bio.bi_io_vec = vecs;
218 bio.bi_bdev = bdev;
219 bio.bi_iter.bi_sector = pos >> blkbits;
220 bio.bi_private = current;
221 bio.bi_end_io = blkdev_bio_end_io_simple;
222
223 ret = bio_iov_iter_get_pages(&bio, iter);
224 if (unlikely(ret))
225 return ret;
226 ret = bio.bi_iter.bi_size;
227
228 if (iov_iter_rw(iter) == READ) {
229 bio_set_op_attrs(&bio, REQ_OP_READ, 0);
230 if (iter_is_iovec(iter))
231 should_dirty = true;
232 } else {
233 bio_set_op_attrs(&bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
234 task_io_account_write(ret);
235 }
236
237 qc = submit_bio(&bio);
238 for (;;) {
239 set_current_state(TASK_UNINTERRUPTIBLE);
240 if (!READ_ONCE(bio.bi_private))
241 break;
242 if (!(iocb->ki_flags & IOCB_HIPRI) ||
243 !blk_mq_poll(bdev_get_queue(bdev), qc))
244 io_schedule();
245 }
246 __set_current_state(TASK_RUNNING);
247
248 bio_for_each_segment_all(bvec, &bio, i) {
249 if (should_dirty && !PageCompound(bvec->bv_page))
250 set_page_dirty_lock(bvec->bv_page);
251 put_page(bvec->bv_page);
252 }
253
254 if (vecs != inline_vecs)
255 kfree(vecs);
256
257 if (unlikely(bio.bi_error))
258 return bio.bi_error;
259 iocb->ki_pos += ret;
260 return ret;
261 }
262
263 static ssize_t
264 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
265 {
266 struct file *file = iocb->ki_filp;
267 struct inode *inode = bdev_file_inode(file);
268 int nr_pages;
269
270 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
271 if (!nr_pages)
272 return 0;
273 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
274 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
275 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
276 blkdev_get_block, NULL, NULL,
277 DIO_SKIP_DIO_COUNT);
278 }
279
280 int __sync_blockdev(struct block_device *bdev, int wait)
281 {
282 if (!bdev)
283 return 0;
284 if (!wait)
285 return filemap_flush(bdev->bd_inode->i_mapping);
286 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
287 }
288
289 /*
290 * Write out and wait upon all the dirty data associated with a block
291 * device via its mapping. Does not take the superblock lock.
292 */
293 int sync_blockdev(struct block_device *bdev)
294 {
295 return __sync_blockdev(bdev, 1);
296 }
297 EXPORT_SYMBOL(sync_blockdev);
298
299 /*
300 * Write out and wait upon all dirty data associated with this
301 * device. Filesystem data as well as the underlying block
302 * device. Takes the superblock lock.
303 */
304 int fsync_bdev(struct block_device *bdev)
305 {
306 struct super_block *sb = get_super(bdev);
307 if (sb) {
308 int res = sync_filesystem(sb);
309 drop_super(sb);
310 return res;
311 }
312 return sync_blockdev(bdev);
313 }
314 EXPORT_SYMBOL(fsync_bdev);
315
316 /**
317 * freeze_bdev -- lock a filesystem and force it into a consistent state
318 * @bdev: blockdevice to lock
319 *
320 * If a superblock is found on this device, we take the s_umount semaphore
321 * on it to make sure nobody unmounts until the snapshot creation is done.
322 * The reference counter (bd_fsfreeze_count) guarantees that only the last
323 * unfreeze process can unfreeze the frozen filesystem actually when multiple
324 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
325 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
326 * actually.
327 */
328 struct super_block *freeze_bdev(struct block_device *bdev)
329 {
330 struct super_block *sb;
331 int error = 0;
332
333 mutex_lock(&bdev->bd_fsfreeze_mutex);
334 if (++bdev->bd_fsfreeze_count > 1) {
335 /*
336 * We don't even need to grab a reference - the first call
337 * to freeze_bdev grab an active reference and only the last
338 * thaw_bdev drops it.
339 */
340 sb = get_super(bdev);
341 if (sb)
342 drop_super(sb);
343 mutex_unlock(&bdev->bd_fsfreeze_mutex);
344 return sb;
345 }
346
347 sb = get_active_super(bdev);
348 if (!sb)
349 goto out;
350 if (sb->s_op->freeze_super)
351 error = sb->s_op->freeze_super(sb);
352 else
353 error = freeze_super(sb);
354 if (error) {
355 deactivate_super(sb);
356 bdev->bd_fsfreeze_count--;
357 mutex_unlock(&bdev->bd_fsfreeze_mutex);
358 return ERR_PTR(error);
359 }
360 deactivate_super(sb);
361 out:
362 sync_blockdev(bdev);
363 mutex_unlock(&bdev->bd_fsfreeze_mutex);
364 return sb; /* thaw_bdev releases s->s_umount */
365 }
366 EXPORT_SYMBOL(freeze_bdev);
367
368 /**
369 * thaw_bdev -- unlock filesystem
370 * @bdev: blockdevice to unlock
371 * @sb: associated superblock
372 *
373 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
374 */
375 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
376 {
377 int error = -EINVAL;
378
379 mutex_lock(&bdev->bd_fsfreeze_mutex);
380 if (!bdev->bd_fsfreeze_count)
381 goto out;
382
383 error = 0;
384 if (--bdev->bd_fsfreeze_count > 0)
385 goto out;
386
387 if (!sb)
388 goto out;
389
390 if (sb->s_op->thaw_super)
391 error = sb->s_op->thaw_super(sb);
392 else
393 error = thaw_super(sb);
394 if (error)
395 bdev->bd_fsfreeze_count++;
396 out:
397 mutex_unlock(&bdev->bd_fsfreeze_mutex);
398 return error;
399 }
400 EXPORT_SYMBOL(thaw_bdev);
401
402 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
403 {
404 return block_write_full_page(page, blkdev_get_block, wbc);
405 }
406
407 static int blkdev_readpage(struct file * file, struct page * page)
408 {
409 return block_read_full_page(page, blkdev_get_block);
410 }
411
412 static int blkdev_readpages(struct file *file, struct address_space *mapping,
413 struct list_head *pages, unsigned nr_pages)
414 {
415 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
416 }
417
418 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
419 loff_t pos, unsigned len, unsigned flags,
420 struct page **pagep, void **fsdata)
421 {
422 return block_write_begin(mapping, pos, len, flags, pagep,
423 blkdev_get_block);
424 }
425
426 static int blkdev_write_end(struct file *file, struct address_space *mapping,
427 loff_t pos, unsigned len, unsigned copied,
428 struct page *page, void *fsdata)
429 {
430 int ret;
431 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
432
433 unlock_page(page);
434 put_page(page);
435
436 return ret;
437 }
438
439 /*
440 * private llseek:
441 * for a block special file file_inode(file)->i_size is zero
442 * so we compute the size by hand (just as in block_read/write above)
443 */
444 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
445 {
446 struct inode *bd_inode = bdev_file_inode(file);
447 loff_t retval;
448
449 inode_lock(bd_inode);
450 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
451 inode_unlock(bd_inode);
452 return retval;
453 }
454
455 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
456 {
457 struct inode *bd_inode = bdev_file_inode(filp);
458 struct block_device *bdev = I_BDEV(bd_inode);
459 int error;
460
461 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
462 if (error)
463 return error;
464
465 /*
466 * There is no need to serialise calls to blkdev_issue_flush with
467 * i_mutex and doing so causes performance issues with concurrent
468 * O_SYNC writers to a block device.
