]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/block_dev.c
Merge branch 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 /*
53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
54 * need to move it onto the dirty list of @dst so that the inode is always on
55 * the right list.
56 */
57 static void bdev_inode_switch_bdi(struct inode *inode,
58 struct backing_dev_info *dst)
59 {
60 struct backing_dev_info *old = inode->i_data.backing_dev_info;
61 bool wakeup_bdi = false;
62
63 if (unlikely(dst == old)) /* deadlock avoidance */
64 return;
65 bdi_lock_two(&old->wb, &dst->wb);
66 spin_lock(&inode->i_lock);
67 inode->i_data.backing_dev_info = dst;
68 if (inode->i_state & I_DIRTY) {
69 if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb))
70 wakeup_bdi = true;
71 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
72 }
73 spin_unlock(&inode->i_lock);
74 spin_unlock(&old->wb.list_lock);
75 spin_unlock(&dst->wb.list_lock);
76
77 if (wakeup_bdi)
78 bdi_wakeup_thread_delayed(dst);
79 }
80
81 /* Kill _all_ buffers and pagecache , dirty or not.. */
82 void kill_bdev(struct block_device *bdev)
83 {
84 struct address_space *mapping = bdev->bd_inode->i_mapping;
85
86 if (mapping->nrpages == 0 && mapping->nrshadows == 0)
87 return;
88
89 invalidate_bh_lrus();
90 truncate_inode_pages(mapping, 0);
91 }
92 EXPORT_SYMBOL(kill_bdev);
93
94 /* Invalidate clean unused buffers and pagecache. */
95 void invalidate_bdev(struct block_device *bdev)
96 {
97 struct address_space *mapping = bdev->bd_inode->i_mapping;
98
99 if (mapping->nrpages == 0)
100 return;
101
102 invalidate_bh_lrus();
103 lru_add_drain_all(); /* make sure all lru add caches are flushed */
104 invalidate_mapping_pages(mapping, 0, -1);
105 /* 99% of the time, we don't need to flush the cleancache on the bdev.
106 * But, for the strange corners, lets be cautious
107 */
108 cleancache_invalidate_inode(mapping);
109 }
110 EXPORT_SYMBOL(invalidate_bdev);
111
112 int set_blocksize(struct block_device *bdev, int size)
113 {
114 /* Size must be a power of two, and between 512 and PAGE_SIZE */
115 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
116 return -EINVAL;
117
118 /* Size cannot be smaller than the size supported by the device */
119 if (size < bdev_logical_block_size(bdev))
120 return -EINVAL;
121
122 /* Don't change the size if it is same as current */
123 if (bdev->bd_block_size != size) {
124 sync_blockdev(bdev);
125 bdev->bd_block_size = size;
126 bdev->bd_inode->i_blkbits = blksize_bits(size);
127 kill_bdev(bdev);
128 }
129 return 0;
130 }
131
132 EXPORT_SYMBOL(set_blocksize);
133
134 int sb_set_blocksize(struct super_block *sb, int size)
135 {
136 if (set_blocksize(sb->s_bdev, size))
137 return 0;
138 /* If we get here, we know size is power of two
139 * and it's value is between 512 and PAGE_SIZE */
140 sb->s_blocksize = size;
141 sb->s_blocksize_bits = blksize_bits(size);
142 return sb->s_blocksize;
143 }
144
145 EXPORT_SYMBOL(sb_set_blocksize);
146
147 int sb_min_blocksize(struct super_block *sb, int size)
148 {
149 int minsize = bdev_logical_block_size(sb->s_bdev);
150 if (size < minsize)
151 size = minsize;
152 return sb_set_blocksize(sb, size);
153 }
154
155 EXPORT_SYMBOL(sb_min_blocksize);
156
157 static int
158 blkdev_get_block(struct inode *inode, sector_t iblock,
159 struct buffer_head *bh, int create)
160 {
161 bh->b_bdev = I_BDEV(inode);
162 bh->b_blocknr = iblock;
163 set_buffer_mapped(bh);
164 return 0;
165 }
166
167 static ssize_t
168 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
169 loff_t offset, unsigned long nr_segs)
170 {
171 struct file *file = iocb->ki_filp;
172 struct inode *inode = file->f_mapping->host;
173
174 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
175 nr_segs, blkdev_get_block, NULL, NULL, 0);
176 }
177
178 int __sync_blockdev(struct block_device *bdev, int wait)
179 {
180 if (!bdev)
181 return 0;
182 if (!wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
185 }
186
187 /*
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
190 */
191 int sync_blockdev(struct block_device *bdev)
192 {
193 return __sync_blockdev(bdev, 1);
194 }
195 EXPORT_SYMBOL(sync_blockdev);
196
197 /*
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
201 */
202 int fsync_bdev(struct block_device *bdev)
203 {
204 struct super_block *sb = get_super(bdev);
205 if (sb) {
206 int res = sync_filesystem(sb);
207 drop_super(sb);
208 return res;
209 }
210 return sync_blockdev(bdev);
211 }
212 EXPORT_SYMBOL(fsync_bdev);
213
214 /**
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
217 *
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
224 * actually.
