]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/block_dev.c
Merge tag 'afs-next-20190628' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowel...
[mirror_ubuntu-hirsute-kernel.git] / fs / block_dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include "internal.h"
37
38 struct bdev_inode {
39 struct block_device bdev;
40 struct inode vfs_inode;
41 };
42
43 static const struct address_space_operations def_blk_aops;
44
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 {
47 return container_of(inode, struct bdev_inode, vfs_inode);
48 }
49
50 struct block_device *I_BDEV(struct inode *inode)
51 {
52 return &BDEV_I(inode)->bdev;
53 }
54 EXPORT_SYMBOL(I_BDEV);
55
56 static void bdev_write_inode(struct block_device *bdev)
57 {
58 struct inode *inode = bdev->bd_inode;
59 int ret;
60
61 spin_lock(&inode->i_lock);
62 while (inode->i_state & I_DIRTY) {
63 spin_unlock(&inode->i_lock);
64 ret = write_inode_now(inode, true);
65 if (ret) {
66 char name[BDEVNAME_SIZE];
67 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
68 "for block device %s (err=%d).\n",
69 bdevname(bdev, name), ret);
70 }
71 spin_lock(&inode->i_lock);
72 }
73 spin_unlock(&inode->i_lock);
74 }
75
76 /* Kill _all_ buffers and pagecache , dirty or not.. */
77 void kill_bdev(struct block_device *bdev)
78 {
79 struct address_space *mapping = bdev->bd_inode->i_mapping;
80
81 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
82 return;
83
84 invalidate_bh_lrus();
85 truncate_inode_pages(mapping, 0);
86 }
87 EXPORT_SYMBOL(kill_bdev);
88
89 /* Invalidate clean unused buffers and pagecache. */
90 void invalidate_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages) {
95 invalidate_bh_lrus();
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping, 0, -1);
98 }
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
101 */
102 cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105
106 static void set_init_blocksize(struct block_device *bdev)
107 {
108 unsigned bsize = bdev_logical_block_size(bdev);
109 loff_t size = i_size_read(bdev->bd_inode);
110
111 while (bsize < PAGE_SIZE) {
112 if (size & bsize)
113 break;
114 bsize <<= 1;
115 }
116 bdev->bd_block_size = bsize;
117 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
118 }
119
120 int set_blocksize(struct block_device *bdev, int size)
121 {
122 /* Size must be a power of two, and between 512 and PAGE_SIZE */
123 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
124 return -EINVAL;
125
126 /* Size cannot be smaller than the size supported by the device */
127 if (size < bdev_logical_block_size(bdev))
128 return -EINVAL;
129
130 /* Don't change the size if it is same as current */
131 if (bdev->bd_block_size != size) {
132 sync_blockdev(bdev);
133 bdev->bd_block_size = size;
134 bdev->bd_inode->i_blkbits = blksize_bits(size);
135 kill_bdev(bdev);
136 }
137 return 0;
138 }
139
140 EXPORT_SYMBOL(set_blocksize);
141
142 int sb_set_blocksize(struct super_block *sb, int size)
143 {
144 if (set_blocksize(sb->s_bdev, size))
145 return 0;
146 /* If we get here, we know size is power of two
147 * and it's value is between 512 and PAGE_SIZE */
148 sb->s_blocksize = size;
149 sb->s_blocksize_bits = blksize_bits(size);
150 return sb->s_blocksize;
151 }
152
153 EXPORT_SYMBOL(sb_set_blocksize);
154
155 int sb_min_blocksize(struct super_block *sb, int size)
156 {
157 int minsize = bdev_logical_block_size(sb->s_bdev);
158 if (size < minsize)
159 size = minsize;
160 return sb_set_blocksize(sb, size);
161 }
162
163 EXPORT_SYMBOL(sb_min_blocksize);
164
165 static int
166 blkdev_get_block(struct inode *inode, sector_t iblock,
167 struct buffer_head *bh, int create)
168 {
169 bh->b_bdev = I_BDEV(inode);
170 bh->b_blocknr = iblock;
171 set_buffer_mapped(bh);
172 return 0;
173 }
174
175 static struct inode *bdev_file_inode(struct file *file)
176 {
177 return file->f_mapping->host;
178 }
179
180 static unsigned int dio_bio_write_op(struct kiocb *iocb)
181 {
182 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
183
184 /* avoid the need for a I/O completion work item */
185 if (iocb->ki_flags & IOCB_DSYNC)
186 op |= REQ_FUA;
187 return op;
188 }
189
190 #define DIO_INLINE_BIO_VECS 4
191
192 static void blkdev_bio_end_io_simple(struct bio *bio)
193 {
194 struct task_struct *waiter = bio->bi_private;
195
196 WRITE_ONCE(bio->bi_private, NULL);
197 blk_wake_io_task(waiter);
198 }
199
200 static ssize_t
201 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
202 int nr_pages)
203 {
204 struct file *file = iocb->ki_filp;
205 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
206 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
207 loff_t pos = iocb->ki_pos;
208 bool should_dirty = false;
209 struct bio bio;
210 ssize_t ret;
211 blk_qc_t qc;
212
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
215 return -EINVAL;
216
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
218 vecs = inline_vecs;
219 else {
220 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
221 GFP_KERNEL);
222 if (!vecs)
223 return -ENOMEM;
224 }
225
226 bio_init(&bio, vecs, nr_pages);
227 bio_set_dev(&bio, bdev);
228 bio.bi_iter.bi_sector = pos >> 9;
229 bio.bi_write_hint = iocb->ki_hint;
230 bio.bi_private = current;
231 bio.bi_end_io = blkdev_bio_end_io_simple;
232 bio.bi_ioprio = iocb->ki_ioprio;
233
234 ret = bio_iov_iter_get_pages(&bio, iter);
235 if (unlikely(ret))
236 goto out;
237 ret = bio.bi_iter.bi_size;
238
239 if (iov_iter_rw(iter) == READ) {
240 bio.bi_opf = REQ_OP_READ;
241 if (iter_is_iovec(iter))
242 should_dirty = true;
243 } else {
244 bio.bi_opf = dio_bio_write_op(iocb);
245 task_io_account_write(ret);
246 }
247 if (iocb->ki_flags & IOCB_HIPRI)
248 bio_set_polled(&bio, iocb);
249
250 qc = submit_bio(&bio);
251 for (;;) {
252 set_current_state(TASK_UNINTERRUPTIBLE);
253 if (!READ_ONCE(bio.bi_private))
254 break;
255 if (!(iocb->ki_flags & IOCB_HIPRI) ||
256 !blk_poll(bdev_get_queue(bdev), qc, true))
257 io_schedule();
258 }
259 __set_current_state(TASK_RUNNING);
260
261 bio_release_pages(&bio, should_dirty);
262 if (unlikely(bio.bi_status))
263 ret = blk_status_to_errno(bio.bi_status);
264
265 out:
266 if (vecs != inline_vecs)
267 kfree(vecs);
268
269 bio_uninit(&bio);
270
271 return ret;
272 }
273
274 struct blkdev_dio {
275 union {
276 struct kiocb *iocb;
277 struct task_struct *waiter;
278 };
279 size_t size;
280 atomic_t ref;
281 bool multi_bio : 1;
282 bool should_dirty : 1;
283 bool is_sync : 1;
284 struct bio bio;
285 };
286
287 static struct bio_set blkdev_dio_pool;
288
289 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
290 {
291 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
292 struct request_queue *q = bdev_get_queue(bdev);
293
294 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
295 }
296
297 static void blkdev_bio_end_io(struct bio *bio)
298 {
299 struct blkdev_dio *dio = bio->bi_private;
300 bool should_dirty = dio->should_dirty;
301
302 if (bio->bi_status && !dio->bio.bi_status)
303 dio->bio.bi_status = bio->bi_status;
304
305 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
306 if (!dio->is_sync) {
307 struct kiocb *iocb = dio->iocb;
308 ssize_t ret;
309
310 if (likely(!dio->bio.bi_status)) {
311 ret = dio->size;
312 iocb->ki_pos += ret;
313 } else {
314 ret = blk_status_to_errno(dio->bio.bi_status);
315 }
316
317 dio->iocb->ki_complete(iocb, ret, 0);
318 if (dio->multi_bio)
319 bio_put(&dio->bio);
320 } else {
321 struct task_struct *waiter = dio->waiter;
322
323 WRITE_ONCE(dio->waiter, NULL);
324 blk_wake_io_task(waiter);
325 }
326 }
327
328 if (should_dirty) {
329 bio_check_pages_dirty(bio);
330 } else {
331 bio_release_pages(bio, false);
332 bio_put(bio);
333 }
334 }
335
336 static ssize_t
337 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
338 {
339 struct file *file = iocb->ki_filp;
340 struct inode *inode = bdev_file_inode(file);
341 struct block_device *bdev = I_BDEV(inode);
342 struct blk_plug plug;
343 struct blkdev_dio *dio;
344 struct bio *bio;
345 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
346 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
347 loff_t pos = iocb->ki_pos;
348 blk_qc_t qc = BLK_QC_T_NONE;
349 int ret = 0;
350
351 if ((pos | iov_iter_alignment(iter)) &
352 (bdev_logical_block_size(bdev) - 1))
