]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/backref.c
Merge tag 'timers_urgent_for_v5.11_rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20
21 struct extent_inode_elem {
22 u64 inum;
23 u64 offset;
24 struct extent_inode_elem *next;
25 };
26
27 static int check_extent_in_eb(const struct btrfs_key *key,
28 const struct extent_buffer *eb,
29 const struct btrfs_file_extent_item *fi,
30 u64 extent_item_pos,
31 struct extent_inode_elem **eie,
32 bool ignore_offset)
33 {
34 u64 offset = 0;
35 struct extent_inode_elem *e;
36
37 if (!ignore_offset &&
38 !btrfs_file_extent_compression(eb, fi) &&
39 !btrfs_file_extent_encryption(eb, fi) &&
40 !btrfs_file_extent_other_encoding(eb, fi)) {
41 u64 data_offset;
42 u64 data_len;
43
44 data_offset = btrfs_file_extent_offset(eb, fi);
45 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47 if (extent_item_pos < data_offset ||
48 extent_item_pos >= data_offset + data_len)
49 return 1;
50 offset = extent_item_pos - data_offset;
51 }
52
53 e = kmalloc(sizeof(*e), GFP_NOFS);
54 if (!e)
55 return -ENOMEM;
56
57 e->next = *eie;
58 e->inum = key->objectid;
59 e->offset = key->offset + offset;
60 *eie = e;
61
62 return 0;
63 }
64
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 struct extent_inode_elem *eie_next;
68
69 for (; eie; eie = eie_next) {
70 eie_next = eie->next;
71 kfree(eie);
72 }
73 }
74
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 u64 wanted_disk_byte, u64 extent_item_pos,
77 struct extent_inode_elem **eie,
78 bool ignore_offset)
79 {
80 u64 disk_byte;
81 struct btrfs_key key;
82 struct btrfs_file_extent_item *fi;
83 int slot;
84 int nritems;
85 int extent_type;
86 int ret;
87
88 /*
89 * from the shared data ref, we only have the leaf but we need
90 * the key. thus, we must look into all items and see that we
91 * find one (some) with a reference to our extent item.
92 */
93 nritems = btrfs_header_nritems(eb);
94 for (slot = 0; slot < nritems; ++slot) {
95 btrfs_item_key_to_cpu(eb, &key, slot);
96 if (key.type != BTRFS_EXTENT_DATA_KEY)
97 continue;
98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 extent_type = btrfs_file_extent_type(eb, fi);
100 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 continue;
102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 if (disk_byte != wanted_disk_byte)
105 continue;
106
107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 if (ret < 0)
109 return ret;
110 }
111
112 return 0;
113 }
114
115 struct preftree {
116 struct rb_root_cached root;
117 unsigned int count;
118 };
119
120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
121
122 struct preftrees {
123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 struct preftree indirect_missing_keys;
126 };
127
128 /*
129 * Checks for a shared extent during backref search.
130 *
131 * The share_count tracks prelim_refs (direct and indirect) having a
132 * ref->count >0:
133 * - incremented when a ref->count transitions to >0
134 * - decremented when a ref->count transitions to <1
135 */
136 struct share_check {
137 u64 root_objectid;
138 u64 inum;
139 int share_count;
140 };
141
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148
149 int __init btrfs_prelim_ref_init(void)
150 {
151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 sizeof(struct prelim_ref),
153 0,
154 SLAB_MEM_SPREAD,
155 NULL);
156 if (!btrfs_prelim_ref_cache)
157 return -ENOMEM;
158 return 0;
159 }
160
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165
166 static void free_pref(struct prelim_ref *ref)
167 {
168 kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170
171 /*
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
175 */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 struct prelim_ref *ref2)
178 {
179 if (ref1->level < ref2->level)
180 return -1;
181 if (ref1->level > ref2->level)
182 return 1;
183 if (ref1->root_id < ref2->root_id)
184 return -1;
185 if (ref1->root_id > ref2->root_id)
186 return 1;
187 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 return -1;
189 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 return 1;
191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 return -1;
193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 return 1;
195 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 return -1;
197 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 return 1;
199 if (ref1->parent < ref2->parent)
200 return -1;
201 if (ref1->parent > ref2->parent)
202 return 1;
203
204 return 0;
205 }
206
207 static void update_share_count(struct share_check *sc, int oldcount,
208 int newcount)
209 {
210 if ((!sc) || (oldcount == 0 && newcount < 1))
211 return;
212
213 if (oldcount > 0 && newcount < 1)
214 sc->share_count--;
215 else if (oldcount < 1 && newcount > 0)
216 sc->share_count++;
217 }
218
219 /*
220 * Add @newref to the @root rbtree, merging identical refs.
221 *
222 * Callers should assume that newref has been freed after calling.
223 */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 struct preftree *preftree,
226 struct prelim_ref *newref,
227 struct share_check *sc)
228 {
229 struct rb_root_cached *root;
230 struct rb_node **p;
231 struct rb_node *parent = NULL;
232 struct prelim_ref *ref;
233 int result;
234 bool leftmost = true;
235
236 root = &preftree->root;
237 p = &root->rb_root.rb_node;
238
239 while (*p) {
240 parent = *p;
241 ref = rb_entry(parent, struct prelim_ref, rbnode);
242 result = prelim_ref_compare(ref, newref);
243 if (result < 0) {
244 p = &(*p)->rb_left;
245 } else if (result > 0) {
246 p = &(*p)->rb_right;
247 leftmost = false;
248 } else {
249 /* Identical refs, merge them and free @newref */
250 struct extent_inode_elem *eie = ref->inode_list;
251
252 while (eie && eie->next)
253 eie = eie->next;
254
255 if (!eie)
256 ref->inode_list = newref->inode_list;
257 else
258 eie->next = newref->inode_list;
259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 preftree->count);
261 /*
262 * A delayed ref can have newref->count < 0.
263 * The ref->count is updated to follow any
264 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 */
266 update_share_count(sc, ref->count,
267 ref->count + newref->count);
268 ref->count += newref->count;
269 free_pref(newref);
270 return;
271 }
272 }
273
274 update_share_count(sc, 0, newref->count);
275 preftree->count++;
276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 rb_link_node(&newref->rbnode, parent, p);
278 rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280
281 /*
282 * Release the entire tree. We don't care about internal consistency so
283 * just free everything and then reset the tree root.
284 */
285 static void prelim_release(struct preftree *preftree)
286 {
287 struct prelim_ref *ref, *next_ref;
288
289 rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 &preftree->root.rb_root, rbnode)
291 free_pref(ref);
292
293 preftree->root = RB_ROOT_CACHED;
294 preftree->count = 0;
295 }
296
297 /*
298 * the rules for all callers of this function are:
299 * - obtaining the parent is the goal
300 * - if you add a key, you must know that it is a correct key
301 * - if you cannot add the parent or a correct key, then we will look into the
302 * block later to set a correct key
303 *
304 * delayed refs
305 * ============
306 * backref type | shared | indirect | shared | indirect
307 * information | tree | tree | data | data
308 * --------------------+--------+----------+--------+----------
309 * parent logical | y | - | - | -
310 * key to resolve | - | y | y | y
311 * tree block logical | - | - | - | -
312 * root for resolving | y | y | y | y
313 *
314 * - column 1: we've the parent -> done
315 * - column 2, 3, 4: we use the key to find the parent
316 *
317 * on disk refs (inline or keyed)
318 * ==============================
319 * backref type | shared | indirect | shared | indirect
320 * information | tree | tree | data | data
321 * --------------------+--------+----------+--------+----------
322 * parent logical | y | - | y | -
323 * key to resolve | - | - | - | y
324 * tree block logical | y | y | y | y
325 * root for resolving | - | y | y | y
326 *
327 * - column 1, 3: we've the parent -> done
328 * - column 2: we take the first key from the block to find the parent
329 * (see add_missing_keys)
330 * - column 4: we use the key to find the parent
331 *
332 * additional information that's available but not required to find the parent
333 * block might help in merging entries to gain some speed.
334 */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336 struct preftree *preftree, u64 root_id,
337 const struct btrfs_key *key, int level, u64 parent,
338 u64 wanted_disk_byte, int count,
339 struct share_check *sc, gfp_t gfp_mask)
340 {
341 struct prelim_ref *ref;
342
343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344 return 0;
345
346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 if (!ref)
348 return -ENOMEM;
349
350 ref->root_id = root_id;
351 if (key)
352 ref->key_for_search = *key;
353 else
354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355
356 ref->inode_list = NULL;
357 ref->level = level;
358 ref->count = count;
359 ref->parent = parent;
360 ref->wanted_disk_byte = wanted_disk_byte;
361 prelim_ref_insert(fs_info, preftree, ref, sc);
362 return extent_is_shared(sc);
363 }
364
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367 struct preftrees *preftrees, int level, u64 parent,
368 u64 wanted_disk_byte, int count,
369 struct share_check *sc, gfp_t gfp_mask)
370 {
371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372 parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377 struct preftrees *preftrees, u64 root_id,
378 const struct btrfs_key *key, int level,
379 u64 wanted_disk_byte, int count,
380 struct share_check *sc, gfp_t gfp_mask)
381 {
382 struct preftree *tree = &preftrees->indirect;
383
384 if (!key)
385 tree = &preftrees->indirect_missing_keys;
386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387 wanted_disk_byte, count, sc, gfp_mask);
388 }
389
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393 struct rb_node *parent = NULL;
394 struct prelim_ref *ref = NULL;
395 struct prelim_ref target = {};
396 int result;
397
398 target.parent = bytenr;
399
400 while (*p) {
401 parent = *p;
402 ref = rb_entry(parent, struct prelim_ref, rbnode);
403 result = prelim_ref_compare(ref, &target);
404
405 if (result < 0)
406 p = &(*p)->rb_left;
407 else if (result > 0)
408 p = &(*p)->rb_right;
409 else
410 return 1;
411 }
412 return 0;
413 }
414
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 struct ulist *parents,
417 struct preftrees *preftrees, struct prelim_ref *ref,
418 int level, u64 time_seq, const u64 *extent_item_pos,
419 bool ignore_offset)
420 {
421 int ret = 0;
422 int slot;
423 struct extent_buffer *eb;
424 struct btrfs_key key;
425 struct btrfs_key *key_for_search = &ref->key_for_search;
426 struct btrfs_file_extent_item *fi;
427 struct extent_inode_elem *eie = NULL, *old = NULL;
428 u64 disk_byte;
429 u64 wanted_disk_byte = ref->wanted_disk_byte;
430 u64 count = 0;
431 u64 data_offset;
432
433 if (level != 0) {
434 eb = path->nodes[level];
435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 if (ret < 0)
437 return ret;
438 return 0;
439 }
440
441 /*
442 * 1. We normally enter this function with the path already pointing to
443 * the first item to check. But sometimes, we may enter it with
444 * slot == nritems.
445 * 2. We are searching for normal backref but bytenr of this leaf
446 * matches shared data backref
447 * 3. The leaf owner is not equal to the root we are searching
448 *
449 * For these cases, go to the next leaf before we continue.