469 */
470 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
471 if (error == -EOPNOTSUPP)
472 error = 0;
473
474 return error;
475 }
476 EXPORT_SYMBOL(blkdev_fsync);
477
478 /**
479 * bdev_read_page() - Start reading a page from a block device
480 * @bdev: The device to read the page from
481 * @sector: The offset on the device to read the page to (need not be aligned)
482 * @page: The page to read
483 *
484 * On entry, the page should be locked. It will be unlocked when the page
485 * has been read. If the block driver implements rw_page synchronously,
486 * that will be true on exit from this function, but it need not be.
487 *
488 * Errors returned by this function are usually "soft", eg out of memory, or
489 * queue full; callers should try a different route to read this page rather
490 * than propagate an error back up the stack.
491 *
492 * Return: negative errno if an error occurs, 0 if submission was successful.
493 */
494 int bdev_read_page(struct block_device *bdev, sector_t sector,
495 struct page *page)
496 {
497 const struct block_device_operations *ops = bdev->bd_disk->fops;
498 int result = -EOPNOTSUPP;
499
500 if (!ops->rw_page || bdev_get_integrity(bdev))
501 return result;
502
503 result = blk_queue_enter(bdev->bd_queue, false);
504 if (result)
505 return result;
506 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
507 blk_queue_exit(bdev->bd_queue);
508 return result;
509 }
510 EXPORT_SYMBOL_GPL(bdev_read_page);
511
512 /**
513 * bdev_write_page() - Start writing a page to a block device
514 * @bdev: The device to write the page to
515 * @sector: The offset on the device to write the page to (need not be aligned)
516 * @page: The page to write
517 * @wbc: The writeback_control for the write
518 *
519 * On entry, the page should be locked and not currently under writeback.
520 * On exit, if the write started successfully, the page will be unlocked and
521 * under writeback. If the write failed already (eg the driver failed to
522 * queue the page to the device), the page will still be locked. If the
523 * caller is a ->writepage implementation, it will need to unlock the page.
524 *
525 * Errors returned by this function are usually "soft", eg out of memory, or
526 * queue full; callers should try a different route to write this page rather
527 * than propagate an error back up the stack.
528 *
529 * Return: negative errno if an error occurs, 0 if submission was successful.
530 */
531 int bdev_write_page(struct block_device *bdev, sector_t sector,
532 struct page *page, struct writeback_control *wbc)
533 {
534 int result;
535 const struct block_device_operations *ops = bdev->bd_disk->fops;
536
537 if (!ops->rw_page || bdev_get_integrity(bdev))
538 return -EOPNOTSUPP;
539 result = blk_queue_enter(bdev->bd_queue, false);
540 if (result)
541 return result;
542
543 set_page_writeback(page);
544 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
545 if (result)
546 end_page_writeback(page);
547 else
548 unlock_page(page);
549 blk_queue_exit(bdev->bd_queue);
550 return result;
551 }
552 EXPORT_SYMBOL_GPL(bdev_write_page);
553
554 /**
555 * bdev_direct_access() - Get the address for directly-accessibly memory
556 * @bdev: The device containing the memory
557 * @dax: control and output parameters for ->direct_access
558 *
559 * If a block device is made up of directly addressable memory, this function
560 * will tell the caller the PFN and the address of the memory. The address
561 * may be directly dereferenced within the kernel without the need to call
562 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
563 * page tables.
564 *
565 * Return: negative errno if an error occurs, otherwise the number of bytes
566 * accessible at this address.
567 */
568 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
569 {
570 sector_t sector = dax->sector;
571 long avail, size = dax->size;
572 const struct block_device_operations *ops = bdev->bd_disk->fops;
573
574 /*
575 * The device driver is allowed to sleep, in order to make the
576 * memory directly accessible.
577 */
578 might_sleep();
579
580 if (size < 0)
581 return size;
582 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
583 return -EOPNOTSUPP;
584 if ((sector + DIV_ROUND_UP(size, 512)) >
585 part_nr_sects_read(bdev->bd_part))
586 return -ERANGE;
587 sector += get_start_sect(bdev);
588 if (sector % (PAGE_SIZE / 512))
589 return -EINVAL;
590 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
591 if (!avail)
592 return -ERANGE;
593 if (avail > 0 && avail & ~PAGE_MASK)
594 return -ENXIO;
595 return min(avail, size);
596 }
597 EXPORT_SYMBOL_GPL(bdev_direct_access);
598
599 /**
600 * bdev_dax_supported() - Check if the device supports dax for filesystem
601 * @sb: The superblock of the device
602 * @blocksize: The block size of the device
603 *
604 * This is a library function for filesystems to check if the block device
605 * can be mounted with dax option.
606 *
607 * Return: negative errno if unsupported, 0 if supported.
608 */
609 int bdev_dax_supported(struct super_block *sb, int blocksize)
610 {
611 struct blk_dax_ctl dax = {
612 .sector = 0,
613 .size = PAGE_SIZE,
614 };
615 int err;
616
617 if (blocksize != PAGE_SIZE) {
618 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
619 return -EINVAL;
620 }
621
622 err = bdev_direct_access(sb->s_bdev, &dax);
623 if (err < 0) {
624 switch (err) {
625 case -EOPNOTSUPP:
626 vfs_msg(sb, KERN_ERR,
627 "error: device does not support dax");
628 break;
629 case -EINVAL:
630 vfs_msg(sb, KERN_ERR,
631 "error: unaligned partition for dax");
632 break;
633 default:
634 vfs_msg(sb, KERN_ERR,
635 "error: dax access failed (%d)", err);
636 }
637 return err;
638 }
639
640 return 0;
641 }
642 EXPORT_SYMBOL_GPL(bdev_dax_supported);
643
644 /**
645 * bdev_dax_capable() - Return if the raw device is capable for dax
646 * @bdev: The device for raw block device access
647 */
648 bool bdev_dax_capable(struct block_device *bdev)
649 {
650 struct blk_dax_ctl dax = {
651 .size = PAGE_SIZE,
652 };
653
654 if (!IS_ENABLED(CONFIG_FS_DAX))
655 return false;
656
657 dax.sector = 0;
658 if (bdev_direct_access(bdev, &dax) < 0)
659 return false;
660
661 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
662 if (bdev_direct_access(bdev, &dax) < 0)
663 return false;
664
665 return true;
666 }
667
668 /*
669 * pseudo-fs
670 */
671
672 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