353 return -EINVAL;
354
355 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
356
357 dio = container_of(bio, struct blkdev_dio, bio);
358 dio->is_sync = is_sync = is_sync_kiocb(iocb);
359 if (dio->is_sync) {
360 dio->waiter = current;
361 bio_get(bio);
362 } else {
363 dio->iocb = iocb;
364 }
365
366 dio->size = 0;
367 dio->multi_bio = false;
368 dio->should_dirty = is_read && iter_is_iovec(iter);
369
370 /*
371 * Don't plug for HIPRI/polled IO, as those should go straight
372 * to issue
373 */
374 if (!is_poll)
375 blk_start_plug(&plug);
376
377 for (;;) {
378 bio_set_dev(bio, bdev);
379 bio->bi_iter.bi_sector = pos >> 9;
380 bio->bi_write_hint = iocb->ki_hint;
381 bio->bi_private = dio;
382 bio->bi_end_io = blkdev_bio_end_io;
383 bio->bi_ioprio = iocb->ki_ioprio;
384
385 ret = bio_iov_iter_get_pages(bio, iter);
386 if (unlikely(ret)) {
387 bio->bi_status = BLK_STS_IOERR;
388 bio_endio(bio);
389 break;
390 }
391
392 if (is_read) {
393 bio->bi_opf = REQ_OP_READ;
394 if (dio->should_dirty)
395 bio_set_pages_dirty(bio);
396 } else {
397 bio->bi_opf = dio_bio_write_op(iocb);
398 task_io_account_write(bio->bi_iter.bi_size);
399 }
400
401 dio->size += bio->bi_iter.bi_size;
402 pos += bio->bi_iter.bi_size;
403
404 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
405 if (!nr_pages) {
406 bool polled = false;
407
408 if (iocb->ki_flags & IOCB_HIPRI) {
409 bio_set_polled(bio, iocb);
410 polled = true;
411 }
412
413 qc = submit_bio(bio);
414
415 if (polled)
416 WRITE_ONCE(iocb->ki_cookie, qc);
417 break;
418 }
419
420 if (!dio->multi_bio) {
421 /*
422 * AIO needs an extra reference to ensure the dio
423 * structure which is embedded into the first bio
424 * stays around.
425 */
426 if (!is_sync)
427 bio_get(bio);
428 dio->multi_bio = true;
429 atomic_set(&dio->ref, 2);
430 } else {
431 atomic_inc(&dio->ref);
432 }
433
434 submit_bio(bio);
435 bio = bio_alloc(GFP_KERNEL, nr_pages);
436 }
437
438 if (!is_poll)
439 blk_finish_plug(&plug);
440
441 if (!is_sync)
442 return -EIOCBQUEUED;
443
444 for (;;) {
445 set_current_state(TASK_UNINTERRUPTIBLE);
446 if (!READ_ONCE(dio->waiter))
447 break;
448
449 if (!(iocb->ki_flags & IOCB_HIPRI) ||
450 !blk_poll(bdev_get_queue(bdev), qc, true))
451 io_schedule();
452 }
453 __set_current_state(TASK_RUNNING);
454
455 if (!ret)
456 ret = blk_status_to_errno(dio->bio.bi_status);
457 if (likely(!ret))
458 ret = dio->size;
459
460 bio_put(&dio->bio);
461 return ret;
462 }
463
464 static ssize_t
465 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
466 {
467 int nr_pages;
468
469 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
470 if (!nr_pages)
471 return 0;
472 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
473 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
474
475 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
476 }
477
478 static __init int blkdev_init(void)
479 {
480 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
481 }
482 module_init(blkdev_init);
483
484 int __sync_blockdev(struct block_device *bdev, int wait)
485 {
486 if (!bdev)
487 return 0;
488 if (!wait)
489 return filemap_flush(bdev->bd_inode->i_mapping);
490 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
491 }
492
493 /*
494 * Write out and wait upon all the dirty data associated with a block
495 * device via its mapping. Does not take the superblock lock.
496 */
497 int sync_blockdev(struct block_device *bdev)
498 {
499 return __sync_blockdev(bdev, 1);
500 }
501 EXPORT_SYMBOL(sync_blockdev);
502
503 /*
504 * Write out and wait upon all dirty data associated with this
505 * device. Filesystem data as well as the underlying block
506 * device. Takes the superblock lock.
507 */
508 int fsync_bdev(struct block_device *bdev)
509 {
510 struct super_block *sb = get_super(bdev);
511 if (sb) {
512 int res = sync_filesystem(sb);
513 drop_super(sb);
514 return res;
515 }
516 return sync_blockdev(bdev);
517 }
518 EXPORT_SYMBOL(fsync_bdev);
519
520 /**
521 * freeze_bdev -- lock a filesystem and force it into a consistent state
522 * @bdev: blockdevice to lock
523 *
524 * If a superblock is found on this device, we take the s_umount semaphore
525 * on it to make sure nobody unmounts until the snapshot creation is done.
526 * The reference counter (bd_fsfreeze_count) guarantees that only the last
527 * unfreeze process can unfreeze the frozen filesystem actually when multiple
528 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
529 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
530 * actually.
531 */
532 struct super_block *freeze_bdev(struct block_device *bdev)
533 {
534 struct super_block *sb;
535 int error = 0;
536
537 mutex_lock(&bdev->bd_fsfreeze_mutex);
538 if (++bdev->bd_fsfreeze_count > 1) {
539 /*
540 * We don't even need to grab a reference - the first call
541 * to freeze_bdev grab an active reference and only the last
542 * thaw_bdev drops it.
543 */
544 sb = get_super(bdev);
545 if (sb)
546 drop_super(sb);
547 mutex_unlock(&bdev->bd_fsfreeze_mutex);
548 return sb;
549 }
550
551 sb = get_active_super(bdev);
552 if (!sb)
553 goto out;
554 if (sb->s_op->freeze_super)
555 error = sb->s_op->freeze_super(sb);
556 else
557 error = freeze_super(sb);
558 if (error) {
559 deactivate_super(sb);
560 bdev->bd_fsfreeze_count--;
561 mutex_unlock(&bdev->bd_fsfreeze_mutex);
562 return ERR_PTR(error);
563 }
564 deactivate_super(sb);
565 out:
566 sync_blockdev(bdev);
567 mutex_unlock(&bdev->bd_fsfreeze_mutex);
568 return sb; /* thaw_bdev releases s->s_umount */
569 }
570 EXPORT_SYMBOL(freeze_bdev);
571
572 /**
573 * thaw_bdev -- unlock filesystem
574 * @bdev: blockdevice to unlock
575 * @sb: associated superblock
576 *
577 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
578 */
579 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
580 {
581 int error = -EINVAL;
582
583 mutex_lock(&bdev->bd_fsfreeze_mutex);
584 if (!bdev->bd_fsfreeze_count)
585 goto out;
586
587 error = 0;
588 if (--bdev->bd_fsfreeze_count > 0)
589 goto out;
590
591 if (!sb)
592 goto out;
593
594 if (sb->s_op->thaw_super)
595 error = sb->s_op->thaw_super(sb);
596 else
597 error = thaw_super(sb);
598 if (error)
599 bdev->bd_fsfreeze_count++;
600 out:
601 mutex_unlock(&bdev->bd_fsfreeze_mutex);
602 return error;
603 }
604 EXPORT_SYMBOL(thaw_bdev);
605
606 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
607 {
608 return block_write_full_page(page, blkdev_get_block, wbc);
609 }
610
611 static int blkdev_readpage(struct file * file, struct page * page)
612 {
613 return block_read_full_page(page, blkdev_get_block);
614 }
615
616 static int blkdev_readpages(struct file *file, struct address_space *mapping,
617 struct list_head *pages, unsigned nr_pages)
618 {
619 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
620 }
621
622 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
623 loff_t pos, unsigned len, unsigned flags,
624 struct page **pagep, void **fsdata)
625 {
626 return block_write_begin(mapping, pos, len, flags, pagep,
627 blkdev_get_block);
628 }
629
630 static int blkdev_write_end(struct file *file, struct address_space *mapping,
631 loff_t pos, unsigned len, unsigned copied,
632 struct page *page, void *fsdata)
633 {
634 int ret;
635 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
636
637 unlock_page(page);
638 put_page(page);
639
640 return ret;
641 }
642
643 /*
644 * private llseek:
645 * for a block special file file_inode(file)->i_size is zero
646 * so we compute the size by hand (just as in block_read/write above)
647 */
648 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
649 {
650 struct inode *bd_inode = bdev_file_inode(file);
651 loff_t retval;
652
653 inode_lock(bd_inode);
654 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
655 inode_unlock(bd_inode);
656 return retval;
657 }
658
659 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
660 {
661 struct inode *bd_inode = bdev_file_inode(filp);
662 struct block_device *bdev = I_BDEV(bd_inode);
663 int error;
664
665 error = file_write_and_wait_range(filp, start, end);
666 if (error)
667 return error;
668
669 /*
670 * There is no need to serialise calls to blkdev_issue_flush with
671 * i_mutex and doing so causes performance issues with concurrent
672 * O_SYNC writers to a block device.
