]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/backref.c
btrfs: add GET_SUPPORTED_FEATURES to the control device ioctls
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / backref.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
30
31 struct extent_inode_elem {
32 u64 inum;
33 u64 offset;
34 struct extent_inode_elem *next;
35 };
36
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 struct btrfs_file_extent_item *fi,
39 u64 extent_item_pos,
40 struct extent_inode_elem **eie)
41 {
42 u64 offset = 0;
43 struct extent_inode_elem *e;
44
45 if (!btrfs_file_extent_compression(eb, fi) &&
46 !btrfs_file_extent_encryption(eb, fi) &&
47 !btrfs_file_extent_other_encoding(eb, fi)) {
48 u64 data_offset;
49 u64 data_len;
50
51 data_offset = btrfs_file_extent_offset(eb, fi);
52 data_len = btrfs_file_extent_num_bytes(eb, fi);
53
54 if (extent_item_pos < data_offset ||
55 extent_item_pos >= data_offset + data_len)
56 return 1;
57 offset = extent_item_pos - data_offset;
58 }
59
60 e = kmalloc(sizeof(*e), GFP_NOFS);
61 if (!e)
62 return -ENOMEM;
63
64 e->next = *eie;
65 e->inum = key->objectid;
66 e->offset = key->offset + offset;
67 *eie = e;
68
69 return 0;
70 }
71
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
73 {
74 struct extent_inode_elem *eie_next;
75
76 for (; eie; eie = eie_next) {
77 eie_next = eie->next;
78 kfree(eie);
79 }
80 }
81
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 u64 extent_item_pos,
84 struct extent_inode_elem **eie)
85 {
86 u64 disk_byte;
87 struct btrfs_key key;
88 struct btrfs_file_extent_item *fi;
89 int slot;
90 int nritems;
91 int extent_type;
92 int ret;
93
94 /*
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
98 */
99 nritems = btrfs_header_nritems(eb);
100 for (slot = 0; slot < nritems; ++slot) {
101 btrfs_item_key_to_cpu(eb, &key, slot);
102 if (key.type != BTRFS_EXTENT_DATA_KEY)
103 continue;
104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 extent_type = btrfs_file_extent_type(eb, fi);
106 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 continue;
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 if (disk_byte != wanted_disk_byte)
111 continue;
112
113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 if (ret < 0)
115 return ret;
116 }
117
118 return 0;
119 }
120
121 /*
122 * this structure records all encountered refs on the way up to the root
123 */
124 struct __prelim_ref {
125 struct list_head list;
126 u64 root_id;
127 struct btrfs_key key_for_search;
128 int level;
129 int count;
130 struct extent_inode_elem *inode_list;
131 u64 parent;
132 u64 wanted_disk_byte;
133 };
134
135 static struct kmem_cache *btrfs_prelim_ref_cache;
136
137 int __init btrfs_prelim_ref_init(void)
138 {
139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref),
141 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 NULL);
144 if (!btrfs_prelim_ref_cache)
145 return -ENOMEM;
146 return 0;
147 }
148
149 void btrfs_prelim_ref_exit(void)
150 {
151 if (btrfs_prelim_ref_cache)
152 kmem_cache_destroy(btrfs_prelim_ref_cache);
153 }
154
155 /*
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
161 *
162 * delayed refs
163 * ============
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
171 *
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
174 *
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
184 *
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
189 *
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
192 */
193
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 struct btrfs_key *key, int level,
196 u64 parent, u64 wanted_disk_byte, int count,
197 gfp_t gfp_mask)
198 {
199 struct __prelim_ref *ref;
200
201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 return 0;
203
204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 if (!ref)
206 return -ENOMEM;
207
208 ref->root_id = root_id;
209 if (key) {
210 ref->key_for_search = *key;
211 /*
212 * We can often find data backrefs with an offset that is too
213 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 * underflows when subtracting a file's offset with the data
215 * offset of its corresponding extent data item. This can
216 * happen for example in the clone ioctl.