673 static struct kmem_cache * bdev_cachep __read_mostly;
674
675 static struct inode *bdev_alloc_inode(struct super_block *sb)
676 {
677 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
678 if (!ei)
679 return NULL;
680 return &ei->vfs_inode;
681 }
682
683 static void bdev_i_callback(struct rcu_head *head)
684 {
685 struct inode *inode = container_of(head, struct inode, i_rcu);
686 struct bdev_inode *bdi = BDEV_I(inode);
687
688 kmem_cache_free(bdev_cachep, bdi);
689 }
690
691 static void bdev_destroy_inode(struct inode *inode)
692 {
693 call_rcu(&inode->i_rcu, bdev_i_callback);
694 }
695
696 static void init_once(void *foo)
697 {
698 struct bdev_inode *ei = (struct bdev_inode *) foo;
699 struct block_device *bdev = &ei->bdev;
700
701 memset(bdev, 0, sizeof(*bdev));
702 mutex_init(&bdev->bd_mutex);
703 INIT_LIST_HEAD(&bdev->bd_list);
704 #ifdef CONFIG_SYSFS
705 INIT_LIST_HEAD(&bdev->bd_holder_disks);
706 #endif
707 inode_init_once(&ei->vfs_inode);
708 /* Initialize mutex for freeze. */
709 mutex_init(&bdev->bd_fsfreeze_mutex);
710 }
711
712 static void bdev_evict_inode(struct inode *inode)
713 {
714 struct block_device *bdev = &BDEV_I(inode)->bdev;
715 truncate_inode_pages_final(&inode->i_data);
716 invalidate_inode_buffers(inode); /* is it needed here? */
717 clear_inode(inode);
718 spin_lock(&bdev_lock);
719 list_del_init(&bdev->bd_list);
720 spin_unlock(&bdev_lock);
721 }
722
723 static const struct super_operations bdev_sops = {
724 .statfs = simple_statfs,
725 .alloc_inode = bdev_alloc_inode,
726 .destroy_inode = bdev_destroy_inode,
727 .drop_inode = generic_delete_inode,
728 .evict_inode = bdev_evict_inode,
729 };
730
731 static struct dentry *bd_mount(struct file_system_type *fs_type,
732 int flags, const char *dev_name, void *data)
733 {
734 struct dentry *dent;
735 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
736 if (!IS_ERR(dent))
737 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
738 return dent;
739 }
740
741 static struct file_system_type bd_type = {
742 .name = "bdev",
743 .mount = bd_mount,
744 .kill_sb = kill_anon_super,
745 };
746
747 struct super_block *blockdev_superblock __read_mostly;
748 EXPORT_SYMBOL_GPL(blockdev_superblock);
749
750 void __init bdev_cache_init(void)
751 {
752 int err;
753 static struct vfsmount *bd_mnt;
754
755 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
756 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
757 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
758 init_once);
759 err = register_filesystem(&bd_type);
760 if (err)
761 panic("Cannot register bdev pseudo-fs");
762 bd_mnt = kern_mount(&bd_type);
763 if (IS_ERR(bd_mnt))
764 panic("Cannot create bdev pseudo-fs");
765 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
766 }
767
768 /*
769 * Most likely _very_ bad one - but then it's hardly critical for small
770 * /dev and can be fixed when somebody will need really large one.
771 * Keep in mind that it will be fed through icache hash function too.
772 */
773 static inline unsigned long hash(dev_t dev)
774 {
775 return MAJOR(dev)+MINOR(dev);
776 }
777
778 static int bdev_test(struct inode *inode, void *data)
779 {
780 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
781 }
782
783 static int bdev_set(struct inode *inode, void *data)
784 {
785 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
786 return 0;
787 }
788
789 static LIST_HEAD(all_bdevs);
790
791 struct block_device *bdget(dev_t dev)
792 {
793 struct block_device *bdev;
794 struct inode *inode;
795
796 inode = iget5_locked(blockdev_superblock, hash(dev),
797 bdev_test, bdev_set, &dev);
798
799 if (!inode)
800 return NULL;
801
802 bdev = &BDEV_I(inode)->bdev;
803
804 if (inode->i_state & I_NEW) {
805 bdev->bd_contains = NULL;
806 bdev->bd_super = NULL;
807 bdev->bd_inode = inode;
808 bdev->bd_block_size = (1 << inode->i_blkbits);
809 bdev->bd_part_count = 0;
810 bdev->bd_invalidated = 0;
811 inode->i_mode = S_IFBLK;
812 inode->i_rdev = dev;
813 inode->i_bdev = bdev;
814 inode->i_data.a_ops = &def_blk_aops;
815 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
816 spin_lock(&bdev_lock);
817 list_add(&bdev->bd_list, &all_bdevs);
818 spin_unlock(&bdev_lock);
819 unlock_new_inode(inode);
820 }
821 return bdev;
822 }
823
824 EXPORT_SYMBOL(bdget);
825
826 /**
827 * bdgrab -- Grab a reference to an already referenced block device
828 * @bdev: Block device to grab a reference to.
829 */
830 struct block_device *bdgrab(struct block_device *bdev)
831 {
832 ihold(bdev->bd_inode);
833 return bdev;
834 }
835 EXPORT_SYMBOL(bdgrab);
836
837 long nr_blockdev_pages(void)
838 {
839 struct block_device *bdev;
840 long ret = 0;
841 spin_lock(&bdev_lock);
842 list_for_each_entry(bdev, &all_bdevs, bd_list) {
843 ret += bdev->bd_inode->i_mapping->nrpages;
844 }
845 spin_unlock(&bdev_lock);
846 return ret;
847 }
848
849 void bdput(struct block_device *bdev)
850 {
851 iput(bdev->bd_inode);
852 }
853
854 EXPORT_SYMBOL(bdput);
855
856 static struct block_device *bd_acquire(struct inode *inode)
857 {
858 struct block_device *bdev;
859
860 spin_lock(&bdev_lock);
861 bdev = inode->i_bdev;
862 if (bdev) {
863 bdgrab(bdev);
864 spin_unlock(&bdev_lock);
865 return bdev;
866 }
867 spin_unlock(&bdev_lock);
868
869 bdev = bdget(inode->i_rdev);
870 if (bdev) {
871 spin_lock(&bdev_lock);
872 if (!inode->i_bdev) {
873 /*
874 * We take an additional reference to bd_inode,
875 * and it's released in clear_inode() of inode.
876 * So, we can access it via ->i_mapping always
877 * without igrab().
878 */
879 bdgrab(bdev);
880 inode->i_bdev = bdev;
881 inode->i_mapping = bdev->bd_inode->i_mapping;
882 }
883 spin_unlock(&bdev_lock);
884 }
885 return bdev;
886 }
887
888 /* Call when you free inode */
889
890 void bd_forget(struct inode *inode)
891 {
892 struct block_device *bdev = NULL;
893
894 spin_lock(&bdev_lock);
895 if (!sb_is_blkdev_sb(inode->i_sb))
896 bdev = inode->i_bdev;
897 inode->i_bdev = NULL;
898 inode->i_mapping = &inode->i_data;
899 spin_unlock(&bdev_lock);
900
901 if (bdev)
902 bdput(bdev);
903 }
904
905 /**
906 * bd_may_claim - test whether a block device can be claimed
907 * @bdev: block device of interest
908 * @whole: whole block device containing @bdev, may equal @bdev
909 * @holder: holder trying to claim @bdev
910 *
911 * Test whether @bdev can be claimed by @holder.
912 *
913 * CONTEXT:
914 * spin_lock(&bdev_lock).
915 *
916 * RETURNS:
917 * %true if @bdev can be claimed, %false otherwise.