450 */
451 eb = path->nodes[0];
452 if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 is_shared_data_backref(preftrees, eb->start) ||
454 ref->root_id != btrfs_header_owner(eb)) {
455 if (time_seq == SEQ_LAST)
456 ret = btrfs_next_leaf(root, path);
457 else
458 ret = btrfs_next_old_leaf(root, path, time_seq);
459 }
460
461 while (!ret && count < ref->count) {
462 eb = path->nodes[0];
463 slot = path->slots[0];
464
465 btrfs_item_key_to_cpu(eb, &key, slot);
466
467 if (key.objectid != key_for_search->objectid ||
468 key.type != BTRFS_EXTENT_DATA_KEY)
469 break;
470
471 /*
472 * We are searching for normal backref but bytenr of this leaf
473 * matches shared data backref, OR
474 * the leaf owner is not equal to the root we are searching for
475 */
476 if (slot == 0 &&
477 (is_shared_data_backref(preftrees, eb->start) ||
478 ref->root_id != btrfs_header_owner(eb))) {
479 if (time_seq == SEQ_LAST)
480 ret = btrfs_next_leaf(root, path);
481 else
482 ret = btrfs_next_old_leaf(root, path, time_seq);
483 continue;
484 }
485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487 data_offset = btrfs_file_extent_offset(eb, fi);
488
489 if (disk_byte == wanted_disk_byte) {
490 eie = NULL;
491 old = NULL;
492 if (ref->key_for_search.offset == key.offset - data_offset)
493 count++;
494 else
495 goto next;
496 if (extent_item_pos) {
497 ret = check_extent_in_eb(&key, eb, fi,
498 *extent_item_pos,
499 &eie, ignore_offset);
500 if (ret < 0)
501 break;
502 }
503 if (ret > 0)
504 goto next;
505 ret = ulist_add_merge_ptr(parents, eb->start,
506 eie, (void **)&old, GFP_NOFS);
507 if (ret < 0)
508 break;
509 if (!ret && extent_item_pos) {
510 while (old->next)
511 old = old->next;
512 old->next = eie;
513 }
514 eie = NULL;
515 }
516 next:
517 if (time_seq == SEQ_LAST)
518 ret = btrfs_next_item(root, path);
519 else
520 ret = btrfs_next_old_item(root, path, time_seq);
521 }
522
523 if (ret > 0)
524 ret = 0;
525 else if (ret < 0)
526 free_inode_elem_list(eie);
527 return ret;
528 }
529
530 /*
531 * resolve an indirect backref in the form (root_id, key, level)
532 * to a logical address
533 */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535 struct btrfs_path *path, u64 time_seq,
536 struct preftrees *preftrees,
537 struct prelim_ref *ref, struct ulist *parents,
538 const u64 *extent_item_pos, bool ignore_offset)
539 {
540 struct btrfs_root *root;
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
545 struct btrfs_key search_key = ref->key_for_search;
546
547 /*
548 * If we're search_commit_root we could possibly be holding locks on
549 * other tree nodes. This happens when qgroups does backref walks when
550 * adding new delayed refs. To deal with this we need to look in cache
551 * for the root, and if we don't find it then we need to search the
552 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553 * here.
554 */
555 if (path->search_commit_root)
556 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557 else
558 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559 if (IS_ERR(root)) {
560 ret = PTR_ERR(root);
561 goto out_free;
562 }
563
564 if (!path->search_commit_root &&
565 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566 ret = -ENOENT;
567 goto out;
568 }
569
570 if (btrfs_is_testing(fs_info)) {
571 ret = -ENOENT;
572 goto out;
573 }
574
575 if (path->search_commit_root)
576 root_level = btrfs_header_level(root->commit_root);
577 else if (time_seq == SEQ_LAST)
578 root_level = btrfs_header_level(root->node);
579 else
580 root_level = btrfs_old_root_level(root, time_seq);
581
582 if (root_level + 1 == level)
583 goto out;
584
585 /*
586 * We can often find data backrefs with an offset that is too large
587 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588 * subtracting a file's offset with the data offset of its
589 * corresponding extent data item. This can happen for example in the
590 * clone ioctl.
591 *
592 * So if we detect such case we set the search key's offset to zero to
593 * make sure we will find the matching file extent item at
594 * add_all_parents(), otherwise we will miss it because the offset
595 * taken form the backref is much larger then the offset of the file
596 * extent item. This can make us scan a very large number of file
597 * extent items, but at least it will not make us miss any.
598 *
599 * This is an ugly workaround for a behaviour that should have never
600 * existed, but it does and a fix for the clone ioctl would touch a lot
601 * of places, cause backwards incompatibility and would not fix the
602 * problem for extents cloned with older kernels.
603 */
604 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605 search_key.offset >= LLONG_MAX)
606 search_key.offset = 0;
607 path->lowest_level = level;
608 if (time_seq == SEQ_LAST)
609 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610 else
611 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612
613 btrfs_debug(fs_info,
614 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 ref->root_id, level, ref->count, ret,
616 ref->key_for_search.objectid, ref->key_for_search.type,
617 ref->key_for_search.offset);
618 if (ret < 0)
619 goto out;
620
621 eb = path->nodes[level];
622 while (!eb) {
623 if (WARN_ON(!level)) {
624 ret = 1;
625 goto out;
626 }
627 level--;
628 eb = path->nodes[level];
629 }
630
631 ret = add_all_parents(root, path, parents, preftrees, ref, level,
632 time_seq, extent_item_pos, ignore_offset);
633 out:
634 btrfs_put_root(root);
635 out_free:
636 path->lowest_level = 0;
637 btrfs_release_path(path);
638 return ret;
639 }
640
641 static struct extent_inode_elem *
642 unode_aux_to_inode_list(struct ulist_node *node)
643 {
644 if (!node)
645 return NULL;
646 return (struct extent_inode_elem *)(uintptr_t)node->aux;
647 }
648
649 /*
650 * We maintain three separate rbtrees: one for direct refs, one for
651 * indirect refs which have a key, and one for indirect refs which do not
652 * have a key. Each tree does merge on insertion.
653 *
654 * Once all of the references are located, we iterate over the tree of
655 * indirect refs with missing keys. An appropriate key is located and
656 * the ref is moved onto the tree for indirect refs. After all missing
657 * keys are thus located, we iterate over the indirect ref tree, resolve
658 * each reference, and then insert the resolved reference onto the
659 * direct tree (merging there too).
660 *
661 * New backrefs (i.e., for parent nodes) are added to the appropriate
662 * rbtree as they are encountered. The new backrefs are subsequently
663 * resolved as above.
664 */
665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666 struct btrfs_path *path, u64 time_seq,
667 struct preftrees *preftrees,
668 const u64 *extent_item_pos,
669 struct share_check *sc, bool ignore_offset)
670 {
671 int err;
672 int ret = 0;
673 struct ulist *parents;
674 struct ulist_node *node;
675 struct ulist_iterator uiter;
676 struct rb_node *rnode;
677
678 parents = ulist_alloc(GFP_NOFS);
679 if (!parents)
680 return -ENOMEM;
681
682 /*
683 * We could trade memory usage for performance here by iterating
684 * the tree, allocating new refs for each insertion, and then
685 * freeing the entire indirect tree when we're done. In some test
686 * cases, the tree can grow quite large (~200k objects).
687 */
688 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689 struct prelim_ref *ref;
690
691 ref = rb_entry(rnode, struct prelim_ref, rbnode);
692 if (WARN(ref->parent,
693 "BUG: direct ref found in indirect tree")) {
694 ret = -EINVAL;
695 goto out;
696 }
697
698 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699 preftrees->indirect.count--;
700
701 if (ref->count == 0) {
702 free_pref(ref);
703 continue;
704 }
705
706 if (sc && sc->root_objectid &&
707 ref->root_id != sc->root_objectid) {
708 free_pref(ref);
709 ret = BACKREF_FOUND_SHARED;
710 goto out;
711 }
712 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713 ref, parents, extent_item_pos,
714 ignore_offset);
715 /*
716 * we can only tolerate ENOENT,otherwise,we should catch error
717 * and return directly.
718 */
719 if (err == -ENOENT) {
720 prelim_ref_insert(fs_info, &preftrees->direct, ref,
721 NULL);
722 continue;
723 } else if (err) {
724 free_pref(ref);
725 ret = err;
726 goto out;
727 }
728
729 /* we put the first parent into the ref at hand */
730 ULIST_ITER_INIT(&uiter);
731 node = ulist_next(parents, &uiter);
732 ref->parent = node ? node->val : 0;
733 ref->inode_list = unode_aux_to_inode_list(node);
734
735 /* Add a prelim_ref(s) for any other parent(s). */
736 while ((node = ulist_next(parents, &uiter))) {
737 struct prelim_ref *new_ref;
738
739 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740 GFP_NOFS);
741 if (!new_ref) {
742 free_pref(ref);
743 ret = -ENOMEM;
744 goto out;
745 }
746 memcpy(new_ref, ref, sizeof(*ref));
747 new_ref->parent = node->val;
748 new_ref->inode_list = unode_aux_to_inode_list(node);
749 prelim_ref_insert(fs_info, &preftrees->direct,
750 new_ref, NULL);
751 }
752
753 /*
754 * Now it's a direct ref, put it in the direct tree. We must
755 * do this last because the ref could be merged/freed here.
756 */
757 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758
759 ulist_reinit(parents);
760 cond_resched();
761 }
762 out:
763 ulist_free(parents);
764 return ret;
765 }
766
767 /*
768 * read tree blocks and add keys where required.
769 */
770 static int add_missing_keys(struct btrfs_fs_info *fs_info,
771 struct preftrees *preftrees, bool lock)
772 {
773 struct prelim_ref *ref;
774 struct extent_buffer *eb;
775 struct preftree *tree = &preftrees->indirect_missing_keys;
776 struct rb_node *node;
777
778 while ((node = rb_first_cached(&tree->root))) {
779 ref = rb_entry(node, struct prelim_ref, rbnode);
780 rb_erase_cached(node, &tree->root);
781
782 BUG_ON(ref->parent); /* should not be a direct ref */
783 BUG_ON(ref->key_for_search.type);
784 BUG_ON(!ref->wanted_disk_byte);
785
786 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
787 ref->root_id, 0, ref->level - 1, NULL);
788 if (IS_ERR(eb)) {
789 free_pref(ref);
790 return PTR_ERR(eb);
791 } else if (!extent_buffer_uptodate(eb)) {
792 free_pref(ref);
793 free_extent_buffer(eb);
794 return -EIO;
795 }
796 if (lock)
797 btrfs_tree_read_lock(eb);
798 if (btrfs_header_level(eb) == 0)
799 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800 else
801 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802 if (lock)
803 btrfs_tree_read_unlock(eb);
804 free_extent_buffer(eb);
805 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806 cond_resched();
807 }
808 return 0;
809 }
810
811 /*
812 * add all currently queued delayed refs from this head whose seq nr is
813 * smaller or equal that seq to the list
814 */
815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816 struct btrfs_delayed_ref_head *head, u64 seq,
817 struct preftrees *preftrees, struct share_check *sc)
818 {
819 struct btrfs_delayed_ref_node *node;
820 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821 struct btrfs_key key;
822 struct btrfs_key tmp_op_key;
823 struct rb_node *n;
824 int count;
825 int ret = 0;
826
827 if (extent_op && extent_op->update_key)
828 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829
830 spin_lock(&head->lock);
831 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832 node = rb_entry(n, struct btrfs_delayed_ref_node,
833 ref_node);
834 if (node->seq > seq)
835 continue;
836
837 switch (node->action) {
838 case BTRFS_ADD_DELAYED_EXTENT:
839 case BTRFS_UPDATE_DELAYED_HEAD:
840 WARN_ON(1);
841 continue;
842 case BTRFS_ADD_DELAYED_REF:
843 count = node->ref_mod;
844 break;
845 case BTRFS_DROP_DELAYED_REF:
846 count = node->ref_mod * -1;
847 break;
848 default:
849 BUG();
850 }
851 switch (node->type) {
852 case BTRFS_TREE_BLOCK_REF_KEY: {
853 /* NORMAL INDIRECT METADATA backref */
854 struct btrfs_delayed_tree_ref *ref;
855
856 ref = btrfs_delayed_node_to_tree_ref(node);
857 ret = add_indirect_ref(fs_info, preftrees, ref->root,
858 &tmp_op_key, ref->level + 1,
859 node->bytenr, count, sc,
860 GFP_ATOMIC);
861 break;
862 }
863 case BTRFS_SHARED_BLOCK_REF_KEY: {
864 /* SHARED DIRECT METADATA backref */
865 struct btrfs_delayed_tree_ref *ref;
866
867 ref = btrfs_delayed_node_to_tree_ref(node);
868
869 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870 ref->parent, node->bytenr, count,
871 sc, GFP_ATOMIC);
872 break;
873 }
874 case BTRFS_EXTENT_DATA_REF_KEY: {
875 /* NORMAL INDIRECT DATA backref */
876 struct btrfs_delayed_data_ref *ref;
877 ref = btrfs_delayed_node_to_data_ref(node);
878
879 key.objectid = ref->objectid;
880 key.type = BTRFS_EXTENT_DATA_KEY;
881 key.offset = ref->offset;
882
883 /*
884 * Found a inum that doesn't match our known inum, we
885 * know it's shared.
