]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/async-thread.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / async-thread.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kthread.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <linux/freezer.h>
24 #include "async-thread.h"
25
26 #define WORK_QUEUED_BIT 0
27 #define WORK_DONE_BIT 1
28 #define WORK_ORDER_DONE_BIT 2
29 #define WORK_HIGH_PRIO_BIT 3
30
31 /*
32 * container for the kthread task pointer and the list of pending work
33 * One of these is allocated per thread.
34 */
35 struct btrfs_worker_thread {
36 /* pool we belong to */
37 struct btrfs_workers *workers;
38
39 /* list of struct btrfs_work that are waiting for service */
40 struct list_head pending;
41 struct list_head prio_pending;
42
43 /* list of worker threads from struct btrfs_workers */
44 struct list_head worker_list;
45
46 /* kthread */
47 struct task_struct *task;
48
49 /* number of things on the pending list */
50 atomic_t num_pending;
51
52 /* reference counter for this struct */
53 atomic_t refs;
54
55 unsigned long sequence;
56
57 /* protects the pending list. */
58 spinlock_t lock;
59
60 /* set to non-zero when this thread is already awake and kicking */
61 int working;
62
63 /* are we currently idle */
64 int idle;
65 };
66
67 static int __btrfs_start_workers(struct btrfs_workers *workers);
68
69 /*
70 * btrfs_start_workers uses kthread_run, which can block waiting for memory
71 * for a very long time. It will actually throttle on page writeback,
72 * and so it may not make progress until after our btrfs worker threads
73 * process all of the pending work structs in their queue
74 *
75 * This means we can't use btrfs_start_workers from inside a btrfs worker
76 * thread that is used as part of cleaning dirty memory, which pretty much
77 * involves all of the worker threads.
78 *
79 * Instead we have a helper queue who never has more than one thread
80 * where we scheduler thread start operations. This worker_start struct
81 * is used to contain the work and hold a pointer to the queue that needs
82 * another worker.
83 */
84 struct worker_start {
85 struct btrfs_work work;
86 struct btrfs_workers *queue;
87 };
88
89 static void start_new_worker_func(struct btrfs_work *work)
90 {
91 struct worker_start *start;
92 start = container_of(work, struct worker_start, work);
93 __btrfs_start_workers(start->queue);
94 kfree(start);
95 }
96
97 /*
98 * helper function to move a thread onto the idle list after it
99 * has finished some requests.
100 */
101 static void check_idle_worker(struct btrfs_worker_thread *worker)
102 {
103 if (!worker->idle && atomic_read(&worker->num_pending) <
104 worker->workers->idle_thresh / 2) {
105 unsigned long flags;
106 spin_lock_irqsave(&worker->workers->lock, flags);
107 worker->idle = 1;
108
109 /* the list may be empty if the worker is just starting */
110 if (!list_empty(&worker->worker_list) &&
111 !worker->workers->stopping) {
112 list_move(&worker->worker_list,
113 &worker->workers->idle_list);
114 }
115 spin_unlock_irqrestore(&worker->workers->lock, flags);
116 }
117 }
118
119 /*
120 * helper function to move a thread off the idle list after new
121 * pending work is added.
