]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/block_dev.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static ssize_t
160 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
161 {
162 struct file *file = iocb->ki_filp;
163 struct inode *inode = file->f_mapping->host;
164
165 if (IS_DAX(inode))
166 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
167 NULL, DIO_SKIP_DIO_COUNT);
168 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
169 blkdev_get_block, NULL, NULL,
170 DIO_SKIP_DIO_COUNT);
171 }
172
173 int __sync_blockdev(struct block_device *bdev, int wait)
174 {
175 if (!bdev)
176 return 0;
177 if (!wait)
178 return filemap_flush(bdev->bd_inode->i_mapping);
179 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
180 }
181
182 /*
183 * Write out and wait upon all the dirty data associated with a block
184 * device via its mapping. Does not take the superblock lock.
185 */
186 int sync_blockdev(struct block_device *bdev)
187 {
188 return __sync_blockdev(bdev, 1);
189 }
190 EXPORT_SYMBOL(sync_blockdev);
191
192 /*
193 * Write out and wait upon all dirty data associated with this
194 * device. Filesystem data as well as the underlying block
195 * device. Takes the superblock lock.
196 */
197 int fsync_bdev(struct block_device *bdev)
198 {
199 struct super_block *sb = get_super(bdev);
200 if (sb) {
201 int res = sync_filesystem(sb);
202 drop_super(sb);
203 return res;
204 }
205 return sync_blockdev(bdev);
206 }
207 EXPORT_SYMBOL(fsync_bdev);
208
209 /**
210 * freeze_bdev -- lock a filesystem and force it into a consistent state
211 * @bdev: blockdevice to lock
212 *
213 * If a superblock is found on this device, we take the s_umount semaphore
214 * on it to make sure nobody unmounts until the snapshot creation is done.
215 * The reference counter (bd_fsfreeze_count) guarantees that only the last
216 * unfreeze process can unfreeze the frozen filesystem actually when multiple
217 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
219 * actually.
220 */
221 struct super_block *freeze_bdev(struct block_device *bdev)
222 {
223 struct super_block *sb;
224 int error = 0;
225
226 mutex_lock(&bdev->bd_fsfreeze_mutex);
227 if (++bdev->bd_fsfreeze_count > 1) {
228 /*
229 * We don't even need to grab a reference - the first call
230 * to freeze_bdev grab an active reference and only the last
231 * thaw_bdev drops it.
232 */
233 sb = get_super(bdev);
234 drop_super(sb);
235 mutex_unlock(&bdev->bd_fsfreeze_mutex);
236 return sb;
237 }
238
239 sb = get_active_super(bdev);
240 if (!sb)
241 goto out;
242 if (sb->s_op->freeze_super)
243 error = sb->s_op->freeze_super(sb);
244 else
245 error = freeze_super(sb);
246 if (error) {
247 deactivate_super(sb);
248 bdev->bd_fsfreeze_count--;
249 mutex_unlock(&bdev->bd_fsfreeze_mutex);
250 return ERR_PTR(error);
251 }
252 deactivate_super(sb);
253 out:
254 sync_blockdev(bdev);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
256 return sb; /* thaw_bdev releases s->s_umount */
257 }
258 EXPORT_SYMBOL(freeze_bdev);
259
260 /**
261 * thaw_bdev -- unlock filesystem
262 * @bdev: blockdevice to unlock
263 * @sb: associated superblock
264 *
265 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
266 */
267 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
268 {
269 int error = -EINVAL;
270
271 mutex_lock(&bdev->bd_fsfreeze_mutex);
272 if (!bdev->bd_fsfreeze_count)
273 goto out;
274
275 error = 0;
276 if (--bdev->bd_fsfreeze_count > 0)
277 goto out;
278
279 if (!sb)
280 goto out;
281
282 if (sb->s_op->thaw_super)
283 error = sb->s_op->thaw_super(sb);
284 else
285 error = thaw_super(sb);
286 if (error) {
287 bdev->bd_fsfreeze_count++;
288 mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 return error;
290 }
291 out:
292 mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 return 0;
294 }
295 EXPORT_SYMBOL(thaw_bdev);
296
297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298 {
299 return block_write_full_page(page, blkdev_get_block, wbc);
300 }
301
302 static int blkdev_readpage(struct file * file, struct page * page)
303 {
304 return block_read_full_page(page, blkdev_get_block);
305 }
306
307 static int blkdev_readpages(struct file *file, struct address_space *mapping,
308 struct list_head *pages, unsigned nr_pages)
309 {
310 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
311 }
312
313 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314 loff_t pos, unsigned len, unsigned flags,
315 struct page **pagep, void **fsdata)
316 {
317 return block_write_begin(mapping, pos, len, flags, pagep,
318 blkdev_get_block);
319 }
320
321 static int blkdev_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
324 {
325 int ret;
326 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
327
328 unlock_page(page);
329 page_cache_release(page);
330
331 return ret;
332 }
333
334 /*
335 * private llseek:
336 * for a block special file file_inode(file)->i_size is zero
337 * so we compute the size by hand (just as in block_read/write above)
338 */
339 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
340 {
341 struct inode *bd_inode = file->f_mapping->host;
342 loff_t retval;
343
344 mutex_lock(&bd_inode->i_mutex);
345 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346 mutex_unlock(&bd_inode->i_mutex);
347 return retval;
348 }
349
350 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
351 {
352 struct inode *bd_inode = filp->f_mapping->host;
353 struct block_device *bdev = I_BDEV(bd_inode);
354 int error;
355
356 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357 if (error)
358 return error;
359
360 /*
361 * There is no need to serialise calls to blkdev_issue_flush with
362 * i_mutex and doing so causes performance issues with concurrent
363 * O_SYNC writers to a block device.
364 */
365 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366 if (error == -EOPNOTSUPP)
367 error = 0;
368
369 return error;
370 }
371 EXPORT_SYMBOL(blkdev_fsync);
372
373 /**
374 * bdev_read_page() - Start reading a page from a block device
375 * @bdev: The device to read the page from
376 * @sector: The offset on the device to read the page to (need not be aligned)
377 * @page: The page to read
378 *
379 * On entry, the page should be locked. It will be unlocked when the page
380 * has been read. If the block driver implements rw_page synchronously,
381 * that will be true on exit from this function, but it need not be.
382 *
383 * Errors returned by this function are usually "soft", eg out of memory, or
384 * queue full; callers should try a different route to read this page rather
385 * than propagate an error back up the stack.