886 */
887 if (sc && sc->inum && ref->objectid != sc->inum) {
888 ret = BACKREF_FOUND_SHARED;
889 goto out;
890 }
891
892 ret = add_indirect_ref(fs_info, preftrees, ref->root,
893 &key, 0, node->bytenr, count, sc,
894 GFP_ATOMIC);
895 break;
896 }
897 case BTRFS_SHARED_DATA_REF_KEY: {
898 /* SHARED DIRECT FULL backref */
899 struct btrfs_delayed_data_ref *ref;
900
901 ref = btrfs_delayed_node_to_data_ref(node);
902
903 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904 node->bytenr, count, sc,
905 GFP_ATOMIC);
906 break;
907 }
908 default:
909 WARN_ON(1);
910 }
911 /*
912 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 * refs have been checked.
914 */
915 if (ret && (ret != BACKREF_FOUND_SHARED))
916 break;
917 }
918 if (!ret)
919 ret = extent_is_shared(sc);
920 out:
921 spin_unlock(&head->lock);
922 return ret;
923 }
924
925 /*
926 * add all inline backrefs for bytenr to the list
927 *
928 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929 */
930 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931 struct btrfs_path *path, u64 bytenr,
932 int *info_level, struct preftrees *preftrees,
933 struct share_check *sc)
934 {
935 int ret = 0;
936 int slot;
937 struct extent_buffer *leaf;
938 struct btrfs_key key;
939 struct btrfs_key found_key;
940 unsigned long ptr;
941 unsigned long end;
942 struct btrfs_extent_item *ei;
943 u64 flags;
944 u64 item_size;
945
946 /*
947 * enumerate all inline refs
948 */
949 leaf = path->nodes[0];
950 slot = path->slots[0];
951
952 item_size = btrfs_item_size_nr(leaf, slot);
953 BUG_ON(item_size < sizeof(*ei));
954
955 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956 flags = btrfs_extent_flags(leaf, ei);
957 btrfs_item_key_to_cpu(leaf, &found_key, slot);
958
959 ptr = (unsigned long)(ei + 1);
960 end = (unsigned long)ei + item_size;
961
962 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964 struct btrfs_tree_block_info *info;
965
966 info = (struct btrfs_tree_block_info *)ptr;
967 *info_level = btrfs_tree_block_level(leaf, info);
968 ptr += sizeof(struct btrfs_tree_block_info);
969 BUG_ON(ptr > end);
970 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971 *info_level = found_key.offset;
972 } else {
973 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974 }
975
976 while (ptr < end) {
977 struct btrfs_extent_inline_ref *iref;
978 u64 offset;
979 int type;
980
981 iref = (struct btrfs_extent_inline_ref *)ptr;
982 type = btrfs_get_extent_inline_ref_type(leaf, iref,
983 BTRFS_REF_TYPE_ANY);
984 if (type == BTRFS_REF_TYPE_INVALID)
985 return -EUCLEAN;
986
987 offset = btrfs_extent_inline_ref_offset(leaf, iref);
988
989 switch (type) {
990 case BTRFS_SHARED_BLOCK_REF_KEY:
991 ret = add_direct_ref(fs_info, preftrees,
992 *info_level + 1, offset,
993 bytenr, 1, NULL, GFP_NOFS);
994 break;
995 case BTRFS_SHARED_DATA_REF_KEY: {
996 struct btrfs_shared_data_ref *sdref;
997 int count;
998
999 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000 count = btrfs_shared_data_ref_count(leaf, sdref);
1001
1002 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003 bytenr, count, sc, GFP_NOFS);
1004 break;
1005 }
1006 case BTRFS_TREE_BLOCK_REF_KEY:
1007 ret = add_indirect_ref(fs_info, preftrees, offset,
1008 NULL, *info_level + 1,
1009 bytenr, 1, NULL, GFP_NOFS);
1010 break;
1011 case BTRFS_EXTENT_DATA_REF_KEY: {
1012 struct btrfs_extent_data_ref *dref;
1013 int count;
1014 u64 root;
1015
1016 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017 count = btrfs_extent_data_ref_count(leaf, dref);
1018 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019 dref);
1020 key.type = BTRFS_EXTENT_DATA_KEY;
1021 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022
1023 if (sc && sc->inum && key.objectid != sc->inum) {
1024 ret = BACKREF_FOUND_SHARED;
1025 break;
1026 }
1027
1028 root = btrfs_extent_data_ref_root(leaf, dref);
1029
1030 ret = add_indirect_ref(fs_info, preftrees, root,
1031 &key, 0, bytenr, count,
1032 sc, GFP_NOFS);
1033 break;
1034 }
1035 default:
1036 WARN_ON(1);
1037 }
1038 if (ret)
1039 return ret;
1040 ptr += btrfs_extent_inline_ref_size(type);
1041 }
1042
1043 return 0;
1044 }
1045
1046 /*
1047 * add all non-inline backrefs for bytenr to the list
1048 *
1049 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050 */
1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052 struct btrfs_path *path, u64 bytenr,
1053 int info_level, struct preftrees *preftrees,
1054 struct share_check *sc)
1055 {
1056 struct btrfs_root *extent_root = fs_info->extent_root;
1057 int ret;
1058 int slot;
1059 struct extent_buffer *leaf;
1060 struct btrfs_key key;
1061
1062 while (1) {
1063 ret = btrfs_next_item(extent_root, path);
1064 if (ret < 0)
1065 break;
1066 if (ret) {
1067 ret = 0;
1068 break;
1069 }
1070
1071 slot = path->slots[0];
1072 leaf = path->nodes[0];
1073 btrfs_item_key_to_cpu(leaf, &key, slot);
1074
1075 if (key.objectid != bytenr)
1076 break;
1077 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078 continue;
1079 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080 break;
1081
1082 switch (key.type) {
1083 case BTRFS_SHARED_BLOCK_REF_KEY:
1084 /* SHARED DIRECT METADATA backref */
1085 ret = add_direct_ref(fs_info, preftrees,
1086 info_level + 1, key.offset,
1087 bytenr, 1, NULL, GFP_NOFS);
1088 break;
1089 case BTRFS_SHARED_DATA_REF_KEY: {
1090 /* SHARED DIRECT FULL backref */
1091 struct btrfs_shared_data_ref *sdref;
1092 int count;
1093
1094 sdref = btrfs_item_ptr(leaf, slot,
1095 struct btrfs_shared_data_ref);
1096 count = btrfs_shared_data_ref_count(leaf, sdref);
1097 ret = add_direct_ref(fs_info, preftrees, 0,
1098 key.offset, bytenr, count,
1099 sc, GFP_NOFS);
1100 break;
1101 }
1102 case BTRFS_TREE_BLOCK_REF_KEY:
1103 /* NORMAL INDIRECT METADATA backref */
1104 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105 NULL, info_level + 1, bytenr,
1106 1, NULL, GFP_NOFS);
1107 break;
1108 case BTRFS_EXTENT_DATA_REF_KEY: {
1109 /* NORMAL INDIRECT DATA backref */
1110 struct btrfs_extent_data_ref *dref;
1111 int count;
1112 u64 root;
1113
1114 dref = btrfs_item_ptr(leaf, slot,
1115 struct btrfs_extent_data_ref);
1116 count = btrfs_extent_data_ref_count(leaf, dref);
1117 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118 dref);
1119 key.type = BTRFS_EXTENT_DATA_KEY;
1120 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121
1122 if (sc && sc->inum && key.objectid != sc->inum) {
1123 ret = BACKREF_FOUND_SHARED;
1124 break;
1125 }
1126
1127 root = btrfs_extent_data_ref_root(leaf, dref);
1128 ret = add_indirect_ref(fs_info, preftrees, root,
1129 &key, 0, bytenr, count,
1130 sc, GFP_NOFS);
1131 break;
1132 }
1133 default:
1134 WARN_ON(1);
1135 }
1136 if (ret)
1137 return ret;
1138
1139 }
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147 * indirect refs to their parent bytenr.
1148 * When roots are found, they're added to the roots list
1149 *
1150 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151 * much like trans == NULL case, the difference only lies in it will not
1152 * commit root.
1153 * The special case is for qgroup to search roots in commit_transaction().
1154 *
1155 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156 * shared extent is detected.
1157 *
1158 * Otherwise this returns 0 for success and <0 for an error.
1159 *
1160 * If ignore_offset is set to false, only extent refs whose offsets match
1161 * extent_item_pos are returned. If true, every extent ref is returned
1162 * and extent_item_pos is ignored.
1163 *
1164 * FIXME some caching might speed things up
1165 */
1166 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167 struct btrfs_fs_info *fs_info, u64 bytenr,
1168 u64 time_seq, struct ulist *refs,
1169 struct ulist *roots, const u64 *extent_item_pos,
1170 struct share_check *sc, bool ignore_offset)
1171 {
1172 struct btrfs_key key;
1173 struct btrfs_path *path;
1174 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175 struct btrfs_delayed_ref_head *head;
1176 int info_level = 0;
1177 int ret;
1178 struct prelim_ref *ref;
1179 struct rb_node *node;
1180 struct extent_inode_elem *eie = NULL;
1181 struct preftrees preftrees = {
1182 .direct = PREFTREE_INIT,
1183 .indirect = PREFTREE_INIT,
1184 .indirect_missing_keys = PREFTREE_INIT
1185 };
1186
1187 key.objectid = bytenr;
1188 key.offset = (u64)-1;
1189 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190 key.type = BTRFS_METADATA_ITEM_KEY;
1191 else
1192 key.type = BTRFS_EXTENT_ITEM_KEY;
1193
1194 path = btrfs_alloc_path();
1195 if (!path)
1196 return -ENOMEM;
1197 if (!trans) {
1198 path->search_commit_root = 1;
1199 path->skip_locking = 1;
1200 }
1201
1202 if (time_seq == SEQ_LAST)
1203 path->skip_locking = 1;
1204
1205 /*
1206 * grab both a lock on the path and a lock on the delayed ref head.