918 */
919 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
920 void *holder)
921 {
922 if (bdev->bd_holder == holder)
923 return true; /* already a holder */
924 else if (bdev->bd_holder != NULL)
925 return false; /* held by someone else */
926 else if (bdev->bd_contains == bdev)
927 return true; /* is a whole device which isn't held */
928
929 else if (whole->bd_holder == bd_may_claim)
930 return true; /* is a partition of a device that is being partitioned */
931 else if (whole->bd_holder != NULL)
932 return false; /* is a partition of a held device */
933 else
934 return true; /* is a partition of an un-held device */
935 }
936
937 /**
938 * bd_prepare_to_claim - prepare to claim a block device
939 * @bdev: block device of interest
940 * @whole: the whole device containing @bdev, may equal @bdev
941 * @holder: holder trying to claim @bdev
942 *
943 * Prepare to claim @bdev. This function fails if @bdev is already
944 * claimed by another holder and waits if another claiming is in
945 * progress. This function doesn't actually claim. On successful
946 * return, the caller has ownership of bd_claiming and bd_holder[s].
947 *
948 * CONTEXT:
949 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
950 * it multiple times.
951 *
952 * RETURNS:
953 * 0 if @bdev can be claimed, -EBUSY otherwise.
954 */
955 static int bd_prepare_to_claim(struct block_device *bdev,
956 struct block_device *whole, void *holder)
957 {
958 retry:
959 /* if someone else claimed, fail */
960 if (!bd_may_claim(bdev, whole, holder))
961 return -EBUSY;
962
963 /* if claiming is already in progress, wait for it to finish */
964 if (whole->bd_claiming) {
965 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
966 DEFINE_WAIT(wait);
967
968 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
969 spin_unlock(&bdev_lock);
970 schedule();
971 finish_wait(wq, &wait);
972 spin_lock(&bdev_lock);
973 goto retry;
974 }
975
976 /* yay, all mine */
977 return 0;
978 }
979
980 /**
981 * bd_start_claiming - start claiming a block device
982 * @bdev: block device of interest
983 * @holder: holder trying to claim @bdev
984 *
985 * @bdev is about to be opened exclusively. Check @bdev can be opened
986 * exclusively and mark that an exclusive open is in progress. Each
987 * successful call to this function must be matched with a call to
988 * either bd_finish_claiming() or bd_abort_claiming() (which do not
989 * fail).
990 *
991 * This function is used to gain exclusive access to the block device
992 * without actually causing other exclusive open attempts to fail. It
993 * should be used when the open sequence itself requires exclusive
994 * access but may subsequently fail.
995 *
996 * CONTEXT:
997 * Might sleep.
998 *
999 * RETURNS:
1000 * Pointer to the block device containing @bdev on success, ERR_PTR()
1001 * value on failure.
1002 */
1003 static struct block_device *bd_start_claiming(struct block_device *bdev,
1004 void *holder)
1005 {
1006 struct gendisk *disk;
1007 struct block_device *whole;
1008 int partno, err;
1009
1010 might_sleep();
1011
1012 /*
1013 * @bdev might not have been initialized properly yet, look up
1014 * and grab the outer block device the hard way.
1015 */
1016 disk = get_gendisk(bdev->bd_dev, &partno);
1017 if (!disk)
1018 return ERR_PTR(-ENXIO);
1019
1020 /*
1021 * Normally, @bdev should equal what's returned from bdget_disk()
1022 * if partno is 0; however, some drivers (floppy) use multiple
1023 * bdev's for the same physical device and @bdev may be one of the
1024 * aliases. Keep @bdev if partno is 0. This means claimer
1025 * tracking is broken for those devices but it has always been that
1026 * way.
1027 */
1028 if (partno)
1029 whole = bdget_disk(disk, 0);
1030 else
1031 whole = bdgrab(bdev);
1032
1033 module_put(disk->fops->owner);
1034 put_disk(disk);
1035 if (!whole)
1036 return ERR_PTR(-ENOMEM);
1037
1038 /* prepare to claim, if successful, mark claiming in progress */
1039 spin_lock(&bdev_lock);
1040
1041 err = bd_prepare_to_claim(bdev, whole, holder);
1042 if (err == 0) {
1043 whole->bd_claiming = holder;
1044 spin_unlock(&bdev_lock);
1045 return whole;
1046 } else {
1047 spin_unlock(&bdev_lock);
1048 bdput(whole);
1049 return ERR_PTR(err);
1050 }
1051 }
1052
1053 #ifdef CONFIG_SYSFS
1054 struct bd_holder_disk {
1055 struct list_head list;
1056 struct gendisk *disk;
1057 int refcnt;
1058 };
1059
1060 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1061 struct gendisk *disk)
1062 {
1063 struct bd_holder_disk *holder;
1064
1065 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1066 if (holder->disk == disk)
1067 return holder;
1068 return NULL;
1069 }
1070
1071 static int add_symlink(struct kobject *from, struct kobject *to)
1072 {
1073 return sysfs_create_link(from, to, kobject_name(to));
1074 }
1075
1076 static void del_symlink(struct kobject *from, struct kobject *to)
1077 {
1078 sysfs_remove_link(from, kobject_name(to));
1079 }
1080
1081 /**
1082 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1083 * @bdev: the claimed slave bdev
1084 * @disk: the holding disk
1085 *
1086 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1087 *
1088 * This functions creates the following sysfs symlinks.
1089 *
1090 * - from "slaves" directory of the holder @disk to the claimed @bdev
1091 * - from "holders" directory of the @bdev to the holder @disk
1092 *
1093 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1094 * passed to bd_link_disk_holder(), then:
1095 *
1096 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1097 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1098 *
1099 * The caller must have claimed @bdev before calling this function and
1100 * ensure that both @bdev and @disk are valid during the creation and
1101 * lifetime of these symlinks.
1102 *
1103 * CONTEXT:
1104 * Might sleep.
1105 *
1106 * RETURNS:
1107 * 0 on success, -errno on failure.
1108 */
1109 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1110 {
1111 struct bd_holder_disk *holder;
1112 int ret = 0;
1113
1114 mutex_lock(&bdev->bd_mutex);
1115
1116 WARN_ON_ONCE(!bdev->bd_holder);
1117
1118 /* FIXME: remove the following once add_disk() handles errors */
1119 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1120 goto out_unlock;
1121
1122 holder = bd_find_holder_disk(bdev, disk);
1123 if (holder) {
1124 holder->refcnt++;
1125 goto out_unlock;
1126 }
1127
1128 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1129 if (!holder) {
1130 ret = -ENOMEM;
1131 goto out_unlock;
1132 }
1133
1134 INIT_LIST_HEAD(&holder->list);
1135 holder->disk = disk;
1136 holder->refcnt = 1;
1137
1138 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1139 if (ret)
1140 goto out_free;
1141
1142 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1143 if (ret)
1144 goto out_del;
1145 /*
1146 * bdev could be deleted beneath us which would implicitly destroy
1147 * the holder directory. Hold on to it.
1148 */
1149 kobject_get(bdev->bd_part->holder_dir);
1150
1151 list_add(&holder->list, &bdev->bd_holder_disks);
1152 goto out_unlock;
1153
1154 out_del:
1155 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1156 out_free:
1157 kfree(holder);
1158 out_unlock:
1159 mutex_unlock(&bdev->bd_mutex);
1160 return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1163
1164 /**
1165 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1166 * @bdev: the calimed slave bdev
1167 * @disk: the holding disk
1168 *
1169 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1170 *
1171 * CONTEXT:
1172 * Might sleep.