225 */
226 struct super_block *freeze_bdev(struct block_device *bdev)
227 {
228 struct super_block *sb;
229 int error = 0;
230
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
233 /*
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
237 */
238 sb = get_super(bdev);
239 drop_super(sb);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb;
242 }
243
244 sb = get_active_super(bdev);
245 if (!sb)
246 goto out;
247 error = freeze_super(sb);
248 if (error) {
249 deactivate_super(sb);
250 bdev->bd_fsfreeze_count--;
251 mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 return ERR_PTR(error);
253 }
254 deactivate_super(sb);
255 out:
256 sync_blockdev(bdev);
257 mutex_unlock(&bdev->bd_fsfreeze_mutex);
258 return sb; /* thaw_bdev releases s->s_umount */
259 }
260 EXPORT_SYMBOL(freeze_bdev);
261
262 /**
263 * thaw_bdev -- unlock filesystem
264 * @bdev: blockdevice to unlock
265 * @sb: associated superblock
266 *
267 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
268 */
269 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
270 {
271 int error = -EINVAL;
272
273 mutex_lock(&bdev->bd_fsfreeze_mutex);
274 if (!bdev->bd_fsfreeze_count)
275 goto out;
276
277 error = 0;
278 if (--bdev->bd_fsfreeze_count > 0)
279 goto out;
280
281 if (!sb)
282 goto out;
283
284 error = thaw_super(sb);
285 if (error) {
286 bdev->bd_fsfreeze_count++;
287 mutex_unlock(&bdev->bd_fsfreeze_mutex);
288 return error;
289 }
290 out:
291 mutex_unlock(&bdev->bd_fsfreeze_mutex);
292 return 0;
293 }
294 EXPORT_SYMBOL(thaw_bdev);
295
296 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
297 {
298 return block_write_full_page(page, blkdev_get_block, wbc);
299 }
300
301 static int blkdev_readpage(struct file * file, struct page * page)
302 {
303 return block_read_full_page(page, blkdev_get_block);
304 }
305
306 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
307 loff_t pos, unsigned len, unsigned flags,
308 struct page **pagep, void **fsdata)
309 {
310 return block_write_begin(mapping, pos, len, flags, pagep,
311 blkdev_get_block);
312 }
313
314 static int blkdev_write_end(struct file *file, struct address_space *mapping,
315 loff_t pos, unsigned len, unsigned copied,
316 struct page *page, void *fsdata)
317 {
318 int ret;
319 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
320
321 unlock_page(page);
322 page_cache_release(page);
323
324 return ret;
325 }
326
327 /*
328 * private llseek:
329 * for a block special file file_inode(file)->i_size is zero
330 * so we compute the size by hand (just as in block_read/write above)
331 */
332 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
333 {
334 struct inode *bd_inode = file->f_mapping->host;
335 loff_t retval;
336
337 mutex_lock(&bd_inode->i_mutex);
338 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
339 mutex_unlock(&bd_inode->i_mutex);
340 return retval;
341 }
342
343 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
344 {
345 struct inode *bd_inode = filp->f_mapping->host;
346 struct block_device *bdev = I_BDEV(bd_inode);
347 int error;
348
349 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
350 if (error)
351 return error;
352
353 /*
354 * There is no need to serialise calls to blkdev_issue_flush with
355 * i_mutex and doing so causes performance issues with concurrent
356 * O_SYNC writers to a block device.
357 */
358 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
359 if (error == -EOPNOTSUPP)
360 error = 0;
361
362 return error;
363 }
364 EXPORT_SYMBOL(blkdev_fsync);
365
366 /**
367 * bdev_read_page() - Start reading a page from a block device
368 * @bdev: The device to read the page from
369 * @sector: The offset on the device to read the page to (need not be aligned)
370 * @page: The page to read
371 *
372 * On entry, the page should be locked. It will be unlocked when the page
373 * has been read. If the block driver implements rw_page synchronously,
374 * that will be true on exit from this function, but it need not be.
375 *
376 * Errors returned by this function are usually "soft", eg out of memory, or
377 * queue full; callers should try a different route to read this page rather
378 * than propagate an error back up the stack.
379 *
380 * Return: negative errno if an error occurs, 0 if submission was successful.
381 */
382 int bdev_read_page(struct block_device *bdev, sector_t sector,
383 struct page *page)
384 {
385 const struct block_device_operations *ops = bdev->bd_disk->fops;
386 if (!ops->rw_page)
387 return -EOPNOTSUPP;
388 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
389 }
390 EXPORT_SYMBOL_GPL(bdev_read_page);
391
392 /**
393 * bdev_write_page() - Start writing a page to a block device
394 * @bdev: The device to write the page to
395 * @sector: The offset on the device to write the page to (need not be aligned)
396 * @page: The page to write
397 * @wbc: The writeback_control for the write
398 *
399 * On entry, the page should be locked and not currently under writeback.
400 * On exit, if the write started successfully, the page will be unlocked and
401 * under writeback. If the write failed already (eg the driver failed to
402 * queue the page to the device), the page will still be locked. If the
403 * caller is a ->writepage implementation, it will need to unlock the page.
404 *
405 * Errors returned by this function are usually "soft", eg out of memory, or
406 * queue full; callers should try a different route to write this page rather
407 * than propagate an error back up the stack.
408 *
409 * Return: negative errno if an error occurs, 0 if submission was successful.
410 */
411 int bdev_write_page(struct block_device *bdev, sector_t sector,
412 struct page *page, struct writeback_control *wbc)
413 {
414 int result;
415 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
416 const struct block_device_operations *ops = bdev->bd_disk->fops;
417 if (!ops->rw_page)
418 return -EOPNOTSUPP;
419 set_page_writeback(page);
420 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
421 if (result)
422 end_page_writeback(page);
423 else
424 unlock_page(page);
425 return result;
426 }
427 EXPORT_SYMBOL_GPL(bdev_write_page);
428
429 /*
430 * pseudo-fs
431 */
432
433 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
434 static struct kmem_cache * bdev_cachep __read_mostly;
435
436 static struct inode *bdev_alloc_inode(struct super_block *sb)
437 {
438 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
439 if (!ei)
440 return NULL;
441 return &ei->vfs_inode;
442 }
443
444 static void bdev_i_callback(struct rcu_head *head)
445 {
446 struct inode *inode = container_of(head, struct inode, i_rcu);
447 struct bdev_inode *bdi = BDEV_I(inode);
448
449 kmem_cache_free(bdev_cachep, bdi);
450 }
451
452 static void bdev_destroy_inode(struct inode *inode)
453 {
454 call_rcu(&inode->i_rcu, bdev_i_callback);
455 }
456
457 static void init_once(void *foo)
458 {
459 struct bdev_inode *ei = (struct bdev_inode *) foo;
460 struct block_device *bdev = &ei->bdev;
461
462 memset(bdev, 0, sizeof(*bdev));
463 mutex_init(&bdev->bd_mutex);
464 INIT_LIST_HEAD(&bdev->bd_inodes);
465 INIT_LIST_HEAD(&bdev->bd_list);
466 #ifdef CONFIG_SYSFS
467 INIT_LIST_HEAD(&bdev->bd_holder_disks);
468 #endif
469 inode_init_once(&ei->vfs_inode);
470 /* Initialize mutex for freeze. */
471 mutex_init(&bdev->bd_fsfreeze_mutex);
472 }
473
474 static inline void __bd_forget(struct inode *inode)
475 {
476 list_del_init(&inode->i_devices);
477 inode->i_bdev = NULL;
478 inode->i_mapping = &inode->i_data;
479 }
480
481 static void bdev_evict_inode(struct inode *inode)
482 {
483 struct block_device *bdev = &BDEV_I(inode)->bdev;
484 struct list_head *p;
485 truncate_inode_pages_final(&inode->i_data);
486 invalidate_inode_buffers(inode); /* is it needed here? */
487 clear_inode(inode);
488 spin_lock(&bdev_lock);
489 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
490 __bd_forget(list_entry(p, struct inode, i_devices));
491 }
492 list_del_init(&bdev->bd_list);
493 spin_unlock(&bdev_lock);
494 }
495
496 static const struct super_operations bdev_sops = {
497 .statfs = simple_statfs,
498 .alloc_inode = bdev_alloc_inode,
499 .destroy_inode = bdev_destroy_inode,
500 .drop_inode = generic_delete_inode,
501 .evict_inode = bdev_evict_inode,
502 };
503
504 static struct dentry *bd_mount(struct file_system_type *fs_type,
505 int flags, const char *dev_name, void *data)
506 {
507 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
508 }
509
510 static struct file_system_type bd_type = {
511 .name = "bdev",
512 .mount = bd_mount,
513 .kill_sb = kill_anon_super,
514 };
515
516 static struct super_block *blockdev_superblock __read_mostly;
517
518 void __init bdev_cache_init(void)
519 {
520 int err;
521 static struct vfsmount *bd_mnt;
522
523 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
524 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
525 SLAB_MEM_SPREAD|SLAB_PANIC),
526 init_once);
527 err = register_filesystem(&bd_type);
528 if (err)
529 panic("Cannot register bdev pseudo-fs");
530 bd_mnt = kern_mount(&bd_type);
531 if (IS_ERR(bd_mnt))
532 panic("Cannot create bdev pseudo-fs");
533 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
534 }
535
536 /*
537 * Most likely _very_ bad one - but then it's hardly critical for small
538 * /dev and can be fixed when somebody will need really large one.