217 * So if we detect such case we set the search key's offset to
218 * zero to make sure we will find the matching file extent item
219 * at add_all_parents(), otherwise we will miss it because the
220 * offset taken form the backref is much larger then the offset
221 * of the file extent item. This can make us scan a very large
222 * number of file extent items, but at least it will not make
223 * us miss any.
224 * This is an ugly workaround for a behaviour that should have
225 * never existed, but it does and a fix for the clone ioctl
226 * would touch a lot of places, cause backwards incompatibility
227 * and would not fix the problem for extents cloned with older
228 * kernels.
229 */
230 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
231 ref->key_for_search.offset >= LLONG_MAX)
232 ref->key_for_search.offset = 0;
233 } else {
234 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235 }
236
237 ref->inode_list = NULL;
238 ref->level = level;
239 ref->count = count;
240 ref->parent = parent;
241 ref->wanted_disk_byte = wanted_disk_byte;
242 list_add_tail(&ref->list, head);
243
244 return 0;
245 }
246
247 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248 struct ulist *parents, struct __prelim_ref *ref,
249 int level, u64 time_seq, const u64 *extent_item_pos,
250 u64 total_refs)
251 {
252 int ret = 0;
253 int slot;
254 struct extent_buffer *eb;
255 struct btrfs_key key;
256 struct btrfs_key *key_for_search = &ref->key_for_search;
257 struct btrfs_file_extent_item *fi;
258 struct extent_inode_elem *eie = NULL, *old = NULL;
259 u64 disk_byte;
260 u64 wanted_disk_byte = ref->wanted_disk_byte;
261 u64 count = 0;
262
263 if (level != 0) {
264 eb = path->nodes[level];
265 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 if (ret < 0)
267 return ret;
268 return 0;
269 }
270
271 /*
272 * We normally enter this function with the path already pointing to
273 * the first item to check. But sometimes, we may enter it with
274 * slot==nritems. In that case, go to the next leaf before we continue.
275 */
276 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
277 if (time_seq == (u64)-1)
278 ret = btrfs_next_leaf(root, path);
279 else
280 ret = btrfs_next_old_leaf(root, path, time_seq);
281 }
282
283 while (!ret && count < total_refs) {
284 eb = path->nodes[0];
285 slot = path->slots[0];
286
287 btrfs_item_key_to_cpu(eb, &key, slot);
288
289 if (key.objectid != key_for_search->objectid ||
290 key.type != BTRFS_EXTENT_DATA_KEY)
291 break;
292
293 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
294 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
295
296 if (disk_byte == wanted_disk_byte) {
297 eie = NULL;
298 old = NULL;
299 count++;
300 if (extent_item_pos) {
301 ret = check_extent_in_eb(&key, eb, fi,
302 *extent_item_pos,
303 &eie);
304 if (ret < 0)
305 break;
306 }
307 if (ret > 0)
308 goto next;
309 ret = ulist_add_merge_ptr(parents, eb->start,
310 eie, (void **)&old, GFP_NOFS);
311 if (ret < 0)
312 break;
313 if (!ret && extent_item_pos) {
314 while (old->next)
315 old = old->next;
316 old->next = eie;
317 }
318 eie = NULL;
319 }
320 next:
321 if (time_seq == (u64)-1)
322 ret = btrfs_next_item(root, path);
323 else
324 ret = btrfs_next_old_item(root, path, time_seq);
325 }
326
327 if (ret > 0)
328 ret = 0;
329 else if (ret < 0)
330 free_inode_elem_list(eie);
331 return ret;
332 }
333
334 /*
335 * resolve an indirect backref in the form (root_id, key, level)
336 * to a logical address
337 */
338 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 struct btrfs_path *path, u64 time_seq,
340 struct __prelim_ref *ref,