386 *
387 * Return: negative errno if an error occurs, 0 if submission was successful.
388 */
389 int bdev_read_page(struct block_device *bdev, sector_t sector,
390 struct page *page)
391 {
392 const struct block_device_operations *ops = bdev->bd_disk->fops;
393 if (!ops->rw_page || bdev_get_integrity(bdev))
394 return -EOPNOTSUPP;
395 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
396 }
397 EXPORT_SYMBOL_GPL(bdev_read_page);
398
399 /**
400 * bdev_write_page() - Start writing a page to a block device
401 * @bdev: The device to write the page to
402 * @sector: The offset on the device to write the page to (need not be aligned)
403 * @page: The page to write
404 * @wbc: The writeback_control for the write
405 *
406 * On entry, the page should be locked and not currently under writeback.
407 * On exit, if the write started successfully, the page will be unlocked and
408 * under writeback. If the write failed already (eg the driver failed to
409 * queue the page to the device), the page will still be locked. If the
410 * caller is a ->writepage implementation, it will need to unlock the page.
411 *
412 * Errors returned by this function are usually "soft", eg out of memory, or
413 * queue full; callers should try a different route to write this page rather
414 * than propagate an error back up the stack.
415 *
416 * Return: negative errno if an error occurs, 0 if submission was successful.
417 */
418 int bdev_write_page(struct block_device *bdev, sector_t sector,
419 struct page *page, struct writeback_control *wbc)
420 {
421 int result;
422 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
423 const struct block_device_operations *ops = bdev->bd_disk->fops;
424 if (!ops->rw_page || bdev_get_integrity(bdev))
425 return -EOPNOTSUPP;
426 set_page_writeback(page);
427 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
428 if (result)
429 end_page_writeback(page);
430 else
431 unlock_page(page);
432 return result;
433 }
434 EXPORT_SYMBOL_GPL(bdev_write_page);
435
436 /**
437 * bdev_direct_access() - Get the address for directly-accessibly memory
438 * @bdev: The device containing the memory
439 * @sector: The offset within the device
440 * @addr: Where to put the address of the memory
441 * @pfn: The Page Frame Number for the memory
442 * @size: The number of bytes requested
443 *
444 * If a block device is made up of directly addressable memory, this function
445 * will tell the caller the PFN and the address of the memory. The address
446 * may be directly dereferenced within the kernel without the need to call
447 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
448 * page tables.
449 *
450 * Return: negative errno if an error occurs, otherwise the number of bytes
451 * accessible at this address.
452 */
453 long bdev_direct_access(struct block_device *bdev, sector_t sector,
454 void __pmem **addr, unsigned long *pfn, long size)
455 {
456 long avail;
457 const struct block_device_operations *ops = bdev->bd_disk->fops;
458
459 /*
460 * The device driver is allowed to sleep, in order to make the
461 * memory directly accessible.
462 */
463 might_sleep();
464
465 if (size < 0)
466 return size;
467 if (!ops->direct_access)
468 return -EOPNOTSUPP;
469 if ((sector + DIV_ROUND_UP(size, 512)) >
470 part_nr_sects_read(bdev->bd_part))
471 return -ERANGE;
472 sector += get_start_sect(bdev);
473 if (sector % (PAGE_SIZE / 512))
474 return -EINVAL;
475 avail = ops->direct_access(bdev, sector, addr, pfn);
476 if (!avail)
477 return -ERANGE;
478 return min(avail, size);
479 }
480 EXPORT_SYMBOL_GPL(bdev_direct_access);
481
482 /*
483 * pseudo-fs
484 */
485
486 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
487 static struct kmem_cache * bdev_cachep __read_mostly;
488
489 static struct inode *bdev_alloc_inode(struct super_block *sb)
490 {
491 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
492 if (!ei)
493 return NULL;
494 return &ei->vfs_inode;
495 }
496
497 static void bdev_i_callback(struct rcu_head *head)
498 {
499 struct inode *inode = container_of(head, struct inode, i_rcu);
500 struct bdev_inode *bdi = BDEV_I(inode);
501
502 kmem_cache_free(bdev_cachep, bdi);
503 }
504
505 static void bdev_destroy_inode(struct inode *inode)
506 {
507 call_rcu(&inode->i_rcu, bdev_i_callback);
508 }
509
510 static void init_once(void *foo)
511 {
512 struct bdev_inode *ei = (struct bdev_inode *) foo;
513 struct block_device *bdev = &ei->bdev;
514
515 memset(bdev, 0, sizeof(*bdev));
516 mutex_init(&bdev->bd_mutex);
517 INIT_LIST_HEAD(&bdev->bd_inodes);
518 INIT_LIST_HEAD(&bdev->bd_list);
519 #ifdef CONFIG_SYSFS
520 INIT_LIST_HEAD(&bdev->bd_holder_disks);
521 #endif
522 inode_init_once(&ei->vfs_inode);
523 /* Initialize mutex for freeze. */
524 mutex_init(&bdev->bd_fsfreeze_mutex);
525 }
526
527 static inline void __bd_forget(struct inode *inode)
528 {
529 list_del_init(&inode->i_devices);
530 inode->i_bdev = NULL;
531 inode->i_mapping = &inode->i_data;
532 }
533
534 static void bdev_evict_inode(struct inode *inode)
535 {
536 struct block_device *bdev = &BDEV_I(inode)->bdev;
537 struct list_head *p;
538 truncate_inode_pages_final(&inode->i_data);
539 invalidate_inode_buffers(inode); /* is it needed here? */
540 clear_inode(inode);
541 spin_lock(&bdev_lock);
542 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
543 __bd_forget(list_entry(p, struct inode, i_devices));
544 }
545 list_del_init(&bdev->bd_list);
546 spin_unlock(&bdev_lock);
547 }
548
549 static const struct super_operations bdev_sops = {
550 .statfs = simple_statfs,
551 .alloc_inode = bdev_alloc_inode,
552 .destroy_inode = bdev_destroy_inode,
553 .drop_inode = generic_delete_inode,
554 .evict_inode = bdev_evict_inode,
555 };
556
557 static struct dentry *bd_mount(struct file_system_type *fs_type,
558 int flags, const char *dev_name, void *data)
559 {
560 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
561 }
562
563 static struct file_system_type bd_type = {
564 .name = "bdev",
565 .mount = bd_mount,
566 .kill_sb = kill_anon_super,
567 };
568
569 struct super_block *blockdev_superblock __read_mostly;
570 EXPORT_SYMBOL_GPL(blockdev_superblock);
571
572 void __init bdev_cache_init(void)
573 {
574 int err;
575 static struct vfsmount *bd_mnt;
576
577 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
578 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
579 SLAB_MEM_SPREAD|SLAB_PANIC),
580 init_once);
581 err = register_filesystem(&bd_type);
582 if (err)
583 panic("Cannot register bdev pseudo-fs");
584 bd_mnt = kern_mount(&bd_type);
585 if (IS_ERR(bd_mnt))
586 panic("Cannot create bdev pseudo-fs");
587 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
588 }
589
590 /*
591 * Most likely _very_ bad one - but then it's hardly critical for small
592 * /dev and can be fixed when somebody will need really large one.