539 * Keep in mind that it will be fed through icache hash function too.
540 */
541 static inline unsigned long hash(dev_t dev)
542 {
543 return MAJOR(dev)+MINOR(dev);
544 }
545
546 static int bdev_test(struct inode *inode, void *data)
547 {
548 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
549 }
550
551 static int bdev_set(struct inode *inode, void *data)
552 {
553 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
554 return 0;
555 }
556
557 static LIST_HEAD(all_bdevs);
558
559 struct block_device *bdget(dev_t dev)
560 {
561 struct block_device *bdev;
562 struct inode *inode;
563
564 inode = iget5_locked(blockdev_superblock, hash(dev),
565 bdev_test, bdev_set, &dev);
566
567 if (!inode)
568 return NULL;
569
570 bdev = &BDEV_I(inode)->bdev;
571
572 if (inode->i_state & I_NEW) {
573 bdev->bd_contains = NULL;
574 bdev->bd_super = NULL;
575 bdev->bd_inode = inode;
576 bdev->bd_block_size = (1 << inode->i_blkbits);
577 bdev->bd_part_count = 0;
578 bdev->bd_invalidated = 0;
579 inode->i_mode = S_IFBLK;
580 inode->i_rdev = dev;
581 inode->i_bdev = bdev;
582 inode->i_data.a_ops = &def_blk_aops;
583 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
584 inode->i_data.backing_dev_info = &default_backing_dev_info;
585 spin_lock(&bdev_lock);
586 list_add(&bdev->bd_list, &all_bdevs);
587 spin_unlock(&bdev_lock);
588 unlock_new_inode(inode);
589 }
590 return bdev;
591 }
592
593 EXPORT_SYMBOL(bdget);
594
595 /**
596 * bdgrab -- Grab a reference to an already referenced block device
597 * @bdev: Block device to grab a reference to.
598 */
599 struct block_device *bdgrab(struct block_device *bdev)
600 {
601 ihold(bdev->bd_inode);
602 return bdev;
603 }
604 EXPORT_SYMBOL(bdgrab);
605
606 long nr_blockdev_pages(void)
607 {
608 struct block_device *bdev;
609 long ret = 0;
610 spin_lock(&bdev_lock);
611 list_for_each_entry(bdev, &all_bdevs, bd_list) {
612 ret += bdev->bd_inode->i_mapping->nrpages;
613 }
614 spin_unlock(&bdev_lock);
615 return ret;
616 }
617
618 void bdput(struct block_device *bdev)
619 {
620 iput(bdev->bd_inode);
621 }
622
623 EXPORT_SYMBOL(bdput);
624
625 static struct block_device *bd_acquire(struct inode *inode)
626 {
627 struct block_device *bdev;
628
629 spin_lock(&bdev_lock);
630 bdev = inode->i_bdev;
631 if (bdev) {
632 ihold(bdev->bd_inode);
633 spin_unlock(&bdev_lock);
634 return bdev;
635 }
636 spin_unlock(&bdev_lock);
637
638 bdev = bdget(inode->i_rdev);
639 if (bdev) {
640 spin_lock(&bdev_lock);
641 if (!inode->i_bdev) {
642 /*
643 * We take an additional reference to bd_inode,
644 * and it's released in clear_inode() of inode.
645 * So, we can access it via ->i_mapping always
646 * without igrab().
647 */
648 ihold(bdev->bd_inode);
649 inode->i_bdev = bdev;
650 inode->i_mapping = bdev->bd_inode->i_mapping;
651 list_add(&inode->i_devices, &bdev->bd_inodes);
652 }
653 spin_unlock(&bdev_lock);
654 }
655 return bdev;
656 }
657
658 int sb_is_blkdev_sb(struct super_block *sb)
659 {
660 return sb == blockdev_superblock;
661 }
662
663 /* Call when you free inode */
664
665 void bd_forget(struct inode *inode)
666 {
667 struct block_device *bdev = NULL;
668
669 spin_lock(&bdev_lock);
670 if (!sb_is_blkdev_sb(inode->i_sb))
671 bdev = inode->i_bdev;
672 __bd_forget(inode);
673 spin_unlock(&bdev_lock);
674
675 if (bdev)
676 iput(bdev->bd_inode);
677 }
678
679 /**
680 * bd_may_claim - test whether a block device can be claimed
681 * @bdev: block device of interest
682 * @whole: whole block device containing @bdev, may equal @bdev
683 * @holder: holder trying to claim @bdev
684 *
685 * Test whether @bdev can be claimed by @holder.
686 *
687 * CONTEXT:
688 * spin_lock(&bdev_lock).
689 *
690 * RETURNS:
691 * %true if @bdev can be claimed, %false otherwise.
692 */
693 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
694 void *holder)
695 {
696 if (bdev->bd_holder == holder)
697 return true; /* already a holder */
698 else if (bdev->bd_holder != NULL)
699 return false; /* held by someone else */
700 else if (bdev->bd_contains == bdev)
701 return true; /* is a whole device which isn't held */
702
703 else if (whole->bd_holder == bd_may_claim)
704 return true; /* is a partition of a device that is being partitioned */
705 else if (whole->bd_holder != NULL)
706 return false; /* is a partition of a held device */
707 else
708 return true; /* is a partition of an un-held device */
709 }
710
711 /**
712 * bd_prepare_to_claim - prepare to claim a block device
713 * @bdev: block device of interest
714 * @whole: the whole device containing @bdev, may equal @bdev
715 * @holder: holder trying to claim @bdev
716 *
717 * Prepare to claim @bdev. This function fails if @bdev is already
718 * claimed by another holder and waits if another claiming is in
719 * progress. This function doesn't actually claim. On successful
720 * return, the caller has ownership of bd_claiming and bd_holder[s].