341 struct ulist *parents,
342 const u64 *extent_item_pos, u64 total_refs)
343 {
344 struct btrfs_root *root;
345 struct btrfs_key root_key;
346 struct extent_buffer *eb;
347 int ret = 0;
348 int root_level;
349 int level = ref->level;
350 int index;
351
352 root_key.objectid = ref->root_id;
353 root_key.type = BTRFS_ROOT_ITEM_KEY;
354 root_key.offset = (u64)-1;
355
356 index = srcu_read_lock(&fs_info->subvol_srcu);
357
358 root = btrfs_get_fs_root(fs_info, &root_key, false);
359 if (IS_ERR(root)) {
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 ret = PTR_ERR(root);
362 goto out;
363 }
364
365 if (btrfs_test_is_dummy_root(root)) {
366 srcu_read_unlock(&fs_info->subvol_srcu, index);
367 ret = -ENOENT;
368 goto out;
369 }
370
371 if (path->search_commit_root)
372 root_level = btrfs_header_level(root->commit_root);
373 else if (time_seq == (u64)-1)
374 root_level = btrfs_header_level(root->node);
375 else
376 root_level = btrfs_old_root_level(root, time_seq);
377
378 if (root_level + 1 == level) {
379 srcu_read_unlock(&fs_info->subvol_srcu, index);
380 goto out;
381 }
382
383 path->lowest_level = level;
384 if (time_seq == (u64)-1)
385 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
386 0, 0);
387 else
388 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
389 time_seq);
390
391 /* root node has been locked, we can release @subvol_srcu safely here */
392 srcu_read_unlock(&fs_info->subvol_srcu, index);
393
394 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395 "%d for key (%llu %u %llu)\n",
396 ref->root_id, level, ref->count, ret,
397 ref->key_for_search.objectid, ref->key_for_search.type,
398 ref->key_for_search.offset);
399 if (ret < 0)
400 goto out;
401
402 eb = path->nodes[level];
403 while (!eb) {
404 if (WARN_ON(!level)) {
405 ret = 1;
406 goto out;
407 }
408 level--;
409 eb = path->nodes[level];
410 }
411
412 ret = add_all_parents(root, path, parents, ref, level, time_seq,
413 extent_item_pos, total_refs);
414 out:
415 path->lowest_level = 0;
416 btrfs_release_path(path);
417 return ret;
418 }
419
420 /*
421 * resolve all indirect backrefs from the list
422 */
423 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
424 struct btrfs_path *path, u64 time_seq,
425 struct list_head *head,
426 const u64 *extent_item_pos, u64 total_refs,
427 u64 root_objectid)
428 {
429 int err;
430 int ret = 0;
431 struct __prelim_ref *ref;
432 struct __prelim_ref *ref_safe;
433 struct __prelim_ref *new_ref;
434 struct ulist *parents;
435 struct ulist_node *node;
436 struct ulist_iterator uiter;
437
438 parents = ulist_alloc(GFP_NOFS);
439 if (!parents)
440 return -ENOMEM;
441
442 /*
443 * _safe allows us to insert directly after the current item without
444 * iterating over the newly inserted items.
445 * we're also allowed to re-assign ref during iteration.
446 */
447 list_for_each_entry_safe(ref, ref_safe, head, list) {
448 if (ref->parent) /* already direct */
449 continue;
450 if (ref->count == 0)
451 continue;
452 if (root_objectid && ref->root_id != root_objectid) {
453 ret = BACKREF_FOUND_SHARED;
454 goto out;
455 }
456 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
457 parents, extent_item_pos,
458 total_refs);
459 /*
460 * we can only tolerate ENOENT,otherwise,we should catch error
461 * and return directly.
462 */
463 if (err == -ENOENT) {
464 continue;
465 } else if (err) {
466 ret = err;
467 goto out;
468 }
469
470 /* we put the first parent into the ref at hand */
471 ULIST_ITER_INIT(&uiter);
472 node = ulist_next(parents, &uiter);
473 ref->parent = node ? node->val : 0;
474 ref->inode_list = node ?