1173 */
1174 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1175 {
1176 struct bd_holder_disk *holder;
1177
1178 mutex_lock(&bdev->bd_mutex);
1179
1180 holder = bd_find_holder_disk(bdev, disk);
1181
1182 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1183 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1184 del_symlink(bdev->bd_part->holder_dir,
1185 &disk_to_dev(disk)->kobj);
1186 kobject_put(bdev->bd_part->holder_dir);
1187 list_del_init(&holder->list);
1188 kfree(holder);
1189 }
1190
1191 mutex_unlock(&bdev->bd_mutex);
1192 }
1193 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1194 #endif
1195
1196 /**
1197 * flush_disk - invalidates all buffer-cache entries on a disk
1198 *
1199 * @bdev: struct block device to be flushed
1200 * @kill_dirty: flag to guide handling of dirty inodes
1201 *
1202 * Invalidates all buffer-cache entries on a disk. It should be called
1203 * when a disk has been changed -- either by a media change or online
1204 * resize.
1205 */
1206 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1207 {
1208 if (__invalidate_device(bdev, kill_dirty)) {
1209 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1210 "resized disk %s\n",
1211 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1212 }
1213
1214 if (!bdev->bd_disk)
1215 return;
1216 if (disk_part_scan_enabled(bdev->bd_disk))
1217 bdev->bd_invalidated = 1;
1218 }
1219
1220 /**
1221 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1222 * @disk: struct gendisk to check
1223 * @bdev: struct bdev to adjust.
1224 *
1225 * This routine checks to see if the bdev size does not match the disk size
1226 * and adjusts it if it differs.
1227 */
1228 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1229 {
1230 loff_t disk_size, bdev_size;
1231
1232 disk_size = (loff_t)get_capacity(disk) << 9;
1233 bdev_size = i_size_read(bdev->bd_inode);
1234 if (disk_size != bdev_size) {
1235 printk(KERN_INFO
1236 "%s: detected capacity change from %lld to %lld\n",
1237 disk->disk_name, bdev_size, disk_size);
1238 i_size_write(bdev->bd_inode, disk_size);
1239 flush_disk(bdev, false);
1240 }
1241 }
1242 EXPORT_SYMBOL(check_disk_size_change);
1243
1244 /**
1245 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1246 * @disk: struct gendisk to be revalidated
1247 *
1248 * This routine is a wrapper for lower-level driver's revalidate_disk
1249 * call-backs. It is used to do common pre and post operations needed
1250 * for all revalidate_disk operations.
1251 */
1252 int revalidate_disk(struct gendisk *disk)
1253 {
1254 struct block_device *bdev;
1255 int ret = 0;
1256
1257 if (disk->fops->revalidate_disk)
1258 ret = disk->fops->revalidate_disk(disk);
1259 blk_integrity_revalidate(disk);
1260 bdev = bdget_disk(disk, 0);
1261 if (!bdev)
1262 return ret;
1263
1264 mutex_lock(&bdev->bd_mutex);
1265 check_disk_size_change(disk, bdev);
1266 bdev->bd_invalidated = 0;
1267 mutex_unlock(&bdev->bd_mutex);
1268 bdput(bdev);
1269 return ret;
1270 }
1271 EXPORT_SYMBOL(revalidate_disk);
1272
1273 /*
1274 * This routine checks whether a removable media has been changed,
1275 * and invalidates all buffer-cache-entries in that case. This
1276 * is a relatively slow routine, so we have to try to minimize using
1277 * it. Thus it is called only upon a 'mount' or 'open'. This
1278 * is the best way of combining speed and utility, I think.
1279 * People changing diskettes in the middle of an operation deserve
1280 * to lose :-)
1281 */
1282 int check_disk_change(struct block_device *bdev)
1283 {
1284 struct gendisk *disk = bdev->bd_disk;
1285 const struct block_device_operations *bdops = disk->fops;
1286 unsigned int events;
1287
1288 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1289 DISK_EVENT_EJECT_REQUEST);
1290 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1291 return 0;
1292
1293 flush_disk(bdev, true);
1294 if (bdops->revalidate_disk)
1295 bdops->revalidate_disk(bdev->bd_disk);
1296 return 1;
1297 }
1298
1299 EXPORT_SYMBOL(check_disk_change);
1300
1301 void bd_set_size(struct block_device *bdev, loff_t size)
1302 {
1303 unsigned bsize = bdev_logical_block_size(bdev);
1304
1305 inode_lock(bdev->bd_inode);
1306 i_size_write(bdev->bd_inode, size);
1307 inode_unlock(bdev->bd_inode);
1308 while (bsize < PAGE_SIZE) {
1309 if (size & bsize)
1310 break;
1311 bsize <<= 1;
1312 }
1313 bdev->bd_block_size = bsize;
1314 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1315 }
1316 EXPORT_SYMBOL(bd_set_size);
1317
1318 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1319
1320 /*
1321 * bd_mutex locking:
1322 *
1323 * mutex_lock(part->bd_mutex)
1324 * mutex_lock_nested(whole->bd_mutex, 1)
1325 */
1326
1327 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1328 {
1329 struct gendisk *disk;
1330 struct module *owner;
1331 int ret;
1332 int partno;
1333 int perm = 0;
1334
1335 if (mode & FMODE_READ)
1336 perm |= MAY_READ;
1337 if (mode & FMODE_WRITE)
1338 perm |= MAY_WRITE;
1339 /*
1340 * hooks: /n/, see "layering violations".
1341 */
1342 if (!for_part) {
1343 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1344 if (ret != 0) {
1345 bdput(bdev);
1346 return ret;
1347 }
1348 }
1349
1350 restart:
1351
1352 ret = -ENXIO;
1353 disk = get_gendisk(bdev->bd_dev, &partno);
1354 if (!disk)
1355 goto out;
1356 owner = disk->fops->owner;
1357
1358 disk_block_events(disk);
1359 mutex_lock_nested(&bdev->bd_mutex, for_part);
1360 if (!bdev->bd_openers) {
1361 bdev->bd_disk = disk;
1362 bdev->bd_queue = disk->queue;
1363 bdev->bd_contains = bdev;
1364
1365 if (!partno) {
1366 ret = -ENXIO;
1367 bdev->bd_part = disk_get_part(disk, partno);
1368 if (!bdev->bd_part)
1369 goto out_clear;
1370
1371 ret = 0;
1372 if (disk->fops->open) {
1373 ret = disk->fops->open(bdev, mode);
1374 if (ret == -ERESTARTSYS) {
1375 /* Lost a race with 'disk' being
1376 * deleted, try again.
1377 * See md.c
1378 */
1379 disk_put_part(bdev->bd_part);
1380 bdev->bd_part = NULL;
1381 bdev->bd_disk = NULL;
1382 bdev->bd_queue = NULL;
1383 mutex_unlock(&bdev->bd_mutex);
1384 disk_unblock_events(disk);
1385 put_disk(disk);
1386 module_put(owner);
1387 goto restart;
1388 }
1389 }
1390
1391 if (!ret)
1392 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1393
1394 /*
1395 * If the device is invalidated, rescan partition
1396 * if open succeeded or failed with -ENOMEDIUM.