593 * Keep in mind that it will be fed through icache hash function too.
594 */
595 static inline unsigned long hash(dev_t dev)
596 {
597 return MAJOR(dev)+MINOR(dev);
598 }
599
600 static int bdev_test(struct inode *inode, void *data)
601 {
602 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
603 }
604
605 static int bdev_set(struct inode *inode, void *data)
606 {
607 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
608 return 0;
609 }
610
611 static LIST_HEAD(all_bdevs);
612
613 struct block_device *bdget(dev_t dev)
614 {
615 struct block_device *bdev;
616 struct inode *inode;
617
618 inode = iget5_locked(blockdev_superblock, hash(dev),
619 bdev_test, bdev_set, &dev);
620
621 if (!inode)
622 return NULL;
623
624 bdev = &BDEV_I(inode)->bdev;
625
626 if (inode->i_state & I_NEW) {
627 bdev->bd_contains = NULL;
628 bdev->bd_super = NULL;
629 bdev->bd_inode = inode;
630 bdev->bd_block_size = (1 << inode->i_blkbits);
631 bdev->bd_part_count = 0;
632 bdev->bd_invalidated = 0;
633 inode->i_mode = S_IFBLK;
634 inode->i_rdev = dev;
635 inode->i_bdev = bdev;
636 inode->i_data.a_ops = &def_blk_aops;
637 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
638 spin_lock(&bdev_lock);
639 list_add(&bdev->bd_list, &all_bdevs);
640 spin_unlock(&bdev_lock);
641 unlock_new_inode(inode);
642 }
643 return bdev;
644 }
645
646 EXPORT_SYMBOL(bdget);
647
648 /**
649 * bdgrab -- Grab a reference to an already referenced block device
650 * @bdev: Block device to grab a reference to.
651 */
652 struct block_device *bdgrab(struct block_device *bdev)
653 {
654 ihold(bdev->bd_inode);
655 return bdev;
656 }
657 EXPORT_SYMBOL(bdgrab);
658
659 long nr_blockdev_pages(void)
660 {
661 struct block_device *bdev;
662 long ret = 0;
663 spin_lock(&bdev_lock);
664 list_for_each_entry(bdev, &all_bdevs, bd_list) {
665 ret += bdev->bd_inode->i_mapping->nrpages;
666 }
667 spin_unlock(&bdev_lock);
668 return ret;
669 }
670
671 void bdput(struct block_device *bdev)
672 {
673 iput(bdev->bd_inode);
674 }
675
676 EXPORT_SYMBOL(bdput);
677
678 static struct block_device *bd_acquire(struct inode *inode)
679 {
680 struct block_device *bdev;
681
682 spin_lock(&bdev_lock);
683 bdev = inode->i_bdev;
684 if (bdev) {
685 ihold(bdev->bd_inode);
686 spin_unlock(&bdev_lock);
687 return bdev;
688 }
689 spin_unlock(&bdev_lock);
690
691 bdev = bdget(inode->i_rdev);
692 if (bdev) {
693 spin_lock(&bdev_lock);
694 if (!inode->i_bdev) {
695 /*
696 * We take an additional reference to bd_inode,
697 * and it's released in clear_inode() of inode.
698 * So, we can access it via ->i_mapping always
699 * without igrab().
700 */
701 ihold(bdev->bd_inode);
702 inode->i_bdev = bdev;
703 inode->i_mapping = bdev->bd_inode->i_mapping;
704 list_add(&inode->i_devices, &bdev->bd_inodes);
705 }
706 spin_unlock(&bdev_lock);
707 }
708 return bdev;
709 }
710
711 /* Call when you free inode */
712
713 void bd_forget(struct inode *inode)
714 {
715 struct block_device *bdev = NULL;
716
717 spin_lock(&bdev_lock);
718 if (!sb_is_blkdev_sb(inode->i_sb))
719 bdev = inode->i_bdev;
720 __bd_forget(inode);
721 spin_unlock(&bdev_lock);
722
723 if (bdev)
724 iput(bdev->bd_inode);
725 }
726
727 /**
728 * bd_may_claim - test whether a block device can be claimed
729 * @bdev: block device of interest
730 * @whole: whole block device containing @bdev, may equal @bdev
731 * @holder: holder trying to claim @bdev
732 *
733 * Test whether @bdev can be claimed by @holder.
734 *
735 * CONTEXT:
736 * spin_lock(&bdev_lock).
737 *
738 * RETURNS:
739 * %true if @bdev can be claimed, %false otherwise.
740 */
741 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
742 void *holder)
743 {
744 if (bdev->bd_holder == holder)
745 return true; /* already a holder */
746 else if (bdev->bd_holder != NULL)
747 return false; /* held by someone else */
748 else if (bdev->bd_contains == bdev)
749 return true; /* is a whole device which isn't held */
750
751 else if (whole->bd_holder == bd_may_claim)
752 return true; /* is a partition of a device that is being partitioned */
753 else if (whole->bd_holder != NULL)
754 return false; /* is a partition of a held device */
755 else
756 return true; /* is a partition of an un-held device */
757 }
758
759 /**
760 * bd_prepare_to_claim - prepare to claim a block device
761 * @bdev: block device of interest
762 * @whole: the whole device containing @bdev, may equal @bdev
763 * @holder: holder trying to claim @bdev
764 *
765 * Prepare to claim @bdev. This function fails if @bdev is already
766 * claimed by another holder and waits if another claiming is in
767 * progress. This function doesn't actually claim. On successful
768 * return, the caller has ownership of bd_claiming and bd_holder[s].
769 *
770 * CONTEXT:
771 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
772 * it multiple times.
773 *
774 * RETURNS:
775 * 0 if @bdev can be claimed, -EBUSY otherwise.