475 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
476
477 /* additional parents require new refs being added here */
478 while ((node = ulist_next(parents, &uiter))) {
479 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
480 GFP_NOFS);
481 if (!new_ref) {
482 ret = -ENOMEM;
483 goto out;
484 }
485 memcpy(new_ref, ref, sizeof(*ref));
486 new_ref->parent = node->val;
487 new_ref->inode_list = (struct extent_inode_elem *)
488 (uintptr_t)node->aux;
489 list_add(&new_ref->list, &ref->list);
490 }
491 ulist_reinit(parents);
492 }
493 out:
494 ulist_free(parents);
495 return ret;
496 }
497
498 static inline int ref_for_same_block(struct __prelim_ref *ref1,
499 struct __prelim_ref *ref2)
500 {
501 if (ref1->level != ref2->level)
502 return 0;
503 if (ref1->root_id != ref2->root_id)
504 return 0;
505 if (ref1->key_for_search.type != ref2->key_for_search.type)
506 return 0;
507 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
508 return 0;
509 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
510 return 0;
511 if (ref1->parent != ref2->parent)
512 return 0;
513
514 return 1;
515 }
516
517 /*
518 * read tree blocks and add keys where required.
519 */
520 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
521 struct list_head *head)
522 {
523 struct __prelim_ref *ref;
524 struct extent_buffer *eb;
525
526 list_for_each_entry(ref, head, list) {
527 if (ref->parent)
528 continue;
529 if (ref->key_for_search.type)
530 continue;
531 BUG_ON(!ref->wanted_disk_byte);
532 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
533 0);
534 if (IS_ERR(eb)) {
535 return PTR_ERR(eb);
536 } else if (!extent_buffer_uptodate(eb)) {
537 free_extent_buffer(eb);
538 return -EIO;
539 }
540 btrfs_tree_read_lock(eb);
541 if (btrfs_header_level(eb) == 0)
542 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
543 else
544 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
545 btrfs_tree_read_unlock(eb);
546 free_extent_buffer(eb);
547 }
548 return 0;
549 }
550
551 /*
552 * merge backrefs and adjust counts accordingly
553 *
554 * mode = 1: merge identical keys, if key is set
555 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
556 * additionally, we could even add a key range for the blocks we
557 * looked into to merge even more (-> replace unresolved refs by those
558 * having a parent).
559 * mode = 2: merge identical parents
560 */
561 static void __merge_refs(struct list_head *head, int mode)
562 {
563 struct __prelim_ref *pos1;
564
565 list_for_each_entry(pos1, head, list) {
566 struct __prelim_ref *pos2 = pos1, *tmp;
567
568 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
569 struct __prelim_ref *xchg, *ref1 = pos1, *ref2 = pos2;
570 struct extent_inode_elem *eie;
571
572 if (!ref_for_same_block(ref1, ref2))
573 continue;
574 if (mode == 1) {
575 if (!ref1->parent && ref2->parent) {
576 xchg = ref1;
577 ref1 = ref2;
578 ref2 = xchg;
579 }
580 } else {
581 if (ref1->parent != ref2->parent)
582 continue;
583 }
584
585 eie = ref1->inode_list;
586 while (eie && eie->next)
587 eie = eie->next;
588 if (eie)
589 eie->next = ref2->inode_list;
590 else
591 ref1->inode_list = ref2->inode_list;
592 ref1->count += ref2->count;
593
594 list_del(&ref2->list);