721 *
722 * CONTEXT:
723 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
724 * it multiple times.
725 *
726 * RETURNS:
727 * 0 if @bdev can be claimed, -EBUSY otherwise.
728 */
729 static int bd_prepare_to_claim(struct block_device *bdev,
730 struct block_device *whole, void *holder)
731 {
732 retry:
733 /* if someone else claimed, fail */
734 if (!bd_may_claim(bdev, whole, holder))
735 return -EBUSY;
736
737 /* if claiming is already in progress, wait for it to finish */
738 if (whole->bd_claiming) {
739 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
740 DEFINE_WAIT(wait);
741
742 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
743 spin_unlock(&bdev_lock);
744 schedule();
745 finish_wait(wq, &wait);
746 spin_lock(&bdev_lock);
747 goto retry;
748 }
749
750 /* yay, all mine */
751 return 0;
752 }
753
754 /**
755 * bd_start_claiming - start claiming a block device
756 * @bdev: block device of interest
757 * @holder: holder trying to claim @bdev
758 *
759 * @bdev is about to be opened exclusively. Check @bdev can be opened
760 * exclusively and mark that an exclusive open is in progress. Each
761 * successful call to this function must be matched with a call to
762 * either bd_finish_claiming() or bd_abort_claiming() (which do not
763 * fail).
764 *
765 * This function is used to gain exclusive access to the block device
766 * without actually causing other exclusive open attempts to fail. It
767 * should be used when the open sequence itself requires exclusive
768 * access but may subsequently fail.
769 *
770 * CONTEXT:
771 * Might sleep.
772 *
773 * RETURNS:
774 * Pointer to the block device containing @bdev on success, ERR_PTR()
775 * value on failure.
776 */
777 static struct block_device *bd_start_claiming(struct block_device *bdev,
778 void *holder)
779 {
780 struct gendisk *disk;
781 struct block_device *whole;
782 int partno, err;
783
784 might_sleep();
785
786 /*
787 * @bdev might not have been initialized properly yet, look up
788 * and grab the outer block device the hard way.
789 */
790 disk = get_gendisk(bdev->bd_dev, &partno);
791 if (!disk)
792 return ERR_PTR(-ENXIO);
793
794 /*
795 * Normally, @bdev should equal what's returned from bdget_disk()
796 * if partno is 0; however, some drivers (floppy) use multiple
797 * bdev's for the same physical device and @bdev may be one of the
798 * aliases. Keep @bdev if partno is 0. This means claimer
799 * tracking is broken for those devices but it has always been that
800 * way.
801 */
802 if (partno)
803 whole = bdget_disk(disk, 0);
804 else
805 whole = bdgrab(bdev);
806
807 module_put(disk->fops->owner);
808 put_disk(disk);
809 if (!whole)
810 return ERR_PTR(-ENOMEM);
811
812 /* prepare to claim, if successful, mark claiming in progress */
813 spin_lock(&bdev_lock);
814
815 err = bd_prepare_to_claim(bdev, whole, holder);
816 if (err == 0) {
817 whole->bd_claiming = holder;
818 spin_unlock(&bdev_lock);
819 return whole;
820 } else {
821 spin_unlock(&bdev_lock);
822 bdput(whole);
823 return ERR_PTR(err);
824 }
825 }
826
827 #ifdef CONFIG_SYSFS
828 struct bd_holder_disk {
829 struct list_head list;
830 struct gendisk *disk;
831 int refcnt;
832 };
833
834 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
835 struct gendisk *disk)
836 {
837 struct bd_holder_disk *holder;
838
839 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
840 if (holder->disk == disk)
841 return holder;
842 return NULL;
843 }
844
845 static int add_symlink(struct kobject *from, struct kobject *to)
846 {
847 return sysfs_create_link(from, to, kobject_name(to));
848 }
849
850 static void del_symlink(struct kobject *from, struct kobject *to)
851 {
852 sysfs_remove_link(from, kobject_name(to));
853 }
854
855 /**
856 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
857 * @bdev: the claimed slave bdev
858 * @disk: the holding disk
859 *
860 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
861 *
862 * This functions creates the following sysfs symlinks.
863 *
864 * - from "slaves" directory of the holder @disk to the claimed @bdev
865 * - from "holders" directory of the @bdev to the holder @disk
866 *
867 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
868 * passed to bd_link_disk_holder(), then:
869 *
870 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
871 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
872 *
873 * The caller must have claimed @bdev before calling this function and
874 * ensure that both @bdev and @disk are valid during the creation and
875 * lifetime of these symlinks.
876 *
877 * CONTEXT:
878 * Might sleep.
879 *
880 * RETURNS:
881 * 0 on success, -errno on failure.
882 */
883 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
884 {
885 struct bd_holder_disk *holder;
886 int ret = 0;
887
888 mutex_lock(&bdev->bd_mutex);
889
890 WARN_ON_ONCE(!bdev->bd_holder);
891
892 /* FIXME: remove the following once add_disk() handles errors */
893 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
894 goto out_unlock;
895
896 holder = bd_find_holder_disk(bdev, disk);
897 if (holder) {
898 holder->refcnt++;
899 goto out_unlock;
900 }
901
902 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
903 if (!holder) {
904 ret = -ENOMEM;
905 goto out_unlock;
906 }
907
908 INIT_LIST_HEAD(&holder->list);
909 holder->disk = disk;
910 holder->refcnt = 1;
911
912 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
913 if (ret)
914 goto out_free;
915
916 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
917 if (ret)
918 goto out_del;
919 /*
920 * bdev could be deleted beneath us which would implicitly destroy
921 * the holder directory. Hold on to it.
922 */
923 kobject_get(bdev->bd_part->holder_dir);
924
925 list_add(&holder->list, &bdev->bd_holder_disks);
926 goto out_unlock;
927
928 out_del:
929 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
930 out_free:
931 kfree(holder);
932 out_unlock:
933 mutex_unlock(&bdev->bd_mutex);
934 return ret;
935 }
936 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
937
938 /**
939 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
940 * @bdev: the calimed slave bdev
941 * @disk: the holding disk
942 *
943 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
944 *
945 * CONTEXT:
946 * Might sleep.