122 */
123 static void check_busy_worker(struct btrfs_worker_thread *worker)
124 {
125 if (worker->idle && atomic_read(&worker->num_pending) >=
126 worker->workers->idle_thresh) {
127 unsigned long flags;
128 spin_lock_irqsave(&worker->workers->lock, flags);
129 worker->idle = 0;
130
131 if (!list_empty(&worker->worker_list) &&
132 !worker->workers->stopping) {
133 list_move_tail(&worker->worker_list,
134 &worker->workers->worker_list);
135 }
136 spin_unlock_irqrestore(&worker->workers->lock, flags);
137 }
138 }
139
140 static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
141 {
142 struct btrfs_workers *workers = worker->workers;
143 struct worker_start *start;
144 unsigned long flags;
145
146 rmb();
147 if (!workers->atomic_start_pending)
148 return;
149
150 start = kzalloc(sizeof(*start), GFP_NOFS);
151 if (!start)
152 return;
153
154 start->work.func = start_new_worker_func;
155 start->queue = workers;
156
157 spin_lock_irqsave(&workers->lock, flags);
158 if (!workers->atomic_start_pending)
159 goto out;
160
161 workers->atomic_start_pending = 0;
162 if (workers->num_workers + workers->num_workers_starting >=
163 workers->max_workers)
164 goto out;
165
166 workers->num_workers_starting += 1;
167 spin_unlock_irqrestore(&workers->lock, flags);
168 btrfs_queue_worker(workers->atomic_worker_start, &start->work);
169 return;
170
171 out:
172 kfree(start);
173 spin_unlock_irqrestore(&workers->lock, flags);
174 }
175
176 static noinline void run_ordered_completions(struct btrfs_workers *workers,
177 struct btrfs_work *work)
178 {
179 if (!workers->ordered)
180 return;
181
182 set_bit(WORK_DONE_BIT, &work->flags);
183
184 spin_lock(&workers->order_lock);
185
186 while (1) {
187 if (!list_empty(&workers->prio_order_list)) {
188 work = list_entry(workers->prio_order_list.next,
189 struct btrfs_work, order_list);
190 } else if (!list_empty(&workers->order_list)) {
191 work = list_entry(workers->order_list.next,
192 struct btrfs_work, order_list);
193 } else {
194 break;
195 }
196 if (!test_bit(WORK_DONE_BIT, &work->flags))
197 break;
198
199 /* we are going to call the ordered done function, but
200 * we leave the work item on the list as a barrier so
201 * that later work items that are done don't have their
202 * functions called before this one returns
203 */
204 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
205 break;
206
207 spin_unlock(&workers->order_lock);
208
209 work->ordered_func(work);
210
211 /* now take the lock again and drop our item from the list */
212 spin_lock(&workers->order_lock);
213 list_del(&work->order_list);
214 spin_unlock(&workers->order_lock);
215
216 /*
217 * we don't want to call the ordered free functions
218 * with the lock held though
219 */
220 work->ordered_free(work);
221 spin_lock(&workers->order_lock);
222 }
223
224 spin_unlock(&workers->order_lock);
225 }
226
227 static void put_worker(struct btrfs_worker_thread *worker)
228 {
229 if (atomic_dec_and_test(&worker->refs))
230 kfree(worker);
231 }
232
233 static int try_worker_shutdown(struct btrfs_worker_thread *worker)
234 {
235 int freeit = 0;
236
237 spin_lock_irq(&worker->lock);
238 spin_lock(&worker->workers->lock);
239 if (worker->workers->num_workers > 1 &&
240 worker->idle &&
241 !worker->working &&
242 !list_empty(&worker->worker_list) &&
243 list_empty(&worker->prio_pending) &&
244 list_empty(&worker->pending) &&
245 atomic_read(&worker->num_pending) == 0) {
246 freeit = 1;
247 list_del_init(&worker->worker_list);
248 worker->workers->num_workers--;
249 }
250 spin_unlock(&worker->workers->lock);
251 spin_unlock_irq(&worker->lock);
252
253 if (freeit)
254 put_worker(worker);
255 return freeit;
256 }
257
258 static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
259 struct list_head *prio_head,
260 struct list_head *head)
261 {
262 struct btrfs_work *work = NULL;
263 struct list_head *cur = NULL;
264
265 if (!list_empty(prio_head))
266 cur = prio_head->next;
267
268 smp_mb();
269 if (!list_empty(&worker->prio_pending))
270 goto refill;
271
272 if (!list_empty(head))
273 cur = head->next;
274
275 if (cur)
276 goto out;
277
278 refill:
279 spin_lock_irq(&worker->lock);
280 list_splice_tail_init(&worker->prio_pending, prio_head);
281 list_splice_tail_init(&worker->pending, head);
282
283 if (!list_empty(prio_head))
284 cur = prio_head->next;
285 else if (!list_empty(head))
286 cur = head->next;
287 spin_unlock_irq(&worker->lock);
288
289 if (!cur)
290 goto out_fail;
291
292 out:
293 work = list_entry(cur, struct btrfs_work, list);
294
295 out_fail:
296 return work;
297 }
298
299 /*
300 * main loop for servicing work items
301 */
302 static int worker_loop(void *arg)
303 {
304 struct btrfs_worker_thread *worker = arg;
305 struct list_head head;
306 struct list_head prio_head;
307 struct btrfs_work *work;
308
309 INIT_LIST_HEAD(&head);
310 INIT_LIST_HEAD(&prio_head);
311
312 do {
313 again:
314 while (1) {
315
316
317 work = get_next_work(worker, &prio_head, &head);
318 if (!work)
319 break;
320
321 list_del(&work->list);
322 clear_bit(WORK_QUEUED_BIT, &work->flags);
323
324 work->worker = worker;
325
326 work->func(work);
327
328 atomic_dec(&worker->num_pending);
329 /*
330 * unless this is an ordered work queue,
331 * 'work' was probably freed by func above.