595 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
596 }
597
598 }
599 }
600
601 /*
602 * add all currently queued delayed refs from this head whose seq nr is
603 * smaller or equal that seq to the list
604 */
605 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
606 struct list_head *prefs, u64 *total_refs,
607 u64 inum)
608 {
609 struct btrfs_delayed_ref_node *node;
610 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
611 struct btrfs_key key;
612 struct btrfs_key op_key = {0};
613 int sgn;
614 int ret = 0;
615
616 if (extent_op && extent_op->update_key)
617 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
618
619 spin_lock(&head->lock);
620 list_for_each_entry(node, &head->ref_list, list) {
621 if (node->seq > seq)
622 continue;
623
624 switch (node->action) {
625 case BTRFS_ADD_DELAYED_EXTENT:
626 case BTRFS_UPDATE_DELAYED_HEAD:
627 WARN_ON(1);
628 continue;
629 case BTRFS_ADD_DELAYED_REF:
630 sgn = 1;
631 break;
632 case BTRFS_DROP_DELAYED_REF:
633 sgn = -1;
634 break;
635 default:
636 BUG_ON(1);
637 }
638 *total_refs += (node->ref_mod * sgn);
639 switch (node->type) {
640 case BTRFS_TREE_BLOCK_REF_KEY: {
641 struct btrfs_delayed_tree_ref *ref;
642
643 ref = btrfs_delayed_node_to_tree_ref(node);
644 ret = __add_prelim_ref(prefs, ref->root, &op_key,
645 ref->level + 1, 0, node->bytenr,
646 node->ref_mod * sgn, GFP_ATOMIC);
647 break;
648 }
649 case BTRFS_SHARED_BLOCK_REF_KEY: {
650 struct btrfs_delayed_tree_ref *ref;
651
652 ref = btrfs_delayed_node_to_tree_ref(node);
653 ret = __add_prelim_ref(prefs, 0, NULL,
654 ref->level + 1, ref->parent,
655 node->bytenr,
656 node->ref_mod * sgn, GFP_ATOMIC);
657 break;
658 }
659 case BTRFS_EXTENT_DATA_REF_KEY: {
660 struct btrfs_delayed_data_ref *ref;
661 ref = btrfs_delayed_node_to_data_ref(node);
662
663 key.objectid = ref->objectid;
664 key.type = BTRFS_EXTENT_DATA_KEY;
665 key.offset = ref->offset;
666
667 /*
668 * Found a inum that doesn't match our known inum, we
669 * know it's shared.
670 */
671 if (inum && ref->objectid != inum) {
672 ret = BACKREF_FOUND_SHARED;
673 break;
674 }
675
676 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
677 node->bytenr,
678 node->ref_mod * sgn, GFP_ATOMIC);
679 break;
680 }
681 case BTRFS_SHARED_DATA_REF_KEY: {
682 struct btrfs_delayed_data_ref *ref;
683
684 ref = btrfs_delayed_node_to_data_ref(node);
685 ret = __add_prelim_ref(prefs, 0, NULL, 0,
686 ref->parent, node->bytenr,
687 node->ref_mod * sgn, GFP_ATOMIC);
688 break;
689 }
690 default:
691 WARN_ON(1);
692 }
693 if (ret)
694 break;
695 }
696 spin_unlock(&head->lock);
697 return ret;
698 }
699
700 /*
701 * add all inline backrefs for bytenr to the list
702 */
703 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
704 struct btrfs_path *path, u64 bytenr,
705 int *info_level, struct list_head *prefs,
706 u64 *total_refs, u64 inum)
707 {
708 int ret = 0;
709 int slot;
710 struct extent_buffer *leaf;
711 struct btrfs_key key;
712 struct btrfs_key found_key;
713 unsigned long ptr;
714 unsigned long end;
715 struct btrfs_extent_item *ei;
716 u64 flags;
717 u64 item_size;
718
719 /*
720 * enumerate all inline refs
721 */
722 leaf = path->nodes[0];
723 slot = path->slots[0];
724
725 item_size = btrfs_item_size_nr(leaf, slot);