1397 * The latter is necessary to prevent ghost
1398 * partitions on a removed medium.
1399 */
1400 if (bdev->bd_invalidated) {
1401 if (!ret)
1402 rescan_partitions(disk, bdev);
1403 else if (ret == -ENOMEDIUM)
1404 invalidate_partitions(disk, bdev);
1405 }
1406
1407 if (ret)
1408 goto out_clear;
1409 } else {
1410 struct block_device *whole;
1411 whole = bdget_disk(disk, 0);
1412 ret = -ENOMEM;
1413 if (!whole)
1414 goto out_clear;
1415 BUG_ON(for_part);
1416 ret = __blkdev_get(whole, mode, 1);
1417 if (ret)
1418 goto out_clear;
1419 bdev->bd_contains = whole;
1420 bdev->bd_part = disk_get_part(disk, partno);
1421 if (!(disk->flags & GENHD_FL_UP) ||
1422 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1423 ret = -ENXIO;
1424 goto out_clear;
1425 }
1426 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1427 }
1428 } else {
1429 if (bdev->bd_contains == bdev) {
1430 ret = 0;
1431 if (bdev->bd_disk->fops->open)
1432 ret = bdev->bd_disk->fops->open(bdev, mode);
1433 /* the same as first opener case, read comment there */
1434 if (bdev->bd_invalidated) {
1435 if (!ret)
1436 rescan_partitions(bdev->bd_disk, bdev);
1437 else if (ret == -ENOMEDIUM)
1438 invalidate_partitions(bdev->bd_disk, bdev);
1439 }
1440 if (ret)
1441 goto out_unlock_bdev;
1442 }
1443 /* only one opener holds refs to the module and disk */
1444 put_disk(disk);
1445 module_put(owner);
1446 }
1447 bdev->bd_openers++;
1448 if (for_part)
1449 bdev->bd_part_count++;
1450 mutex_unlock(&bdev->bd_mutex);
1451 disk_unblock_events(disk);
1452 return 0;
1453
1454 out_clear:
1455 disk_put_part(bdev->bd_part);
1456 bdev->bd_disk = NULL;
1457 bdev->bd_part = NULL;
1458 bdev->bd_queue = NULL;
1459 if (bdev != bdev->bd_contains)
1460 __blkdev_put(bdev->bd_contains, mode, 1);
1461 bdev->bd_contains = NULL;
1462 out_unlock_bdev:
1463 mutex_unlock(&bdev->bd_mutex);
1464 disk_unblock_events(disk);
1465 put_disk(disk);
1466 module_put(owner);
1467 out:
1468 bdput(bdev);
1469
1470 return ret;
1471 }
1472
1473 /**
1474 * blkdev_get - open a block device
1475 * @bdev: block_device to open
1476 * @mode: FMODE_* mask
1477 * @holder: exclusive holder identifier
1478 *
1479 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1480 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1481 * @holder is invalid. Exclusive opens may nest for the same @holder.
1482 *
1483 * On success, the reference count of @bdev is unchanged. On failure,
1484 * @bdev is put.
1485 *
1486 * CONTEXT:
1487 * Might sleep.
1488 *
1489 * RETURNS:
1490 * 0 on success, -errno on failure.
1491 */
1492 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1493 {
1494 struct block_device *whole = NULL;
1495 int res;
1496
1497 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1498
1499 if ((mode & FMODE_EXCL) && holder) {
1500 whole = bd_start_claiming(bdev, holder);
1501 if (IS_ERR(whole)) {
1502 bdput(bdev);
1503 return PTR_ERR(whole);
1504 }
1505 }
1506
1507 res = __blkdev_get(bdev, mode, 0);
1508
1509 if (whole) {
1510 struct gendisk *disk = whole->bd_disk;
1511
1512 /* finish claiming */
1513 mutex_lock(&bdev->bd_mutex);
1514 spin_lock(&bdev_lock);
1515
1516 if (!res) {
1517 BUG_ON(!bd_may_claim(bdev, whole, holder));
1518 /*
1519 * Note that for a whole device bd_holders
1520 * will be incremented twice, and bd_holder
1521 * will be set to bd_may_claim before being
1522 * set to holder
1523 */
1524 whole->bd_holders++;
1525 whole->bd_holder = bd_may_claim;
1526 bdev->bd_holders++;
1527 bdev->bd_holder = holder;
1528 }
1529
1530 /* tell others that we're done */
1531 BUG_ON(whole->bd_claiming != holder);
1532 whole->bd_claiming = NULL;
1533 wake_up_bit(&whole->bd_claiming, 0);
1534
1535 spin_unlock(&bdev_lock);
1536
1537 /*
1538 * Block event polling for write claims if requested. Any
1539 * write holder makes the write_holder state stick until
1540 * all are released. This is good enough and tracking
1541 * individual writeable reference is too fragile given the
1542 * way @mode is used in blkdev_get/put().
1543 */
1544 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1545 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1546 bdev->bd_write_holder = true;
1547 disk_block_events(disk);
1548 }
1549
1550 mutex_unlock(&bdev->bd_mutex);
1551 bdput(whole);
1552 }
1553
1554 return res;
1555 }
1556 EXPORT_SYMBOL(blkdev_get);
1557
1558 /**
1559 * blkdev_get_by_path - open a block device by name
1560 * @path: path to the block device to open
1561 * @mode: FMODE_* mask
1562 * @holder: exclusive holder identifier
1563 *
1564 * Open the blockdevice described by the device file at @path. @mode
1565 * and @holder are identical to blkdev_get().
1566 *
1567 * On success, the returned block_device has reference count of one.
1568 *
1569 * CONTEXT:
1570 * Might sleep.
1571 *
1572 * RETURNS:
1573 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1574 */
1575 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1576 void *holder)
1577 {
1578 struct block_device *bdev;
1579 int err;
1580
1581 bdev = lookup_bdev(path);
1582 if (IS_ERR(bdev))
1583 return bdev;
1584
1585 err = blkdev_get(bdev, mode, holder);
1586 if (err)
1587 return ERR_PTR(err);
1588
1589 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1590 blkdev_put(bdev, mode);
1591 return ERR_PTR(-EACCES);
1592 }
1593
1594 return bdev;
1595 }
1596 EXPORT_SYMBOL(blkdev_get_by_path);
1597
1598 /**
1599 * blkdev_get_by_dev - open a block device by device number
1600 * @dev: device number of block device to open
1601 * @mode: FMODE_* mask
1602 * @holder: exclusive holder identifier
1603 *
1604 * Open the blockdevice described by device number @dev. @mode and
1605 * @holder are identical to blkdev_get().
1606 *
1607 * Use it ONLY if you really do not have anything better - i.e. when
1608 * you are behind a truly sucky interface and all you are given is a
1609 * device number. _Never_ to be used for internal purposes. If you
1610 * ever need it - reconsider your API.
1611 *
1612 * On success, the returned block_device has reference count of one.
1613 *
1614 * CONTEXT:
1615 * Might sleep.
