]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/block_dev.c
Merge tag 'leds-for-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anasz...
[mirror_ubuntu-eoan-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214 struct bvec_iter_all iter_all;
215
216 if ((pos | iov_iter_alignment(iter)) &
217 (bdev_logical_block_size(bdev) - 1))
218 return -EINVAL;
219
220 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = inline_vecs;
222 else {
223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
224 GFP_KERNEL);
225 if (!vecs)
226 return -ENOMEM;
227 }
228
229 bio_init(&bio, vecs, nr_pages);
230 bio_set_dev(&bio, bdev);
231 bio.bi_iter.bi_sector = pos >> 9;
232 bio.bi_write_hint = iocb->ki_hint;
233 bio.bi_private = current;
234 bio.bi_end_io = blkdev_bio_end_io_simple;
235 bio.bi_ioprio = iocb->ki_ioprio;
236
237 ret = bio_iov_iter_get_pages(&bio, iter);
238 if (unlikely(ret))
239 goto out;
240 ret = bio.bi_iter.bi_size;
241
242 if (iov_iter_rw(iter) == READ) {
243 bio.bi_opf = REQ_OP_READ;
244 if (iter_is_iovec(iter))
245 should_dirty = true;
246 } else {
247 bio.bi_opf = dio_bio_write_op(iocb);
248 task_io_account_write(ret);
249 }
250 if (iocb->ki_flags & IOCB_HIPRI)
251 bio_set_polled(&bio, iocb);
252
253 qc = submit_bio(&bio);
254 for (;;) {
255 set_current_state(TASK_UNINTERRUPTIBLE);
256 if (!READ_ONCE(bio.bi_private))
257 break;
258 if (!(iocb->ki_flags & IOCB_HIPRI) ||
259 !blk_poll(bdev_get_queue(bdev), qc, true))
260 io_schedule();
261 }
262 __set_current_state(TASK_RUNNING);
263
264 bio_for_each_segment_all(bvec, &bio, i, iter_all) {
265 if (should_dirty && !PageCompound(bvec->bv_page))
266 set_page_dirty_lock(bvec->bv_page);
267 if (!bio_flagged(&bio, BIO_NO_PAGE_REF))
268 put_page(bvec->bv_page);
269 }
270
271 if (unlikely(bio.bi_status))
272 ret = blk_status_to_errno(bio.bi_status);
273
274 out:
275 if (vecs != inline_vecs)
276 kfree(vecs);
277
278 bio_uninit(&bio);
279
280 return ret;
281 }
282
283 struct blkdev_dio {
284 union {
285 struct kiocb *iocb;
286 struct task_struct *waiter;
287 };
288 size_t size;
289 atomic_t ref;
290 bool multi_bio : 1;
291 bool should_dirty : 1;
292 bool is_sync : 1;
293 struct bio bio;
294 };
295
296 static struct bio_set blkdev_dio_pool;
297
298 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
299 {
300 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
301 struct request_queue *q = bdev_get_queue(bdev);
302
303 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
304 }
305
306 static void blkdev_bio_end_io(struct bio *bio)
307 {
308 struct blkdev_dio *dio = bio->bi_private;
309 bool should_dirty = dio->should_dirty;
310
311 if (bio->bi_status && !dio->bio.bi_status)
312 dio->bio.bi_status = bio->bi_status;
313
314 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
315 if (!dio->is_sync) {
316 struct kiocb *iocb = dio->iocb;
317 ssize_t ret;
318
319 if (likely(!dio->bio.bi_status)) {
320 ret = dio->size;
321 iocb->ki_pos += ret;
322 } else {
323 ret = blk_status_to_errno(dio->bio.bi_status);
324 }
325
326 dio->iocb->ki_complete(iocb, ret, 0);
327 if (dio->multi_bio)
328 bio_put(&dio->bio);
329 } else {
330 struct task_struct *waiter = dio->waiter;
331
332 WRITE_ONCE(dio->waiter, NULL);
333 blk_wake_io_task(waiter);
334 }
335 }
336
337 if (should_dirty) {
338 bio_check_pages_dirty(bio);
339 } else {
340 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
341 struct bvec_iter_all iter_all;
342 struct bio_vec *bvec;
343 int i;
344
345 bio_for_each_segment_all(bvec, bio, i, iter_all)
346 put_page(bvec->bv_page);
347 }
348 bio_put(bio);
349 }
350 }
351
352 static ssize_t
353 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
354 {
355 struct file *file = iocb->ki_filp;
356 struct inode *inode = bdev_file_inode(file);
357 struct block_device *bdev = I_BDEV(inode);
358 struct blk_plug plug;
359 struct blkdev_dio *dio;
360 struct bio *bio;
361 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
362 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
363 loff_t pos = iocb->ki_pos;
364 blk_qc_t qc = BLK_QC_T_NONE;
365 int ret = 0;
366
367 if ((pos | iov_iter_alignment(iter)) &
368 (bdev_logical_block_size(bdev) - 1))
369 return -EINVAL;
370
371 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
372
373 dio = container_of(bio, struct blkdev_dio, bio);
374 dio->is_sync = is_sync = is_sync_kiocb(iocb);
375 if (dio->is_sync) {
376 dio->waiter = current;
377 bio_get(bio);
378 } else {
379 dio->iocb = iocb;
380 }
381
382 dio->size = 0;
383 dio->multi_bio = false;
384 dio->should_dirty = is_read && iter_is_iovec(iter);
385
386 /*
387 * Don't plug for HIPRI/polled IO, as those should go straight
388 * to issue
389 */
390 if (!is_poll)
391 blk_start_plug(&plug);
392
393 for (;;) {
394 bio_set_dev(bio, bdev);
395 bio->bi_iter.bi_sector = pos >> 9;
396 bio->bi_write_hint = iocb->ki_hint;
397 bio->bi_private = dio;
398 bio->bi_end_io = blkdev_bio_end_io;
399 bio->bi_ioprio = iocb->ki_ioprio;
400
401 ret = bio_iov_iter_get_pages(bio, iter);
402 if (unlikely(ret)) {
403 bio->bi_status = BLK_STS_IOERR;
404 bio_endio(bio);
405 break;
406 }
407
408 if (is_read) {
409 bio->bi_opf = REQ_OP_READ;
410 if (dio->should_dirty)
411 bio_set_pages_dirty(bio);
412 } else {
413 bio->bi_opf = dio_bio_write_op(iocb);
414 task_io_account_write(bio->bi_iter.bi_size);
415 }
416
417 dio->size += bio->bi_iter.bi_size;
418 pos += bio->bi_iter.bi_size;
419
420 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
421 if (!nr_pages) {
422 bool polled = false;
423
424 if (iocb->ki_flags & IOCB_HIPRI) {
425 bio_set_polled(bio, iocb);
426 polled = true;
427 }
428
429 qc = submit_bio(bio);
430
431 if (polled)
432 WRITE_ONCE(iocb->ki_cookie, qc);
433 break;
434 }
435
436 if (!dio->multi_bio) {
437 /*
438 * AIO needs an extra reference to ensure the dio
439 * structure which is embedded into the first bio
440 * stays around.