726 BUG_ON(item_size < sizeof(*ei));
727
728 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
729 flags = btrfs_extent_flags(leaf, ei);
730 *total_refs += btrfs_extent_refs(leaf, ei);
731 btrfs_item_key_to_cpu(leaf, &found_key, slot);
732
733 ptr = (unsigned long)(ei + 1);
734 end = (unsigned long)ei + item_size;
735
736 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
737 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
738 struct btrfs_tree_block_info *info;
739
740 info = (struct btrfs_tree_block_info *)ptr;
741 *info_level = btrfs_tree_block_level(leaf, info);
742 ptr += sizeof(struct btrfs_tree_block_info);
743 BUG_ON(ptr > end);
744 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
745 *info_level = found_key.offset;
746 } else {
747 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
748 }
749
750 while (ptr < end) {
751 struct btrfs_extent_inline_ref *iref;
752 u64 offset;
753 int type;
754
755 iref = (struct btrfs_extent_inline_ref *)ptr;
756 type = btrfs_extent_inline_ref_type(leaf, iref);
757 offset = btrfs_extent_inline_ref_offset(leaf, iref);
758
759 switch (type) {
760 case BTRFS_SHARED_BLOCK_REF_KEY:
761 ret = __add_prelim_ref(prefs, 0, NULL,
762 *info_level + 1, offset,
763 bytenr, 1, GFP_NOFS);
764 break;
765 case BTRFS_SHARED_DATA_REF_KEY: {
766 struct btrfs_shared_data_ref *sdref;
767 int count;
768
769 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
770 count = btrfs_shared_data_ref_count(leaf, sdref);
771 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
772 bytenr, count, GFP_NOFS);
773 break;
774 }
775 case BTRFS_TREE_BLOCK_REF_KEY:
776 ret = __add_prelim_ref(prefs, offset, NULL,
777 *info_level + 1, 0,
778 bytenr, 1, GFP_NOFS);
779 break;
780 case BTRFS_EXTENT_DATA_REF_KEY: {
781 struct btrfs_extent_data_ref *dref;
782 int count;
783 u64 root;
784
785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
786 count = btrfs_extent_data_ref_count(leaf, dref);
787 key.objectid = btrfs_extent_data_ref_objectid(leaf,
788 dref);
789 key.type = BTRFS_EXTENT_DATA_KEY;
790 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
791
792 if (inum && key.objectid != inum) {
793 ret = BACKREF_FOUND_SHARED;
794 break;
795 }
796
797 root = btrfs_extent_data_ref_root(leaf, dref);
798 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
799 bytenr, count, GFP_NOFS);
800 break;
801 }
802 default:
803 WARN_ON(1);
804 }
805 if (ret)
806 return ret;
807 ptr += btrfs_extent_inline_ref_size(type);
808 }
809
810 return 0;
811 }
812
813 /*
814 * add all non-inline backrefs for bytenr to the list
815 */
816 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
817 struct btrfs_path *path, u64 bytenr,
818 int info_level, struct list_head *prefs, u64 inum)
819 {
820 struct btrfs_root *extent_root = fs_info->extent_root;
821 int ret;
822 int slot;
823 struct extent_buffer *leaf;
824 struct btrfs_key key;
825
826 while (1) {
827 ret = btrfs_next_item(extent_root, path);
828 if (ret < 0)
829 break;
830 if (ret) {
831 ret = 0;
832 break;
833 }
834
835 slot = path->slots[0];
836 leaf = path->nodes[0];
837 btrfs_item_key_to_cpu(leaf, &key, slot);
838
839 if (key.objectid != bytenr)
840 break;
841 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
842 continue;