776 */
777 static int bd_prepare_to_claim(struct block_device *bdev,
778 struct block_device *whole, void *holder)
779 {
780 retry:
781 /* if someone else claimed, fail */
782 if (!bd_may_claim(bdev, whole, holder))
783 return -EBUSY;
784
785 /* if claiming is already in progress, wait for it to finish */
786 if (whole->bd_claiming) {
787 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
788 DEFINE_WAIT(wait);
789
790 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
791 spin_unlock(&bdev_lock);
792 schedule();
793 finish_wait(wq, &wait);
794 spin_lock(&bdev_lock);
795 goto retry;
796 }
797
798 /* yay, all mine */
799 return 0;
800 }
801
802 /**
803 * bd_start_claiming - start claiming a block device
804 * @bdev: block device of interest
805 * @holder: holder trying to claim @bdev
806 *
807 * @bdev is about to be opened exclusively. Check @bdev can be opened
808 * exclusively and mark that an exclusive open is in progress. Each
809 * successful call to this function must be matched with a call to
810 * either bd_finish_claiming() or bd_abort_claiming() (which do not
811 * fail).
812 *
813 * This function is used to gain exclusive access to the block device
814 * without actually causing other exclusive open attempts to fail. It
815 * should be used when the open sequence itself requires exclusive
816 * access but may subsequently fail.
817 *
818 * CONTEXT:
819 * Might sleep.
820 *
821 * RETURNS:
822 * Pointer to the block device containing @bdev on success, ERR_PTR()
823 * value on failure.
824 */
825 static struct block_device *bd_start_claiming(struct block_device *bdev,
826 void *holder)
827 {
828 struct gendisk *disk;
829 struct block_device *whole;
830 int partno, err;
831
832 might_sleep();
833
834 /*
835 * @bdev might not have been initialized properly yet, look up
836 * and grab the outer block device the hard way.
837 */
838 disk = get_gendisk(bdev->bd_dev, &partno);
839 if (!disk)
840 return ERR_PTR(-ENXIO);
841
842 /*
843 * Normally, @bdev should equal what's returned from bdget_disk()
844 * if partno is 0; however, some drivers (floppy) use multiple
845 * bdev's for the same physical device and @bdev may be one of the
846 * aliases. Keep @bdev if partno is 0. This means claimer
847 * tracking is broken for those devices but it has always been that
848 * way.
849 */
850 if (partno)
851 whole = bdget_disk(disk, 0);
852 else
853 whole = bdgrab(bdev);
854
855 module_put(disk->fops->owner);
856 put_disk(disk);
857 if (!whole)
858 return ERR_PTR(-ENOMEM);
859
860 /* prepare to claim, if successful, mark claiming in progress */
861 spin_lock(&bdev_lock);
862
863 err = bd_prepare_to_claim(bdev, whole, holder);
864 if (err == 0) {
865 whole->bd_claiming = holder;
866 spin_unlock(&bdev_lock);
867 return whole;
868 } else {
869 spin_unlock(&bdev_lock);
870 bdput(whole);
871 return ERR_PTR(err);
872 }
873 }
874
875 #ifdef CONFIG_SYSFS
876 struct bd_holder_disk {
877 struct list_head list;
878 struct gendisk *disk;
879 int refcnt;
880 };
881
882 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
883 struct gendisk *disk)
884 {
885 struct bd_holder_disk *holder;
886
887 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
888 if (holder->disk == disk)
889 return holder;
890 return NULL;
891 }
892
893 static int add_symlink(struct kobject *from, struct kobject *to)
894 {
895 return sysfs_create_link(from, to, kobject_name(to));
896 }
897
898 static void del_symlink(struct kobject *from, struct kobject *to)
899 {
900 sysfs_remove_link(from, kobject_name(to));
901 }
902
903 /**
904 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
905 * @bdev: the claimed slave bdev
906 * @disk: the holding disk
907 *
908 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
909 *
910 * This functions creates the following sysfs symlinks.
911 *
912 * - from "slaves" directory of the holder @disk to the claimed @bdev
913 * - from "holders" directory of the @bdev to the holder @disk
914 *
915 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
916 * passed to bd_link_disk_holder(), then:
917 *
918 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
919 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
920 *
921 * The caller must have claimed @bdev before calling this function and
922 * ensure that both @bdev and @disk are valid during the creation and
923 * lifetime of these symlinks.
924 *
925 * CONTEXT:
926 * Might sleep.
927 *
928 * RETURNS:
929 * 0 on success, -errno on failure.
930 */
931 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
932 {
933 struct bd_holder_disk *holder;
934 int ret = 0;
935
936 mutex_lock(&bdev->bd_mutex);
937
938 WARN_ON_ONCE(!bdev->bd_holder);
939
940 /* FIXME: remove the following once add_disk() handles errors */
941 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
942 goto out_unlock;
943
944 holder = bd_find_holder_disk(bdev, disk);
945 if (holder) {
946 holder->refcnt++;
947 goto out_unlock;
948 }
949
950 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
951 if (!holder) {
952 ret = -ENOMEM;
953 goto out_unlock;
954 }
955
956 INIT_LIST_HEAD(&holder->list);
957 holder->disk = disk;
958 holder->refcnt = 1;
959
960 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
961 if (ret)
962 goto out_free;
963
964 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
965 if (ret)
966 goto out_del;
967 /*
968 * bdev could be deleted beneath us which would implicitly destroy
969 * the holder directory. Hold on to it.
970 */
971 kobject_get(bdev->bd_part->holder_dir);
972
973 list_add(&holder->list, &bdev->bd_holder_disks);
974 goto out_unlock;
975
976 out_del:
977 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
978 out_free:
979 kfree(holder);
980 out_unlock:
981 mutex_unlock(&bdev->bd_mutex);
982 return ret;
983 }
984 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
985
986 /**
987 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
988 * @bdev: the calimed slave bdev
989 * @disk: the holding disk
990 *
991 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
992 *
993 * CONTEXT:
994 * Might sleep.
995 */
996 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
997 {
998 struct bd_holder_disk *holder;
999
1000 mutex_lock(&bdev->bd_mutex);
1001
1002 holder = bd_find_holder_disk(bdev, disk);
1003
1004 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1005 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1006 del_symlink(bdev->bd_part->holder_dir,
1007 &disk_to_dev(disk)->kobj);
1008 kobject_put(bdev->bd_part->holder_dir);
1009 list_del_init(&holder->list);
1010 kfree(holder);
1011 }
1012
1013 mutex_unlock(&bdev->bd_mutex);
1014 }
1015 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1016 #endif
1017
1018 /**
1019 * flush_disk - invalidates all buffer-cache entries on a disk
1020 *
1021 * @bdev: struct block device to be flushed
1022 * @kill_dirty: flag to guide handling of dirty inodes
1023 *
1024 * Invalidates all buffer-cache entries on a disk. It should be called
1025 * when a disk has been changed -- either by a media change or online
1026 * resize.