441 */
442 if (!is_sync)
443 bio_get(bio);
444 dio->multi_bio = true;
445 atomic_set(&dio->ref, 2);
446 } else {
447 atomic_inc(&dio->ref);
448 }
449
450 submit_bio(bio);
451 bio = bio_alloc(GFP_KERNEL, nr_pages);
452 }
453
454 if (!is_poll)
455 blk_finish_plug(&plug);
456
457 if (!is_sync)
458 return -EIOCBQUEUED;
459
460 for (;;) {
461 set_current_state(TASK_UNINTERRUPTIBLE);
462 if (!READ_ONCE(dio->waiter))
463 break;
464
465 if (!(iocb->ki_flags & IOCB_HIPRI) ||
466 !blk_poll(bdev_get_queue(bdev), qc, true))
467 io_schedule();
468 }
469 __set_current_state(TASK_RUNNING);
470
471 if (!ret)
472 ret = blk_status_to_errno(dio->bio.bi_status);
473 if (likely(!ret))
474 ret = dio->size;
475
476 bio_put(&dio->bio);
477 return ret;
478 }
479
480 static ssize_t
481 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
482 {
483 int nr_pages;
484
485 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
486 if (!nr_pages)
487 return 0;
488 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
489 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
490
491 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
492 }
493
494 static __init int blkdev_init(void)
495 {
496 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
497 }
498 module_init(blkdev_init);
499
500 int __sync_blockdev(struct block_device *bdev, int wait)
501 {
502 if (!bdev)
503 return 0;
504 if (!wait)
505 return filemap_flush(bdev->bd_inode->i_mapping);
506 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
507 }
508
509 /*
510 * Write out and wait upon all the dirty data associated with a block
511 * device via its mapping. Does not take the superblock lock.
512 */
513 int sync_blockdev(struct block_device *bdev)
514 {
515 return __sync_blockdev(bdev, 1);
516 }
517 EXPORT_SYMBOL(sync_blockdev);
518
519 /*
520 * Write out and wait upon all dirty data associated with this
521 * device. Filesystem data as well as the underlying block
522 * device. Takes the superblock lock.
523 */
524 int fsync_bdev(struct block_device *bdev)
525 {
526 struct super_block *sb = get_super(bdev);
527 if (sb) {
528 int res = sync_filesystem(sb);
529 drop_super(sb);
530 return res;
531 }
532 return sync_blockdev(bdev);
533 }
534 EXPORT_SYMBOL(fsync_bdev);
535
536 /**
537 * freeze_bdev -- lock a filesystem and force it into a consistent state
538 * @bdev: blockdevice to lock
539 *
540 * If a superblock is found on this device, we take the s_umount semaphore
541 * on it to make sure nobody unmounts until the snapshot creation is done.
542 * The reference counter (bd_fsfreeze_count) guarantees that only the last
543 * unfreeze process can unfreeze the frozen filesystem actually when multiple
544 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
545 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
546 * actually.
547 */
548 struct super_block *freeze_bdev(struct block_device *bdev)
549 {
550 struct super_block *sb;
551 int error = 0;
552
553 mutex_lock(&bdev->bd_fsfreeze_mutex);
554 if (++bdev->bd_fsfreeze_count > 1) {
555 /*
556 * We don't even need to grab a reference - the first call
557 * to freeze_bdev grab an active reference and only the last
558 * thaw_bdev drops it.
559 */
560 sb = get_super(bdev);
561 if (sb)
562 drop_super(sb);
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return sb;
565 }
566
567 sb = get_active_super(bdev);
568 if (!sb)
569 goto out;
570 if (sb->s_op->freeze_super)
571 error = sb->s_op->freeze_super(sb);
572 else
573 error = freeze_super(sb);
574 if (error) {
575 deactivate_super(sb);
576 bdev->bd_fsfreeze_count--;
577 mutex_unlock(&bdev->bd_fsfreeze_mutex);
578 return ERR_PTR(error);
579 }
580 deactivate_super(sb);
581 out:
582 sync_blockdev(bdev);
583 mutex_unlock(&bdev->bd_fsfreeze_mutex);
584 return sb; /* thaw_bdev releases s->s_umount */
585 }
586 EXPORT_SYMBOL(freeze_bdev);
587
588 /**
589 * thaw_bdev -- unlock filesystem
590 * @bdev: blockdevice to unlock
591 * @sb: associated superblock
592 *
593 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
594 */
595 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
596 {
597 int error = -EINVAL;
598
599 mutex_lock(&bdev->bd_fsfreeze_mutex);
600 if (!bdev->bd_fsfreeze_count)
601 goto out;
602
603 error = 0;
604 if (--bdev->bd_fsfreeze_count > 0)
605 goto out;
606
607 if (!sb)
608 goto out;
609
610 if (sb->s_op->thaw_super)
611 error = sb->s_op->thaw_super(sb);
612 else
613 error = thaw_super(sb);
614 if (error)
615 bdev->bd_fsfreeze_count++;
616 out:
617 mutex_unlock(&bdev->bd_fsfreeze_mutex);
618 return error;
619 }
620 EXPORT_SYMBOL(thaw_bdev);
621
622 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
623 {
624 return block_write_full_page(page, blkdev_get_block, wbc);
625 }
626
627 static int blkdev_readpage(struct file * file, struct page * page)
628 {
629 return block_read_full_page(page, blkdev_get_block);
630 }
631
632 static int blkdev_readpages(struct file *file, struct address_space *mapping,
633 struct list_head *pages, unsigned nr_pages)
634 {
635 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
636 }
637
638 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
639 loff_t pos, unsigned len, unsigned flags,
640 struct page **pagep, void **fsdata)
641 {
642 return block_write_begin(mapping, pos, len, flags, pagep,
643 blkdev_get_block);
644 }
645
646 static int blkdev_write_end(struct file *file, struct address_space *mapping,
647 loff_t pos, unsigned len, unsigned copied,
648 struct page *page, void *fsdata)
649 {
650 int ret;
651 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
652
653 unlock_page(page);
654 put_page(page);
655
656 return ret;
657 }
658
659 /*
660 * private llseek:
661 * for a block special file file_inode(file)->i_size is zero
662 * so we compute the size by hand (just as in block_read/write above)
663 */
664 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
665 {
666 struct inode *bd_inode = bdev_file_inode(file);
667 loff_t retval;
668
669 inode_lock(bd_inode);
670 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
671 inode_unlock(bd_inode);
672 return retval;
673 }
674
675 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
676 {
677 struct inode *bd_inode = bdev_file_inode(filp);
678 struct block_device *bdev = I_BDEV(bd_inode);
679 int error;
680
681 error = file_write_and_wait_range(filp, start, end);
682 if (error)
683 return error;
684
685 /*
686 * There is no need to serialise calls to blkdev_issue_flush with
687 * i_mutex and doing so causes performance issues with concurrent
688 * O_SYNC writers to a block device.
689 */
690 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
691 if (error == -EOPNOTSUPP)
692 error = 0;
693
694 return error;
695 }
696 EXPORT_SYMBOL(blkdev_fsync);
697
698 /**
699 * bdev_read_page() - Start reading a page from a block device
700 * @bdev: The device to read the page from
701 * @sector: The offset on the device to read the page to (need not be aligned)
702 * @page: The page to read
703 *
704 * On entry, the page should be locked. It will be unlocked when the page
705 * has been read. If the block driver implements rw_page synchronously,
706 * that will be true on exit from this function, but it need not be.
707 *
708 * Errors returned by this function are usually "soft", eg out of memory, or
709 * queue full; callers should try a different route to read this page rather
710 * than propagate an error back up the stack.
711 *
712 * Return: negative errno if an error occurs, 0 if submission was successful.
713 */
714 int bdev_read_page(struct block_device *bdev, sector_t sector,
715 struct page *page)
716 {
717 const struct block_device_operations *ops = bdev->bd_disk->fops;
718 int result = -EOPNOTSUPP;
719
720 if (!ops->rw_page || bdev_get_integrity(bdev))
721 return result;
722
723 result = blk_queue_enter(bdev->bd_queue, 0);
724 if (result)
725 return result;
726 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
727 REQ_OP_READ);
728 blk_queue_exit(bdev->bd_queue);
729 return result;
730 }
731 EXPORT_SYMBOL_GPL(bdev_read_page);
732
733 /**
734 * bdev_write_page() - Start writing a page to a block device
735 * @bdev: The device to write the page to
736 * @sector: The offset on the device to write the page to (need not be aligned)
737 * @page: The page to write
738 * @wbc: The writeback_control for the write
739 *
740 * On entry, the page should be locked and not currently under writeback.