843 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
844 break;
845
846 switch (key.type) {
847 case BTRFS_SHARED_BLOCK_REF_KEY:
848 ret = __add_prelim_ref(prefs, 0, NULL,
849 info_level + 1, key.offset,
850 bytenr, 1, GFP_NOFS);
851 break;
852 case BTRFS_SHARED_DATA_REF_KEY: {
853 struct btrfs_shared_data_ref *sdref;
854 int count;
855
856 sdref = btrfs_item_ptr(leaf, slot,
857 struct btrfs_shared_data_ref);
858 count = btrfs_shared_data_ref_count(leaf, sdref);
859 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
860 bytenr, count, GFP_NOFS);
861 break;
862 }
863 case BTRFS_TREE_BLOCK_REF_KEY:
864 ret = __add_prelim_ref(prefs, key.offset, NULL,
865 info_level + 1, 0,
866 bytenr, 1, GFP_NOFS);
867 break;
868 case BTRFS_EXTENT_DATA_REF_KEY: {
869 struct btrfs_extent_data_ref *dref;
870 int count;
871 u64 root;
872
873 dref = btrfs_item_ptr(leaf, slot,
874 struct btrfs_extent_data_ref);
875 count = btrfs_extent_data_ref_count(leaf, dref);
876 key.objectid = btrfs_extent_data_ref_objectid(leaf,
877 dref);
878 key.type = BTRFS_EXTENT_DATA_KEY;
879 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
880
881 if (inum && key.objectid != inum) {
882 ret = BACKREF_FOUND_SHARED;
883 break;
884 }
885
886 root = btrfs_extent_data_ref_root(leaf, dref);
887 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
888 bytenr, count, GFP_NOFS);
889 break;
890 }
891 default:
892 WARN_ON(1);
893 }
894 if (ret)
895 return ret;
896
897 }
898
899 return ret;
900 }
901
902 /*
903 * this adds all existing backrefs (inline backrefs, backrefs and delayed
904 * refs) for the given bytenr to the refs list, merges duplicates and resolves
905 * indirect refs to their parent bytenr.
906 * When roots are found, they're added to the roots list
907 *
908 * NOTE: This can return values > 0
909 *
910 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
911 * much like trans == NULL case, the difference only lies in it will not
912 * commit root.
913 * The special case is for qgroup to search roots in commit_transaction().
914 *
915 * FIXME some caching might speed things up
916 */
917 static int find_parent_nodes(struct btrfs_trans_handle *trans,
918 struct btrfs_fs_info *fs_info, u64 bytenr,
919 u64 time_seq, struct ulist *refs,
920 struct ulist *roots, const u64 *extent_item_pos,
921 u64 root_objectid, u64 inum)
922 {
923 struct btrfs_key key;
924 struct btrfs_path *path;
925 struct btrfs_delayed_ref_root *delayed_refs = NULL;
926 struct btrfs_delayed_ref_head *head;
927 int info_level = 0;
928 int ret;
929 struct list_head prefs_delayed;
930 struct list_head prefs;
931 struct __prelim_ref *ref;
932 struct extent_inode_elem *eie = NULL;
933 u64 total_refs = 0;
934
935 INIT_LIST_HEAD(&prefs);
936 INIT_LIST_HEAD(&prefs_delayed);
937
938 key.objectid = bytenr;
939 key.offset = (u64)-1;
940 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
941 key.type = BTRFS_METADATA_ITEM_KEY;
942 else
943 key.type = BTRFS_EXTENT_ITEM_KEY;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948 if (!trans) {
949 path->search_commit_root = 1;
950 path->skip_locking = 1;
951 }
952
953 if (time_seq == (u64)-1)
954 path->skip_locking = 1;
955
956 /*
957 * grab both a lock on the path and a lock on the delayed ref head.