1027 */
1028 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1029 {
1030 if (__invalidate_device(bdev, kill_dirty)) {
1031 char name[BDEVNAME_SIZE] = "";
1032
1033 if (bdev->bd_disk)
1034 disk_name(bdev->bd_disk, 0, name);
1035 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1036 "resized disk %s\n", name);
1037 }
1038
1039 if (!bdev->bd_disk)
1040 return;
1041 if (disk_part_scan_enabled(bdev->bd_disk))
1042 bdev->bd_invalidated = 1;
1043 }
1044
1045 /**
1046 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1047 * @disk: struct gendisk to check
1048 * @bdev: struct bdev to adjust.
1049 *
1050 * This routine checks to see if the bdev size does not match the disk size
1051 * and adjusts it if it differs.
1052 */
1053 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1054 {
1055 loff_t disk_size, bdev_size;
1056
1057 disk_size = (loff_t)get_capacity(disk) << 9;
1058 bdev_size = i_size_read(bdev->bd_inode);
1059 if (disk_size != bdev_size) {
1060 char name[BDEVNAME_SIZE];
1061
1062 disk_name(disk, 0, name);
1063 printk(KERN_INFO
1064 "%s: detected capacity change from %lld to %lld\n",
1065 name, bdev_size, disk_size);
1066 i_size_write(bdev->bd_inode, disk_size);
1067 flush_disk(bdev, false);
1068 }
1069 }
1070 EXPORT_SYMBOL(check_disk_size_change);
1071
1072 /**
1073 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1074 * @disk: struct gendisk to be revalidated
1075 *
1076 * This routine is a wrapper for lower-level driver's revalidate_disk
1077 * call-backs. It is used to do common pre and post operations needed
1078 * for all revalidate_disk operations.
1079 */
1080 int revalidate_disk(struct gendisk *disk)
1081 {
1082 struct block_device *bdev;
1083 int ret = 0;
1084
1085 if (disk->fops->revalidate_disk)
1086 ret = disk->fops->revalidate_disk(disk);
1087 blk_integrity_revalidate(disk);
1088 bdev = bdget_disk(disk, 0);
1089 if (!bdev)
1090 return ret;
1091
1092 mutex_lock(&bdev->bd_mutex);
1093 check_disk_size_change(disk, bdev);
1094 bdev->bd_invalidated = 0;
1095 mutex_unlock(&bdev->bd_mutex);
1096 bdput(bdev);
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(revalidate_disk);
1100
1101 /*
1102 * This routine checks whether a removable media has been changed,
1103 * and invalidates all buffer-cache-entries in that case. This
1104 * is a relatively slow routine, so we have to try to minimize using
1105 * it. Thus it is called only upon a 'mount' or 'open'. This
1106 * is the best way of combining speed and utility, I think.
1107 * People changing diskettes in the middle of an operation deserve
1108 * to lose :-)
1109 */
1110 int check_disk_change(struct block_device *bdev)
1111 {
1112 struct gendisk *disk = bdev->bd_disk;
1113 const struct block_device_operations *bdops = disk->fops;
1114 unsigned int events;
1115
1116 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1117 DISK_EVENT_EJECT_REQUEST);
1118 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1119 return 0;
1120
1121 flush_disk(bdev, true);
1122 if (bdops->revalidate_disk)
1123 bdops->revalidate_disk(bdev->bd_disk);
1124 return 1;
1125 }
1126
1127 EXPORT_SYMBOL(check_disk_change);
1128
1129 void bd_set_size(struct block_device *bdev, loff_t size)
1130 {
1131 unsigned bsize = bdev_logical_block_size(bdev);
1132
1133 mutex_lock(&bdev->bd_inode->i_mutex);
1134 i_size_write(bdev->bd_inode, size);
1135 mutex_unlock(&bdev->bd_inode->i_mutex);
1136 while (bsize < PAGE_CACHE_SIZE) {
1137 if (size & bsize)
1138 break;
1139 bsize <<= 1;
1140 }
1141 bdev->bd_block_size = bsize;
1142 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1143 }
1144 EXPORT_SYMBOL(bd_set_size);
1145
1146 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1147
1148 /*
1149 * bd_mutex locking:
1150 *
1151 * mutex_lock(part->bd_mutex)
1152 * mutex_lock_nested(whole->bd_mutex, 1)
1153 */
1154
1155 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1156 {
1157 struct gendisk *disk;
1158 struct module *owner;
1159 int ret;
1160 int partno;
1161 int perm = 0;
1162
1163 if (mode & FMODE_READ)
1164 perm |= MAY_READ;
1165 if (mode & FMODE_WRITE)
1166 perm |= MAY_WRITE;
1167 /*
1168 * hooks: /n/, see "layering violations".
1169 */
1170 if (!for_part) {
1171 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1172 if (ret != 0) {
1173 bdput(bdev);
1174 return ret;
1175 }
1176 }
1177
1178 restart:
1179
1180 ret = -ENXIO;
1181 disk = get_gendisk(bdev->bd_dev, &partno);
1182 if (!disk)
1183 goto out;
1184 owner = disk->fops->owner;
1185
1186 disk_block_events(disk);
1187 mutex_lock_nested(&bdev->bd_mutex, for_part);
1188 if (!bdev->bd_openers) {
1189 bdev->bd_disk = disk;
1190 bdev->bd_queue = disk->queue;
1191 bdev->bd_contains = bdev;
1192 bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1193 if (!partno) {
1194 ret = -ENXIO;
1195 bdev->bd_part = disk_get_part(disk, partno);
1196 if (!bdev->bd_part)
1197 goto out_clear;
1198
1199 ret = 0;
1200 if (disk->fops->open) {
1201 ret = disk->fops->open(bdev, mode);
1202 if (ret == -ERESTARTSYS) {
1203 /* Lost a race with 'disk' being
1204 * deleted, try again.