741 * On exit, if the write started successfully, the page will be unlocked and
742 * under writeback. If the write failed already (eg the driver failed to
743 * queue the page to the device), the page will still be locked. If the
744 * caller is a ->writepage implementation, it will need to unlock the page.
745 *
746 * Errors returned by this function are usually "soft", eg out of memory, or
747 * queue full; callers should try a different route to write this page rather
748 * than propagate an error back up the stack.
749 *
750 * Return: negative errno if an error occurs, 0 if submission was successful.
751 */
752 int bdev_write_page(struct block_device *bdev, sector_t sector,
753 struct page *page, struct writeback_control *wbc)
754 {
755 int result;
756 const struct block_device_operations *ops = bdev->bd_disk->fops;
757
758 if (!ops->rw_page || bdev_get_integrity(bdev))
759 return -EOPNOTSUPP;
760 result = blk_queue_enter(bdev->bd_queue, 0);
761 if (result)
762 return result;
763
764 set_page_writeback(page);
765 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
766 REQ_OP_WRITE);
767 if (result) {
768 end_page_writeback(page);
769 } else {
770 clean_page_buffers(page);
771 unlock_page(page);
772 }
773 blk_queue_exit(bdev->bd_queue);
774 return result;
775 }
776 EXPORT_SYMBOL_GPL(bdev_write_page);
777
778 /*
779 * pseudo-fs
780 */
781
782 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
783 static struct kmem_cache * bdev_cachep __read_mostly;
784
785 static struct inode *bdev_alloc_inode(struct super_block *sb)
786 {
787 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
788 if (!ei)
789 return NULL;
790 return &ei->vfs_inode;
791 }
792
793 static void bdev_free_inode(struct inode *inode)
794 {
795 kmem_cache_free(bdev_cachep, BDEV_I(inode));
796 }
797
798 static void init_once(void *foo)
799 {
800 struct bdev_inode *ei = (struct bdev_inode *) foo;
801 struct block_device *bdev = &ei->bdev;
802
803 memset(bdev, 0, sizeof(*bdev));
804 mutex_init(&bdev->bd_mutex);
805 INIT_LIST_HEAD(&bdev->bd_list);
806 #ifdef CONFIG_SYSFS
807 INIT_LIST_HEAD(&bdev->bd_holder_disks);
808 #endif
809 bdev->bd_bdi = &noop_backing_dev_info;
810 inode_init_once(&ei->vfs_inode);
811 /* Initialize mutex for freeze. */
812 mutex_init(&bdev->bd_fsfreeze_mutex);
813 }
814
815 static void bdev_evict_inode(struct inode *inode)
816 {
817 struct block_device *bdev = &BDEV_I(inode)->bdev;
818 truncate_inode_pages_final(&inode->i_data);
819 invalidate_inode_buffers(inode); /* is it needed here? */
820 clear_inode(inode);
821 spin_lock(&bdev_lock);
822 list_del_init(&bdev->bd_list);
823 spin_unlock(&bdev_lock);
824 /* Detach inode from wb early as bdi_put() may free bdi->wb */
825 inode_detach_wb(inode);
826 if (bdev->bd_bdi != &noop_backing_dev_info) {
827 bdi_put(bdev->bd_bdi);
828 bdev->bd_bdi = &noop_backing_dev_info;
829 }
830 }
831
832 static const struct super_operations bdev_sops = {
833 .statfs = simple_statfs,
834 .alloc_inode = bdev_alloc_inode,
835 .free_inode = bdev_free_inode,
836 .drop_inode = generic_delete_inode,
837 .evict_inode = bdev_evict_inode,
838 };
839
840 static struct dentry *bd_mount(struct file_system_type *fs_type,
841 int flags, const char *dev_name, void *data)
842 {
843 struct dentry *dent;
844 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
845 if (!IS_ERR(dent))
846 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
847 return dent;
848 }
849
850 static struct file_system_type bd_type = {
851 .name = "bdev",
852 .mount = bd_mount,
853 .kill_sb = kill_anon_super,
854 };
855
856 struct super_block *blockdev_superblock __read_mostly;
857 EXPORT_SYMBOL_GPL(blockdev_superblock);
858
859 void __init bdev_cache_init(void)
860 {
861 int err;
862 static struct vfsmount *bd_mnt;
863
864 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
865 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
866 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
867 init_once);
868 err = register_filesystem(&bd_type);
869 if (err)
870 panic("Cannot register bdev pseudo-fs");
871 bd_mnt = kern_mount(&bd_type);
872 if (IS_ERR(bd_mnt))
873 panic("Cannot create bdev pseudo-fs");
874 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
875 }
876
877 /*
878 * Most likely _very_ bad one - but then it's hardly critical for small
879 * /dev and can be fixed when somebody will need really large one.
880 * Keep in mind that it will be fed through icache hash function too.
881 */
882 static inline unsigned long hash(dev_t dev)
883 {
884 return MAJOR(dev)+MINOR(dev);
885 }
886
887 static int bdev_test(struct inode *inode, void *data)
888 {
889 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
890 }
891
892 static int bdev_set(struct inode *inode, void *data)
893 {
894 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
895 return 0;
896 }
897
898 static LIST_HEAD(all_bdevs);
899
900 /*
901 * If there is a bdev inode for this device, unhash it so that it gets evicted
902 * as soon as last inode reference is dropped.
903 */
904 void bdev_unhash_inode(dev_t dev)
905 {
906 struct inode *inode;
907
908 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
909 if (inode) {
910 remove_inode_hash(inode);
911 iput(inode);
912 }
913 }
914
915 struct block_device *bdget(dev_t dev)
916 {
917 struct block_device *bdev;
918 struct inode *inode;
919
920 inode = iget5_locked(blockdev_superblock, hash(dev),
921 bdev_test, bdev_set, &dev);
922
923 if (!inode)
924 return NULL;
925
926 bdev = &BDEV_I(inode)->bdev;
927
928 if (inode->i_state & I_NEW) {
929 bdev->bd_contains = NULL;
930 bdev->bd_super = NULL;
931 bdev->bd_inode = inode;
932 bdev->bd_block_size = i_blocksize(inode);
933 bdev->bd_part_count = 0;
934 bdev->bd_invalidated = 0;
935 inode->i_mode = S_IFBLK;
936 inode->i_rdev = dev;
937 inode->i_bdev = bdev;
938 inode->i_data.a_ops = &def_blk_aops;
939 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
940 spin_lock(&bdev_lock);
941 list_add(&bdev->bd_list, &all_bdevs);
942 spin_unlock(&bdev_lock);
943 unlock_new_inode(inode);
944 }
945 return bdev;
946 }
947
948 EXPORT_SYMBOL(bdget);
949
950 /**
951 * bdgrab -- Grab a reference to an already referenced block device
952 * @bdev: Block device to grab a reference to.
953 */
954 struct block_device *bdgrab(struct block_device *bdev)
955 {
956 ihold(bdev->bd_inode);
957 return bdev;
958 }
959 EXPORT_SYMBOL(bdgrab);
960
961 long nr_blockdev_pages(void)
962 {
963 struct block_device *bdev;
964 long ret = 0;
965 spin_lock(&bdev_lock);
966 list_for_each_entry(bdev, &all_bdevs, bd_list) {
967 ret += bdev->bd_inode->i_mapping->nrpages;
968 }
969 spin_unlock(&bdev_lock);
970 return ret;
971 }
972
973 void bdput(struct block_device *bdev)
974 {
975 iput(bdev->bd_inode);
976 }
977
978 EXPORT_SYMBOL(bdput);
979
980 static struct block_device *bd_acquire(struct inode *inode)
981 {
982 struct block_device *bdev;
983
984 spin_lock(&bdev_lock);
985 bdev = inode->i_bdev;
986 if (bdev && !inode_unhashed(bdev->bd_inode)) {
987 bdgrab(bdev);
988 spin_unlock(&bdev_lock);
989 return bdev;
990 }
991 spin_unlock(&bdev_lock);
992
993 /*
994 * i_bdev references block device inode that was already shut down
995 * (corresponding device got removed). Remove the reference and look
996 * up block device inode again just in case new device got
997 * reestablished under the same device number.