947 */
948 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
949 {
950 struct bd_holder_disk *holder;
951
952 mutex_lock(&bdev->bd_mutex);
953
954 holder = bd_find_holder_disk(bdev, disk);
955
956 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
957 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
958 del_symlink(bdev->bd_part->holder_dir,
959 &disk_to_dev(disk)->kobj);
960 kobject_put(bdev->bd_part->holder_dir);
961 list_del_init(&holder->list);
962 kfree(holder);
963 }
964
965 mutex_unlock(&bdev->bd_mutex);
966 }
967 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
968 #endif
969
970 /**
971 * flush_disk - invalidates all buffer-cache entries on a disk
972 *
973 * @bdev: struct block device to be flushed
974 * @kill_dirty: flag to guide handling of dirty inodes
975 *
976 * Invalidates all buffer-cache entries on a disk. It should be called
977 * when a disk has been changed -- either by a media change or online
978 * resize.
979 */
980 static void flush_disk(struct block_device *bdev, bool kill_dirty)
981 {
982 if (__invalidate_device(bdev, kill_dirty)) {
983 char name[BDEVNAME_SIZE] = "";
984
985 if (bdev->bd_disk)
986 disk_name(bdev->bd_disk, 0, name);
987 printk(KERN_WARNING "VFS: busy inodes on changed media or "
988 "resized disk %s\n", name);
989 }
990
991 if (!bdev->bd_disk)
992 return;
993 if (disk_part_scan_enabled(bdev->bd_disk))
994 bdev->bd_invalidated = 1;
995 }
996
997 /**
998 * check_disk_size_change - checks for disk size change and adjusts bdev size.
999 * @disk: struct gendisk to check
1000 * @bdev: struct bdev to adjust.
1001 *
1002 * This routine checks to see if the bdev size does not match the disk size
1003 * and adjusts it if it differs.
1004 */
1005 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1006 {
1007 loff_t disk_size, bdev_size;
1008
1009 disk_size = (loff_t)get_capacity(disk) << 9;
1010 bdev_size = i_size_read(bdev->bd_inode);
1011 if (disk_size != bdev_size) {
1012 char name[BDEVNAME_SIZE];
1013
1014 disk_name(disk, 0, name);
1015 printk(KERN_INFO
1016 "%s: detected capacity change from %lld to %lld\n",
1017 name, bdev_size, disk_size);
1018 i_size_write(bdev->bd_inode, disk_size);
1019 flush_disk(bdev, false);
1020 }
1021 }
1022 EXPORT_SYMBOL(check_disk_size_change);
1023
1024 /**
1025 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1026 * @disk: struct gendisk to be revalidated
1027 *
1028 * This routine is a wrapper for lower-level driver's revalidate_disk
1029 * call-backs. It is used to do common pre and post operations needed
1030 * for all revalidate_disk operations.
1031 */
1032 int revalidate_disk(struct gendisk *disk)
1033 {
1034 struct block_device *bdev;
1035 int ret = 0;
1036
1037 if (disk->fops->revalidate_disk)
1038 ret = disk->fops->revalidate_disk(disk);
1039
1040 bdev = bdget_disk(disk, 0);
1041 if (!bdev)
1042 return ret;
1043
1044 mutex_lock(&bdev->bd_mutex);
1045 check_disk_size_change(disk, bdev);
1046 bdev->bd_invalidated = 0;
1047 mutex_unlock(&bdev->bd_mutex);
1048 bdput(bdev);
1049 return ret;
1050 }
1051 EXPORT_SYMBOL(revalidate_disk);
1052
1053 /*
1054 * This routine checks whether a removable media has been changed,
1055 * and invalidates all buffer-cache-entries in that case. This
1056 * is a relatively slow routine, so we have to try to minimize using
1057 * it. Thus it is called only upon a 'mount' or 'open'. This
1058 * is the best way of combining speed and utility, I think.
1059 * People changing diskettes in the middle of an operation deserve
1060 * to lose :-)
1061 */
1062 int check_disk_change(struct block_device *bdev)
1063 {
1064 struct gendisk *disk = bdev->bd_disk;
1065 const struct block_device_operations *bdops = disk->fops;
1066 unsigned int events;
1067
1068 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1069 DISK_EVENT_EJECT_REQUEST);
1070 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1071 return 0;
1072
1073 flush_disk(bdev, true);
1074 if (bdops->revalidate_disk)
1075 bdops->revalidate_disk(bdev->bd_disk);
1076 return 1;
1077 }
1078
1079 EXPORT_SYMBOL(check_disk_change);
1080
1081 void bd_set_size(struct block_device *bdev, loff_t size)
1082 {
1083 unsigned bsize = bdev_logical_block_size(bdev);
1084
1085 mutex_lock(&bdev->bd_inode->i_mutex);
1086 i_size_write(bdev->bd_inode, size);
1087 mutex_unlock(&bdev->bd_inode->i_mutex);
1088 while (bsize < PAGE_CACHE_SIZE) {
1089 if (size & bsize)
1090 break;
1091 bsize <<= 1;
1092 }
1093 bdev->bd_block_size = bsize;
1094 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1095 }
1096 EXPORT_SYMBOL(bd_set_size);
1097
1098 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1099
1100 /*
1101 * bd_mutex locking:
1102 *
1103 * mutex_lock(part->bd_mutex)
1104 * mutex_lock_nested(whole->bd_mutex, 1)
1105 */
1106
1107 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1108 {
1109 struct gendisk *disk;
1110 struct module *owner;
1111 int ret;
1112 int partno;
1113 int perm = 0;
1114
1115 if (mode & FMODE_READ)
1116 perm |= MAY_READ;
1117 if (mode & FMODE_WRITE)
1118 perm |= MAY_WRITE;
1119 /*
1120 * hooks: /n/, see "layering violations".
1121 */
1122 if (!for_part) {
1123 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1124 if (ret != 0) {
1125 bdput(bdev);
1126 return ret;
1127 }
1128 }
1129
1130 restart:
1131
1132 ret = -ENXIO;
1133 disk = get_gendisk(bdev->bd_dev, &partno);
1134 if (!disk)
1135 goto out;
1136 owner = disk->fops->owner;
1137
1138 disk_block_events(disk);
1139 mutex_lock_nested(&bdev->bd_mutex, for_part);
1140 if (!bdev->bd_openers) {
1141 bdev->bd_disk = disk;
1142 bdev->bd_queue = disk->queue;
1143 bdev->bd_contains = bdev;
1144 if (!partno) {
1145 struct backing_dev_info *bdi;
1146
1147 ret = -ENXIO;
1148 bdev->bd_part = disk_get_part(disk, partno);
1149 if (!bdev->bd_part)
1150 goto out_clear;
1151
1152 ret = 0;
1153 if (disk->fops->open) {
1154 ret = disk->fops->open(bdev, mode);
1155 if (ret == -ERESTARTSYS) {
1156 /* Lost a race with 'disk' being
1157 * deleted, try again.