1205 * See md.c
1206 */
1207 disk_put_part(bdev->bd_part);
1208 bdev->bd_part = NULL;
1209 bdev->bd_disk = NULL;
1210 bdev->bd_queue = NULL;
1211 mutex_unlock(&bdev->bd_mutex);
1212 disk_unblock_events(disk);
1213 put_disk(disk);
1214 module_put(owner);
1215 goto restart;
1216 }
1217 }
1218
1219 if (!ret)
1220 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1221
1222 /*
1223 * If the device is invalidated, rescan partition
1224 * if open succeeded or failed with -ENOMEDIUM.
1225 * The latter is necessary to prevent ghost
1226 * partitions on a removed medium.
1227 */
1228 if (bdev->bd_invalidated) {
1229 if (!ret)
1230 rescan_partitions(disk, bdev);
1231 else if (ret == -ENOMEDIUM)
1232 invalidate_partitions(disk, bdev);
1233 }
1234 if (ret)
1235 goto out_clear;
1236 } else {
1237 struct block_device *whole;
1238 whole = bdget_disk(disk, 0);
1239 ret = -ENOMEM;
1240 if (!whole)
1241 goto out_clear;
1242 BUG_ON(for_part);
1243 ret = __blkdev_get(whole, mode, 1);
1244 if (ret)
1245 goto out_clear;
1246 bdev->bd_contains = whole;
1247 bdev->bd_part = disk_get_part(disk, partno);
1248 if (!(disk->flags & GENHD_FL_UP) ||
1249 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1250 ret = -ENXIO;
1251 goto out_clear;
1252 }
1253 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1254 /*
1255 * If the partition is not aligned on a page
1256 * boundary, we can't do dax I/O to it.
1257 */
1258 if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1259 (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1260 bdev->bd_inode->i_flags &= ~S_DAX;
1261 }
1262 } else {
1263 if (bdev->bd_contains == bdev) {
1264 ret = 0;
1265 if (bdev->bd_disk->fops->open)
1266 ret = bdev->bd_disk->fops->open(bdev, mode);
1267 /* the same as first opener case, read comment there */
1268 if (bdev->bd_invalidated) {
1269 if (!ret)
1270 rescan_partitions(bdev->bd_disk, bdev);
1271 else if (ret == -ENOMEDIUM)
1272 invalidate_partitions(bdev->bd_disk, bdev);
1273 }
1274 if (ret)
1275 goto out_unlock_bdev;
1276 }
1277 /* only one opener holds refs to the module and disk */
1278 put_disk(disk);
1279 module_put(owner);
1280 }
1281 bdev->bd_openers++;
1282 if (for_part)
1283 bdev->bd_part_count++;
1284 mutex_unlock(&bdev->bd_mutex);
1285 disk_unblock_events(disk);
1286 return 0;
1287
1288 out_clear:
1289 disk_put_part(bdev->bd_part);
1290 bdev->bd_disk = NULL;
1291 bdev->bd_part = NULL;
1292 bdev->bd_queue = NULL;
1293 if (bdev != bdev->bd_contains)
1294 __blkdev_put(bdev->bd_contains, mode, 1);
1295 bdev->bd_contains = NULL;
1296 out_unlock_bdev:
1297 mutex_unlock(&bdev->bd_mutex);
1298 disk_unblock_events(disk);
1299 put_disk(disk);
1300 module_put(owner);
1301 out:
1302 bdput(bdev);
1303
1304 return ret;
1305 }
1306
1307 /**
1308 * blkdev_get - open a block device
1309 * @bdev: block_device to open
1310 * @mode: FMODE_* mask
1311 * @holder: exclusive holder identifier
1312 *
1313 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1314 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1315 * @holder is invalid. Exclusive opens may nest for the same @holder.
1316 *
1317 * On success, the reference count of @bdev is unchanged. On failure,
1318 * @bdev is put.
1319 *
1320 * CONTEXT:
1321 * Might sleep.
1322 *
1323 * RETURNS:
1324 * 0 on success, -errno on failure.
1325 */
1326 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1327 {
1328 struct block_device *whole = NULL;
1329 int res;
1330
1331 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1332
1333 if ((mode & FMODE_EXCL) && holder) {
1334 whole = bd_start_claiming(bdev, holder);
1335 if (IS_ERR(whole)) {
1336 bdput(bdev);
1337 return PTR_ERR(whole);
1338 }
1339 }
1340
1341 res = __blkdev_get(bdev, mode, 0);
1342
1343 if (whole) {
1344 struct gendisk *disk = whole->bd_disk;
1345
1346 /* finish claiming */
1347 mutex_lock(&bdev->bd_mutex);
1348 spin_lock(&bdev_lock);
1349
1350 if (!res) {
1351 BUG_ON(!bd_may_claim(bdev, whole, holder));
1352 /*
1353 * Note that for a whole device bd_holders
1354 * will be incremented twice, and bd_holder
1355 * will be set to bd_may_claim before being
1356 * set to holder
1357 */
1358 whole->bd_holders++;
1359 whole->bd_holder = bd_may_claim;
1360 bdev->bd_holders++;
1361 bdev->bd_holder = holder;
1362 }
1363
1364 /* tell others that we're done */
1365 BUG_ON(whole->bd_claiming != holder);
1366 whole->bd_claiming = NULL;
1367 wake_up_bit(&whole->bd_claiming, 0);
1368
1369 spin_unlock(&bdev_lock);
1370
1371 /*
1372 * Block event polling for write claims if requested. Any
1373 * write holder makes the write_holder state stick until
1374 * all are released. This is good enough and tracking
1375 * individual writeable reference is too fragile given the
1376 * way @mode is used in blkdev_get/put().
1377 */
1378 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1379 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1380 bdev->bd_write_holder = true;
1381 disk_block_events(disk);
1382 }
1383
1384 mutex_unlock(&bdev->bd_mutex);
1385 bdput(whole);
1386 }
1387
1388 return res;
1389 }
1390 EXPORT_SYMBOL(blkdev_get);
1391
1392 /**
1393 * blkdev_get_by_path - open a block device by name
1394 * @path: path to the block device to open
1395 * @mode: FMODE_* mask
1396 * @holder: exclusive holder identifier
1397 *
1398 * Open the blockdevice described by the device file at @path. @mode
1399 * and @holder are identical to blkdev_get().
1400 *
1401 * On success, the returned block_device has reference count of one.
1402 *
1403 * CONTEXT:
1404 * Might sleep.