998 */
999 if (bdev)
1000 bd_forget(inode);
1001
1002 bdev = bdget(inode->i_rdev);
1003 if (bdev) {
1004 spin_lock(&bdev_lock);
1005 if (!inode->i_bdev) {
1006 /*
1007 * We take an additional reference to bd_inode,
1008 * and it's released in clear_inode() of inode.
1009 * So, we can access it via ->i_mapping always
1010 * without igrab().
1011 */
1012 bdgrab(bdev);
1013 inode->i_bdev = bdev;
1014 inode->i_mapping = bdev->bd_inode->i_mapping;
1015 }
1016 spin_unlock(&bdev_lock);
1017 }
1018 return bdev;
1019 }
1020
1021 /* Call when you free inode */
1022
1023 void bd_forget(struct inode *inode)
1024 {
1025 struct block_device *bdev = NULL;
1026
1027 spin_lock(&bdev_lock);
1028 if (!sb_is_blkdev_sb(inode->i_sb))
1029 bdev = inode->i_bdev;
1030 inode->i_bdev = NULL;
1031 inode->i_mapping = &inode->i_data;
1032 spin_unlock(&bdev_lock);
1033
1034 if (bdev)
1035 bdput(bdev);
1036 }
1037
1038 /**
1039 * bd_may_claim - test whether a block device can be claimed
1040 * @bdev: block device of interest
1041 * @whole: whole block device containing @bdev, may equal @bdev
1042 * @holder: holder trying to claim @bdev
1043 *
1044 * Test whether @bdev can be claimed by @holder.
1045 *
1046 * CONTEXT:
1047 * spin_lock(&bdev_lock).
1048 *
1049 * RETURNS:
1050 * %true if @bdev can be claimed, %false otherwise.
1051 */
1052 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1053 void *holder)
1054 {
1055 if (bdev->bd_holder == holder)
1056 return true; /* already a holder */
1057 else if (bdev->bd_holder != NULL)
1058 return false; /* held by someone else */
1059 else if (whole == bdev)
1060 return true; /* is a whole device which isn't held */
1061
1062 else if (whole->bd_holder == bd_may_claim)
1063 return true; /* is a partition of a device that is being partitioned */
1064 else if (whole->bd_holder != NULL)
1065 return false; /* is a partition of a held device */
1066 else
1067 return true; /* is a partition of an un-held device */
1068 }
1069
1070 /**
1071 * bd_prepare_to_claim - prepare to claim a block device
1072 * @bdev: block device of interest
1073 * @whole: the whole device containing @bdev, may equal @bdev
1074 * @holder: holder trying to claim @bdev
1075 *
1076 * Prepare to claim @bdev. This function fails if @bdev is already
1077 * claimed by another holder and waits if another claiming is in
1078 * progress. This function doesn't actually claim. On successful
1079 * return, the caller has ownership of bd_claiming and bd_holder[s].
1080 *
1081 * CONTEXT:
1082 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1083 * it multiple times.
1084 *
1085 * RETURNS:
1086 * 0 if @bdev can be claimed, -EBUSY otherwise.
1087 */
1088 static int bd_prepare_to_claim(struct block_device *bdev,
1089 struct block_device *whole, void *holder)
1090 {
1091 retry:
1092 /* if someone else claimed, fail */
1093 if (!bd_may_claim(bdev, whole, holder))
1094 return -EBUSY;
1095
1096 /* if claiming is already in progress, wait for it to finish */
1097 if (whole->bd_claiming) {
1098 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1099 DEFINE_WAIT(wait);
1100
1101 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1102 spin_unlock(&bdev_lock);
1103 schedule();
1104 finish_wait(wq, &wait);
1105 spin_lock(&bdev_lock);
1106 goto retry;
1107 }
1108
1109 /* yay, all mine */
1110 return 0;
1111 }
1112
1113 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1114 {
1115 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1116
1117 if (!disk)
1118 return NULL;
1119 /*
1120 * Now that we hold gendisk reference we make sure bdev we looked up is
1121 * not stale. If it is, it means device got removed and created before
1122 * we looked up gendisk and we fail open in such case. Associating
1123 * unhashed bdev with newly created gendisk could lead to two bdevs
1124 * (and thus two independent caches) being associated with one device
1125 * which is bad.
1126 */
1127 if (inode_unhashed(bdev->bd_inode)) {
1128 put_disk_and_module(disk);
1129 return NULL;
1130 }
1131 return disk;
1132 }
1133
1134 /**
1135 * bd_start_claiming - start claiming a block device
1136 * @bdev: block device of interest
1137 * @holder: holder trying to claim @bdev
1138 *
1139 * @bdev is about to be opened exclusively. Check @bdev can be opened
1140 * exclusively and mark that an exclusive open is in progress. Each
1141 * successful call to this function must be matched with a call to
1142 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1143 * fail).
1144 *
1145 * This function is used to gain exclusive access to the block device
1146 * without actually causing other exclusive open attempts to fail. It
1147 * should be used when the open sequence itself requires exclusive
1148 * access but may subsequently fail.
1149 *
1150 * CONTEXT:
1151 * Might sleep.
1152 *
1153 * RETURNS:
1154 * Pointer to the block device containing @bdev on success, ERR_PTR()
1155 * value on failure.
1156 */
1157 static struct block_device *bd_start_claiming(struct block_device *bdev,
1158 void *holder)
1159 {
1160 struct gendisk *disk;
1161 struct block_device *whole;
1162 int partno, err;
1163
1164 might_sleep();
1165
1166 /*
1167 * @bdev might not have been initialized properly yet, look up
1168 * and grab the outer block device the hard way.
1169 */
1170 disk = bdev_get_gendisk(bdev, &partno);
1171 if (!disk)
1172 return ERR_PTR(-ENXIO);
1173
1174 /*
1175 * Normally, @bdev should equal what's returned from bdget_disk()
1176 * if partno is 0; however, some drivers (floppy) use multiple
1177 * bdev's for the same physical device and @bdev may be one of the
1178 * aliases. Keep @bdev if partno is 0. This means claimer
1179 * tracking is broken for those devices but it has always been that
1180 * way.
1181 */
1182 if (partno)
1183 whole = bdget_disk(disk, 0);
1184 else
1185 whole = bdgrab(bdev);
1186
1187 put_disk_and_module(disk);
1188 if (!whole)
1189 return ERR_PTR(-ENOMEM);
1190
1191 /* prepare to claim, if successful, mark claiming in progress */
1192 spin_lock(&bdev_lock);
1193
1194 err = bd_prepare_to_claim(bdev, whole, holder);
1195 if (err == 0) {
1196 whole->bd_claiming = holder;
1197 spin_unlock(&bdev_lock);
1198 return whole;
1199 } else {
1200 spin_unlock(&bdev_lock);
1201 bdput(whole);
1202 return ERR_PTR(err);
1203 }
1204 }
1205
1206 #ifdef CONFIG_SYSFS
1207 struct bd_holder_disk {
1208 struct list_head list;
1209 struct gendisk *disk;
1210 int refcnt;
1211 };
1212
1213 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1214 struct gendisk *disk)
1215 {
1216 struct bd_holder_disk *holder;
1217
1218 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1219 if (holder->disk == disk)
1220 return holder;
1221 return NULL;
1222 }
1223
1224 static int add_symlink(struct kobject *from, struct kobject *to)
1225 {
1226 return sysfs_create_link(from, to, kobject_name(to));
1227 }
1228
1229 static void del_symlink(struct kobject *from, struct kobject *to)
1230 {
1231 sysfs_remove_link(from, kobject_name(to));
1232 }
1233
1234 /**
1235 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1236 * @bdev: the claimed slave bdev
1237 * @disk: the holding disk
1238 *
1239 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1240 *
1241 * This functions creates the following sysfs symlinks.