673 */
674 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
675 if (error == -EOPNOTSUPP)
676 error = 0;
677
678 return error;
679 }
680 EXPORT_SYMBOL(blkdev_fsync);
681
682 /**
683 * bdev_read_page() - Start reading a page from a block device
684 * @bdev: The device to read the page from
685 * @sector: The offset on the device to read the page to (need not be aligned)
686 * @page: The page to read
687 *
688 * On entry, the page should be locked. It will be unlocked when the page
689 * has been read. If the block driver implements rw_page synchronously,
690 * that will be true on exit from this function, but it need not be.
691 *
692 * Errors returned by this function are usually "soft", eg out of memory, or
693 * queue full; callers should try a different route to read this page rather
694 * than propagate an error back up the stack.
695 *
696 * Return: negative errno if an error occurs, 0 if submission was successful.
697 */
698 int bdev_read_page(struct block_device *bdev, sector_t sector,
699 struct page *page)
700 {
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702 int result = -EOPNOTSUPP;
703
704 if (!ops->rw_page || bdev_get_integrity(bdev))
705 return result;
706
707 result = blk_queue_enter(bdev->bd_queue, 0);
708 if (result)
709 return result;
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
711 REQ_OP_READ);
712 blk_queue_exit(bdev->bd_queue);
713 return result;
714 }
715 EXPORT_SYMBOL_GPL(bdev_read_page);
716
717 /**
718 * bdev_write_page() - Start writing a page to a block device
719 * @bdev: The device to write the page to
720 * @sector: The offset on the device to write the page to (need not be aligned)
721 * @page: The page to write
722 * @wbc: The writeback_control for the write
723 *
724 * On entry, the page should be locked and not currently under writeback.
725 * On exit, if the write started successfully, the page will be unlocked and
726 * under writeback. If the write failed already (eg the driver failed to
727 * queue the page to the device), the page will still be locked. If the
728 * caller is a ->writepage implementation, it will need to unlock the page.
729 *
730 * Errors returned by this function are usually "soft", eg out of memory, or
731 * queue full; callers should try a different route to write this page rather
732 * than propagate an error back up the stack.
733 *
734 * Return: negative errno if an error occurs, 0 if submission was successful.
735 */
736 int bdev_write_page(struct block_device *bdev, sector_t sector,
737 struct page *page, struct writeback_control *wbc)
738 {
739 int result;
740 const struct block_device_operations *ops = bdev->bd_disk->fops;
741
742 if (!ops->rw_page || bdev_get_integrity(bdev))
743 return -EOPNOTSUPP;
744 result = blk_queue_enter(bdev->bd_queue, 0);
745 if (result)
746 return result;
747
748 set_page_writeback(page);
749 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
750 REQ_OP_WRITE);
751 if (result) {
752 end_page_writeback(page);
753 } else {
754 clean_page_buffers(page);
755 unlock_page(page);
756 }
757 blk_queue_exit(bdev->bd_queue);
758 return result;
759 }
760 EXPORT_SYMBOL_GPL(bdev_write_page);
761
762 /*
763 * pseudo-fs
764 */
765
766 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
767 static struct kmem_cache * bdev_cachep __read_mostly;
768
769 static struct inode *bdev_alloc_inode(struct super_block *sb)
770 {
771 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
772 if (!ei)
773 return NULL;
774 return &ei->vfs_inode;
775 }
776
777 static void bdev_free_inode(struct inode *inode)
778 {
779 kmem_cache_free(bdev_cachep, BDEV_I(inode));
780 }
781
782 static void init_once(void *foo)
783 {
784 struct bdev_inode *ei = (struct bdev_inode *) foo;
785 struct block_device *bdev = &ei->bdev;
786
787 memset(bdev, 0, sizeof(*bdev));
788 mutex_init(&bdev->bd_mutex);
789 INIT_LIST_HEAD(&bdev->bd_list);
790 #ifdef CONFIG_SYSFS
791 INIT_LIST_HEAD(&bdev->bd_holder_disks);
792 #endif
793 bdev->bd_bdi = &noop_backing_dev_info;
794 inode_init_once(&ei->vfs_inode);
795 /* Initialize mutex for freeze. */
796 mutex_init(&bdev->bd_fsfreeze_mutex);
797 }
798
799 static void bdev_evict_inode(struct inode *inode)
800 {
801 struct block_device *bdev = &BDEV_I(inode)->bdev;
802 truncate_inode_pages_final(&inode->i_data);
803 invalidate_inode_buffers(inode); /* is it needed here? */
804 clear_inode(inode);
805 spin_lock(&bdev_lock);
806 list_del_init(&bdev->bd_list);
807 spin_unlock(&bdev_lock);
808 /* Detach inode from wb early as bdi_put() may free bdi->wb */
809 inode_detach_wb(inode);
810 if (bdev->bd_bdi != &noop_backing_dev_info) {
811 bdi_put(bdev->bd_bdi);
812 bdev->bd_bdi = &noop_backing_dev_info;
813 }
814 }
815
816 static const struct super_operations bdev_sops = {
817 .statfs = simple_statfs,
818 .alloc_inode = bdev_alloc_inode,
819 .free_inode = bdev_free_inode,
820 .drop_inode = generic_delete_inode,
821 .evict_inode = bdev_evict_inode,
822 };
823
824 static struct dentry *bd_mount(struct file_system_type *fs_type,
825 int flags, const char *dev_name, void *data)
826 {
827 struct dentry *dent;
828 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
829 if (!IS_ERR(dent))
830 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
831 return dent;
832 }
833
834 static struct file_system_type bd_type = {
835 .name = "bdev",
836 .mount = bd_mount,
837 .kill_sb = kill_anon_super,
838 };
839
840 struct super_block *blockdev_superblock __read_mostly;
841 EXPORT_SYMBOL_GPL(blockdev_superblock);
842
843 void __init bdev_cache_init(void)
844 {
845 int err;
846 static struct vfsmount *bd_mnt;
847
848 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
849 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
850 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
851 init_once);
852 err = register_filesystem(&bd_type);
853 if (err)
854 panic("Cannot register bdev pseudo-fs");
855 bd_mnt = kern_mount(&bd_type);
856 if (IS_ERR(bd_mnt))
857 panic("Cannot create bdev pseudo-fs");
858 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
859 }
860
861 /*
862 * Most likely _very_ bad one - but then it's hardly critical for small
863 * /dev and can be fixed when somebody will need really large one.
864 * Keep in mind that it will be fed through icache hash function too.