1405 *
1406 * RETURNS:
1407 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1408 */
1409 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1410 void *holder)
1411 {
1412 struct block_device *bdev;
1413 int err;
1414
1415 bdev = lookup_bdev(path);
1416 if (IS_ERR(bdev))
1417 return bdev;
1418
1419 err = blkdev_get(bdev, mode, holder);
1420 if (err)
1421 return ERR_PTR(err);
1422
1423 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1424 blkdev_put(bdev, mode);
1425 return ERR_PTR(-EACCES);
1426 }
1427
1428 return bdev;
1429 }
1430 EXPORT_SYMBOL(blkdev_get_by_path);
1431
1432 /**
1433 * blkdev_get_by_dev - open a block device by device number
1434 * @dev: device number of block device to open
1435 * @mode: FMODE_* mask
1436 * @holder: exclusive holder identifier
1437 *
1438 * Open the blockdevice described by device number @dev. @mode and
1439 * @holder are identical to blkdev_get().
1440 *
1441 * Use it ONLY if you really do not have anything better - i.e. when
1442 * you are behind a truly sucky interface and all you are given is a
1443 * device number. _Never_ to be used for internal purposes. If you
1444 * ever need it - reconsider your API.
1445 *
1446 * On success, the returned block_device has reference count of one.
1447 *
1448 * CONTEXT:
1449 * Might sleep.
1450 *
1451 * RETURNS:
1452 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1453 */
1454 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1455 {
1456 struct block_device *bdev;
1457 int err;
1458
1459 bdev = bdget(dev);
1460 if (!bdev)
1461 return ERR_PTR(-ENOMEM);
1462
1463 err = blkdev_get(bdev, mode, holder);
1464 if (err)
1465 return ERR_PTR(err);
1466
1467 return bdev;
1468 }
1469 EXPORT_SYMBOL(blkdev_get_by_dev);
1470
1471 static int blkdev_open(struct inode * inode, struct file * filp)
1472 {
1473 struct block_device *bdev;
1474
1475 /*
1476 * Preserve backwards compatibility and allow large file access
1477 * even if userspace doesn't ask for it explicitly. Some mkfs
1478 * binary needs it. We might want to drop this workaround
1479 * during an unstable branch.
1480 */
1481 filp->f_flags |= O_LARGEFILE;
1482
1483 if (filp->f_flags & O_NDELAY)
1484 filp->f_mode |= FMODE_NDELAY;
1485 if (filp->f_flags & O_EXCL)
1486 filp->f_mode |= FMODE_EXCL;
1487 if ((filp->f_flags & O_ACCMODE) == 3)
1488 filp->f_mode |= FMODE_WRITE_IOCTL;
1489
1490 bdev = bd_acquire(inode);
1491 if (bdev == NULL)
1492 return -ENOMEM;
1493
1494 filp->f_mapping = bdev->bd_inode->i_mapping;
1495
1496 return blkdev_get(bdev, filp->f_mode, filp);
1497 }
1498
1499 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1500 {
1501 struct gendisk *disk = bdev->bd_disk;
1502 struct block_device *victim = NULL;
1503
1504 mutex_lock_nested(&bdev->bd_mutex, for_part);
1505 if (for_part)
1506 bdev->bd_part_count--;
1507
1508 if (!--bdev->bd_openers) {
1509 WARN_ON_ONCE(bdev->bd_holders);
1510 sync_blockdev(bdev);
1511 kill_bdev(bdev);
1512 /*
1513 * ->release can cause the queue to disappear, so flush all
1514 * dirty data before.
1515 */
1516 bdev_write_inode(bdev);
1517 }
1518 if (bdev->bd_contains == bdev) {
1519 if (disk->fops->release)
1520 disk->fops->release(disk, mode);
1521 }
1522 if (!bdev->bd_openers) {
1523 struct module *owner = disk->fops->owner;
1524
1525 disk_put_part(bdev->bd_part);
1526 bdev->bd_part = NULL;
1527 bdev->bd_disk = NULL;
1528 if (bdev != bdev->bd_contains)
1529 victim = bdev->bd_contains;
1530 bdev->bd_contains = NULL;
1531
1532 put_disk(disk);
1533 module_put(owner);
1534 }
1535 mutex_unlock(&bdev->bd_mutex);
1536 bdput(bdev);
1537 if (victim)
1538 __blkdev_put(victim, mode, 1);
1539 }
1540
1541 void blkdev_put(struct block_device *bdev, fmode_t mode)
1542 {
1543 mutex_lock(&bdev->bd_mutex);
1544
1545 if (mode & FMODE_EXCL) {
1546 bool bdev_free;
1547
1548 /*
1549 * Release a claim on the device. The holder fields
1550 * are protected with bdev_lock. bd_mutex is to
1551 * synchronize disk_holder unlinking.
1552 */
1553 spin_lock(&bdev_lock);
1554
1555 WARN_ON_ONCE(--bdev->bd_holders < 0);
1556 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1557
1558 /* bd_contains might point to self, check in a separate step */
1559 if ((bdev_free = !bdev->bd_holders))
1560 bdev->bd_holder = NULL;
1561 if (!bdev->bd_contains->bd_holders)
1562 bdev->bd_contains->bd_holder = NULL;
1563
1564 spin_unlock(&bdev_lock);
1565
1566 /*
1567 * If this was the last claim, remove holder link and
1568 * unblock evpoll if it was a write holder.
1569 */
1570 if (bdev_free && bdev->bd_write_holder) {
1571 disk_unblock_events(bdev->bd_disk);
1572 bdev->bd_write_holder = false;
1573 }
1574 }
1575
1576 /*
1577 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1578 * event. This is to ensure detection of media removal commanded
1579 * from userland - e.g. eject(1).
1580 */
1581 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1582
1583 mutex_unlock(&bdev->bd_mutex);
1584
1585 __blkdev_put(bdev, mode, 0);
1586 }
1587 EXPORT_SYMBOL(blkdev_put);
1588
1589 static int blkdev_close(struct inode * inode, struct file * filp)
1590 {
1591 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1592 blkdev_put(bdev, filp->f_mode);
1593 return 0;
1594 }
1595
1596 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1597 {
1598 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1599 fmode_t mode = file->f_mode;
1600
1601 /*
1602 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1603 * to updated it before every ioctl.
1604 */
1605 if (file->f_flags & O_NDELAY)
1606 mode |= FMODE_NDELAY;
1607 else
1608 mode &= ~FMODE_NDELAY;
1609
1610 return blkdev_ioctl(bdev, mode, cmd, arg);
1611 }
1612
1613 /*
1614 * Write data to the block device. Only intended for the block device itself
1615 * and the raw driver which basically is a fake block device.