1207 * We need both to get a consistent picture of how the refs look
1208 * at a specified point in time
1209 */
1210 again:
1211 head = NULL;
1212
1213 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214 if (ret < 0)
1215 goto out;
1216 BUG_ON(ret == 0);
1217
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1220 time_seq != SEQ_LAST) {
1221 #else
1222 if (trans && time_seq != SEQ_LAST) {
1223 #endif
1224 /*
1225 * look if there are updates for this ref queued and lock the
1226 * head
1227 */
1228 delayed_refs = &trans->transaction->delayed_refs;
1229 spin_lock(&delayed_refs->lock);
1230 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 if (head) {
1232 if (!mutex_trylock(&head->mutex)) {
1233 refcount_inc(&head->refs);
1234 spin_unlock(&delayed_refs->lock);
1235
1236 btrfs_release_path(path);
1237
1238 /*
1239 * Mutex was contended, block until it's
1240 * released and try again
1241 */
1242 mutex_lock(&head->mutex);
1243 mutex_unlock(&head->mutex);
1244 btrfs_put_delayed_ref_head(head);
1245 goto again;
1246 }
1247 spin_unlock(&delayed_refs->lock);
1248 ret = add_delayed_refs(fs_info, head, time_seq,
1249 &preftrees, sc);
1250 mutex_unlock(&head->mutex);
1251 if (ret)
1252 goto out;
1253 } else {
1254 spin_unlock(&delayed_refs->lock);
1255 }
1256 }
1257
1258 if (path->slots[0]) {
1259 struct extent_buffer *leaf;
1260 int slot;
1261
1262 path->slots[0]--;
1263 leaf = path->nodes[0];
1264 slot = path->slots[0];
1265 btrfs_item_key_to_cpu(leaf, &key, slot);
1266 if (key.objectid == bytenr &&
1267 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268 key.type == BTRFS_METADATA_ITEM_KEY)) {
1269 ret = add_inline_refs(fs_info, path, bytenr,
1270 &info_level, &preftrees, sc);
1271 if (ret)
1272 goto out;
1273 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1274 &preftrees, sc);
1275 if (ret)
1276 goto out;
1277 }
1278 }
1279
1280 btrfs_release_path(path);
1281
1282 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 if (ret)
1284 goto out;
1285
1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287
1288 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289 extent_item_pos, sc, ignore_offset);
1290 if (ret)
1291 goto out;
1292
1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294
1295 /*
1296 * This walks the tree of merged and resolved refs. Tree blocks are
1297 * read in as needed. Unique entries are added to the ulist, and
1298 * the list of found roots is updated.
1299 *
1300 * We release the entire tree in one go before returning.
1301 */
1302 node = rb_first_cached(&preftrees.direct.root);
1303 while (node) {
1304 ref = rb_entry(node, struct prelim_ref, rbnode);
1305 node = rb_next(&ref->rbnode);
1306 /*
1307 * ref->count < 0 can happen here if there are delayed
1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 * prelim_ref_insert() relies on this when merging
1310 * identical refs to keep the overall count correct.
1311 * prelim_ref_insert() will merge only those refs
1312 * which compare identically. Any refs having
1313 * e.g. different offsets would not be merged,
1314 * and would retain their original ref->count < 0.
1315 */
1316 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 if (sc && sc->root_objectid &&
1318 ref->root_id != sc->root_objectid) {
1319 ret = BACKREF_FOUND_SHARED;
1320 goto out;
1321 }
1322
1323 /* no parent == root of tree */
1324 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 if (ret < 0)
1326 goto out;
1327 }
1328 if (ref->count && ref->parent) {
1329 if (extent_item_pos && !ref->inode_list &&
1330 ref->level == 0) {
1331 struct extent_buffer *eb;
1332
1333 eb = read_tree_block(fs_info, ref->parent, 0,
1334 0, ref->level, NULL);
1335 if (IS_ERR(eb)) {
1336 ret = PTR_ERR(eb);
1337 goto out;
1338 } else if (!extent_buffer_uptodate(eb)) {
1339 free_extent_buffer(eb);
1340 ret = -EIO;
1341 goto out;
1342 }
1343
1344 if (!path->skip_locking)
1345 btrfs_tree_read_lock(eb);
1346 ret = find_extent_in_eb(eb, bytenr,
1347 *extent_item_pos, &eie, ignore_offset);
1348 if (!path->skip_locking)
1349 btrfs_tree_read_unlock(eb);
1350 free_extent_buffer(eb);
1351 if (ret < 0)
1352 goto out;
1353 ref->inode_list = eie;
1354 }
1355 ret = ulist_add_merge_ptr(refs, ref->parent,
1356 ref->inode_list,
1357 (void **)&eie, GFP_NOFS);
1358 if (ret < 0)
1359 goto out;
1360 if (!ret && extent_item_pos) {
1361 /*
1362 * we've recorded that parent, so we must extend
1363 * its inode list here
1364 */
1365 BUG_ON(!eie);
1366 while (eie->next)
1367 eie = eie->next;
1368 eie->next = ref->inode_list;
1369 }
1370 eie = NULL;
1371 }
1372 cond_resched();
1373 }
1374
1375 out:
1376 btrfs_free_path(path);
1377
1378 prelim_release(&preftrees.direct);
1379 prelim_release(&preftrees.indirect);
1380 prelim_release(&preftrees.indirect_missing_keys);
1381
1382 if (ret < 0)
1383 free_inode_elem_list(eie);
1384 return ret;
1385 }
1386
1387 static void free_leaf_list(struct ulist *blocks)
1388 {
1389 struct ulist_node *node = NULL;
1390 struct extent_inode_elem *eie;
1391 struct ulist_iterator uiter;
1392
1393 ULIST_ITER_INIT(&uiter);
1394 while ((node = ulist_next(blocks, &uiter))) {
1395 if (!node->aux)
1396 continue;
1397 eie = unode_aux_to_inode_list(node);
1398 free_inode_elem_list(eie);
1399 node->aux = 0;
1400 }
1401
1402 ulist_free(blocks);
1403 }
1404
1405 /*
1406 * Finds all leafs with a reference to the specified combination of bytenr and
1407 * offset. key_list_head will point to a list of corresponding keys (caller must
1408 * free each list element). The leafs will be stored in the leafs ulist, which
1409 * must be freed with ulist_free.
1410 *
1411 * returns 0 on success, <0 on error
1412 */
1413 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1414 struct btrfs_fs_info *fs_info, u64 bytenr,
1415 u64 time_seq, struct ulist **leafs,
1416 const u64 *extent_item_pos, bool ignore_offset)
1417 {
1418 int ret;
1419
1420 *leafs = ulist_alloc(GFP_NOFS);
1421 if (!*leafs)
1422 return -ENOMEM;
1423
1424 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1425 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1426 if (ret < 0 && ret != -ENOENT) {
1427 free_leaf_list(*leafs);
1428 return ret;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /*
1435 * walk all backrefs for a given extent to find all roots that reference this
1436 * extent. Walking a backref means finding all extents that reference this
1437 * extent and in turn walk the backrefs of those, too. Naturally this is a
1438 * recursive process, but here it is implemented in an iterative fashion: We
1439 * find all referencing extents for the extent in question and put them on a
1440 * list. In turn, we find all referencing extents for those, further appending
1441 * to the list. The way we iterate the list allows adding more elements after
1442 * the current while iterating. The process stops when we reach the end of the
1443 * list. Found roots are added to the roots list.
1444 *
1445 * returns 0 on success, < 0 on error.
1446 */
1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1448 struct btrfs_fs_info *fs_info, u64 bytenr,
1449 u64 time_seq, struct ulist **roots,
1450 bool ignore_offset)
1451 {
1452 struct ulist *tmp;
1453 struct ulist_node *node = NULL;
1454 struct ulist_iterator uiter;
1455 int ret;
1456
1457 tmp = ulist_alloc(GFP_NOFS);
1458 if (!tmp)
1459 return -ENOMEM;
1460 *roots = ulist_alloc(GFP_NOFS);
1461 if (!*roots) {
1462 ulist_free(tmp);
1463 return -ENOMEM;
1464 }
1465
1466 ULIST_ITER_INIT(&uiter);
1467 while (1) {
1468 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1469 tmp, *roots, NULL, NULL, ignore_offset);
1470 if (ret < 0 && ret != -ENOENT) {
1471 ulist_free(tmp);
1472 ulist_free(*roots);
1473 *roots = NULL;
1474 return ret;
1475 }
1476 node = ulist_next(tmp, &uiter);
1477 if (!node)
1478 break;
1479 bytenr = node->val;
1480 cond_resched();
1481 }
1482
1483 ulist_free(tmp);
1484 return 0;
1485 }
1486
1487 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1488 struct btrfs_fs_info *fs_info, u64 bytenr,
1489 u64 time_seq, struct ulist **roots,
1490 bool ignore_offset)
1491 {
1492 int ret;
1493
1494 if (!trans)
1495 down_read(&fs_info->commit_root_sem);
1496 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1497 time_seq, roots, ignore_offset);
1498 if (!trans)
1499 up_read(&fs_info->commit_root_sem);
1500 return ret;
1501 }
1502
1503 /**
1504 * btrfs_check_shared - tell us whether an extent is shared
1505 *
1506 * btrfs_check_shared uses the backref walking code but will short
1507 * circuit as soon as it finds a root or inode that doesn't match the
1508 * one passed in. This provides a significant performance benefit for
1509 * callers (such as fiemap) which want to know whether the extent is
1510 * shared but do not need a ref count.
1511 *
1512 * This attempts to attach to the running transaction in order to account for
1513 * delayed refs, but continues on even when no running transaction exists.
1514 *
1515 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1516 */
1517 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1518 struct ulist *roots, struct ulist *tmp)
1519 {
1520 struct btrfs_fs_info *fs_info = root->fs_info;
1521 struct btrfs_trans_handle *trans;
1522 struct ulist_iterator uiter;
1523 struct ulist_node *node;
1524 struct seq_list elem = SEQ_LIST_INIT(elem);
1525 int ret = 0;
1526 struct share_check shared = {
1527 .root_objectid = root->root_key.objectid,
1528 .inum = inum,
1529 .share_count = 0,
1530 };
1531
1532 ulist_init(roots);
1533 ulist_init(tmp);
1534
1535 trans = btrfs_join_transaction_nostart(root);
1536 if (IS_ERR(trans)) {
1537 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1538 ret = PTR_ERR(trans);
1539 goto out;
1540 }
1541 trans = NULL;
1542 down_read(&fs_info->commit_root_sem);
1543 } else {
1544 btrfs_get_tree_mod_seq(fs_info, &elem);
1545 }
1546
1547 ULIST_ITER_INIT(&uiter);
1548 while (1) {
1549 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1550 roots, NULL, &shared, false);
1551 if (ret == BACKREF_FOUND_SHARED) {
1552 /* this is the only condition under which we return 1 */
1553 ret = 1;
1554 break;
1555 }
1556 if (ret < 0 && ret != -ENOENT)
1557 break;
1558 ret = 0;
1559 node = ulist_next(tmp, &uiter);
1560 if (!node)
1561 break;
1562 bytenr = node->val;
1563 shared.share_count = 0;
1564 cond_resched();
1565 }
1566
1567 if (trans) {
1568 btrfs_put_tree_mod_seq(fs_info, &elem);
1569 btrfs_end_transaction(trans);
1570 } else {
1571 up_read(&fs_info->commit_root_sem);
1572 }
1573 out:
1574 ulist_release(roots);
1575 ulist_release(tmp);
1576 return ret;
1577 }
1578
1579 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1580 u64 start_off, struct btrfs_path *path,
1581 struct btrfs_inode_extref **ret_extref,
1582 u64 *found_off)
1583 {
1584 int ret, slot;
1585 struct btrfs_key key;
1586 struct btrfs_key found_key;
1587 struct btrfs_inode_extref *extref;
1588 const struct extent_buffer *leaf;
1589 unsigned long ptr;
1590
1591 key.objectid = inode_objectid;
1592 key.type = BTRFS_INODE_EXTREF_KEY;
1593 key.offset = start_off;
1594
1595 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1596 if (ret < 0)
1597 return ret;
1598
1599 while (1) {
1600 leaf = path->nodes[0];
1601 slot = path->slots[0];
1602 if (slot >= btrfs_header_nritems(leaf)) {
1603 /*
1604 * If the item at offset is not found,
1605 * btrfs_search_slot will point us to the slot
1606 * where it should be inserted. In our case
1607 * that will be the slot directly before the
1608 * next INODE_REF_KEY_V2 item. In the case
1609 * that we're pointing to the last slot in a
1610 * leaf, we must move one leaf over.