865 */
866 static inline unsigned long hash(dev_t dev)
867 {
868 return MAJOR(dev)+MINOR(dev);
869 }
870
871 static int bdev_test(struct inode *inode, void *data)
872 {
873 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
874 }
875
876 static int bdev_set(struct inode *inode, void *data)
877 {
878 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
879 return 0;
880 }
881
882 static LIST_HEAD(all_bdevs);
883
884 /*
885 * If there is a bdev inode for this device, unhash it so that it gets evicted
886 * as soon as last inode reference is dropped.
887 */
888 void bdev_unhash_inode(dev_t dev)
889 {
890 struct inode *inode;
891
892 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
893 if (inode) {
894 remove_inode_hash(inode);
895 iput(inode);
896 }
897 }
898
899 struct block_device *bdget(dev_t dev)
900 {
901 struct block_device *bdev;
902 struct inode *inode;
903
904 inode = iget5_locked(blockdev_superblock, hash(dev),
905 bdev_test, bdev_set, &dev);
906
907 if (!inode)
908 return NULL;
909
910 bdev = &BDEV_I(inode)->bdev;
911
912 if (inode->i_state & I_NEW) {
913 bdev->bd_contains = NULL;
914 bdev->bd_super = NULL;
915 bdev->bd_inode = inode;
916 bdev->bd_block_size = i_blocksize(inode);
917 bdev->bd_part_count = 0;
918 bdev->bd_invalidated = 0;
919 inode->i_mode = S_IFBLK;
920 inode->i_rdev = dev;
921 inode->i_bdev = bdev;
922 inode->i_data.a_ops = &def_blk_aops;
923 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
924 spin_lock(&bdev_lock);
925 list_add(&bdev->bd_list, &all_bdevs);
926 spin_unlock(&bdev_lock);
927 unlock_new_inode(inode);
928 }
929 return bdev;
930 }
931
932 EXPORT_SYMBOL(bdget);
933
934 /**
935 * bdgrab -- Grab a reference to an already referenced block device
936 * @bdev: Block device to grab a reference to.
937 */
938 struct block_device *bdgrab(struct block_device *bdev)
939 {
940 ihold(bdev->bd_inode);
941 return bdev;
942 }
943 EXPORT_SYMBOL(bdgrab);
944
945 long nr_blockdev_pages(void)
946 {
947 struct block_device *bdev;
948 long ret = 0;
949 spin_lock(&bdev_lock);
950 list_for_each_entry(bdev, &all_bdevs, bd_list) {
951 ret += bdev->bd_inode->i_mapping->nrpages;
952 }
953 spin_unlock(&bdev_lock);
954 return ret;
955 }
956
957 void bdput(struct block_device *bdev)
958 {
959 iput(bdev->bd_inode);
960 }
961
962 EXPORT_SYMBOL(bdput);
963
964 static struct block_device *bd_acquire(struct inode *inode)
965 {
966 struct block_device *bdev;
967
968 spin_lock(&bdev_lock);
969 bdev = inode->i_bdev;
970 if (bdev && !inode_unhashed(bdev->bd_inode)) {
971 bdgrab(bdev);
972 spin_unlock(&bdev_lock);
973 return bdev;
974 }
975 spin_unlock(&bdev_lock);
976
977 /*
978 * i_bdev references block device inode that was already shut down
979 * (corresponding device got removed). Remove the reference and look
980 * up block device inode again just in case new device got
981 * reestablished under the same device number.
982 */
983 if (bdev)
984 bd_forget(inode);
985
986 bdev = bdget(inode->i_rdev);
987 if (bdev) {
988 spin_lock(&bdev_lock);
989 if (!inode->i_bdev) {
990 /*
991 * We take an additional reference to bd_inode,
992 * and it's released in clear_inode() of inode.
993 * So, we can access it via ->i_mapping always
994 * without igrab().
995 */
996 bdgrab(bdev);
997 inode->i_bdev = bdev;
998 inode->i_mapping = bdev->bd_inode->i_mapping;
999 }
1000 spin_unlock(&bdev_lock);
1001 }
1002 return bdev;
1003 }
1004
1005 /* Call when you free inode */
1006
1007 void bd_forget(struct inode *inode)
1008 {
1009 struct block_device *bdev = NULL;
1010
1011 spin_lock(&bdev_lock);
1012 if (!sb_is_blkdev_sb(inode->i_sb))
1013 bdev = inode->i_bdev;
1014 inode->i_bdev = NULL;
1015 inode->i_mapping = &inode->i_data;
1016 spin_unlock(&bdev_lock);
1017
1018 if (bdev)
1019 bdput(bdev);
1020 }
1021
1022 /**
1023 * bd_may_claim - test whether a block device can be claimed
1024 * @bdev: block device of interest
1025 * @whole: whole block device containing @bdev, may equal @bdev
1026 * @holder: holder trying to claim @bdev
1027 *
1028 * Test whether @bdev can be claimed by @holder.
1029 *
1030 * CONTEXT:
1031 * spin_lock(&bdev_lock).
1032 *
1033 * RETURNS:
1034 * %true if @bdev can be claimed, %false otherwise.
1035 */
1036 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1037 void *holder)
1038 {
1039 if (bdev->bd_holder == holder)
1040 return true; /* already a holder */
1041 else if (bdev->bd_holder != NULL)
1042 return false; /* held by someone else */
1043 else if (whole == bdev)
1044 return true; /* is a whole device which isn't held */
1045
1046 else if (whole->bd_holder == bd_may_claim)
1047 return true; /* is a partition of a device that is being partitioned */
1048 else if (whole->bd_holder != NULL)
1049 return false; /* is a partition of a held device */
1050 else
1051 return true; /* is a partition of an un-held device */
1052 }
1053
1054 /**
1055 * bd_prepare_to_claim - prepare to claim a block device
1056 * @bdev: block device of interest
1057 * @whole: the whole device containing @bdev, may equal @bdev
1058 * @holder: holder trying to claim @bdev
1059 *
1060 * Prepare to claim @bdev. This function fails if @bdev is already
1061 * claimed by another holder and waits if another claiming is in
1062 * progress. This function doesn't actually claim. On successful
1063 * return, the caller has ownership of bd_claiming and bd_holder[s].
1064 *
1065 * CONTEXT:
1066 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1067 * it multiple times.
1068 *
1069 * RETURNS:
1070 * 0 if @bdev can be claimed, -EBUSY otherwise.
1071 */
1072 static int bd_prepare_to_claim(struct block_device *bdev,
1073 struct block_device *whole, void *holder)
1074 {
1075 retry:
1076 /* if someone else claimed, fail */
1077 if (!bd_may_claim(bdev, whole, holder))
1078 return -EBUSY;
1079
1080 /* if claiming is already in progress, wait for it to finish */
1081 if (whole->bd_claiming) {
1082 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1083 DEFINE_WAIT(wait);
1084
1085 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1086 spin_unlock(&bdev_lock);
1087 schedule();
1088 finish_wait(wq, &wait);
1089 spin_lock(&bdev_lock);
1090 goto retry;
1091 }
1092
1093 /* yay, all mine */
1094 return 0;
1095 }
1096
1097 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1098 {
1099 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1100
1101 if (!disk)
1102 return NULL;
1103 /*
1104 * Now that we hold gendisk reference we make sure bdev we looked up is
1105 * not stale. If it is, it means device got removed and created before
1106 * we looked up gendisk and we fail open in such case. Associating
1107 * unhashed bdev with newly created gendisk could lead to two bdevs
1108 * (and thus two independent caches) being associated with one device
1109 * which is bad.
1110 */
1111 if (inode_unhashed(bdev->bd_inode)) {
1112 put_disk_and_module(disk);
1113 return NULL;
1114 }
1115 return disk;
1116 }
1117
1118 /**
1119 * bd_start_claiming - start claiming a block device
1120 * @bdev: block device of interest
1121 * @holder: holder trying to claim @bdev
1122 *
1123 * @bdev is about to be opened exclusively. Check @bdev can be opened
1124 * exclusively and mark that an exclusive open is in progress. Each
1125 * successful call to this function must be matched with a call to
1126 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1127 * fail).
1128 *
1129 * This function is used to gain exclusive access to the block device
1130 * without actually causing other exclusive open attempts to fail. It
1131 * should be used when the open sequence itself requires exclusive
1132 * access but may subsequently fail.