1242 *
1243 * - from "slaves" directory of the holder @disk to the claimed @bdev
1244 * - from "holders" directory of the @bdev to the holder @disk
1245 *
1246 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1247 * passed to bd_link_disk_holder(), then:
1248 *
1249 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1250 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1251 *
1252 * The caller must have claimed @bdev before calling this function and
1253 * ensure that both @bdev and @disk are valid during the creation and
1254 * lifetime of these symlinks.
1255 *
1256 * CONTEXT:
1257 * Might sleep.
1258 *
1259 * RETURNS:
1260 * 0 on success, -errno on failure.
1261 */
1262 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1263 {
1264 struct bd_holder_disk *holder;
1265 int ret = 0;
1266
1267 mutex_lock(&bdev->bd_mutex);
1268
1269 WARN_ON_ONCE(!bdev->bd_holder);
1270
1271 /* FIXME: remove the following once add_disk() handles errors */
1272 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1273 goto out_unlock;
1274
1275 holder = bd_find_holder_disk(bdev, disk);
1276 if (holder) {
1277 holder->refcnt++;
1278 goto out_unlock;
1279 }
1280
1281 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1282 if (!holder) {
1283 ret = -ENOMEM;
1284 goto out_unlock;
1285 }
1286
1287 INIT_LIST_HEAD(&holder->list);
1288 holder->disk = disk;
1289 holder->refcnt = 1;
1290
1291 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1292 if (ret)
1293 goto out_free;
1294
1295 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1296 if (ret)
1297 goto out_del;
1298 /*
1299 * bdev could be deleted beneath us which would implicitly destroy
1300 * the holder directory. Hold on to it.
1301 */
1302 kobject_get(bdev->bd_part->holder_dir);
1303
1304 list_add(&holder->list, &bdev->bd_holder_disks);
1305 goto out_unlock;
1306
1307 out_del:
1308 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1309 out_free:
1310 kfree(holder);
1311 out_unlock:
1312 mutex_unlock(&bdev->bd_mutex);
1313 return ret;
1314 }
1315 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1316
1317 /**
1318 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1319 * @bdev: the calimed slave bdev
1320 * @disk: the holding disk
1321 *
1322 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1323 *
1324 * CONTEXT:
1325 * Might sleep.
1326 */
1327 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1328 {
1329 struct bd_holder_disk *holder;
1330
1331 mutex_lock(&bdev->bd_mutex);
1332
1333 holder = bd_find_holder_disk(bdev, disk);
1334
1335 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1336 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1337 del_symlink(bdev->bd_part->holder_dir,
1338 &disk_to_dev(disk)->kobj);
1339 kobject_put(bdev->bd_part->holder_dir);
1340 list_del_init(&holder->list);
1341 kfree(holder);
1342 }
1343
1344 mutex_unlock(&bdev->bd_mutex);
1345 }
1346 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1347 #endif
1348
1349 /**
1350 * flush_disk - invalidates all buffer-cache entries on a disk
1351 *
1352 * @bdev: struct block device to be flushed
1353 * @kill_dirty: flag to guide handling of dirty inodes
1354 *
1355 * Invalidates all buffer-cache entries on a disk. It should be called
1356 * when a disk has been changed -- either by a media change or online
1357 * resize.
1358 */
1359 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1360 {
1361 if (__invalidate_device(bdev, kill_dirty)) {
1362 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1363 "resized disk %s\n",
1364 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1365 }
1366
1367 if (!bdev->bd_disk)
1368 return;
1369 if (disk_part_scan_enabled(bdev->bd_disk))
1370 bdev->bd_invalidated = 1;
1371 }
1372
1373 /**
1374 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1375 * @disk: struct gendisk to check
1376 * @bdev: struct bdev to adjust.
1377 * @verbose: if %true log a message about a size change if there is any
1378 *
1379 * This routine checks to see if the bdev size does not match the disk size
1380 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1381 * are freed.
1382 */
1383 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1384 bool verbose)
1385 {
1386 loff_t disk_size, bdev_size;
1387
1388 disk_size = (loff_t)get_capacity(disk) << 9;
1389 bdev_size = i_size_read(bdev->bd_inode);
1390 if (disk_size != bdev_size) {
1391 if (verbose) {
1392 printk(KERN_INFO
1393 "%s: detected capacity change from %lld to %lld\n",
1394 disk->disk_name, bdev_size, disk_size);
1395 }
1396 i_size_write(bdev->bd_inode, disk_size);
1397 if (bdev_size > disk_size)
1398 flush_disk(bdev, false);
1399 }
1400 }
1401
1402 /**
1403 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1404 * @disk: struct gendisk to be revalidated
1405 *
1406 * This routine is a wrapper for lower-level driver's revalidate_disk
1407 * call-backs. It is used to do common pre and post operations needed
1408 * for all revalidate_disk operations.
1409 */
1410 int revalidate_disk(struct gendisk *disk)
1411 {
1412 struct block_device *bdev;
1413 int ret = 0;
1414
1415 if (disk->fops->revalidate_disk)
1416 ret = disk->fops->revalidate_disk(disk);
1417 bdev = bdget_disk(disk, 0);
1418 if (!bdev)
1419 return ret;
1420
1421 mutex_lock(&bdev->bd_mutex);
1422 check_disk_size_change(disk, bdev, ret == 0);
1423 bdev->bd_invalidated = 0;
1424 mutex_unlock(&bdev->bd_mutex);
1425 bdput(bdev);
1426 return ret;
1427 }
1428 EXPORT_SYMBOL(revalidate_disk);
1429
1430 /*
1431 * This routine checks whether a removable media has been changed,
1432 * and invalidates all buffer-cache-entries in that case. This
1433 * is a relatively slow routine, so we have to try to minimize using
1434 * it. Thus it is called only upon a 'mount' or 'open'. This
1435 * is the best way of combining speed and utility, I think.
1436 * People changing diskettes in the middle of an operation deserve
1437 * to lose :-)
1438 */
1439 int check_disk_change(struct block_device *bdev)
1440 {
1441 struct gendisk *disk = bdev->bd_disk;
1442 const struct block_device_operations *bdops = disk->fops;
1443 unsigned int events;
1444
1445 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1446 DISK_EVENT_EJECT_REQUEST);
1447 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1448 return 0;
1449
1450 flush_disk(bdev, true);
1451 if (bdops->revalidate_disk)
1452 bdops->revalidate_disk(bdev->bd_disk);
1453 return 1;
1454 }
1455
1456 EXPORT_SYMBOL(check_disk_change);
1457
1458 void bd_set_size(struct block_device *bdev, loff_t size)
1459 {
1460 inode_lock(bdev->bd_inode);
1461 i_size_write(bdev->bd_inode, size);
1462 inode_unlock(bdev->bd_inode);
1463 }
1464 EXPORT_SYMBOL(bd_set_size);
1465
1466 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1467
1468 /*
1469 * bd_mutex locking:
1470 *
1471 * mutex_lock(part->bd_mutex)
1472 * mutex_lock_nested(whole->bd_mutex, 1)
1473 */
1474
1475 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1476 {
1477 struct gendisk *disk;
1478 int ret;
1479 int partno;
1480 int perm = 0;
1481 bool first_open = false;
1482
1483 if (mode & FMODE_READ)
1484 perm |= MAY_READ;
1485 if (mode & FMODE_WRITE)
1486 perm |= MAY_WRITE;
1487 /*
1488 * hooks: /n/, see "layering violations".