332 */
333 run_ordered_completions(worker->workers, work);
334
335 check_pending_worker_creates(worker);
336 cond_resched();
337 }
338
339 spin_lock_irq(&worker->lock);
340 check_idle_worker(worker);
341
342 if (freezing(current)) {
343 worker->working = 0;
344 spin_unlock_irq(&worker->lock);
345 try_to_freeze();
346 } else {
347 spin_unlock_irq(&worker->lock);
348 if (!kthread_should_stop()) {
349 cpu_relax();
350 /*
351 * we've dropped the lock, did someone else
352 * jump_in?
353 */
354 smp_mb();
355 if (!list_empty(&worker->pending) ||
356 !list_empty(&worker->prio_pending))
357 continue;
358
359 /*
360 * this short schedule allows more work to
361 * come in without the queue functions
362 * needing to go through wake_up_process()
363 *
364 * worker->working is still 1, so nobody
365 * is going to try and wake us up
366 */
367 schedule_timeout(1);
368 smp_mb();
369 if (!list_empty(&worker->pending) ||
370 !list_empty(&worker->prio_pending))
371 continue;
372
373 if (kthread_should_stop())
374 break;
375
376 /* still no more work?, sleep for real */
377 spin_lock_irq(&worker->lock);
378 set_current_state(TASK_INTERRUPTIBLE);
379 if (!list_empty(&worker->pending) ||
380 !list_empty(&worker->prio_pending)) {
381 spin_unlock_irq(&worker->lock);
382 set_current_state(TASK_RUNNING);
383 goto again;
384 }
385
386 /*
387 * this makes sure we get a wakeup when someone
388 * adds something new to the queue
389 */
390 worker->working = 0;
391 spin_unlock_irq(&worker->lock);
392
393 if (!kthread_should_stop()) {
394 schedule_timeout(HZ * 120);
395 if (!worker->working &&
396 try_worker_shutdown(worker)) {
397 return 0;
398 }
399 }
400 }
401 __set_current_state(TASK_RUNNING);
402 }
403 } while (!kthread_should_stop());
404 return 0;
405 }
406
407 /*
408 * this will wait for all the worker threads to shutdown
409 */
410 void btrfs_stop_workers(struct btrfs_workers *workers)
411 {
412 struct list_head *cur;
413 struct btrfs_worker_thread *worker;
414 int can_stop;
415
416 spin_lock_irq(&workers->lock);
417 workers->stopping = 1;
418 list_splice_init(&workers->idle_list, &workers->worker_list);
419 while (!list_empty(&workers->worker_list)) {
420 cur = workers->worker_list.next;
421 worker = list_entry(cur, struct btrfs_worker_thread,
422 worker_list);
423
424 atomic_inc(&worker->refs);
425 workers->num_workers -= 1;
426 if (!list_empty(&worker->worker_list)) {
427 list_del_init(&worker->worker_list);
428 put_worker(worker);
429 can_stop = 1;
430 } else
431 can_stop = 0;
432 spin_unlock_irq(&workers->lock);
433 if (can_stop)
434 kthread_stop(worker->task);
435 spin_lock_irq(&workers->lock);
436 put_worker(worker);
437 }
438 spin_unlock_irq(&workers->lock);
439 }
440
441 /*
442 * simple init on struct btrfs_workers
443 */
444 void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
445 struct btrfs_workers *async_helper)
446 {
447 workers->num_workers = 0;
448 workers->num_workers_starting = 0;
449 INIT_LIST_HEAD(&workers->worker_list);
450 INIT_LIST_HEAD(&workers->idle_list);
451 INIT_LIST_HEAD(&workers->order_list);
452 INIT_LIST_HEAD(&workers->prio_order_list);
453 spin_lock_init(&workers->lock);
454 spin_lock_init(&workers->order_lock);
455 workers->max_workers = max;
456 workers->idle_thresh = 32;
457 workers->name = name;
458 workers->ordered = 0;
459 workers->atomic_start_pending = 0;
460 workers->atomic_worker_start = async_helper;
461 workers->stopping = 0;
462 }
463
464 /*
465 * starts new worker threads. This does not enforce the max worker
466 * count in case you need to temporarily go past it.