1133 *
1134 * CONTEXT:
1135 * Might sleep.
1136 *
1137 * RETURNS:
1138 * Pointer to the block device containing @bdev on success, ERR_PTR()
1139 * value on failure.
1140 */
1141 static struct block_device *bd_start_claiming(struct block_device *bdev,
1142 void *holder)
1143 {
1144 struct gendisk *disk;
1145 struct block_device *whole;
1146 int partno, err;
1147
1148 might_sleep();
1149
1150 /*
1151 * @bdev might not have been initialized properly yet, look up
1152 * and grab the outer block device the hard way.
1153 */
1154 disk = bdev_get_gendisk(bdev, &partno);
1155 if (!disk)
1156 return ERR_PTR(-ENXIO);
1157
1158 /*
1159 * Normally, @bdev should equal what's returned from bdget_disk()
1160 * if partno is 0; however, some drivers (floppy) use multiple
1161 * bdev's for the same physical device and @bdev may be one of the
1162 * aliases. Keep @bdev if partno is 0. This means claimer
1163 * tracking is broken for those devices but it has always been that
1164 * way.
1165 */
1166 if (partno)
1167 whole = bdget_disk(disk, 0);
1168 else
1169 whole = bdgrab(bdev);
1170
1171 put_disk_and_module(disk);
1172 if (!whole)
1173 return ERR_PTR(-ENOMEM);
1174
1175 /* prepare to claim, if successful, mark claiming in progress */
1176 spin_lock(&bdev_lock);
1177
1178 err = bd_prepare_to_claim(bdev, whole, holder);
1179 if (err == 0) {
1180 whole->bd_claiming = holder;
1181 spin_unlock(&bdev_lock);
1182 return whole;
1183 } else {
1184 spin_unlock(&bdev_lock);
1185 bdput(whole);
1186 return ERR_PTR(err);
1187 }
1188 }
1189
1190 #ifdef CONFIG_SYSFS
1191 struct bd_holder_disk {
1192 struct list_head list;
1193 struct gendisk *disk;
1194 int refcnt;
1195 };
1196
1197 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1198 struct gendisk *disk)
1199 {
1200 struct bd_holder_disk *holder;
1201
1202 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1203 if (holder->disk == disk)
1204 return holder;
1205 return NULL;
1206 }
1207
1208 static int add_symlink(struct kobject *from, struct kobject *to)
1209 {
1210 return sysfs_create_link(from, to, kobject_name(to));
1211 }
1212
1213 static void del_symlink(struct kobject *from, struct kobject *to)
1214 {
1215 sysfs_remove_link(from, kobject_name(to));
1216 }
1217
1218 /**
1219 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1220 * @bdev: the claimed slave bdev
1221 * @disk: the holding disk
1222 *
1223 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1224 *
1225 * This functions creates the following sysfs symlinks.
1226 *
1227 * - from "slaves" directory of the holder @disk to the claimed @bdev
1228 * - from "holders" directory of the @bdev to the holder @disk
1229 *
1230 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1231 * passed to bd_link_disk_holder(), then:
1232 *
1233 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1234 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1235 *
1236 * The caller must have claimed @bdev before calling this function and
1237 * ensure that both @bdev and @disk are valid during the creation and
1238 * lifetime of these symlinks.
1239 *
1240 * CONTEXT:
1241 * Might sleep.
1242 *
1243 * RETURNS:
1244 * 0 on success, -errno on failure.
1245 */
1246 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1247 {
1248 struct bd_holder_disk *holder;
1249 int ret = 0;
1250
1251 mutex_lock(&bdev->bd_mutex);
1252
1253 WARN_ON_ONCE(!bdev->bd_holder);
1254
1255 /* FIXME: remove the following once add_disk() handles errors */
1256 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1257 goto out_unlock;
1258
1259 holder = bd_find_holder_disk(bdev, disk);
1260 if (holder) {
1261 holder->refcnt++;
1262 goto out_unlock;
1263 }
1264
1265 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1266 if (!holder) {
1267 ret = -ENOMEM;
1268 goto out_unlock;
1269 }
1270
1271 INIT_LIST_HEAD(&holder->list);
1272 holder->disk = disk;
1273 holder->refcnt = 1;
1274
1275 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1276 if (ret)
1277 goto out_free;
1278
1279 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1280 if (ret)
1281 goto out_del;
1282 /*
1283 * bdev could be deleted beneath us which would implicitly destroy
1284 * the holder directory. Hold on to it.
1285 */
1286 kobject_get(bdev->bd_part->holder_dir);
1287
1288 list_add(&holder->list, &bdev->bd_holder_disks);
1289 goto out_unlock;
1290
1291 out_del:
1292 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1293 out_free:
1294 kfree(holder);
1295 out_unlock:
1296 mutex_unlock(&bdev->bd_mutex);
1297 return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1300
1301 /**
1302 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1303 * @bdev: the calimed slave bdev
1304 * @disk: the holding disk
1305 *
1306 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1307 *
1308 * CONTEXT:
1309 * Might sleep.
1310 */
1311 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1312 {
1313 struct bd_holder_disk *holder;
1314
1315 mutex_lock(&bdev->bd_mutex);
1316
1317 holder = bd_find_holder_disk(bdev, disk);
1318
1319 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1320 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1321 del_symlink(bdev->bd_part->holder_dir,
1322 &disk_to_dev(disk)->kobj);
1323 kobject_put(bdev->bd_part->holder_dir);
1324 list_del_init(&holder->list);
1325 kfree(holder);
1326 }
1327
1328 mutex_unlock(&bdev->bd_mutex);
1329 }
1330 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1331 #endif
1332
1333 /**
1334 * flush_disk - invalidates all buffer-cache entries on a disk
1335 *
1336 * @bdev: struct block device to be flushed
1337 * @kill_dirty: flag to guide handling of dirty inodes
1338 *
1339 * Invalidates all buffer-cache entries on a disk. It should be called
1340 * when a disk has been changed -- either by a media change or online
1341 * resize.
1342 */
1343 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1344 {
1345 if (__invalidate_device(bdev, kill_dirty)) {
1346 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1347 "resized disk %s\n",
1348 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1349 }
1350
1351 if (!bdev->bd_disk)
1352 return;
1353 if (disk_part_scan_enabled(bdev->bd_disk))
1354 bdev->bd_invalidated = 1;
1355 }
1356
1357 /**
1358 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1359 * @disk: struct gendisk to check
1360 * @bdev: struct bdev to adjust.
1361 * @verbose: if %true log a message about a size change if there is any
1362 *
1363 * This routine checks to see if the bdev size does not match the disk size
1364 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1365 * are freed.
1366 */
1367 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1368 bool verbose)
1369 {
1370 loff_t disk_size, bdev_size;
1371
1372 disk_size = (loff_t)get_capacity(disk) << 9;
1373 bdev_size = i_size_read(bdev->bd_inode);
1374 if (disk_size != bdev_size) {
1375 if (verbose) {
1376 printk(KERN_INFO
1377 "%s: detected capacity change from %lld to %lld\n",
1378 disk->disk_name, bdev_size, disk_size);
1379 }
1380 i_size_write(bdev->bd_inode, disk_size);
1381 if (bdev_size > disk_size)
1382 flush_disk(bdev, false);
1383 }
1384 }
1385
1386 /**
1387 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1388 * @disk: struct gendisk to be revalidated
1389 *
1390 * This routine is a wrapper for lower-level driver's revalidate_disk
1391 * call-backs. It is used to do common pre and post operations needed
1392 * for all revalidate_disk operations.
1393 */
1394 int revalidate_disk(struct gendisk *disk)
1395 {
1396 int ret = 0;
1397
1398 if (disk->fops->revalidate_disk)
1399 ret = disk->fops->revalidate_disk(disk);
1400
1401 /*
1402 * Hidden disks don't have associated bdev so there's no point in
1403 * revalidating it.
1404 */
1405 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1406 struct block_device *bdev = bdget_disk(disk, 0);
1407
1408 if (!bdev)
1409 return ret;
1410
1411 mutex_lock(&bdev->bd_mutex);
1412 check_disk_size_change(disk, bdev, ret == 0);
1413 bdev->bd_invalidated = 0;
1414 mutex_unlock(&bdev->bd_mutex);
1415 bdput(bdev);
1416 }
1417 return ret;
1418 }
1419 EXPORT_SYMBOL(revalidate_disk);
1420
1421 /*
1422 * This routine checks whether a removable media has been changed,
1423 * and invalidates all buffer-cache-entries in that case. This
1424 * is a relatively slow routine, so we have to try to minimize using
1425 * it. Thus it is called only upon a 'mount' or 'open'. This
1426 * is the best way of combining speed and utility, I think.