1489 */
1490 if (!for_part) {
1491 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1492 if (ret != 0) {
1493 bdput(bdev);
1494 return ret;
1495 }
1496 }
1497
1498 restart:
1499
1500 ret = -ENXIO;
1501 disk = bdev_get_gendisk(bdev, &partno);
1502 if (!disk)
1503 goto out;
1504
1505 disk_block_events(disk);
1506 mutex_lock_nested(&bdev->bd_mutex, for_part);
1507 if (!bdev->bd_openers) {
1508 first_open = true;
1509 bdev->bd_disk = disk;
1510 bdev->bd_queue = disk->queue;
1511 bdev->bd_contains = bdev;
1512 bdev->bd_partno = partno;
1513
1514 if (!partno) {
1515 ret = -ENXIO;
1516 bdev->bd_part = disk_get_part(disk, partno);
1517 if (!bdev->bd_part)
1518 goto out_clear;
1519
1520 ret = 0;
1521 if (disk->fops->open) {
1522 ret = disk->fops->open(bdev, mode);
1523 if (ret == -ERESTARTSYS) {
1524 /* Lost a race with 'disk' being
1525 * deleted, try again.
1526 * See md.c
1527 */
1528 disk_put_part(bdev->bd_part);
1529 bdev->bd_part = NULL;
1530 bdev->bd_disk = NULL;
1531 bdev->bd_queue = NULL;
1532 mutex_unlock(&bdev->bd_mutex);
1533 disk_unblock_events(disk);
1534 put_disk_and_module(disk);
1535 goto restart;
1536 }
1537 }
1538
1539 if (!ret) {
1540 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1541 set_init_blocksize(bdev);
1542 }
1543
1544 /*
1545 * If the device is invalidated, rescan partition
1546 * if open succeeded or failed with -ENOMEDIUM.
1547 * The latter is necessary to prevent ghost
1548 * partitions on a removed medium.
1549 */
1550 if (bdev->bd_invalidated) {
1551 if (!ret)
1552 rescan_partitions(disk, bdev);
1553 else if (ret == -ENOMEDIUM)
1554 invalidate_partitions(disk, bdev);
1555 }
1556
1557 if (ret)
1558 goto out_clear;
1559 } else {
1560 struct block_device *whole;
1561 whole = bdget_disk(disk, 0);
1562 ret = -ENOMEM;
1563 if (!whole)
1564 goto out_clear;
1565 BUG_ON(for_part);
1566 ret = __blkdev_get(whole, mode, 1);
1567 if (ret)
1568 goto out_clear;
1569 bdev->bd_contains = whole;
1570 bdev->bd_part = disk_get_part(disk, partno);
1571 if (!(disk->flags & GENHD_FL_UP) ||
1572 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1573 ret = -ENXIO;
1574 goto out_clear;
1575 }
1576 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1577 set_init_blocksize(bdev);
1578 }
1579
1580 if (bdev->bd_bdi == &noop_backing_dev_info)
1581 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1582 } else {
1583 if (bdev->bd_contains == bdev) {
1584 ret = 0;
1585 if (bdev->bd_disk->fops->open)
1586 ret = bdev->bd_disk->fops->open(bdev, mode);
1587 /* the same as first opener case, read comment there */
1588 if (bdev->bd_invalidated) {
1589 if (!ret)
1590 rescan_partitions(bdev->bd_disk, bdev);
1591 else if (ret == -ENOMEDIUM)
1592 invalidate_partitions(bdev->bd_disk, bdev);
1593 }
1594 if (ret)
1595 goto out_unlock_bdev;
1596 }
1597 }
1598 bdev->bd_openers++;
1599 if (for_part)
1600 bdev->bd_part_count++;
1601 mutex_unlock(&bdev->bd_mutex);
1602 disk_unblock_events(disk);
1603 /* only one opener holds refs to the module and disk */
1604 if (!first_open)
1605 put_disk_and_module(disk);
1606 return 0;
1607
1608 out_clear:
1609 disk_put_part(bdev->bd_part);
1610 bdev->bd_disk = NULL;
1611 bdev->bd_part = NULL;
1612 bdev->bd_queue = NULL;
1613 if (bdev != bdev->bd_contains)
1614 __blkdev_put(bdev->bd_contains, mode, 1);
1615 bdev->bd_contains = NULL;
1616 out_unlock_bdev:
1617 mutex_unlock(&bdev->bd_mutex);
1618 disk_unblock_events(disk);
1619 put_disk_and_module(disk);
1620 out:
1621 bdput(bdev);
1622
1623 return ret;
1624 }
1625
1626 /**
1627 * blkdev_get - open a block device
1628 * @bdev: block_device to open
1629 * @mode: FMODE_* mask
1630 * @holder: exclusive holder identifier
1631 *
1632 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1633 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1634 * @holder is invalid. Exclusive opens may nest for the same @holder.
1635 *
1636 * On success, the reference count of @bdev is unchanged. On failure,
1637 * @bdev is put.
1638 *
1639 * CONTEXT:
1640 * Might sleep.
1641 *
1642 * RETURNS:
1643 * 0 on success, -errno on failure.
1644 */
1645 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1646 {
1647 struct block_device *whole = NULL;
1648 int res;
1649
1650 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1651
1652 if ((mode & FMODE_EXCL) && holder) {
1653 whole = bd_start_claiming(bdev, holder);
1654 if (IS_ERR(whole)) {
1655 bdput(bdev);
1656 return PTR_ERR(whole);
1657 }
1658 }
1659
1660 res = __blkdev_get(bdev, mode, 0);
1661
1662 if (whole) {
1663 struct gendisk *disk = whole->bd_disk;
1664
1665 /* finish claiming */
1666 mutex_lock(&bdev->bd_mutex);
1667 spin_lock(&bdev_lock);
1668
1669 if (!res) {
1670 BUG_ON(!bd_may_claim(bdev, whole, holder));
1671 /*
1672 * Note that for a whole device bd_holders
1673 * will be incremented twice, and bd_holder
1674 * will be set to bd_may_claim before being
1675 * set to holder
1676 */
1677 whole->bd_holders++;
1678 whole->bd_holder = bd_may_claim;
1679 bdev->bd_holders++;
1680 bdev->bd_holder = holder;
1681 }
1682
1683 /* tell others that we're done */
1684 BUG_ON(whole->bd_claiming != holder);
1685 whole->bd_claiming = NULL;
1686 wake_up_bit(&whole->bd_claiming, 0);
1687
1688 spin_unlock(&bdev_lock);
1689
1690 /*
1691 * Block event polling for write claims if requested. Any
1692 * write holder makes the write_holder state stick until
1693 * all are released. This is good enough and tracking
1694 * individual writeable reference is too fragile given the
1695 * way @mode is used in blkdev_get/put().
1696 */
1697 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1698 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1699 bdev->bd_write_holder = true;
1700 disk_block_events(disk);
1701 }
1702
1703 mutex_unlock(&bdev->bd_mutex);
1704 bdput(whole);
1705 }
1706
1707 return res;
1708 }
1709 EXPORT_SYMBOL(blkdev_get);
1710
1711 /**
1712 * blkdev_get_by_path - open a block device by name
1713 * @path: path to the block device to open
1714 * @mode: FMODE_* mask
1715 * @holder: exclusive holder identifier
1716 *
1717 * Open the blockdevice described by the device file at @path. @mode
1718 * and @holder are identical to blkdev_get().