467 */
468 static int __btrfs_start_workers(struct btrfs_workers *workers)
469 {
470 struct btrfs_worker_thread *worker;
471 int ret = 0;
472
473 worker = kzalloc(sizeof(*worker), GFP_NOFS);
474 if (!worker) {
475 ret = -ENOMEM;
476 goto fail;
477 }
478
479 INIT_LIST_HEAD(&worker->pending);
480 INIT_LIST_HEAD(&worker->prio_pending);
481 INIT_LIST_HEAD(&worker->worker_list);
482 spin_lock_init(&worker->lock);
483
484 atomic_set(&worker->num_pending, 0);
485 atomic_set(&worker->refs, 1);
486 worker->workers = workers;
487 worker->task = kthread_create(worker_loop, worker,
488 "btrfs-%s-%d", workers->name,
489 workers->num_workers + 1);
490 if (IS_ERR(worker->task)) {
491 ret = PTR_ERR(worker->task);
492 goto fail;
493 }
494
495 spin_lock_irq(&workers->lock);
496 if (workers->stopping) {
497 spin_unlock_irq(&workers->lock);
498 ret = -EINVAL;
499 goto fail_kthread;
500 }
501 list_add_tail(&worker->worker_list, &workers->idle_list);
502 worker->idle = 1;
503 workers->num_workers++;
504 workers->num_workers_starting--;
505 WARN_ON(workers->num_workers_starting < 0);
506 spin_unlock_irq(&workers->lock);
507
508 wake_up_process(worker->task);
509 return 0;
510
511 fail_kthread:
512 kthread_stop(worker->task);
513 fail:
514 kfree(worker);
515 spin_lock_irq(&workers->lock);
516 workers->num_workers_starting--;
517 spin_unlock_irq(&workers->lock);
518 return ret;
519 }
520
521 int btrfs_start_workers(struct btrfs_workers *workers)
522 {
523 spin_lock_irq(&workers->lock);
524 workers->num_workers_starting++;
525 spin_unlock_irq(&workers->lock);
526 return __btrfs_start_workers(workers);
527 }
528
529 /*
530 * run through the list and find a worker thread that doesn't have a lot
531 * to do right now. This can return null if we aren't yet at the thread
532 * count limit and all of the threads are busy.
533 */
534 static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
535 {
536 struct btrfs_worker_thread *worker;
537 struct list_head *next;
538 int enforce_min;
539
540 enforce_min = (workers->num_workers + workers->num_workers_starting) <
541 workers->max_workers;
542
543 /*
544 * if we find an idle thread, don't move it to the end of the
545 * idle list. This improves the chance that the next submission
546 * will reuse the same thread, and maybe catch it while it is still
547 * working
548 */
549 if (!list_empty(&workers->idle_list)) {
550 next = workers->idle_list.next;
551 worker = list_entry(next, struct btrfs_worker_thread,
552 worker_list);
553 return worker;
554 }
555 if (enforce_min || list_empty(&workers->worker_list))
556 return NULL;
557
558 /*
559 * if we pick a busy task, move the task to the end of the list.
560 * hopefully this will keep things somewhat evenly balanced.
561 * Do the move in batches based on the sequence number. This groups
562 * requests submitted at roughly the same time onto the same worker.
563 */
564 next = workers->worker_list.next;
565 worker = list_entry(next, struct btrfs_worker_thread, worker_list);
566 worker->sequence++;
567
568 if (worker->sequence % workers->idle_thresh == 0)
569 list_move_tail(next, &workers->worker_list);
570 return worker;
571 }
572
573 /*
574 * selects a worker thread to take the next job. This will either find
575 * an idle worker, start a new worker up to the max count, or just return
576 * one of the existing busy workers.