1611 */
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret) {
1614 if (ret >= 1)
1615 ret = -ENOENT;
1616 break;
1617 }
1618 continue;
1619 }
1620
1621 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1622
1623 /*
1624 * Check that we're still looking at an extended ref key for
1625 * this particular objectid. If we have different
1626 * objectid or type then there are no more to be found
1627 * in the tree and we can exit.
1628 */
1629 ret = -ENOENT;
1630 if (found_key.objectid != inode_objectid)
1631 break;
1632 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1633 break;
1634
1635 ret = 0;
1636 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1637 extref = (struct btrfs_inode_extref *)ptr;
1638 *ret_extref = extref;
1639 if (found_off)
1640 *found_off = found_key.offset;
1641 break;
1642 }
1643
1644 return ret;
1645 }
1646
1647 /*
1648 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1649 * Elements of the path are separated by '/' and the path is guaranteed to be
1650 * 0-terminated. the path is only given within the current file system.
1651 * Therefore, it never starts with a '/'. the caller is responsible to provide
1652 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1653 * the start point of the resulting string is returned. this pointer is within
1654 * dest, normally.
1655 * in case the path buffer would overflow, the pointer is decremented further
1656 * as if output was written to the buffer, though no more output is actually
1657 * generated. that way, the caller can determine how much space would be
1658 * required for the path to fit into the buffer. in that case, the returned
1659 * value will be smaller than dest. callers must check this!
1660 */
1661 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1662 u32 name_len, unsigned long name_off,
1663 struct extent_buffer *eb_in, u64 parent,
1664 char *dest, u32 size)
1665 {
1666 int slot;
1667 u64 next_inum;
1668 int ret;
1669 s64 bytes_left = ((s64)size) - 1;
1670 struct extent_buffer *eb = eb_in;
1671 struct btrfs_key found_key;
1672 struct btrfs_inode_ref *iref;
1673
1674 if (bytes_left >= 0)
1675 dest[bytes_left] = '\0';
1676
1677 while (1) {
1678 bytes_left -= name_len;
1679 if (bytes_left >= 0)
1680 read_extent_buffer(eb, dest + bytes_left,
1681 name_off, name_len);
1682 if (eb != eb_in) {
1683 if (!path->skip_locking)
1684 btrfs_tree_read_unlock(eb);
1685 free_extent_buffer(eb);
1686 }
1687 ret = btrfs_find_item(fs_root, path, parent, 0,
1688 BTRFS_INODE_REF_KEY, &found_key);
1689 if (ret > 0)
1690 ret = -ENOENT;
1691 if (ret)
1692 break;
1693
1694 next_inum = found_key.offset;
1695
1696 /* regular exit ahead */
1697 if (parent == next_inum)
1698 break;
1699
1700 slot = path->slots[0];
1701 eb = path->nodes[0];
1702 /* make sure we can use eb after releasing the path */
1703 if (eb != eb_in) {
1704 path->nodes[0] = NULL;
1705 path->locks[0] = 0;
1706 }
1707 btrfs_release_path(path);
1708 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1709
1710 name_len = btrfs_inode_ref_name_len(eb, iref);
1711 name_off = (unsigned long)(iref + 1);
1712
1713 parent = next_inum;
1714 --bytes_left;
1715 if (bytes_left >= 0)
1716 dest[bytes_left] = '/';
1717 }
1718
1719 btrfs_release_path(path);
1720
1721 if (ret)
1722 return ERR_PTR(ret);
1723
1724 return dest + bytes_left;
1725 }
1726
1727 /*
1728 * this makes the path point to (logical EXTENT_ITEM *)
1729 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1730 * tree blocks and <0 on error.
1731 */
1732 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1733 struct btrfs_path *path, struct btrfs_key *found_key,
1734 u64 *flags_ret)
1735 {
1736 int ret;
1737 u64 flags;
1738 u64 size = 0;
1739 u32 item_size;
1740 const struct extent_buffer *eb;
1741 struct btrfs_extent_item *ei;
1742 struct btrfs_key key;
1743
1744 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1745 key.type = BTRFS_METADATA_ITEM_KEY;
1746 else
1747 key.type = BTRFS_EXTENT_ITEM_KEY;
1748 key.objectid = logical;
1749 key.offset = (u64)-1;
1750
1751 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1752 if (ret < 0)
1753 return ret;
1754
1755 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1756 if (ret) {
1757 if (ret > 0)
1758 ret = -ENOENT;
1759 return ret;
1760 }
1761 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1762 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1763 size = fs_info->nodesize;
1764 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1765 size = found_key->offset;
1766
1767 if (found_key->objectid > logical ||
1768 found_key->objectid + size <= logical) {
1769 btrfs_debug(fs_info,
1770 "logical %llu is not within any extent", logical);
1771 return -ENOENT;
1772 }
1773
1774 eb = path->nodes[0];
1775 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1776 BUG_ON(item_size < sizeof(*ei));
1777
1778 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1779 flags = btrfs_extent_flags(eb, ei);
1780
1781 btrfs_debug(fs_info,
1782 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1783 logical, logical - found_key->objectid, found_key->objectid,
1784 found_key->offset, flags, item_size);
1785
1786 WARN_ON(!flags_ret);
1787 if (flags_ret) {
1788 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1789 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1790 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1791 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1792 else
1793 BUG();
1794 return 0;
1795 }
1796
1797 return -EIO;
1798 }
1799
1800 /*
1801 * helper function to iterate extent inline refs. ptr must point to a 0 value
1802 * for the first call and may be modified. it is used to track state.
1803 * if more refs exist, 0 is returned and the next call to
1804 * get_extent_inline_ref must pass the modified ptr parameter to get the
1805 * next ref. after the last ref was processed, 1 is returned.
1806 * returns <0 on error
1807 */
1808 static int get_extent_inline_ref(unsigned long *ptr,
1809 const struct extent_buffer *eb,
1810 const struct btrfs_key *key,
1811 const struct btrfs_extent_item *ei,
1812 u32 item_size,
1813 struct btrfs_extent_inline_ref **out_eiref,
1814 int *out_type)
1815 {
1816 unsigned long end;
1817 u64 flags;
1818 struct btrfs_tree_block_info *info;
1819
1820 if (!*ptr) {
1821 /* first call */
1822 flags = btrfs_extent_flags(eb, ei);
1823 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1824 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1825 /* a skinny metadata extent */
1826 *out_eiref =
1827 (struct btrfs_extent_inline_ref *)(ei + 1);
1828 } else {
1829 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1830 info = (struct btrfs_tree_block_info *)(ei + 1);
1831 *out_eiref =
1832 (struct btrfs_extent_inline_ref *)(info + 1);
1833 }
1834 } else {
1835 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1836 }
1837 *ptr = (unsigned long)*out_eiref;
1838 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1839 return -ENOENT;
1840 }
1841
1842 end = (unsigned long)ei + item_size;
1843 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1844 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1845 BTRFS_REF_TYPE_ANY);
1846 if (*out_type == BTRFS_REF_TYPE_INVALID)
1847 return -EUCLEAN;
1848
1849 *ptr += btrfs_extent_inline_ref_size(*out_type);
1850 WARN_ON(*ptr > end);
1851 if (*ptr == end)
1852 return 1; /* last */
1853
1854 return 0;
1855 }
1856
1857 /*
1858 * reads the tree block backref for an extent. tree level and root are returned
1859 * through out_level and out_root. ptr must point to a 0 value for the first
1860 * call and may be modified (see get_extent_inline_ref comment).
1861 * returns 0 if data was provided, 1 if there was no more data to provide or
1862 * <0 on error.
1863 */
1864 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1865 struct btrfs_key *key, struct btrfs_extent_item *ei,
1866 u32 item_size, u64 *out_root, u8 *out_level)
1867 {
1868 int ret;
1869 int type;
1870 struct btrfs_extent_inline_ref *eiref;
1871
1872 if (*ptr == (unsigned long)-1)
1873 return 1;
1874
1875 while (1) {
1876 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1877 &eiref, &type);
1878 if (ret < 0)
1879 return ret;
1880
1881 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1882 type == BTRFS_SHARED_BLOCK_REF_KEY)
1883 break;
1884
1885 if (ret == 1)
1886 return 1;
1887 }
1888
1889 /* we can treat both ref types equally here */
1890 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1891
1892 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1893 struct btrfs_tree_block_info *info;
1894
1895 info = (struct btrfs_tree_block_info *)(ei + 1);
1896 *out_level = btrfs_tree_block_level(eb, info);
1897 } else {
1898 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1899 *out_level = (u8)key->offset;
1900 }
1901
1902 if (ret == 1)
1903 *ptr = (unsigned long)-1;
1904
1905 return 0;
1906 }
1907
1908 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1909 struct extent_inode_elem *inode_list,
1910 u64 root, u64 extent_item_objectid,
1911 iterate_extent_inodes_t *iterate, void *ctx)
1912 {
1913 struct extent_inode_elem *eie;
1914 int ret = 0;
1915
1916 for (eie = inode_list; eie; eie = eie->next) {
1917 btrfs_debug(fs_info,
1918 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1919 extent_item_objectid, eie->inum,
1920 eie->offset, root);
1921 ret = iterate(eie->inum, eie->offset, root, ctx);
1922 if (ret) {
1923 btrfs_debug(fs_info,
1924 "stopping iteration for %llu due to ret=%d",
1925 extent_item_objectid, ret);
1926 break;
1927 }
1928 }
1929
1930 return ret;
1931 }
1932
1933 /*
1934 * calls iterate() for every inode that references the extent identified by
1935 * the given parameters.
1936 * when the iterator function returns a non-zero value, iteration stops.