1719 *
1720 * On success, the returned block_device has reference count of one.
1721 *
1722 * CONTEXT:
1723 * Might sleep.
1724 *
1725 * RETURNS:
1726 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1727 */
1728 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1729 void *holder)
1730 {
1731 struct block_device *bdev;
1732 int err;
1733
1734 bdev = lookup_bdev(path);
1735 if (IS_ERR(bdev))
1736 return bdev;
1737
1738 err = blkdev_get(bdev, mode, holder);
1739 if (err)
1740 return ERR_PTR(err);
1741
1742 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1743 blkdev_put(bdev, mode);
1744 return ERR_PTR(-EACCES);
1745 }
1746
1747 return bdev;
1748 }
1749 EXPORT_SYMBOL(blkdev_get_by_path);
1750
1751 /**
1752 * blkdev_get_by_dev - open a block device by device number
1753 * @dev: device number of block device to open
1754 * @mode: FMODE_* mask
1755 * @holder: exclusive holder identifier
1756 *
1757 * Open the blockdevice described by device number @dev. @mode and
1758 * @holder are identical to blkdev_get().
1759 *
1760 * Use it ONLY if you really do not have anything better - i.e. when
1761 * you are behind a truly sucky interface and all you are given is a
1762 * device number. _Never_ to be used for internal purposes. If you
1763 * ever need it - reconsider your API.
1764 *
1765 * On success, the returned block_device has reference count of one.
1766 *
1767 * CONTEXT:
1768 * Might sleep.
1769 *
1770 * RETURNS:
1771 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1772 */
1773 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1774 {
1775 struct block_device *bdev;
1776 int err;
1777
1778 bdev = bdget(dev);
1779 if (!bdev)
1780 return ERR_PTR(-ENOMEM);
1781
1782 err = blkdev_get(bdev, mode, holder);
1783 if (err)
1784 return ERR_PTR(err);
1785
1786 return bdev;
1787 }
1788 EXPORT_SYMBOL(blkdev_get_by_dev);
1789
1790 static int blkdev_open(struct inode * inode, struct file * filp)
1791 {
1792 struct block_device *bdev;
1793
1794 /*
1795 * Preserve backwards compatibility and allow large file access
1796 * even if userspace doesn't ask for it explicitly. Some mkfs
1797 * binary needs it. We might want to drop this workaround
1798 * during an unstable branch.
1799 */
1800 filp->f_flags |= O_LARGEFILE;
1801
1802 filp->f_mode |= FMODE_NOWAIT;
1803
1804 if (filp->f_flags & O_NDELAY)
1805 filp->f_mode |= FMODE_NDELAY;
1806 if (filp->f_flags & O_EXCL)
1807 filp->f_mode |= FMODE_EXCL;
1808 if ((filp->f_flags & O_ACCMODE) == 3)
1809 filp->f_mode |= FMODE_WRITE_IOCTL;
1810
1811 bdev = bd_acquire(inode);
1812 if (bdev == NULL)
1813 return -ENOMEM;
1814
1815 filp->f_mapping = bdev->bd_inode->i_mapping;
1816 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1817
1818 return blkdev_get(bdev, filp->f_mode, filp);
1819 }
1820
1821 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1822 {
1823 struct gendisk *disk = bdev->bd_disk;
1824 struct block_device *victim = NULL;
1825
1826 mutex_lock_nested(&bdev->bd_mutex, for_part);
1827 if (for_part)
1828 bdev->bd_part_count--;
1829
1830 if (!--bdev->bd_openers) {
1831 WARN_ON_ONCE(bdev->bd_holders);
1832 sync_blockdev(bdev);
1833 kill_bdev(bdev);
1834
1835 bdev_write_inode(bdev);
1836 }
1837 if (bdev->bd_contains == bdev) {
1838 if (disk->fops->release)
1839 disk->fops->release(disk, mode);
1840 }
1841 if (!bdev->bd_openers) {
1842 disk_put_part(bdev->bd_part);
1843 bdev->bd_part = NULL;
1844 bdev->bd_disk = NULL;
1845 if (bdev != bdev->bd_contains)
1846 victim = bdev->bd_contains;
1847 bdev->bd_contains = NULL;
1848
1849 put_disk_and_module(disk);
1850 }
1851 mutex_unlock(&bdev->bd_mutex);
1852 bdput(bdev);
1853 if (victim)
1854 __blkdev_put(victim, mode, 1);
1855 }
1856
1857 void blkdev_put(struct block_device *bdev, fmode_t mode)
1858 {
1859 mutex_lock(&bdev->bd_mutex);
1860
1861 if (mode & FMODE_EXCL) {
1862 bool bdev_free;
1863
1864 /*
1865 * Release a claim on the device. The holder fields
1866 * are protected with bdev_lock. bd_mutex is to
1867 * synchronize disk_holder unlinking.
1868 */
1869 spin_lock(&bdev_lock);
1870
1871 WARN_ON_ONCE(--bdev->bd_holders < 0);
1872 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1873
1874 /* bd_contains might point to self, check in a separate step */
1875 if ((bdev_free = !bdev->bd_holders))
1876 bdev->bd_holder = NULL;
1877 if (!bdev->bd_contains->bd_holders)
1878 bdev->bd_contains->bd_holder = NULL;
1879
1880 spin_unlock(&bdev_lock);
1881
1882 /*
1883 * If this was the last claim, remove holder link and
1884 * unblock evpoll if it was a write holder.
1885 */
1886 if (bdev_free && bdev->bd_write_holder) {
1887 disk_unblock_events(bdev->bd_disk);
1888 bdev->bd_write_holder = false;
1889 }
1890 }
1891
1892 /*
1893 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1894 * event. This is to ensure detection of media removal commanded
1895 * from userland - e.g. eject(1).
1896 */
1897 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1898
1899 mutex_unlock(&bdev->bd_mutex);
1900
1901 __blkdev_put(bdev, mode, 0);
1902 }
1903 EXPORT_SYMBOL(blkdev_put);
1904
1905 static int blkdev_close(struct inode * inode, struct file * filp)
1906 {
1907 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1908 blkdev_put(bdev, filp->f_mode);
1909 return 0;
1910 }
1911
1912 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1913 {
1914 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1915 fmode_t mode = file->f_mode;
1916
1917 /*
1918 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1919 * to updated it before every ioctl.
1920 */
1921 if (file->f_flags & O_NDELAY)
1922 mode |= FMODE_NDELAY;
1923 else
1924 mode &= ~FMODE_NDELAY;
1925
1926 return blkdev_ioctl(bdev, mode, cmd, arg);
1927 }
1928
1929 /*
1930 * Write data to the block device. Only intended for the block device itself
1931 * and the raw driver which basically is a fake block device.
1932 *
1933 * Does not take i_mutex for the write and thus is not for general purpose
1934 * use.
1935 */
1936 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1937 {
1938 struct file *file = iocb->ki_filp;
1939 struct inode *bd_inode = bdev_file_inode(file);
1940 loff_t size = i_size_read(bd_inode);
1941 struct blk_plug plug;
1942 ssize_t ret;
1943
1944 if (bdev_read_only(I_BDEV(bd_inode)))
1945 return -EPERM;
1946
1947 if (!iov_iter_count(from))
1948 return 0;
1949
1950 if (iocb->ki_pos >= size)
1951 return -ENOSPC;
1952
1953 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1954 return -EOPNOTSUPP;
1955
1956 iov_iter_truncate(from, size - iocb->ki_pos);
1957
1958 blk_start_plug(&plug);
1959 ret = __generic_file_write_iter(iocb, from);
1960 if (ret > 0)
1961 ret = generic_write_sync(iocb, ret);
1962 blk_finish_plug(&plug);
1963 return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1966
1967 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1968 {
1969 struct file *file = iocb->ki_filp;
1970 struct inode *bd_inode = bdev_file_inode(file);
1971 loff_t size = i_size_read(bd_inode);
1972 loff_t pos = iocb->ki_pos;
1973
1974 if (pos >= size)
1975 return 0;
1976
1977 size -= pos;
1978 iov_iter_truncate(to, size);
1979 return generic_file_read_iter(iocb, to);
1980 }
1981 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1982
1983 /*
1984 * Try to release a page associated with block device when the system
1985 * is under memory pressure.