1158 * See md.c
1159 */
1160 disk_put_part(bdev->bd_part);
1161 bdev->bd_part = NULL;
1162 bdev->bd_disk = NULL;
1163 bdev->bd_queue = NULL;
1164 mutex_unlock(&bdev->bd_mutex);
1165 disk_unblock_events(disk);
1166 put_disk(disk);
1167 module_put(owner);
1168 goto restart;
1169 }
1170 }
1171
1172 if (!ret) {
1173 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1174 bdi = blk_get_backing_dev_info(bdev);
1175 if (bdi == NULL)
1176 bdi = &default_backing_dev_info;
1177 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1178 }
1179
1180 /*
1181 * If the device is invalidated, rescan partition
1182 * if open succeeded or failed with -ENOMEDIUM.
1183 * The latter is necessary to prevent ghost
1184 * partitions on a removed medium.
1185 */
1186 if (bdev->bd_invalidated) {
1187 if (!ret)
1188 rescan_partitions(disk, bdev);
1189 else if (ret == -ENOMEDIUM)
1190 invalidate_partitions(disk, bdev);
1191 }
1192 if (ret)
1193 goto out_clear;
1194 } else {
1195 struct block_device *whole;
1196 whole = bdget_disk(disk, 0);
1197 ret = -ENOMEM;
1198 if (!whole)
1199 goto out_clear;
1200 BUG_ON(for_part);
1201 ret = __blkdev_get(whole, mode, 1);
1202 if (ret)
1203 goto out_clear;
1204 bdev->bd_contains = whole;
1205 bdev_inode_switch_bdi(bdev->bd_inode,
1206 whole->bd_inode->i_data.backing_dev_info);
1207 bdev->bd_part = disk_get_part(disk, partno);
1208 if (!(disk->flags & GENHD_FL_UP) ||
1209 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1210 ret = -ENXIO;
1211 goto out_clear;
1212 }
1213 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1214 }
1215 } else {
1216 if (bdev->bd_contains == bdev) {
1217 ret = 0;
1218 if (bdev->bd_disk->fops->open)
1219 ret = bdev->bd_disk->fops->open(bdev, mode);
1220 /* the same as first opener case, read comment there */
1221 if (bdev->bd_invalidated) {
1222 if (!ret)
1223 rescan_partitions(bdev->bd_disk, bdev);
1224 else if (ret == -ENOMEDIUM)
1225 invalidate_partitions(bdev->bd_disk, bdev);
1226 }
1227 if (ret)
1228 goto out_unlock_bdev;
1229 }
1230 /* only one opener holds refs to the module and disk */
1231 put_disk(disk);
1232 module_put(owner);
1233 }
1234 bdev->bd_openers++;
1235 if (for_part)
1236 bdev->bd_part_count++;
1237 mutex_unlock(&bdev->bd_mutex);
1238 disk_unblock_events(disk);
1239 return 0;
1240
1241 out_clear:
1242 disk_put_part(bdev->bd_part);
1243 bdev->bd_disk = NULL;
1244 bdev->bd_part = NULL;
1245 bdev->bd_queue = NULL;
1246 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1247 if (bdev != bdev->bd_contains)
1248 __blkdev_put(bdev->bd_contains, mode, 1);
1249 bdev->bd_contains = NULL;
1250 out_unlock_bdev:
1251 mutex_unlock(&bdev->bd_mutex);
1252 disk_unblock_events(disk);
1253 put_disk(disk);
1254 module_put(owner);
1255 out:
1256 bdput(bdev);
1257
1258 return ret;
1259 }
1260
1261 /**
1262 * blkdev_get - open a block device
1263 * @bdev: block_device to open
1264 * @mode: FMODE_* mask
1265 * @holder: exclusive holder identifier
1266 *
1267 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1268 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1269 * @holder is invalid. Exclusive opens may nest for the same @holder.
1270 *
1271 * On success, the reference count of @bdev is unchanged. On failure,
1272 * @bdev is put.
1273 *
1274 * CONTEXT:
1275 * Might sleep.
1276 *
1277 * RETURNS:
1278 * 0 on success, -errno on failure.
1279 */
1280 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1281 {
1282 struct block_device *whole = NULL;
1283 int res;
1284
1285 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1286
1287 if ((mode & FMODE_EXCL) && holder) {
1288 whole = bd_start_claiming(bdev, holder);
1289 if (IS_ERR(whole)) {
1290 bdput(bdev);
1291 return PTR_ERR(whole);
1292 }
1293 }
1294
1295 res = __blkdev_get(bdev, mode, 0);
1296
1297 if (whole) {
1298 struct gendisk *disk = whole->bd_disk;
1299
1300 /* finish claiming */
1301 mutex_lock(&bdev->bd_mutex);
1302 spin_lock(&bdev_lock);
1303
1304 if (!res) {
1305 BUG_ON(!bd_may_claim(bdev, whole, holder));
1306 /*
1307 * Note that for a whole device bd_holders
1308 * will be incremented twice, and bd_holder
1309 * will be set to bd_may_claim before being
1310 * set to holder
1311 */
1312 whole->bd_holders++;
1313 whole->bd_holder = bd_may_claim;
1314 bdev->bd_holders++;
1315 bdev->bd_holder = holder;
1316 }
1317
1318 /* tell others that we're done */
1319 BUG_ON(whole->bd_claiming != holder);
1320 whole->bd_claiming = NULL;
1321 wake_up_bit(&whole->bd_claiming, 0);
1322
1323 spin_unlock(&bdev_lock);
1324
1325 /*
1326 * Block event polling for write claims if requested. Any
1327 * write holder makes the write_holder state stick until
1328 * all are released. This is good enough and tracking
1329 * individual writeable reference is too fragile given the
1330 * way @mode is used in blkdev_get/put().
1331 */
1332 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1333 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1334 bdev->bd_write_holder = true;
1335 disk_block_events(disk);
1336 }
1337
1338 mutex_unlock(&bdev->bd_mutex);
1339 bdput(whole);
1340 }
1341
1342 return res;
1343 }
1344 EXPORT_SYMBOL(blkdev_get);
1345
1346 /**
1347 * blkdev_get_by_path - open a block device by name
1348 * @path: path to the block device to open
1349 * @mode: FMODE_* mask
1350 * @holder: exclusive holder identifier
1351 *
1352 * Open the blockdevice described by the device file at @path. @mode
1353 * and @holder are identical to blkdev_get().