1937 */
1938 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1939 u64 extent_item_objectid, u64 extent_item_pos,
1940 int search_commit_root,
1941 iterate_extent_inodes_t *iterate, void *ctx,
1942 bool ignore_offset)
1943 {
1944 int ret;
1945 struct btrfs_trans_handle *trans = NULL;
1946 struct ulist *refs = NULL;
1947 struct ulist *roots = NULL;
1948 struct ulist_node *ref_node = NULL;
1949 struct ulist_node *root_node = NULL;
1950 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1951 struct ulist_iterator ref_uiter;
1952 struct ulist_iterator root_uiter;
1953
1954 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1955 extent_item_objectid);
1956
1957 if (!search_commit_root) {
1958 trans = btrfs_attach_transaction(fs_info->extent_root);
1959 if (IS_ERR(trans)) {
1960 if (PTR_ERR(trans) != -ENOENT &&
1961 PTR_ERR(trans) != -EROFS)
1962 return PTR_ERR(trans);
1963 trans = NULL;
1964 }
1965 }
1966
1967 if (trans)
1968 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1969 else
1970 down_read(&fs_info->commit_root_sem);
1971
1972 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1973 tree_mod_seq_elem.seq, &refs,
1974 &extent_item_pos, ignore_offset);
1975 if (ret)
1976 goto out;
1977
1978 ULIST_ITER_INIT(&ref_uiter);
1979 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1980 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1981 tree_mod_seq_elem.seq, &roots,
1982 ignore_offset);
1983 if (ret)
1984 break;
1985 ULIST_ITER_INIT(&root_uiter);
1986 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1987 btrfs_debug(fs_info,
1988 "root %llu references leaf %llu, data list %#llx",
1989 root_node->val, ref_node->val,
1990 ref_node->aux);
1991 ret = iterate_leaf_refs(fs_info,
1992 (struct extent_inode_elem *)
1993 (uintptr_t)ref_node->aux,
1994 root_node->val,
1995 extent_item_objectid,
1996 iterate, ctx);
1997 }
1998 ulist_free(roots);
1999 }
2000
2001 free_leaf_list(refs);
2002 out:
2003 if (trans) {
2004 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2005 btrfs_end_transaction(trans);
2006 } else {
2007 up_read(&fs_info->commit_root_sem);
2008 }
2009
2010 return ret;
2011 }
2012
2013 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2014 struct btrfs_path *path,
2015 iterate_extent_inodes_t *iterate, void *ctx,
2016 bool ignore_offset)
2017 {
2018 int ret;
2019 u64 extent_item_pos;
2020 u64 flags = 0;
2021 struct btrfs_key found_key;
2022 int search_commit_root = path->search_commit_root;
2023
2024 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2025 btrfs_release_path(path);
2026 if (ret < 0)
2027 return ret;
2028 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2029 return -EINVAL;
2030
2031 extent_item_pos = logical - found_key.objectid;
2032 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2033 extent_item_pos, search_commit_root,
2034 iterate, ctx, ignore_offset);
2035
2036 return ret;
2037 }
2038
2039 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2040 struct extent_buffer *eb, void *ctx);
2041
2042 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2043 struct btrfs_path *path,
2044 iterate_irefs_t *iterate, void *ctx)
2045 {
2046 int ret = 0;
2047 int slot;
2048 u32 cur;
2049 u32 len;
2050 u32 name_len;
2051 u64 parent = 0;
2052 int found = 0;
2053 struct extent_buffer *eb;
2054 struct btrfs_item *item;
2055 struct btrfs_inode_ref *iref;
2056 struct btrfs_key found_key;
2057
2058 while (!ret) {
2059 ret = btrfs_find_item(fs_root, path, inum,
2060 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2061 &found_key);
2062
2063 if (ret < 0)
2064 break;
2065 if (ret) {
2066 ret = found ? 0 : -ENOENT;
2067 break;
2068 }
2069 ++found;
2070
2071 parent = found_key.offset;
2072 slot = path->slots[0];
2073 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2074 if (!eb) {
2075 ret = -ENOMEM;
2076 break;
2077 }
2078 btrfs_release_path(path);
2079
2080 item = btrfs_item_nr(slot);
2081 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2082
2083 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2084 name_len = btrfs_inode_ref_name_len(eb, iref);
2085 /* path must be released before calling iterate()! */
2086 btrfs_debug(fs_root->fs_info,
2087 "following ref at offset %u for inode %llu in tree %llu",
2088 cur, found_key.objectid,
2089 fs_root->root_key.objectid);
2090 ret = iterate(parent, name_len,
2091 (unsigned long)(iref + 1), eb, ctx);
2092 if (ret)
2093 break;
2094 len = sizeof(*iref) + name_len;
2095 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2096 }
2097 free_extent_buffer(eb);
2098 }
2099
2100 btrfs_release_path(path);
2101
2102 return ret;
2103 }
2104
2105 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2106 struct btrfs_path *path,
2107 iterate_irefs_t *iterate, void *ctx)
2108 {
2109 int ret;
2110 int slot;
2111 u64 offset = 0;
2112 u64 parent;
2113 int found = 0;
2114 struct extent_buffer *eb;
2115 struct btrfs_inode_extref *extref;
2116 u32 item_size;
2117 u32 cur_offset;
2118 unsigned long ptr;
2119
2120 while (1) {
2121 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2122 &offset);
2123 if (ret < 0)
2124 break;
2125 if (ret) {
2126 ret = found ? 0 : -ENOENT;
2127 break;
2128 }
2129 ++found;
2130
2131 slot = path->slots[0];
2132 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2133 if (!eb) {
2134 ret = -ENOMEM;
2135 break;
2136 }
2137 btrfs_release_path(path);
2138
2139 item_size = btrfs_item_size_nr(eb, slot);
2140 ptr = btrfs_item_ptr_offset(eb, slot);
2141 cur_offset = 0;
2142
2143 while (cur_offset < item_size) {
2144 u32 name_len;
2145
2146 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2147 parent = btrfs_inode_extref_parent(eb, extref);
2148 name_len = btrfs_inode_extref_name_len(eb, extref);
2149 ret = iterate(parent, name_len,
2150 (unsigned long)&extref->name, eb, ctx);
2151 if (ret)
2152 break;
2153
2154 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2155 cur_offset += sizeof(*extref);
2156 }
2157 free_extent_buffer(eb);
2158
2159 offset++;
2160 }
2161
2162 btrfs_release_path(path);
2163
2164 return ret;
2165 }
2166
2167 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2168 struct btrfs_path *path, iterate_irefs_t *iterate,
2169 void *ctx)
2170 {
2171 int ret;
2172 int found_refs = 0;
2173
2174 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2175 if (!ret)
2176 ++found_refs;
2177 else if (ret != -ENOENT)
2178 return ret;
2179
2180 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2181 if (ret == -ENOENT && found_refs)
2182 return 0;
2183
2184 return ret;
2185 }
2186
2187 /*
2188 * returns 0 if the path could be dumped (probably truncated)
2189 * returns <0 in case of an error
2190 */
2191 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2192 struct extent_buffer *eb, void *ctx)
2193 {
2194 struct inode_fs_paths *ipath = ctx;
2195 char *fspath;
2196 char *fspath_min;
2197 int i = ipath->fspath->elem_cnt;
2198 const int s_ptr = sizeof(char *);
2199 u32 bytes_left;
2200
2201 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2202 ipath->fspath->bytes_left - s_ptr : 0;
2203
2204 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2205 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2206 name_off, eb, inum, fspath_min, bytes_left);
2207 if (IS_ERR(fspath))
2208 return PTR_ERR(fspath);
2209
2210 if (fspath > fspath_min) {
2211 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2212 ++ipath->fspath->elem_cnt;
2213 ipath->fspath->bytes_left = fspath - fspath_min;
2214 } else {
2215 ++ipath->fspath->elem_missed;
2216 ipath->fspath->bytes_missing += fspath_min - fspath;
2217 ipath->fspath->bytes_left = 0;
2218 }
2219
2220 return 0;
2221 }
2222
2223 /*
2224 * this dumps all file system paths to the inode into the ipath struct, provided
2225 * is has been created large enough. each path is zero-terminated and accessed
2226 * from ipath->fspath->val[i].
2227 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2228 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2229 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2230 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2231 * have been needed to return all paths.
2232 */
2233 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2234 {
2235 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2236 inode_to_path, ipath);
2237 }
2238
2239 struct btrfs_data_container *init_data_container(u32 total_bytes)
2240 {
2241 struct btrfs_data_container *data;
2242 size_t alloc_bytes;
2243
2244 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2245 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2246 if (!data)
2247 return ERR_PTR(-ENOMEM);
2248
2249 if (total_bytes >= sizeof(*data)) {
2250 data->bytes_left = total_bytes - sizeof(*data);
2251 data->bytes_missing = 0;
2252 } else {
2253 data->bytes_missing = sizeof(*data) - total_bytes;
2254 data->bytes_left = 0;
2255 }
2256
2257 data->elem_cnt = 0;
2258 data->elem_missed = 0;
2259
2260 return data;
2261 }
2262
2263 /*
2264 * allocates space to return multiple file system paths for an inode.
2265 * total_bytes to allocate are passed, note that space usable for actual path
2266 * information will be total_bytes - sizeof(struct inode_fs_paths).
2267 * the returned pointer must be freed with free_ipath() in the end.
2268 */
2269 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2270 struct btrfs_path *path)
2271 {
2272 struct inode_fs_paths *ifp;
2273 struct btrfs_data_container *fspath;
2274
2275 fspath = init_data_container(total_bytes);
2276 if (IS_ERR(fspath))
2277 return ERR_CAST(fspath);
2278
2279 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2280 if (!ifp) {
2281 kvfree(fspath);
2282 return ERR_PTR(-ENOMEM);
2283 }
2284
2285 ifp->btrfs_path = path;
2286 ifp->fspath = fspath;
2287 ifp->fs_root = fs_root;
2288
2289 return ifp;
2290 }
2291
2292 void free_ipath(struct inode_fs_paths *ipath)
2293 {
2294 if (!ipath)
2295 return;
2296 kvfree(ipath->fspath);
2297 kfree(ipath);
2298 }
2299
2300 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2301 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2302 {
2303 struct btrfs_backref_iter *ret;
2304
2305 ret = kzalloc(sizeof(*ret), gfp_flag);
2306 if (!ret)
2307 return NULL;
2308
2309 ret->path = btrfs_alloc_path();
2310 if (!ret->path) {
2311 kfree(ret);
2312 return NULL;
2313 }
2314
2315 /* Current backref iterator only supports iteration in commit root */
2316 ret->path->search_commit_root = 1;
2317 ret->path->skip_locking = 1;
2318 ret->fs_info = fs_info;
2319
2320 return ret;
2321 }
2322
2323 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2324 {
2325 struct btrfs_fs_info *fs_info = iter->fs_info;
2326 struct btrfs_path *path = iter->path;
2327 struct btrfs_extent_item *ei;
2328 struct btrfs_key key;
2329 int ret;
2330
2331 key.objectid = bytenr;
2332 key.type = BTRFS_METADATA_ITEM_KEY;
2333 key.offset = (u64)-1;
2334 iter->bytenr = bytenr;
2335
2336 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2337 if (ret < 0)
2338 return ret;
2339 if (ret == 0) {
2340 ret = -EUCLEAN;
2341 goto release;
2342 }
2343 if (path->slots[0] == 0) {
2344 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2345 ret = -EUCLEAN;
2346 goto release;
2347 }
2348 path->slots[0]--;
2349
2350 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2351 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2352 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2353 ret = -ENOENT;
2354 goto release;
2355 }
2356 memcpy(&iter->cur_key, &key, sizeof(key));
2357 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2358 path->slots[0]);
2359 iter->end_ptr = (u32)(iter->item_ptr +
2360 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2361 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2362 struct btrfs_extent_item);
2363
2364 /*
2365 * Only support iteration on tree backref yet.
2366 *
2367 * This is an extra precaution for non skinny-metadata, where
2368 * EXTENT_ITEM is also used for tree blocks, that we can only use
2369 * extent flags to determine if it's a tree block.