577 */
578 static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
579 {
580 struct btrfs_worker_thread *worker;
581 unsigned long flags;
582 struct list_head *fallback;
583 int ret;
584
585 spin_lock_irqsave(&workers->lock, flags);
586 again:
587 worker = next_worker(workers);
588
589 if (!worker) {
590 if (workers->num_workers + workers->num_workers_starting >=
591 workers->max_workers) {
592 goto fallback;
593 } else if (workers->atomic_worker_start) {
594 workers->atomic_start_pending = 1;
595 goto fallback;
596 } else {
597 workers->num_workers_starting++;
598 spin_unlock_irqrestore(&workers->lock, flags);
599 /* we're below the limit, start another worker */
600 ret = __btrfs_start_workers(workers);
601 spin_lock_irqsave(&workers->lock, flags);
602 if (ret)
603 goto fallback;
604 goto again;
605 }
606 }
607 goto found;
608
609 fallback:
610 fallback = NULL;
611 /*
612 * we have failed to find any workers, just
613 * return the first one we can find.
614 */
615 if (!list_empty(&workers->worker_list))
616 fallback = workers->worker_list.next;
617 if (!list_empty(&workers->idle_list))
618 fallback = workers->idle_list.next;
619 BUG_ON(!fallback);
620 worker = list_entry(fallback,
621 struct btrfs_worker_thread, worker_list);
622 found:
623 /*
624 * this makes sure the worker doesn't exit before it is placed
625 * onto a busy/idle list
626 */
627 atomic_inc(&worker->num_pending);
628 spin_unlock_irqrestore(&workers->lock, flags);
629 return worker;
630 }
631
632 /*
633 * btrfs_requeue_work just puts the work item back on the tail of the list
634 * it was taken from. It is intended for use with long running work functions
635 * that make some progress and want to give the cpu up for others.
636 */
637 void btrfs_requeue_work(struct btrfs_work *work)
638 {
639 struct btrfs_worker_thread *worker = work->worker;
640 unsigned long flags;
641 int wake = 0;
642
643 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
644 return;
645
646 spin_lock_irqsave(&worker->lock, flags);
647 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
648 list_add_tail(&work->list, &worker->prio_pending);
649 else
650 list_add_tail(&work->list, &worker->pending);
651 atomic_inc(&worker->num_pending);
652
653 /* by definition we're busy, take ourselves off the idle
654 * list
655 */
656 if (worker->idle) {
657 spin_lock(&worker->workers->lock);
658 worker->idle = 0;
659 list_move_tail(&worker->worker_list,
660 &worker->workers->worker_list);
661 spin_unlock(&worker->workers->lock);
662 }
663 if (!worker->working) {
664 wake = 1;
665 worker->working = 1;
666 }
667
668 if (wake)
669 wake_up_process(worker->task);
670 spin_unlock_irqrestore(&worker->lock, flags);
671 }
672
673 void btrfs_set_work_high_prio(struct btrfs_work *work)
674 {
675 set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
676 }
677
678 /*
679 * places a struct btrfs_work into the pending queue of one of the kthreads
680 */
681 void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
682 {
683 struct btrfs_worker_thread *worker;
684 unsigned long flags;
685 int wake = 0;
686
687 /* don't requeue something already on a list */
688 if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
689 return;
690
691 worker = find_worker(workers);
692 if (workers->ordered) {
693 /*
694 * you're not allowed to do ordered queues from an
695 * interrupt handler
696 */
697 spin_lock(&workers->order_lock);
698 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
699 list_add_tail(&work->order_list,
700 &workers->prio_order_list);
701 } else {
702 list_add_tail(&work->order_list, &workers->order_list);
703 }
704 spin_unlock(&workers->order_lock);
705 } else {
706 INIT_LIST_HEAD(&work->order_list);
707 }
708
709 spin_lock_irqsave(&worker->lock, flags);
710
711 if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
712 list_add_tail(&work->list, &worker->prio_pending);
713 else
714 list_add_tail(&work->list, &worker->pending);
715 check_busy_worker(worker);
716
717 /*
718 * avoid calling into wake_up_process if this thread has already
719 * been kicked
720 */
721 if (!worker->working)
722 wake = 1;
723 worker->working = 1;
724
725 if (wake)
726 wake_up_process(worker->task);
727 spin_unlock_irqrestore(&worker->lock, flags);
728 }