1427 * People changing diskettes in the middle of an operation deserve
1428 * to lose :-)
1429 */
1430 int check_disk_change(struct block_device *bdev)
1431 {
1432 struct gendisk *disk = bdev->bd_disk;
1433 const struct block_device_operations *bdops = disk->fops;
1434 unsigned int events;
1435
1436 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1437 DISK_EVENT_EJECT_REQUEST);
1438 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1439 return 0;
1440
1441 flush_disk(bdev, true);
1442 if (bdops->revalidate_disk)
1443 bdops->revalidate_disk(bdev->bd_disk);
1444 return 1;
1445 }
1446
1447 EXPORT_SYMBOL(check_disk_change);
1448
1449 void bd_set_size(struct block_device *bdev, loff_t size)
1450 {
1451 inode_lock(bdev->bd_inode);
1452 i_size_write(bdev->bd_inode, size);
1453 inode_unlock(bdev->bd_inode);
1454 }
1455 EXPORT_SYMBOL(bd_set_size);
1456
1457 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1458
1459 /*
1460 * bd_mutex locking:
1461 *
1462 * mutex_lock(part->bd_mutex)
1463 * mutex_lock_nested(whole->bd_mutex, 1)
1464 */
1465
1466 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1467 {
1468 struct gendisk *disk;
1469 int ret;
1470 int partno;
1471 int perm = 0;
1472 bool first_open = false;
1473
1474 if (mode & FMODE_READ)
1475 perm |= MAY_READ;
1476 if (mode & FMODE_WRITE)
1477 perm |= MAY_WRITE;
1478 /*
1479 * hooks: /n/, see "layering violations".
1480 */
1481 if (!for_part) {
1482 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1483 if (ret != 0) {
1484 bdput(bdev);
1485 return ret;
1486 }
1487 }
1488
1489 restart:
1490
1491 ret = -ENXIO;
1492 disk = bdev_get_gendisk(bdev, &partno);
1493 if (!disk)
1494 goto out;
1495
1496 disk_block_events(disk);
1497 mutex_lock_nested(&bdev->bd_mutex, for_part);
1498 if (!bdev->bd_openers) {
1499 first_open = true;
1500 bdev->bd_disk = disk;
1501 bdev->bd_queue = disk->queue;
1502 bdev->bd_contains = bdev;
1503 bdev->bd_partno = partno;
1504
1505 if (!partno) {
1506 ret = -ENXIO;
1507 bdev->bd_part = disk_get_part(disk, partno);
1508 if (!bdev->bd_part)
1509 goto out_clear;
1510
1511 ret = 0;
1512 if (disk->fops->open) {
1513 ret = disk->fops->open(bdev, mode);
1514 if (ret == -ERESTARTSYS) {
1515 /* Lost a race with 'disk' being
1516 * deleted, try again.
1517 * See md.c
1518 */
1519 disk_put_part(bdev->bd_part);
1520 bdev->bd_part = NULL;
1521 bdev->bd_disk = NULL;
1522 bdev->bd_queue = NULL;
1523 mutex_unlock(&bdev->bd_mutex);
1524 disk_unblock_events(disk);
1525 put_disk_and_module(disk);
1526 goto restart;
1527 }
1528 }
1529
1530 if (!ret) {
1531 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1532 set_init_blocksize(bdev);
1533 }
1534
1535 /*
1536 * If the device is invalidated, rescan partition
1537 * if open succeeded or failed with -ENOMEDIUM.
1538 * The latter is necessary to prevent ghost
1539 * partitions on a removed medium.
1540 */
1541 if (bdev->bd_invalidated) {
1542 if (!ret)
1543 rescan_partitions(disk, bdev);
1544 else if (ret == -ENOMEDIUM)
1545 invalidate_partitions(disk, bdev);
1546 }
1547
1548 if (ret)
1549 goto out_clear;
1550 } else {
1551 struct block_device *whole;
1552 whole = bdget_disk(disk, 0);
1553 ret = -ENOMEM;
1554 if (!whole)
1555 goto out_clear;
1556 BUG_ON(for_part);
1557 ret = __blkdev_get(whole, mode, 1);
1558 if (ret)
1559 goto out_clear;
1560 bdev->bd_contains = whole;
1561 bdev->bd_part = disk_get_part(disk, partno);
1562 if (!(disk->flags & GENHD_FL_UP) ||
1563 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1564 ret = -ENXIO;
1565 goto out_clear;
1566 }
1567 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1568 set_init_blocksize(bdev);
1569 }
1570
1571 if (bdev->bd_bdi == &noop_backing_dev_info)
1572 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1573 } else {
1574 if (bdev->bd_contains == bdev) {
1575 ret = 0;
1576 if (bdev->bd_disk->fops->open)
1577 ret = bdev->bd_disk->fops->open(bdev, mode);
1578 /* the same as first opener case, read comment there */
1579 if (bdev->bd_invalidated) {
1580 if (!ret)
1581 rescan_partitions(bdev->bd_disk, bdev);
1582 else if (ret == -ENOMEDIUM)
1583 invalidate_partitions(bdev->bd_disk, bdev);
1584 }
1585 if (ret)
1586 goto out_unlock_bdev;
1587 }
1588 }
1589 bdev->bd_openers++;
1590 if (for_part)
1591 bdev->bd_part_count++;
1592 mutex_unlock(&bdev->bd_mutex);
1593 disk_unblock_events(disk);
1594 /* only one opener holds refs to the module and disk */
1595 if (!first_open)
1596 put_disk_and_module(disk);
1597 return 0;
1598
1599 out_clear:
1600 disk_put_part(bdev->bd_part);
1601 bdev->bd_disk = NULL;
1602 bdev->bd_part = NULL;
1603 bdev->bd_queue = NULL;
1604 if (bdev != bdev->bd_contains)
1605 __blkdev_put(bdev->bd_contains, mode, 1);
1606 bdev->bd_contains = NULL;
1607 out_unlock_bdev:
1608 mutex_unlock(&bdev->bd_mutex);
1609 disk_unblock_events(disk);
1610 put_disk_and_module(disk);
1611 out:
1612 bdput(bdev);
1613
1614 return ret;
1615 }
1616
1617 /**
1618 * blkdev_get - open a block device
1619 * @bdev: block_device to open
1620 * @mode: FMODE_* mask
1621 * @holder: exclusive holder identifier
1622 *
1623 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1624 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1625 * @holder is invalid. Exclusive opens may nest for the same @holder.
1626 *
1627 * On success, the reference count of @bdev is unchanged. On failure,
1628 * @bdev is put.
1629 *
1630 * CONTEXT:
1631 * Might sleep.
1632 *
1633 * RETURNS:
1634 * 0 on success, -errno on failure.
1635 */
1636 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1637 {
1638 struct block_device *whole = NULL;
1639 int res;
1640
1641 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1642
1643 if ((mode & FMODE_EXCL) && holder) {
1644 whole = bd_start_claiming(bdev, holder);
1645 if (IS_ERR(whole)) {
1646 bdput(bdev);
1647 return PTR_ERR(whole);
1648 }
1649 }
1650
1651 res = __blkdev_get(bdev, mode, 0);
1652
1653 if (whole) {
1654 struct gendisk *disk = whole->bd_disk;
1655
1656 /* finish claiming */
1657 mutex_lock(&bdev->bd_mutex);
1658 spin_lock(&bdev_lock);
1659
1660 if (!res) {
1661 BUG_ON(!bd_may_claim(bdev, whole, holder));
1662 /*
1663 * Note that for a whole device bd_holders
1664 * will be incremented twice, and bd_holder
1665 * will be set to bd_may_claim before being
1666 * set to holder
1667 */
1668 whole->bd_holders++;
1669 whole->bd_holder = bd_may_claim;
1670 bdev->bd_holders++;
1671 bdev->bd_holder = holder;
1672 }
1673
1674 /* tell others that we're done */
1675 BUG_ON(whole->bd_claiming != holder);
1676 whole->bd_claiming = NULL;
1677 wake_up_bit(&whole->bd_claiming, 0);
1678
1679 spin_unlock(&bdev_lock);
1680
1681 /*
1682 * Block event polling for write claims if requested. Any
1683 * write holder makes the write_holder state stick until
1684 * all are released. This is good enough and tracking
1685 * individual writeable reference is too fragile given the
1686 * way @mode is used in blkdev_get/put().