2370 */
2371 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2372 ret = -ENOTSUPP;
2373 goto release;
2374 }
2375 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2376
2377 /* If there is no inline backref, go search for keyed backref */
2378 if (iter->cur_ptr >= iter->end_ptr) {
2379 ret = btrfs_next_item(fs_info->extent_root, path);
2380
2381 /* No inline nor keyed ref */
2382 if (ret > 0) {
2383 ret = -ENOENT;
2384 goto release;
2385 }
2386 if (ret < 0)
2387 goto release;
2388
2389 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2390 path->slots[0]);
2391 if (iter->cur_key.objectid != bytenr ||
2392 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2393 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2394 ret = -ENOENT;
2395 goto release;
2396 }
2397 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2398 path->slots[0]);
2399 iter->item_ptr = iter->cur_ptr;
2400 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2401 path->nodes[0], path->slots[0]));
2402 }
2403
2404 return 0;
2405 release:
2406 btrfs_backref_iter_release(iter);
2407 return ret;
2408 }
2409
2410 /*
2411 * Go to the next backref item of current bytenr, can be either inlined or
2412 * keyed.
2413 *
2414 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2415 *
2416 * Return 0 if we get next backref without problem.
2417 * Return >0 if there is no extra backref for this bytenr.
2418 * Return <0 if there is something wrong happened.
2419 */
2420 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2421 {
2422 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2423 struct btrfs_path *path = iter->path;
2424 struct btrfs_extent_inline_ref *iref;
2425 int ret;
2426 u32 size;
2427
2428 if (btrfs_backref_iter_is_inline_ref(iter)) {
2429 /* We're still inside the inline refs */
2430 ASSERT(iter->cur_ptr < iter->end_ptr);
2431
2432 if (btrfs_backref_has_tree_block_info(iter)) {
2433 /* First tree block info */
2434 size = sizeof(struct btrfs_tree_block_info);
2435 } else {
2436 /* Use inline ref type to determine the size */
2437 int type;
2438
2439 iref = (struct btrfs_extent_inline_ref *)
2440 ((unsigned long)iter->cur_ptr);
2441 type = btrfs_extent_inline_ref_type(eb, iref);
2442
2443 size = btrfs_extent_inline_ref_size(type);
2444 }
2445 iter->cur_ptr += size;
2446 if (iter->cur_ptr < iter->end_ptr)
2447 return 0;
2448
2449 /* All inline items iterated, fall through */
2450 }
2451
2452 /* We're at keyed items, there is no inline item, go to the next one */
2453 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2454 if (ret)
2455 return ret;
2456
2457 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2458 if (iter->cur_key.objectid != iter->bytenr ||
2459 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2460 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2461 return 1;
2462 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2463 path->slots[0]);
2464 iter->cur_ptr = iter->item_ptr;
2465 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2466 path->slots[0]);
2467 return 0;
2468 }
2469
2470 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2471 struct btrfs_backref_cache *cache, int is_reloc)
2472 {
2473 int i;
2474
2475 cache->rb_root = RB_ROOT;
2476 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2477 INIT_LIST_HEAD(&cache->pending[i]);
2478 INIT_LIST_HEAD(&cache->changed);
2479 INIT_LIST_HEAD(&cache->detached);
2480 INIT_LIST_HEAD(&cache->leaves);
2481 INIT_LIST_HEAD(&cache->pending_edge);
2482 INIT_LIST_HEAD(&cache->useless_node);
2483 cache->fs_info = fs_info;
2484 cache->is_reloc = is_reloc;
2485 }
2486
2487 struct btrfs_backref_node *btrfs_backref_alloc_node(
2488 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2489 {
2490 struct btrfs_backref_node *node;
2491
2492 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2493 node = kzalloc(sizeof(*node), GFP_NOFS);
2494 if (!node)
2495 return node;
2496
2497 INIT_LIST_HEAD(&node->list);
2498 INIT_LIST_HEAD(&node->upper);
2499 INIT_LIST_HEAD(&node->lower);
2500 RB_CLEAR_NODE(&node->rb_node);
2501 cache->nr_nodes++;
2502 node->level = level;
2503 node->bytenr = bytenr;
2504
2505 return node;
2506 }
2507
2508 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2509 struct btrfs_backref_cache *cache)
2510 {
2511 struct btrfs_backref_edge *edge;
2512
2513 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2514 if (edge)
2515 cache->nr_edges++;
2516 return edge;
2517 }
2518
2519 /*
2520 * Drop the backref node from cache, also cleaning up all its
2521 * upper edges and any uncached nodes in the path.
2522 *
2523 * This cleanup happens bottom up, thus the node should either
2524 * be the lowest node in the cache or a detached node.
2525 */
2526 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2527 struct btrfs_backref_node *node)
2528 {
2529 struct btrfs_backref_node *upper;
2530 struct btrfs_backref_edge *edge;
2531
2532 if (!node)
2533 return;
2534
2535 BUG_ON(!node->lowest && !node->detached);
2536 while (!list_empty(&node->upper)) {
2537 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2538 list[LOWER]);
2539 upper = edge->node[UPPER];
2540 list_del(&edge->list[LOWER]);
2541 list_del(&edge->list[UPPER]);
2542 btrfs_backref_free_edge(cache, edge);
2543
2544 if (RB_EMPTY_NODE(&upper->rb_node)) {
2545 BUG_ON(!list_empty(&node->upper));
2546 btrfs_backref_drop_node(cache, node);
2547 node = upper;
2548 node->lowest = 1;
2549 continue;
2550 }
2551 /*
2552 * Add the node to leaf node list if no other child block
2553 * cached.
2554 */
2555 if (list_empty(&upper->lower)) {
2556 list_add_tail(&upper->lower, &cache->leaves);
2557 upper->lowest = 1;
2558 }
2559 }
2560
2561 btrfs_backref_drop_node(cache, node);
2562 }
2563
2564 /*
2565 * Release all nodes/edges from current cache
2566 */
2567 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2568 {
2569 struct btrfs_backref_node *node;
2570 int i;
2571
2572 while (!list_empty(&cache->detached)) {
2573 node = list_entry(cache->detached.next,
2574 struct btrfs_backref_node, list);
2575 btrfs_backref_cleanup_node(cache, node);
2576 }
2577
2578 while (!list_empty(&cache->leaves)) {
2579 node = list_entry(cache->leaves.next,
2580 struct btrfs_backref_node, lower);
2581 btrfs_backref_cleanup_node(cache, node);
2582 }
2583
2584 cache->last_trans = 0;
2585
2586 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2587 ASSERT(list_empty(&cache->pending[i]));
2588 ASSERT(list_empty(&cache->pending_edge));
2589 ASSERT(list_empty(&cache->useless_node));
2590 ASSERT(list_empty(&cache->changed));
2591 ASSERT(list_empty(&cache->detached));
2592 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2593 ASSERT(!cache->nr_nodes);
2594 ASSERT(!cache->nr_edges);
2595 }
2596
2597 /*
2598 * Handle direct tree backref
2599 *
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2602 *
2603 * @ref_key: The converted backref key.
2604 * For keyed backref, it's the item key.
2605 * For inlined backref, objectid is the bytenr,
2606 * type is btrfs_inline_ref_type, offset is
2607 * btrfs_inline_ref_offset.
2608 */
2609 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2610 struct btrfs_key *ref_key,
2611 struct btrfs_backref_node *cur)
2612 {
2613 struct btrfs_backref_edge *edge;
2614 struct btrfs_backref_node *upper;
2615 struct rb_node *rb_node;
2616
2617 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2618
2619 /* Only reloc root uses backref pointing to itself */
2620 if (ref_key->objectid == ref_key->offset) {
2621 struct btrfs_root *root;
2622
2623 cur->is_reloc_root = 1;
2624 /* Only reloc backref cache cares about a specific root */
2625 if (cache->is_reloc) {
2626 root = find_reloc_root(cache->fs_info, cur->bytenr);
2627 if (WARN_ON(!root))
2628 return -ENOENT;
2629 cur->root = root;
2630 } else {
2631 /*
2632 * For generic purpose backref cache, reloc root node
2633 * is useless.
2634 */
2635 list_add(&cur->list, &cache->useless_node);
2636 }
2637 return 0;
2638 }
2639
2640 edge = btrfs_backref_alloc_edge(cache);
2641 if (!edge)
2642 return -ENOMEM;
2643
2644 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2645 if (!rb_node) {
2646 /* Parent node not yet cached */
2647 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2648 cur->level + 1);
2649 if (!upper) {
2650 btrfs_backref_free_edge(cache, edge);
2651 return -ENOMEM;
2652 }
2653
2654 /*
2655 * Backrefs for the upper level block isn't cached, add the
2656 * block to pending list
2657 */
2658 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2659 } else {
2660 /* Parent node already cached */
2661 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2662 ASSERT(upper->checked);
2663 INIT_LIST_HEAD(&edge->list[UPPER]);
2664 }
2665 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2666 return 0;
2667 }
2668
2669 /*
2670 * Handle indirect tree backref
2671 *
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2675 *
2676 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2677 * @tree_key: The first key of this tree block.
2678 * @path: A clean (released) path, to avoid allocating path everytime
2679 * the function get called.
2680 */
2681 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2682 struct btrfs_path *path,
2683 struct btrfs_key *ref_key,
2684 struct btrfs_key *tree_key,
2685 struct btrfs_backref_node *cur)
2686 {
2687 struct btrfs_fs_info *fs_info = cache->fs_info;
2688 struct btrfs_backref_node *upper;
2689 struct btrfs_backref_node *lower;
2690 struct btrfs_backref_edge *edge;
2691 struct extent_buffer *eb;
2692 struct btrfs_root *root;
2693 struct rb_node *rb_node;
2694 int level;
2695 bool need_check = true;
2696 int ret;
2697
2698 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699 if (IS_ERR(root))
2700 return PTR_ERR(root);
2701 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702 cur->cowonly = 1;
2703
2704 if (btrfs_root_level(&root->root_item) == cur->level) {
2705 /* Tree root */
2706 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707 /*
2708 * For reloc backref cache, we may ignore reloc root. But for
2709 * general purpose backref cache, we can't rely on
2710 * btrfs_should_ignore_reloc_root() as it may conflict with
2711 * current running relocation and lead to missing root.
2712 *
2713 * For general purpose backref cache, reloc root detection is
2714 * completely relying on direct backref (key->offset is parent
2715 * bytenr), thus only do such check for reloc cache.
2716 */
2717 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718 btrfs_put_root(root);
2719 list_add(&cur->list, &cache->useless_node);
2720 } else {
2721 cur->root = root;
2722 }
2723 return 0;
2724 }
2725
2726 level = cur->level + 1;
2727
2728 /* Search the tree to find parent blocks referring to the block */
2729 path->search_commit_root = 1;
2730 path->skip_locking = 1;
2731 path->lowest_level = level;
2732 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2733 path->lowest_level = 0;
2734 if (ret < 0) {
2735 btrfs_put_root(root);
2736 return ret;
2737 }
2738 if (ret > 0 && path->slots[level] > 0)
2739 path->slots[level]--;
2740
2741 eb = path->nodes[level];
2742 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2743 btrfs_err(fs_info,
2744 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745 cur->bytenr, level - 1, root->root_key.objectid,
2746 tree_key->objectid, tree_key->type, tree_key->offset);
2747 btrfs_put_root(root);
2748 ret = -ENOENT;
2749 goto out;
2750 }
2751 lower = cur;
2752
2753 /* Add all nodes and edges in the path */
2754 for (; level < BTRFS_MAX_LEVEL; level++) {
2755 if (!path->nodes[level]) {
2756 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2757 lower->bytenr);
2758 /* Same as previous should_ignore_reloc_root() call */
2759 if (btrfs_should_ignore_reloc_root(root) &&
2760 cache->is_reloc) {
2761 btrfs_put_root(root);
2762 list_add(&lower->list, &cache->useless_node);
2763 } else {
2764 lower->root = root;
2765 }
2766 break;
2767 }
2768
2769 edge = btrfs_backref_alloc_edge(cache);
2770 if (!edge) {
2771 btrfs_put_root(root);
2772 ret = -ENOMEM;
2773 goto out;
2774 }
2775
2776 eb = path->nodes[level];
2777 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2778 if (!rb_node) {
2779 upper = btrfs_backref_alloc_node(cache, eb->start,
2780 lower->level + 1);
2781 if (!upper) {
2782 btrfs_put_root(root);
2783 btrfs_backref_free_edge(cache, edge);
2784 ret = -ENOMEM;
2785 goto out;
2786 }
2787 upper->owner = btrfs_header_owner(eb);
2788 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789 upper->cowonly = 1;
2790
2791 /*
2792 * If we know the block isn't shared we can avoid
2793 * checking its backrefs.