1354 *
1355 * On success, the returned block_device has reference count of one.
1356 *
1357 * CONTEXT:
1358 * Might sleep.
1359 *
1360 * RETURNS:
1361 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1362 */
1363 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1364 void *holder)
1365 {
1366 struct block_device *bdev;
1367 int err;
1368
1369 bdev = lookup_bdev(path);
1370 if (IS_ERR(bdev))
1371 return bdev;
1372
1373 err = blkdev_get(bdev, mode, holder);
1374 if (err)
1375 return ERR_PTR(err);
1376
1377 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1378 blkdev_put(bdev, mode);
1379 return ERR_PTR(-EACCES);
1380 }
1381
1382 return bdev;
1383 }
1384 EXPORT_SYMBOL(blkdev_get_by_path);
1385
1386 /**
1387 * blkdev_get_by_dev - open a block device by device number
1388 * @dev: device number of block device to open
1389 * @mode: FMODE_* mask
1390 * @holder: exclusive holder identifier
1391 *
1392 * Open the blockdevice described by device number @dev. @mode and
1393 * @holder are identical to blkdev_get().
1394 *
1395 * Use it ONLY if you really do not have anything better - i.e. when
1396 * you are behind a truly sucky interface and all you are given is a
1397 * device number. _Never_ to be used for internal purposes. If you
1398 * ever need it - reconsider your API.
1399 *
1400 * On success, the returned block_device has reference count of one.
1401 *
1402 * CONTEXT:
1403 * Might sleep.
1404 *
1405 * RETURNS:
1406 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1407 */
1408 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1409 {
1410 struct block_device *bdev;
1411 int err;
1412
1413 bdev = bdget(dev);
1414 if (!bdev)
1415 return ERR_PTR(-ENOMEM);
1416
1417 err = blkdev_get(bdev, mode, holder);
1418 if (err)
1419 return ERR_PTR(err);
1420
1421 return bdev;
1422 }
1423 EXPORT_SYMBOL(blkdev_get_by_dev);
1424
1425 static int blkdev_open(struct inode * inode, struct file * filp)
1426 {
1427 struct block_device *bdev;
1428
1429 /*
1430 * Preserve backwards compatibility and allow large file access
1431 * even if userspace doesn't ask for it explicitly. Some mkfs
1432 * binary needs it. We might want to drop this workaround
1433 * during an unstable branch.
1434 */
1435 filp->f_flags |= O_LARGEFILE;
1436
1437 if (filp->f_flags & O_NDELAY)
1438 filp->f_mode |= FMODE_NDELAY;
1439 if (filp->f_flags & O_EXCL)
1440 filp->f_mode |= FMODE_EXCL;
1441 if ((filp->f_flags & O_ACCMODE) == 3)
1442 filp->f_mode |= FMODE_WRITE_IOCTL;
1443
1444 bdev = bd_acquire(inode);
1445 if (bdev == NULL)
1446 return -ENOMEM;
1447
1448 filp->f_mapping = bdev->bd_inode->i_mapping;
1449
1450 return blkdev_get(bdev, filp->f_mode, filp);
1451 }
1452
1453 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1454 {
1455 struct gendisk *disk = bdev->bd_disk;
1456 struct block_device *victim = NULL;
1457
1458 mutex_lock_nested(&bdev->bd_mutex, for_part);
1459 if (for_part)
1460 bdev->bd_part_count--;
1461
1462 if (!--bdev->bd_openers) {
1463 WARN_ON_ONCE(bdev->bd_holders);
1464 sync_blockdev(bdev);
1465 kill_bdev(bdev);
1466 /* ->release can cause the old bdi to disappear,
1467 * so must switch it out first
1468 */
1469 bdev_inode_switch_bdi(bdev->bd_inode,
1470 &default_backing_dev_info);
1471 }
1472 if (bdev->bd_contains == bdev) {
1473 if (disk->fops->release)
1474 disk->fops->release(disk, mode);
1475 }
1476 if (!bdev->bd_openers) {
1477 struct module *owner = disk->fops->owner;
1478
1479 disk_put_part(bdev->bd_part);
1480 bdev->bd_part = NULL;
1481 bdev->bd_disk = NULL;
1482 if (bdev != bdev->bd_contains)
1483 victim = bdev->bd_contains;
1484 bdev->bd_contains = NULL;
1485
1486 put_disk(disk);
1487 module_put(owner);
1488 }
1489 mutex_unlock(&bdev->bd_mutex);
1490 bdput(bdev);
1491 if (victim)
1492 __blkdev_put(victim, mode, 1);
1493 }
1494
1495 void blkdev_put(struct block_device *bdev, fmode_t mode)
1496 {
1497 mutex_lock(&bdev->bd_mutex);
1498
1499 if (mode & FMODE_EXCL) {
1500 bool bdev_free;
1501
1502 /*
1503 * Release a claim on the device. The holder fields
1504 * are protected with bdev_lock. bd_mutex is to
1505 * synchronize disk_holder unlinking.
1506 */
1507 spin_lock(&bdev_lock);
1508
1509 WARN_ON_ONCE(--bdev->bd_holders < 0);
1510 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1511
1512 /* bd_contains might point to self, check in a separate step */
1513 if ((bdev_free = !bdev->bd_holders))
1514 bdev->bd_holder = NULL;
1515 if (!bdev->bd_contains->bd_holders)
1516 bdev->bd_contains->bd_holder = NULL;
1517
1518 spin_unlock(&bdev_lock);
1519
1520 /*
1521 * If this was the last claim, remove holder link and
1522 * unblock evpoll if it was a write holder.
1523 */
1524 if (bdev_free && bdev->bd_write_holder) {
1525 disk_unblock_events(bdev->bd_disk);
1526 bdev->bd_write_holder = false;
1527 }
1528 }
1529
1530 /*
1531 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1532 * event. This is to ensure detection of media removal commanded
1533 * from userland - e.g. eject(1).
1534 */
1535 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1536
1537 mutex_unlock(&bdev->bd_mutex);
1538
1539 __blkdev_put(bdev, mode, 0);
1540 }
1541 EXPORT_SYMBOL(blkdev_put);
1542
1543 static int blkdev_close(struct inode * inode, struct file * filp)
1544 {
1545 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1546 blkdev_put(bdev, filp->f_mode);
1547 return 0;
1548 }
1549
1550 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1551 {
1552 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1553 fmode_t mode = file->f_mode;
1554
1555 /*
1556 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1557 * to updated it before every ioctl.