1687 */
1688 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1689 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1690 bdev->bd_write_holder = true;
1691 disk_block_events(disk);
1692 }
1693
1694 mutex_unlock(&bdev->bd_mutex);
1695 bdput(whole);
1696 }
1697
1698 return res;
1699 }
1700 EXPORT_SYMBOL(blkdev_get);
1701
1702 /**
1703 * blkdev_get_by_path - open a block device by name
1704 * @path: path to the block device to open
1705 * @mode: FMODE_* mask
1706 * @holder: exclusive holder identifier
1707 *
1708 * Open the blockdevice described by the device file at @path. @mode
1709 * and @holder are identical to blkdev_get().
1710 *
1711 * On success, the returned block_device has reference count of one.
1712 *
1713 * CONTEXT:
1714 * Might sleep.
1715 *
1716 * RETURNS:
1717 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1718 */
1719 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1720 void *holder)
1721 {
1722 struct block_device *bdev;
1723 int err;
1724
1725 bdev = lookup_bdev(path);
1726 if (IS_ERR(bdev))
1727 return bdev;
1728
1729 err = blkdev_get(bdev, mode, holder);
1730 if (err)
1731 return ERR_PTR(err);
1732
1733 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1734 blkdev_put(bdev, mode);
1735 return ERR_PTR(-EACCES);
1736 }
1737
1738 return bdev;
1739 }
1740 EXPORT_SYMBOL(blkdev_get_by_path);
1741
1742 /**
1743 * blkdev_get_by_dev - open a block device by device number
1744 * @dev: device number of block device to open
1745 * @mode: FMODE_* mask
1746 * @holder: exclusive holder identifier
1747 *
1748 * Open the blockdevice described by device number @dev. @mode and
1749 * @holder are identical to blkdev_get().
1750 *
1751 * Use it ONLY if you really do not have anything better - i.e. when
1752 * you are behind a truly sucky interface and all you are given is a
1753 * device number. _Never_ to be used for internal purposes. If you
1754 * ever need it - reconsider your API.
1755 *
1756 * On success, the returned block_device has reference count of one.
1757 *
1758 * CONTEXT:
1759 * Might sleep.
1760 *
1761 * RETURNS:
1762 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1763 */
1764 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1765 {
1766 struct block_device *bdev;
1767 int err;
1768
1769 bdev = bdget(dev);
1770 if (!bdev)
1771 return ERR_PTR(-ENOMEM);
1772
1773 err = blkdev_get(bdev, mode, holder);
1774 if (err)
1775 return ERR_PTR(err);
1776
1777 return bdev;
1778 }
1779 EXPORT_SYMBOL(blkdev_get_by_dev);
1780
1781 static int blkdev_open(struct inode * inode, struct file * filp)
1782 {
1783 struct block_device *bdev;
1784
1785 /*
1786 * Preserve backwards compatibility and allow large file access
1787 * even if userspace doesn't ask for it explicitly. Some mkfs
1788 * binary needs it. We might want to drop this workaround
1789 * during an unstable branch.
1790 */
1791 filp->f_flags |= O_LARGEFILE;
1792
1793 filp->f_mode |= FMODE_NOWAIT;
1794
1795 if (filp->f_flags & O_NDELAY)
1796 filp->f_mode |= FMODE_NDELAY;
1797 if (filp->f_flags & O_EXCL)
1798 filp->f_mode |= FMODE_EXCL;
1799 if ((filp->f_flags & O_ACCMODE) == 3)
1800 filp->f_mode |= FMODE_WRITE_IOCTL;
1801
1802 bdev = bd_acquire(inode);
1803 if (bdev == NULL)
1804 return -ENOMEM;
1805
1806 filp->f_mapping = bdev->bd_inode->i_mapping;
1807 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1808
1809 return blkdev_get(bdev, filp->f_mode, filp);
1810 }
1811
1812 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1813 {
1814 struct gendisk *disk = bdev->bd_disk;
1815 struct block_device *victim = NULL;
1816
1817 mutex_lock_nested(&bdev->bd_mutex, for_part);
1818 if (for_part)
1819 bdev->bd_part_count--;
1820
1821 if (!--bdev->bd_openers) {
1822 WARN_ON_ONCE(bdev->bd_holders);
1823 sync_blockdev(bdev);
1824 kill_bdev(bdev);
1825
1826 bdev_write_inode(bdev);
1827 }
1828 if (bdev->bd_contains == bdev) {
1829 if (disk->fops->release)
1830 disk->fops->release(disk, mode);
1831 }
1832 if (!bdev->bd_openers) {
1833 disk_put_part(bdev->bd_part);
1834 bdev->bd_part = NULL;
1835 bdev->bd_disk = NULL;
1836 if (bdev != bdev->bd_contains)
1837 victim = bdev->bd_contains;
1838 bdev->bd_contains = NULL;
1839
1840 put_disk_and_module(disk);
1841 }
1842 mutex_unlock(&bdev->bd_mutex);
1843 bdput(bdev);
1844 if (victim)
1845 __blkdev_put(victim, mode, 1);
1846 }
1847
1848 void blkdev_put(struct block_device *bdev, fmode_t mode)
1849 {
1850 mutex_lock(&bdev->bd_mutex);
1851
1852 if (mode & FMODE_EXCL) {
1853 bool bdev_free;
1854
1855 /*
1856 * Release a claim on the device. The holder fields
1857 * are protected with bdev_lock. bd_mutex is to
1858 * synchronize disk_holder unlinking.
1859 */
1860 spin_lock(&bdev_lock);
1861
1862 WARN_ON_ONCE(--bdev->bd_holders < 0);
1863 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1864
1865 /* bd_contains might point to self, check in a separate step */
1866 if ((bdev_free = !bdev->bd_holders))
1867 bdev->bd_holder = NULL;
1868 if (!bdev->bd_contains->bd_holders)
1869 bdev->bd_contains->bd_holder = NULL;
1870
1871 spin_unlock(&bdev_lock);
1872
1873 /*
1874 * If this was the last claim, remove holder link and
1875 * unblock evpoll if it was a write holder.
1876 */
1877 if (bdev_free && bdev->bd_write_holder) {
1878 disk_unblock_events(bdev->bd_disk);
1879 bdev->bd_write_holder = false;
1880 }
1881 }
1882
1883 /*
1884 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1885 * event. This is to ensure detection of media removal commanded
1886 * from userland - e.g. eject(1).
1887 */
1888 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1889
1890 mutex_unlock(&bdev->bd_mutex);
1891
1892 __blkdev_put(bdev, mode, 0);
1893 }
1894 EXPORT_SYMBOL(blkdev_put);
1895
1896 static int blkdev_close(struct inode * inode, struct file * filp)
1897 {
1898 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1899 blkdev_put(bdev, filp->f_mode);
1900 return 0;
1901 }
1902
1903 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1904 {
1905 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1906 fmode_t mode = file->f_mode;
1907
1908 /*
1909 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1910 * to updated it before every ioctl.
1911 */
1912 if (file->f_flags & O_NDELAY)
1913 mode |= FMODE_NDELAY;
1914 else
1915 mode &= ~FMODE_NDELAY;
1916
1917 return blkdev_ioctl(bdev, mode, cmd, arg);
1918 }
1919
1920 /*
1921 * Write data to the block device. Only intended for the block device itself
1922 * and the raw driver which basically is a fake block device.
1923 *
1924 * Does not take i_mutex for the write and thus is not for general purpose
1925 * use.