2794 */
2795 if (btrfs_block_can_be_shared(root, eb))
2796 upper->checked = 0;
2797 else
2798 upper->checked = 1;
2799
2800 /*
2801 * Add the block to pending list if we need to check its
2802 * backrefs, we only do this once while walking up a
2803 * tree as we will catch anything else later on.
2804 */
2805 if (!upper->checked && need_check) {
2806 need_check = false;
2807 list_add_tail(&edge->list[UPPER],
2808 &cache->pending_edge);
2809 } else {
2810 if (upper->checked)
2811 need_check = true;
2812 INIT_LIST_HEAD(&edge->list[UPPER]);
2813 }
2814 } else {
2815 upper = rb_entry(rb_node, struct btrfs_backref_node,
2816 rb_node);
2817 ASSERT(upper->checked);
2818 INIT_LIST_HEAD(&edge->list[UPPER]);
2819 if (!upper->owner)
2820 upper->owner = btrfs_header_owner(eb);
2821 }
2822 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2823
2824 if (rb_node) {
2825 btrfs_put_root(root);
2826 break;
2827 }
2828 lower = upper;
2829 upper = NULL;
2830 }
2831 out:
2832 btrfs_release_path(path);
2833 return ret;
2834 }
2835
2836 /*
2837 * Add backref node @cur into @cache.
2838 *
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 * links aren't yet bi-directional. Needs to finish such links.
2841 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 *
2843 * @path: Released path for indirect tree backref lookup
2844 * @iter: Released backref iter for extent tree search
2845 * @node_key: The first key of the tree block
2846 */
2847 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2848 struct btrfs_path *path,
2849 struct btrfs_backref_iter *iter,
2850 struct btrfs_key *node_key,
2851 struct btrfs_backref_node *cur)
2852 {
2853 struct btrfs_fs_info *fs_info = cache->fs_info;
2854 struct btrfs_backref_edge *edge;
2855 struct btrfs_backref_node *exist;
2856 int ret;
2857
2858 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2859 if (ret < 0)
2860 return ret;
2861 /*
2862 * We skip the first btrfs_tree_block_info, as we don't use the key
2863 * stored in it, but fetch it from the tree block
2864 */
2865 if (btrfs_backref_has_tree_block_info(iter)) {
2866 ret = btrfs_backref_iter_next(iter);
2867 if (ret < 0)
2868 goto out;
2869 /* No extra backref? This means the tree block is corrupted */
2870 if (ret > 0) {
2871 ret = -EUCLEAN;
2872 goto out;
2873 }
2874 }
2875 WARN_ON(cur->checked);
2876 if (!list_empty(&cur->upper)) {
2877 /*
2878 * The backref was added previously when processing backref of
2879 * type BTRFS_TREE_BLOCK_REF_KEY
2880 */
2881 ASSERT(list_is_singular(&cur->upper));
2882 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2883 list[LOWER]);
2884 ASSERT(list_empty(&edge->list[UPPER]));
2885 exist = edge->node[UPPER];
2886 /*
2887 * Add the upper level block to pending list if we need check
2888 * its backrefs
2889 */
2890 if (!exist->checked)
2891 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2892 } else {
2893 exist = NULL;
2894 }
2895
2896 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2897 struct extent_buffer *eb;
2898 struct btrfs_key key;
2899 int type;
2900
2901 cond_resched();
2902 eb = btrfs_backref_get_eb(iter);
2903
2904 key.objectid = iter->bytenr;
2905 if (btrfs_backref_iter_is_inline_ref(iter)) {
2906 struct btrfs_extent_inline_ref *iref;
2907
2908 /* Update key for inline backref */
2909 iref = (struct btrfs_extent_inline_ref *)
2910 ((unsigned long)iter->cur_ptr);
2911 type = btrfs_get_extent_inline_ref_type(eb, iref,
2912 BTRFS_REF_TYPE_BLOCK);
2913 if (type == BTRFS_REF_TYPE_INVALID) {
2914 ret = -EUCLEAN;
2915 goto out;
2916 }
2917 key.type = type;
2918 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2919 } else {
2920 key.type = iter->cur_key.type;
2921 key.offset = iter->cur_key.offset;
2922 }
2923
2924 /*
2925 * Parent node found and matches current inline ref, no need to
2926 * rebuild this node for this inline ref
2927 */
2928 if (exist &&
2929 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2930 exist->owner == key.offset) ||
2931 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2932 exist->bytenr == key.offset))) {
2933 exist = NULL;
2934 continue;
2935 }
2936
2937 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2939 ret = handle_direct_tree_backref(cache, &key, cur);
2940 if (ret < 0)
2941 goto out;
2942 continue;
2943 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2944 ret = -EINVAL;
2945 btrfs_print_v0_err(fs_info);
2946 btrfs_handle_fs_error(fs_info, ret, NULL);
2947 goto out;
2948 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2949 continue;
2950 }
2951
2952 /*
2953 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954 * means the root objectid. We need to search the tree to get
2955 * its parent bytenr.
2956 */
2957 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2958 cur);
2959 if (ret < 0)
2960 goto out;
2961 }
2962 ret = 0;
2963 cur->checked = 1;
2964 WARN_ON(exist);
2965 out:
2966 btrfs_backref_iter_release(iter);
2967 return ret;
2968 }
2969
2970 /*
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2972 */
2973 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2974 struct btrfs_backref_node *start)
2975 {
2976 struct list_head *useless_node = &cache->useless_node;
2977 struct btrfs_backref_edge *edge;
2978 struct rb_node *rb_node;
2979 LIST_HEAD(pending_edge);
2980
2981 ASSERT(start->checked);
2982
2983 /* Insert this node to cache if it's not COW-only */
2984 if (!start->cowonly) {
2985 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2986 &start->rb_node);
2987 if (rb_node)
2988 btrfs_backref_panic(cache->fs_info, start->bytenr,
2989 -EEXIST);
2990 list_add_tail(&start->lower, &cache->leaves);
2991 }
2992
2993 /*
2994 * Use breadth first search to iterate all related edges.
2995 *
2996 * The starting points are all the edges of this node
2997 */
2998 list_for_each_entry(edge, &start->upper, list[LOWER])
2999 list_add_tail(&edge->list[UPPER], &pending_edge);
3000
3001 while (!list_empty(&pending_edge)) {
3002 struct btrfs_backref_node *upper;
3003 struct btrfs_backref_node *lower;
3004
3005 edge = list_first_entry(&pending_edge,
3006 struct btrfs_backref_edge, list[UPPER]);
3007 list_del_init(&edge->list[UPPER]);
3008 upper = edge->node[UPPER];
3009 lower = edge->node[LOWER];
3010
3011 /* Parent is detached, no need to keep any edges */
3012 if (upper->detached) {
3013 list_del(&edge->list[LOWER]);
3014 btrfs_backref_free_edge(cache, edge);
3015
3016 /* Lower node is orphan, queue for cleanup */
3017 if (list_empty(&lower->upper))
3018 list_add(&lower->list, useless_node);
3019 continue;
3020 }
3021
3022 /*
3023 * All new nodes added in current build_backref_tree() haven't
3024 * been linked to the cache rb tree.
3025 * So if we have upper->rb_node populated, this means a cache
3026 * hit. We only need to link the edge, as @upper and all its
3027 * parents have already been linked.
3028 */
3029 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3030 if (upper->lowest) {
3031 list_del_init(&upper->lower);
3032 upper->lowest = 0;
3033 }
3034
3035 list_add_tail(&edge->list[UPPER], &upper->lower);
3036 continue;
3037 }
3038
3039 /* Sanity check, we shouldn't have any unchecked nodes */
3040 if (!upper->checked) {
3041 ASSERT(0);
3042 return -EUCLEAN;
3043 }
3044
3045 /* Sanity check, COW-only node has non-COW-only parent */
3046 if (start->cowonly != upper->cowonly) {
3047 ASSERT(0);
3048 return -EUCLEAN;
3049 }
3050
3051 /* Only cache non-COW-only (subvolume trees) tree blocks */
3052 if (!upper->cowonly) {
3053 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3054 &upper->rb_node);
3055 if (rb_node) {
3056 btrfs_backref_panic(cache->fs_info,
3057 upper->bytenr, -EEXIST);
3058 return -EUCLEAN;
3059 }
3060 }
3061
3062 list_add_tail(&edge->list[UPPER], &upper->lower);
3063
3064 /*
3065 * Also queue all the parent edges of this uncached node
3066 * to finish the upper linkage
3067 */
3068 list_for_each_entry(edge, &upper->upper, list[LOWER])
3069 list_add_tail(&edge->list[UPPER], &pending_edge);
3070 }
3071 return 0;
3072 }
3073
3074 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3075 struct btrfs_backref_node *node)
3076 {
3077 struct btrfs_backref_node *lower;
3078 struct btrfs_backref_node *upper;
3079 struct btrfs_backref_edge *edge;
3080
3081 while (!list_empty(&cache->useless_node)) {
3082 lower = list_first_entry(&cache->useless_node,
3083 struct btrfs_backref_node, list);
3084 list_del_init(&lower->list);
3085 }
3086 while (!list_empty(&cache->pending_edge)) {
3087 edge = list_first_entry(&cache->pending_edge,
3088 struct btrfs_backref_edge, list[UPPER]);
3089 list_del(&edge->list[UPPER]);
3090 list_del(&edge->list[LOWER]);
3091 lower = edge->node[LOWER];
3092 upper = edge->node[UPPER];
3093 btrfs_backref_free_edge(cache, edge);
3094
3095 /*
3096 * Lower is no longer linked to any upper backref nodes and
3097 * isn't in the cache, we can free it ourselves.
3098 */
3099 if (list_empty(&lower->upper) &&
3100 RB_EMPTY_NODE(&lower->rb_node))
3101 list_add(&lower->list, &cache->useless_node);
3102
3103 if (!RB_EMPTY_NODE(&upper->rb_node))
3104 continue;
3105
3106 /* Add this guy's upper edges to the list to process */
3107 list_for_each_entry(edge, &upper->upper, list[LOWER])
3108 list_add_tail(&edge->list[UPPER],
3109 &cache->pending_edge);
3110 if (list_empty(&upper->upper))
3111 list_add(&upper->list, &cache->useless_node);
3112 }
3113
3114 while (!list_empty(&cache->useless_node)) {
3115 lower = list_first_entry(&cache->useless_node,
3116 struct btrfs_backref_node, list);
3117 list_del_init(&lower->list);
3118 if (lower == node)
3119 node = NULL;
3120 btrfs_backref_drop_node(cache, lower);
3121 }
3122
3123 btrfs_backref_cleanup_node(cache, node);
3124 ASSERT(list_empty(&cache->useless_node) &&
3125 list_empty(&cache->pending_edge));
3126 }