1616 *
1617 * Does not take i_mutex for the write and thus is not for general purpose
1618 * use.
1619 */
1620 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1621 {
1622 struct file *file = iocb->ki_filp;
1623 struct inode *bd_inode = file->f_mapping->host;
1624 loff_t size = i_size_read(bd_inode);
1625 struct blk_plug plug;
1626 ssize_t ret;
1627
1628 if (bdev_read_only(I_BDEV(bd_inode)))
1629 return -EPERM;
1630
1631 if (!iov_iter_count(from))
1632 return 0;
1633
1634 if (iocb->ki_pos >= size)
1635 return -ENOSPC;
1636
1637 iov_iter_truncate(from, size - iocb->ki_pos);
1638
1639 blk_start_plug(&plug);
1640 ret = __generic_file_write_iter(iocb, from);
1641 if (ret > 0) {
1642 ssize_t err;
1643 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1644 if (err < 0)
1645 ret = err;
1646 }
1647 blk_finish_plug(&plug);
1648 return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1651
1652 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1653 {
1654 struct file *file = iocb->ki_filp;
1655 struct inode *bd_inode = file->f_mapping->host;
1656 loff_t size = i_size_read(bd_inode);
1657 loff_t pos = iocb->ki_pos;
1658
1659 if (pos >= size)
1660 return 0;
1661
1662 size -= pos;
1663 iov_iter_truncate(to, size);
1664 return generic_file_read_iter(iocb, to);
1665 }
1666 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1667
1668 /*
1669 * Try to release a page associated with block device when the system
1670 * is under memory pressure.
1671 */
1672 static int blkdev_releasepage(struct page *page, gfp_t wait)
1673 {
1674 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1675
1676 if (super && super->s_op->bdev_try_to_free_page)
1677 return super->s_op->bdev_try_to_free_page(super, page, wait);
1678
1679 return try_to_free_buffers(page);
1680 }
1681
1682 static const struct address_space_operations def_blk_aops = {
1683 .readpage = blkdev_readpage,
1684 .readpages = blkdev_readpages,
1685 .writepage = blkdev_writepage,
1686 .write_begin = blkdev_write_begin,
1687 .write_end = blkdev_write_end,
1688 .writepages = generic_writepages,
1689 .releasepage = blkdev_releasepage,
1690 .direct_IO = blkdev_direct_IO,
1691 .is_dirty_writeback = buffer_check_dirty_writeback,
1692 };
1693
1694 const struct file_operations def_blk_fops = {
1695 .open = blkdev_open,
1696 .release = blkdev_close,
1697 .llseek = block_llseek,
1698 .read_iter = blkdev_read_iter,
1699 .write_iter = blkdev_write_iter,
1700 .mmap = generic_file_mmap,
1701 .fsync = blkdev_fsync,
1702 .unlocked_ioctl = block_ioctl,
1703 #ifdef CONFIG_COMPAT
1704 .compat_ioctl = compat_blkdev_ioctl,
1705 #endif
1706 .splice_read = generic_file_splice_read,
1707 .splice_write = iter_file_splice_write,
1708 };
1709
1710 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1711 {
1712 int res;
1713 mm_segment_t old_fs = get_fs();
1714 set_fs(KERNEL_DS);
1715 res = blkdev_ioctl(bdev, 0, cmd, arg);
1716 set_fs(old_fs);
1717 return res;
1718 }
1719
1720 EXPORT_SYMBOL(ioctl_by_bdev);
1721
1722 /**
1723 * lookup_bdev - lookup a struct block_device by name
1724 * @pathname: special file representing the block device
1725 *
1726 * Get a reference to the blockdevice at @pathname in the current
1727 * namespace if possible and return it. Return ERR_PTR(error)
1728 * otherwise.
1729 */
1730 struct block_device *lookup_bdev(const char *pathname)
1731 {
1732 struct block_device *bdev;
1733 struct inode *inode;
1734 struct path path;
1735 int error;
1736
1737 if (!pathname || !*pathname)
1738 return ERR_PTR(-EINVAL);
1739
1740 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1741 if (error)
1742 return ERR_PTR(error);
1743
1744 inode = d_backing_inode(path.dentry);
1745 error = -ENOTBLK;
1746 if (!S_ISBLK(inode->i_mode))
1747 goto fail;
1748 error = -EACCES;
1749 if (path.mnt->mnt_flags & MNT_NODEV)
1750 goto fail;
1751 error = -ENOMEM;
1752 bdev = bd_acquire(inode);
1753 if (!bdev)
1754 goto fail;
1755 out:
1756 path_put(&path);
1757 return bdev;
1758 fail:
1759 bdev = ERR_PTR(error);
1760 goto out;
1761 }
1762 EXPORT_SYMBOL(lookup_bdev);
1763
1764 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1765 {
1766 struct super_block *sb = get_super(bdev);
1767 int res = 0;
1768
1769 if (sb) {
1770 /*
1771 * no need to lock the super, get_super holds the
1772 * read mutex so the filesystem cannot go away
1773 * under us (->put_super runs with the write lock
1774 * hold).
1775 */
1776 shrink_dcache_sb(sb);
1777 res = invalidate_inodes(sb, kill_dirty);
1778 drop_super(sb);
1779 }
1780 invalidate_bdev(bdev);
1781 return res;
1782 }
1783 EXPORT_SYMBOL(__invalidate_device);
1784
1785 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1786 {
1787 struct inode *inode, *old_inode = NULL;
1788
1789 spin_lock(&blockdev_superblock->s_inode_list_lock);
1790 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1791 struct address_space *mapping = inode->i_mapping;
1792
1793 spin_lock(&inode->i_lock);
1794 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1795 mapping->nrpages == 0) {
1796 spin_unlock(&inode->i_lock);
1797 continue;
1798 }
1799 __iget(inode);
1800 spin_unlock(&inode->i_lock);
1801 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1802 /*
1803 * We hold a reference to 'inode' so it couldn't have been
1804 * removed from s_inodes list while we dropped the
1805 * s_inode_list_lock We cannot iput the inode now as we can
1806 * be holding the last reference and we cannot iput it under
1807 * s_inode_list_lock. So we keep the reference and iput it
1808 * later.
1809 */
1810 iput(old_inode);
1811 old_inode = inode;
1812
1813 func(I_BDEV(inode), arg);
1814
1815 spin_lock(&blockdev_superblock->s_inode_list_lock);
1816 }
1817 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1818 iput(old_inode);
1819 }