1558 */
1559 if (file->f_flags & O_NDELAY)
1560 mode |= FMODE_NDELAY;
1561 else
1562 mode &= ~FMODE_NDELAY;
1563
1564 return blkdev_ioctl(bdev, mode, cmd, arg);
1565 }
1566
1567 /*
1568 * Write data to the block device. Only intended for the block device itself
1569 * and the raw driver which basically is a fake block device.
1570 *
1571 * Does not take i_mutex for the write and thus is not for general purpose
1572 * use.
1573 */
1574 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1575 unsigned long nr_segs, loff_t pos)
1576 {
1577 struct file *file = iocb->ki_filp;
1578 struct blk_plug plug;
1579 ssize_t ret;
1580
1581 BUG_ON(iocb->ki_pos != pos);
1582
1583 blk_start_plug(&plug);
1584 ret = __generic_file_aio_write(iocb, iov, nr_segs);
1585 if (ret > 0) {
1586 ssize_t err;
1587
1588 err = generic_write_sync(file, pos, ret);
1589 if (err < 0)
1590 ret = err;
1591 }
1592 blk_finish_plug(&plug);
1593 return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1596
1597 static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov,
1598 unsigned long nr_segs, loff_t pos)
1599 {
1600 struct file *file = iocb->ki_filp;
1601 struct inode *bd_inode = file->f_mapping->host;
1602 loff_t size = i_size_read(bd_inode);
1603
1604 if (pos >= size)
1605 return 0;
1606
1607 size -= pos;
1608 if (size < iocb->ki_nbytes)
1609 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size);
1610 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1611 }
1612
1613 /*
1614 * Try to release a page associated with block device when the system
1615 * is under memory pressure.
1616 */
1617 static int blkdev_releasepage(struct page *page, gfp_t wait)
1618 {
1619 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1620
1621 if (super && super->s_op->bdev_try_to_free_page)
1622 return super->s_op->bdev_try_to_free_page(super, page, wait);
1623
1624 return try_to_free_buffers(page);
1625 }
1626
1627 static const struct address_space_operations def_blk_aops = {
1628 .readpage = blkdev_readpage,
1629 .writepage = blkdev_writepage,
1630 .write_begin = blkdev_write_begin,
1631 .write_end = blkdev_write_end,
1632 .writepages = generic_writepages,
1633 .releasepage = blkdev_releasepage,
1634 .direct_IO = blkdev_direct_IO,
1635 .is_dirty_writeback = buffer_check_dirty_writeback,
1636 };
1637
1638 const struct file_operations def_blk_fops = {
1639 .open = blkdev_open,
1640 .release = blkdev_close,
1641 .llseek = block_llseek,
1642 .read = do_sync_read,
1643 .write = do_sync_write,
1644 .aio_read = blkdev_aio_read,
1645 .aio_write = blkdev_aio_write,
1646 .mmap = generic_file_mmap,
1647 .fsync = blkdev_fsync,
1648 .unlocked_ioctl = block_ioctl,
1649 #ifdef CONFIG_COMPAT
1650 .compat_ioctl = compat_blkdev_ioctl,
1651 #endif
1652 .splice_read = generic_file_splice_read,
1653 .splice_write = generic_file_splice_write,
1654 };
1655
1656 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1657 {
1658 int res;
1659 mm_segment_t old_fs = get_fs();
1660 set_fs(KERNEL_DS);
1661 res = blkdev_ioctl(bdev, 0, cmd, arg);
1662 set_fs(old_fs);
1663 return res;
1664 }
1665
1666 EXPORT_SYMBOL(ioctl_by_bdev);
1667
1668 /**
1669 * lookup_bdev - lookup a struct block_device by name
1670 * @pathname: special file representing the block device
1671 *
1672 * Get a reference to the blockdevice at @pathname in the current
1673 * namespace if possible and return it. Return ERR_PTR(error)
1674 * otherwise.
1675 */
1676 struct block_device *lookup_bdev(const char *pathname)
1677 {
1678 struct block_device *bdev;
1679 struct inode *inode;
1680 struct path path;
1681 int error;
1682
1683 if (!pathname || !*pathname)
1684 return ERR_PTR(-EINVAL);
1685
1686 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1687 if (error)
1688 return ERR_PTR(error);
1689
1690 inode = path.dentry->d_inode;
1691 error = -ENOTBLK;
1692 if (!S_ISBLK(inode->i_mode))
1693 goto fail;
1694 error = -EACCES;
1695 if (path.mnt->mnt_flags & MNT_NODEV)
1696 goto fail;
1697 error = -ENOMEM;
1698 bdev = bd_acquire(inode);
1699 if (!bdev)
1700 goto fail;
1701 out:
1702 path_put(&path);
1703 return bdev;
1704 fail:
1705 bdev = ERR_PTR(error);
1706 goto out;
1707 }
1708 EXPORT_SYMBOL(lookup_bdev);
1709
1710 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1711 {
1712 struct super_block *sb = get_super(bdev);
1713 int res = 0;
1714
1715 if (sb) {
1716 /*
1717 * no need to lock the super, get_super holds the
1718 * read mutex so the filesystem cannot go away
1719 * under us (->put_super runs with the write lock
1720 * hold).
1721 */
1722 shrink_dcache_sb(sb);
1723 res = invalidate_inodes(sb, kill_dirty);
1724 drop_super(sb);
1725 }
1726 invalidate_bdev(bdev);
1727 return res;
1728 }
1729 EXPORT_SYMBOL(__invalidate_device);
1730
1731 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1732 {
1733 struct inode *inode, *old_inode = NULL;
1734
1735 spin_lock(&inode_sb_list_lock);
1736 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1737 struct address_space *mapping = inode->i_mapping;
1738
1739 spin_lock(&inode->i_lock);
1740 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1741 mapping->nrpages == 0) {
1742 spin_unlock(&inode->i_lock);
1743 continue;
1744 }
1745 __iget(inode);
1746 spin_unlock(&inode->i_lock);
1747 spin_unlock(&inode_sb_list_lock);
1748 /*
1749 * We hold a reference to 'inode' so it couldn't have been
1750 * removed from s_inodes list while we dropped the
1751 * inode_sb_list_lock. We cannot iput the inode now as we can
1752 * be holding the last reference and we cannot iput it under
1753 * inode_sb_list_lock. So we keep the reference and iput it
1754 * later.
1755 */
1756 iput(old_inode);
1757 old_inode = inode;
1758
1759 func(I_BDEV(inode), arg);
1760
1761 spin_lock(&inode_sb_list_lock);
1762 }
1763 spin_unlock(&inode_sb_list_lock);
1764 iput(old_inode);
1765 }