1926 */
1927 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1928 {
1929 struct file *file = iocb->ki_filp;
1930 struct inode *bd_inode = bdev_file_inode(file);
1931 loff_t size = i_size_read(bd_inode);
1932 struct blk_plug plug;
1933 ssize_t ret;
1934
1935 if (bdev_read_only(I_BDEV(bd_inode)))
1936 return -EPERM;
1937
1938 if (!iov_iter_count(from))
1939 return 0;
1940
1941 if (iocb->ki_pos >= size)
1942 return -ENOSPC;
1943
1944 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1945 return -EOPNOTSUPP;
1946
1947 iov_iter_truncate(from, size - iocb->ki_pos);
1948
1949 blk_start_plug(&plug);
1950 ret = __generic_file_write_iter(iocb, from);
1951 if (ret > 0)
1952 ret = generic_write_sync(iocb, ret);
1953 blk_finish_plug(&plug);
1954 return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1957
1958 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1959 {
1960 struct file *file = iocb->ki_filp;
1961 struct inode *bd_inode = bdev_file_inode(file);
1962 loff_t size = i_size_read(bd_inode);
1963 loff_t pos = iocb->ki_pos;
1964
1965 if (pos >= size)
1966 return 0;
1967
1968 size -= pos;
1969 iov_iter_truncate(to, size);
1970 return generic_file_read_iter(iocb, to);
1971 }
1972 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1973
1974 /*
1975 * Try to release a page associated with block device when the system
1976 * is under memory pressure.
1977 */
1978 static int blkdev_releasepage(struct page *page, gfp_t wait)
1979 {
1980 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1981
1982 if (super && super->s_op->bdev_try_to_free_page)
1983 return super->s_op->bdev_try_to_free_page(super, page, wait);
1984
1985 return try_to_free_buffers(page);
1986 }
1987
1988 static int blkdev_writepages(struct address_space *mapping,
1989 struct writeback_control *wbc)
1990 {
1991 return generic_writepages(mapping, wbc);
1992 }
1993
1994 static const struct address_space_operations def_blk_aops = {
1995 .readpage = blkdev_readpage,
1996 .readpages = blkdev_readpages,
1997 .writepage = blkdev_writepage,
1998 .write_begin = blkdev_write_begin,
1999 .write_end = blkdev_write_end,
2000 .writepages = blkdev_writepages,
2001 .releasepage = blkdev_releasepage,
2002 .direct_IO = blkdev_direct_IO,
2003 .migratepage = buffer_migrate_page_norefs,
2004 .is_dirty_writeback = buffer_check_dirty_writeback,
2005 };
2006
2007 #define BLKDEV_FALLOC_FL_SUPPORTED \
2008 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2009 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2010
2011 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2012 loff_t len)
2013 {
2014 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2015 struct address_space *mapping;
2016 loff_t end = start + len - 1;
2017 loff_t isize;
2018 int error;
2019
2020 /* Fail if we don't recognize the flags. */
2021 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2022 return -EOPNOTSUPP;
2023
2024 /* Don't go off the end of the device. */
2025 isize = i_size_read(bdev->bd_inode);
2026 if (start >= isize)
2027 return -EINVAL;
2028 if (end >= isize) {
2029 if (mode & FALLOC_FL_KEEP_SIZE) {
2030 len = isize - start;
2031 end = start + len - 1;
2032 } else
2033 return -EINVAL;
2034 }
2035
2036 /*
2037 * Don't allow IO that isn't aligned to logical block size.
2038 */
2039 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2040 return -EINVAL;
2041
2042 /* Invalidate the page cache, including dirty pages. */
2043 mapping = bdev->bd_inode->i_mapping;
2044 truncate_inode_pages_range(mapping, start, end);
2045
2046 switch (mode) {
2047 case FALLOC_FL_ZERO_RANGE:
2048 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2049 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2050 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2051 break;
2052 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2053 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2054 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2055 break;
2056 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2057 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2058 GFP_KERNEL, 0);
2059 break;
2060 default:
2061 return -EOPNOTSUPP;
2062 }
2063 if (error)
2064 return error;
2065
2066 /*
2067 * Invalidate again; if someone wandered in and dirtied a page,
2068 * the caller will be given -EBUSY. The third argument is
2069 * inclusive, so the rounding here is safe.
2070 */
2071 return invalidate_inode_pages2_range(mapping,
2072 start >> PAGE_SHIFT,
2073 end >> PAGE_SHIFT);
2074 }
2075
2076 const struct file_operations def_blk_fops = {
2077 .open = blkdev_open,
2078 .release = blkdev_close,
2079 .llseek = block_llseek,
2080 .read_iter = blkdev_read_iter,
2081 .write_iter = blkdev_write_iter,
2082 .iopoll = blkdev_iopoll,
2083 .mmap = generic_file_mmap,
2084 .fsync = blkdev_fsync,
2085 .unlocked_ioctl = block_ioctl,
2086 #ifdef CONFIG_COMPAT
2087 .compat_ioctl = compat_blkdev_ioctl,
2088 #endif
2089 .splice_read = generic_file_splice_read,
2090 .splice_write = iter_file_splice_write,
2091 .fallocate = blkdev_fallocate,
2092 };
2093
2094 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2095 {
2096 int res;
2097 mm_segment_t old_fs = get_fs();
2098 set_fs(KERNEL_DS);
2099 res = blkdev_ioctl(bdev, 0, cmd, arg);
2100 set_fs(old_fs);
2101 return res;
2102 }
2103
2104 EXPORT_SYMBOL(ioctl_by_bdev);
2105
2106 /**
2107 * lookup_bdev - lookup a struct block_device by name
2108 * @pathname: special file representing the block device
2109 *
2110 * Get a reference to the blockdevice at @pathname in the current
2111 * namespace if possible and return it. Return ERR_PTR(error)
2112 * otherwise.
2113 */
2114 struct block_device *lookup_bdev(const char *pathname)
2115 {
2116 struct block_device *bdev;
2117 struct inode *inode;
2118 struct path path;
2119 int error;
2120
2121 if (!pathname || !*pathname)
2122 return ERR_PTR(-EINVAL);
2123
2124 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2125 if (error)
2126 return ERR_PTR(error);
2127
2128 inode = d_backing_inode(path.dentry);
2129 error = -ENOTBLK;
2130 if (!S_ISBLK(inode->i_mode))
2131 goto fail;
2132 error = -EACCES;
2133 if (!may_open_dev(&path))
2134 goto fail;
2135 error = -ENOMEM;
2136 bdev = bd_acquire(inode);
2137 if (!bdev)
2138 goto fail;
2139 out:
2140 path_put(&path);
2141 return bdev;
2142 fail:
2143 bdev = ERR_PTR(error);
2144 goto out;
2145 }
2146 EXPORT_SYMBOL(lookup_bdev);
2147
2148 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2149 {
2150 struct super_block *sb = get_super(bdev);
2151 int res = 0;
2152
2153 if (sb) {
2154 /*
2155 * no need to lock the super, get_super holds the
2156 * read mutex so the filesystem cannot go away
2157 * under us (->put_super runs with the write lock
2158 * hold).
2159 */
2160 shrink_dcache_sb(sb);
2161 res = invalidate_inodes(sb, kill_dirty);
2162 drop_super(sb);
2163 }
2164 invalidate_bdev(bdev);
2165 return res;
2166 }
2167 EXPORT_SYMBOL(__invalidate_device);
2168
2169 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2170 {
2171 struct inode *inode, *old_inode = NULL;
2172
2173 spin_lock(&blockdev_superblock->s_inode_list_lock);
2174 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2175 struct address_space *mapping = inode->i_mapping;
2176 struct block_device *bdev;
2177
2178 spin_lock(&inode->i_lock);
2179 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2180 mapping->nrpages == 0) {
2181 spin_unlock(&inode->i_lock);
2182 continue;
2183 }
2184 __iget(inode);
2185 spin_unlock(&inode->i_lock);
2186 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2187 /*
2188 * We hold a reference to 'inode' so it couldn't have been
2189 * removed from s_inodes list while we dropped the
2190 * s_inode_list_lock We cannot iput the inode now as we can
2191 * be holding the last reference and we cannot iput it under
2192 * s_inode_list_lock. So we keep the reference and iput it
2193 * later.
2194 */
2195 iput(old_inode);
2196 old_inode = inode;
2197 bdev = I_BDEV(inode);
2198
2199 mutex_lock(&bdev->bd_mutex);
2200 if (bdev->bd_openers)
2201 func(bdev, arg);
2202 mutex_unlock(&bdev->bd_mutex);
2203
2204 spin_lock(&blockdev_superblock->s_inode_list_lock);
2205 }
2206 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2207 iput(old_inode);
2208 }