1986 */
1987 static int blkdev_releasepage(struct page *page, gfp_t wait)
1988 {
1989 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1990
1991 if (super && super->s_op->bdev_try_to_free_page)
1992 return super->s_op->bdev_try_to_free_page(super, page, wait);
1993
1994 return try_to_free_buffers(page);
1995 }
1996
1997 static int blkdev_writepages(struct address_space *mapping,
1998 struct writeback_control *wbc)
1999 {
2000 return generic_writepages(mapping, wbc);
2001 }
2002
2003 static const struct address_space_operations def_blk_aops = {
2004 .readpage = blkdev_readpage,
2005 .readpages = blkdev_readpages,
2006 .writepage = blkdev_writepage,
2007 .write_begin = blkdev_write_begin,
2008 .write_end = blkdev_write_end,
2009 .writepages = blkdev_writepages,
2010 .releasepage = blkdev_releasepage,
2011 .direct_IO = blkdev_direct_IO,
2012 .migratepage = buffer_migrate_page_norefs,
2013 .is_dirty_writeback = buffer_check_dirty_writeback,
2014 };
2015
2016 #define BLKDEV_FALLOC_FL_SUPPORTED \
2017 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2018 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2019
2020 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2021 loff_t len)
2022 {
2023 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2024 struct address_space *mapping;
2025 loff_t end = start + len - 1;
2026 loff_t isize;
2027 int error;
2028
2029 /* Fail if we don't recognize the flags. */
2030 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2031 return -EOPNOTSUPP;
2032
2033 /* Don't go off the end of the device. */
2034 isize = i_size_read(bdev->bd_inode);
2035 if (start >= isize)
2036 return -EINVAL;
2037 if (end >= isize) {
2038 if (mode & FALLOC_FL_KEEP_SIZE) {
2039 len = isize - start;
2040 end = start + len - 1;
2041 } else
2042 return -EINVAL;
2043 }
2044
2045 /*
2046 * Don't allow IO that isn't aligned to logical block size.
2047 */
2048 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2049 return -EINVAL;
2050
2051 /* Invalidate the page cache, including dirty pages. */
2052 mapping = bdev->bd_inode->i_mapping;
2053 truncate_inode_pages_range(mapping, start, end);
2054
2055 switch (mode) {
2056 case FALLOC_FL_ZERO_RANGE:
2057 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2058 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2059 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2060 break;
2061 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2062 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2063 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2064 break;
2065 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2066 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2067 GFP_KERNEL, 0);
2068 break;
2069 default:
2070 return -EOPNOTSUPP;
2071 }
2072 if (error)
2073 return error;
2074
2075 /*
2076 * Invalidate again; if someone wandered in and dirtied a page,
2077 * the caller will be given -EBUSY. The third argument is
2078 * inclusive, so the rounding here is safe.
2079 */
2080 return invalidate_inode_pages2_range(mapping,
2081 start >> PAGE_SHIFT,
2082 end >> PAGE_SHIFT);
2083 }
2084
2085 const struct file_operations def_blk_fops = {
2086 .open = blkdev_open,
2087 .release = blkdev_close,
2088 .llseek = block_llseek,
2089 .read_iter = blkdev_read_iter,
2090 .write_iter = blkdev_write_iter,
2091 .iopoll = blkdev_iopoll,
2092 .mmap = generic_file_mmap,
2093 .fsync = blkdev_fsync,
2094 .unlocked_ioctl = block_ioctl,
2095 #ifdef CONFIG_COMPAT
2096 .compat_ioctl = compat_blkdev_ioctl,
2097 #endif
2098 .splice_read = generic_file_splice_read,
2099 .splice_write = iter_file_splice_write,
2100 .fallocate = blkdev_fallocate,
2101 };
2102
2103 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2104 {
2105 int res;
2106 mm_segment_t old_fs = get_fs();
2107 set_fs(KERNEL_DS);
2108 res = blkdev_ioctl(bdev, 0, cmd, arg);
2109 set_fs(old_fs);
2110 return res;
2111 }
2112
2113 EXPORT_SYMBOL(ioctl_by_bdev);
2114
2115 /**
2116 * lookup_bdev - lookup a struct block_device by name
2117 * @pathname: special file representing the block device
2118 *
2119 * Get a reference to the blockdevice at @pathname in the current
2120 * namespace if possible and return it. Return ERR_PTR(error)
2121 * otherwise.
2122 */
2123 struct block_device *lookup_bdev(const char *pathname)
2124 {
2125 struct block_device *bdev;
2126 struct inode *inode;
2127 struct path path;
2128 int error;
2129
2130 if (!pathname || !*pathname)
2131 return ERR_PTR(-EINVAL);
2132
2133 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2134 if (error)
2135 return ERR_PTR(error);
2136
2137 inode = d_backing_inode(path.dentry);
2138 error = -ENOTBLK;
2139 if (!S_ISBLK(inode->i_mode))
2140 goto fail;
2141 error = -EACCES;
2142 if (!may_open_dev(&path))
2143 goto fail;
2144 error = -ENOMEM;
2145 bdev = bd_acquire(inode);
2146 if (!bdev)
2147 goto fail;
2148 out:
2149 path_put(&path);
2150 return bdev;
2151 fail:
2152 bdev = ERR_PTR(error);
2153 goto out;
2154 }
2155 EXPORT_SYMBOL(lookup_bdev);
2156
2157 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2158 {
2159 struct super_block *sb = get_super(bdev);
2160 int res = 0;
2161
2162 if (sb) {
2163 /*
2164 * no need to lock the super, get_super holds the
2165 * read mutex so the filesystem cannot go away
2166 * under us (->put_super runs with the write lock
2167 * hold).
2168 */
2169 shrink_dcache_sb(sb);
2170 res = invalidate_inodes(sb, kill_dirty);
2171 drop_super(sb);
2172 }
2173 invalidate_bdev(bdev);
2174 return res;
2175 }
2176 EXPORT_SYMBOL(__invalidate_device);
2177
2178 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2179 {
2180 struct inode *inode, *old_inode = NULL;
2181
2182 spin_lock(&blockdev_superblock->s_inode_list_lock);
2183 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2184 struct address_space *mapping = inode->i_mapping;
2185 struct block_device *bdev;
2186
2187 spin_lock(&inode->i_lock);
2188 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2189 mapping->nrpages == 0) {
2190 spin_unlock(&inode->i_lock);
2191 continue;
2192 }
2193 __iget(inode);
2194 spin_unlock(&inode->i_lock);
2195 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2196 /*
2197 * We hold a reference to 'inode' so it couldn't have been
2198 * removed from s_inodes list while we dropped the
2199 * s_inode_list_lock We cannot iput the inode now as we can
2200 * be holding the last reference and we cannot iput it under
2201 * s_inode_list_lock. So we keep the reference and iput it
2202 * later.
2203 */
2204 iput(old_inode);
2205 old_inode = inode;
2206 bdev = I_BDEV(inode);
2207
2208 mutex_lock(&bdev->bd_mutex);
2209 if (bdev->bd_openers)
2210 func(bdev, arg);
2211 mutex_unlock(&bdev->bd_mutex);
2212
2213 spin_lock(&blockdev_superblock->s_inode_list_lock);
2214 }
2215 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2216 iput(old_inode);
2217 }