1616 *
1617 * RETURNS:
1618 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1619 */
1620 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1621 {
1622 struct block_device *bdev;
1623 int err;
1624
1625 bdev = bdget(dev);
1626 if (!bdev)
1627 return ERR_PTR(-ENOMEM);
1628
1629 err = blkdev_get(bdev, mode, holder);
1630 if (err)
1631 return ERR_PTR(err);
1632
1633 return bdev;
1634 }
1635 EXPORT_SYMBOL(blkdev_get_by_dev);
1636
1637 static int blkdev_open(struct inode * inode, struct file * filp)
1638 {
1639 struct block_device *bdev;
1640
1641 /*
1642 * Preserve backwards compatibility and allow large file access
1643 * even if userspace doesn't ask for it explicitly. Some mkfs
1644 * binary needs it. We might want to drop this workaround
1645 * during an unstable branch.
1646 */
1647 filp->f_flags |= O_LARGEFILE;
1648
1649 if (filp->f_flags & O_NDELAY)
1650 filp->f_mode |= FMODE_NDELAY;
1651 if (filp->f_flags & O_EXCL)
1652 filp->f_mode |= FMODE_EXCL;
1653 if ((filp->f_flags & O_ACCMODE) == 3)
1654 filp->f_mode |= FMODE_WRITE_IOCTL;
1655
1656 bdev = bd_acquire(inode);
1657 if (bdev == NULL)
1658 return -ENOMEM;
1659
1660 filp->f_mapping = bdev->bd_inode->i_mapping;
1661
1662 return blkdev_get(bdev, filp->f_mode, filp);
1663 }
1664
1665 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1666 {
1667 struct gendisk *disk = bdev->bd_disk;
1668 struct block_device *victim = NULL;
1669
1670 mutex_lock_nested(&bdev->bd_mutex, for_part);
1671 if (for_part)
1672 bdev->bd_part_count--;
1673
1674 if (!--bdev->bd_openers) {
1675 WARN_ON_ONCE(bdev->bd_holders);
1676 sync_blockdev(bdev);
1677 kill_bdev(bdev);
1678
1679 bdev_write_inode(bdev);
1680 /*
1681 * Detaching bdev inode from its wb in __destroy_inode()
1682 * is too late: the queue which embeds its bdi (along with
1683 * root wb) can be gone as soon as we put_disk() below.
1684 */
1685 inode_detach_wb(bdev->bd_inode);
1686 }
1687 if (bdev->bd_contains == bdev) {
1688 if (disk->fops->release)
1689 disk->fops->release(disk, mode);
1690 }
1691 if (!bdev->bd_openers) {
1692 struct module *owner = disk->fops->owner;
1693
1694 disk_put_part(bdev->bd_part);
1695 bdev->bd_part = NULL;
1696 bdev->bd_disk = NULL;
1697 if (bdev != bdev->bd_contains)
1698 victim = bdev->bd_contains;
1699 bdev->bd_contains = NULL;
1700
1701 put_disk(disk);
1702 module_put(owner);
1703 }
1704 mutex_unlock(&bdev->bd_mutex);
1705 bdput(bdev);
1706 if (victim)
1707 __blkdev_put(victim, mode, 1);
1708 }
1709
1710 void blkdev_put(struct block_device *bdev, fmode_t mode)
1711 {
1712 mutex_lock(&bdev->bd_mutex);
1713
1714 if (mode & FMODE_EXCL) {
1715 bool bdev_free;
1716
1717 /*
1718 * Release a claim on the device. The holder fields
1719 * are protected with bdev_lock. bd_mutex is to
1720 * synchronize disk_holder unlinking.
1721 */
1722 spin_lock(&bdev_lock);
1723
1724 WARN_ON_ONCE(--bdev->bd_holders < 0);
1725 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1726
1727 /* bd_contains might point to self, check in a separate step */
1728 if ((bdev_free = !bdev->bd_holders))
1729 bdev->bd_holder = NULL;
1730 if (!bdev->bd_contains->bd_holders)
1731 bdev->bd_contains->bd_holder = NULL;
1732
1733 spin_unlock(&bdev_lock);
1734
1735 /*
1736 * If this was the last claim, remove holder link and
1737 * unblock evpoll if it was a write holder.
1738 */
1739 if (bdev_free && bdev->bd_write_holder) {
1740 disk_unblock_events(bdev->bd_disk);
1741 bdev->bd_write_holder = false;
1742 }
1743 }
1744
1745 /*
1746 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1747 * event. This is to ensure detection of media removal commanded
1748 * from userland - e.g. eject(1).
1749 */
1750 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1751
1752 mutex_unlock(&bdev->bd_mutex);
1753
1754 __blkdev_put(bdev, mode, 0);
1755 }
1756 EXPORT_SYMBOL(blkdev_put);
1757
1758 static int blkdev_close(struct inode * inode, struct file * filp)
1759 {
1760 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1761 blkdev_put(bdev, filp->f_mode);
1762 return 0;
1763 }
1764
1765 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1766 {
1767 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1768 fmode_t mode = file->f_mode;
1769
1770 /*
1771 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1772 * to updated it before every ioctl.
1773 */
1774 if (file->f_flags & O_NDELAY)
1775 mode |= FMODE_NDELAY;
1776 else
1777 mode &= ~FMODE_NDELAY;
1778
1779 return blkdev_ioctl(bdev, mode, cmd, arg);
1780 }
1781
1782 /*
1783 * Write data to the block device. Only intended for the block device itself
1784 * and the raw driver which basically is a fake block device.
1785 *
1786 * Does not take i_mutex for the write and thus is not for general purpose
1787 * use.
1788 */
1789 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1790 {
1791 struct file *file = iocb->ki_filp;
1792 struct inode *bd_inode = bdev_file_inode(file);
1793 loff_t size = i_size_read(bd_inode);
1794 struct blk_plug plug;
1795 ssize_t ret;
1796
1797 if (bdev_read_only(I_BDEV(bd_inode)))
1798 return -EPERM;
1799
1800 if (!iov_iter_count(from))
1801 return 0;
1802
1803 if (iocb->ki_pos >= size)
1804 return -ENOSPC;
1805
1806 iov_iter_truncate(from, size - iocb->ki_pos);
1807
1808 blk_start_plug(&plug);
1809 ret = __generic_file_write_iter(iocb, from);
1810 if (ret > 0)
1811 ret = generic_write_sync(iocb, ret);
1812 blk_finish_plug(&plug);
1813 return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1816
1817 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1818 {
1819 struct file *file = iocb->ki_filp;
1820 struct inode *bd_inode = bdev_file_inode(file);
1821 loff_t size = i_size_read(bd_inode);
1822 loff_t pos = iocb->ki_pos;
1823
1824 if (pos >= size)
1825 return 0;
1826
1827 size -= pos;
1828 iov_iter_truncate(to, size);
1829 return generic_file_read_iter(iocb, to);
1830 }
1831 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1832
1833 /*
1834 * Try to release a page associated with block device when the system
1835 * is under memory pressure.
1836 */
1837 static int blkdev_releasepage(struct page *page, gfp_t wait)
1838 {
1839 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1840
1841 if (super && super->s_op->bdev_try_to_free_page)
1842 return super->s_op->bdev_try_to_free_page(super, page, wait);
1843
1844 return try_to_free_buffers(page);
1845 }
1846
1847 static int blkdev_writepages(struct address_space *mapping,
1848 struct writeback_control *wbc)
1849 {
1850 if (dax_mapping(mapping)) {
1851 struct block_device *bdev = I_BDEV(mapping->host);
1852
1853 return dax_writeback_mapping_range(mapping, bdev, wbc);
1854 }
1855 return generic_writepages(mapping, wbc);
1856 }
1857
1858 static const struct address_space_operations def_blk_aops = {
1859 .readpage = blkdev_readpage,
1860 .readpages = blkdev_readpages,
1861 .writepage = blkdev_writepage,
1862 .write_begin = blkdev_write_begin,
1863 .write_end = blkdev_write_end,
1864 .writepages = blkdev_writepages,
1865 .releasepage = blkdev_releasepage,
1866 .direct_IO = blkdev_direct_IO,
1867 .is_dirty_writeback = buffer_check_dirty_writeback,
1868 };
1869
1870 #define BLKDEV_FALLOC_FL_SUPPORTED \
1871 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1872 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1873
1874 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1875 loff_t len)
1876 {
1877 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1878 struct request_queue *q = bdev_get_queue(bdev);
1879 struct address_space *mapping;
1880 loff_t end = start + len - 1;
1881 loff_t isize;
1882 int error;
1883
1884 /* Fail if we don't recognize the flags. */
1885 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1886 return -EOPNOTSUPP;
1887
1888 /* Don't go off the end of the device. */
1889 isize = i_size_read(bdev->bd_inode);
1890 if (start >= isize)
1891 return -EINVAL;
1892 if (end >= isize) {
1893 if (mode & FALLOC_FL_KEEP_SIZE) {
1894 len = isize - start;
1895 end = start + len - 1;
1896 } else
1897 return -EINVAL;
1898 }
1899
1900 /*
1901 * Don't allow IO that isn't aligned to logical block size.
1902 */
1903 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1904 return -EINVAL;
1905
1906 /* Invalidate the page cache, including dirty pages. */
1907 mapping = bdev->bd_inode->i_mapping;
1908 truncate_inode_pages_range(mapping, start, end);
1909
1910 switch (mode) {
1911 case FALLOC_FL_ZERO_RANGE:
1912 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1913 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1914 GFP_KERNEL, false);
1915 break;
1916 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1917 /* Only punch if the device can do zeroing discard. */
1918 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
1919 return -EOPNOTSUPP;
1920 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1921 GFP_KERNEL, 0);
1922 break;
1923 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1924 if (!blk_queue_discard(q))
1925 return -EOPNOTSUPP;
1926 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1927 GFP_KERNEL, 0);
1928 break;
1929 default:
1930 return -EOPNOTSUPP;
1931 }
1932 if (error)
1933 return error;
1934
1935 /*
1936 * Invalidate again; if someone wandered in and dirtied a page,
1937 * the caller will be given -EBUSY. The third argument is
1938 * inclusive, so the rounding here is safe.
1939 */
1940 return invalidate_inode_pages2_range(mapping,
1941 start >> PAGE_SHIFT,
1942 end >> PAGE_SHIFT);
1943 }
1944
1945 const struct file_operations def_blk_fops = {
1946 .open = blkdev_open,
1947 .release = blkdev_close,
1948 .llseek = block_llseek,
1949 .read_iter = blkdev_read_iter,
1950 .write_iter = blkdev_write_iter,
1951 .mmap = generic_file_mmap,
1952 .fsync = blkdev_fsync,
1953 .unlocked_ioctl = block_ioctl,
1954 #ifdef CONFIG_COMPAT
1955 .compat_ioctl = compat_blkdev_ioctl,
1956 #endif
1957 .splice_read = generic_file_splice_read,
1958 .splice_write = iter_file_splice_write,
1959 .fallocate = blkdev_fallocate,
1960 };
1961
1962 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1963 {
1964 int res;
1965 mm_segment_t old_fs = get_fs();
1966 set_fs(KERNEL_DS);
1967 res = blkdev_ioctl(bdev, 0, cmd, arg);
1968 set_fs(old_fs);
1969 return res;
1970 }
1971
1972 EXPORT_SYMBOL(ioctl_by_bdev);
1973
1974 /**
1975 * lookup_bdev - lookup a struct block_device by name
1976 * @pathname: special file representing the block device
1977 *
1978 * Get a reference to the blockdevice at @pathname in the current
1979 * namespace if possible and return it. Return ERR_PTR(error)
1980 * otherwise.
1981 */
1982 struct block_device *lookup_bdev(const char *pathname)
1983 {
1984 struct block_device *bdev;
1985 struct inode *inode;
1986 struct path path;
1987 int error;
1988
1989 if (!pathname || !*pathname)
1990 return ERR_PTR(-EINVAL);
1991
1992 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1993 if (error)
1994 return ERR_PTR(error);
1995
1996 inode = d_backing_inode(path.dentry);
1997 error = -ENOTBLK;
1998 if (!S_ISBLK(inode->i_mode))
1999 goto fail;
2000 error = -EACCES;
2001 if (!may_open_dev(&path))
2002 goto fail;
2003 error = -ENOMEM;
2004 bdev = bd_acquire(inode);
2005 if (!bdev)
2006 goto fail;
2007 out:
2008 path_put(&path);
2009 return bdev;
2010 fail:
2011 bdev = ERR_PTR(error);
2012 goto out;
2013 }
2014 EXPORT_SYMBOL(lookup_bdev);
2015
2016 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2017 {
2018 struct super_block *sb = get_super(bdev);
2019 int res = 0;
2020
2021 if (sb) {
2022 /*
2023 * no need to lock the super, get_super holds the
2024 * read mutex so the filesystem cannot go away
2025 * under us (->put_super runs with the write lock
2026 * hold).
2027 */
2028 shrink_dcache_sb(sb);
2029 res = invalidate_inodes(sb, kill_dirty);
2030 drop_super(sb);
2031 }
2032 invalidate_bdev(bdev);
2033 return res;
2034 }
2035 EXPORT_SYMBOL(__invalidate_device);
2036
2037 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2038 {
2039 struct inode *inode, *old_inode = NULL;
2040
2041 spin_lock(&blockdev_superblock->s_inode_list_lock);
2042 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2043 struct address_space *mapping = inode->i_mapping;
2044
2045 spin_lock(&inode->i_lock);
2046 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2047 mapping->nrpages == 0) {
2048 spin_unlock(&inode->i_lock);
2049 continue;
2050 }
2051 __iget(inode);
2052 spin_unlock(&inode->i_lock);
2053 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2054 /*
2055 * We hold a reference to 'inode' so it couldn't have been
2056 * removed from s_inodes list while we dropped the
2057 * s_inode_list_lock We cannot iput the inode now as we can
2058 * be holding the last reference and we cannot iput it under
2059 * s_inode_list_lock. So we keep the reference and iput it
2060 * later.
2061 */
2062 iput(old_inode);
2063 old_inode = inode;
2064
2065 func(I_BDEV(inode), arg);
2066
2067 spin_lock(&blockdev_superblock->s_inode_list_lock);
2068 }
2069 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2070 iput(old_inode);
2071 }