958 * We need both to get a consistent picture of how the refs look
959 * at a specified point in time
960 */
961 again:
962 head = NULL;
963
964 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
965 if (ret < 0)
966 goto out;
967 BUG_ON(ret == 0);
968
969 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
970 if (trans && likely(trans->type != __TRANS_DUMMY) &&
971 time_seq != (u64)-1) {
972 #else
973 if (trans && time_seq != (u64)-1) {
974 #endif
975 /*
976 * look if there are updates for this ref queued and lock the
977 * head
978 */
979 delayed_refs = &trans->transaction->delayed_refs;
980 spin_lock(&delayed_refs->lock);
981 head = btrfs_find_delayed_ref_head(trans, bytenr);
982 if (head) {
983 if (!mutex_trylock(&head->mutex)) {
984 atomic_inc(&head->node.refs);
985 spin_unlock(&delayed_refs->lock);
986
987 btrfs_release_path(path);
988
989 /*
990 * Mutex was contended, block until it's
991 * released and try again
992 */
993 mutex_lock(&head->mutex);
994 mutex_unlock(&head->mutex);
995 btrfs_put_delayed_ref(&head->node);
996 goto again;
997 }
998 spin_unlock(&delayed_refs->lock);
999 ret = __add_delayed_refs(head, time_seq,
1000 &prefs_delayed, &total_refs,
1001 inum);
1002 mutex_unlock(&head->mutex);
1003 if (ret)
1004 goto out;
1005 } else {
1006 spin_unlock(&delayed_refs->lock);
1007 }
1008 }
1009
1010 if (path->slots[0]) {
1011 struct extent_buffer *leaf;
1012 int slot;
1013
1014 path->slots[0]--;
1015 leaf = path->nodes[0];
1016 slot = path->slots[0];
1017 btrfs_item_key_to_cpu(leaf, &key, slot);
1018 if (key.objectid == bytenr &&
1019 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1020 key.type == BTRFS_METADATA_ITEM_KEY)) {
1021 ret = __add_inline_refs(fs_info, path, bytenr,
1022 &info_level, &prefs,
1023 &total_refs, inum);
1024 if (ret)
1025 goto out;
1026 ret = __add_keyed_refs(fs_info, path, bytenr,
1027 info_level, &prefs, inum);
1028 if (ret)
1029 goto out;
1030 }
1031 }
1032 btrfs_release_path(path);
1033
1034 list_splice_init(&prefs_delayed, &prefs);
1035
1036 ret = __add_missing_keys(fs_info, &prefs);
1037 if (ret)
1038 goto out;
1039
1040 __merge_refs(&prefs, 1);
1041
1042 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1043 extent_item_pos, total_refs,
1044 root_objectid);
1045 if (ret)
1046 goto out;
1047
1048 __merge_refs(&prefs, 2);
1049
1050 while (!list_empty(&prefs)) {
1051 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1052 WARN_ON(ref->count < 0);
1053 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1054 if (root_objectid && ref->root_id != root_objectid) {
1055 ret = BACKREF_FOUND_SHARED;
1056 goto out;
1057 }
1058
1059 /* no parent == root of tree */
1060 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1061 if (ret < 0)
1062 goto out;
1063 }
1064 if (ref->count && ref->parent) {
1065 if (extent_item_pos && !ref->inode_list &&
1066 ref->level == 0) {
1067 struct extent_buffer *eb;
1068
1069 eb = read_tree_block(fs_info->extent_root,
1070 ref->parent, 0);
1071 if (IS_ERR(eb)) {
1072 ret = PTR_ERR(eb);
1073 goto out;
1074 } else if (!extent_buffer_uptodate(eb)) {
1075 free_extent_buffer(eb);
1076 ret = -EIO;
1077 goto out;
1078 }
1079 btrfs_tree_read_lock(eb);
1080 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1081 ret = find_extent_in_eb(eb, bytenr,
1082 *extent_item_pos, &eie);
1083 btrfs_tree_read_unlock_blocking(eb);
1084 free_extent_buffer(eb);
1085 if (ret < 0)
1086 goto out;
1087 ref->inode_list = eie;
1088 }
1089 ret = ulist_add_merge_ptr(refs, ref->parent,
1090 ref->inode_list,
1091 (void **)&eie, GFP_NOFS);
1092 if (ret < 0)
1093 goto out;
1094 if (!ret && extent_item_pos) {
1095 /*
1096 * we've recorded that parent, so we must extend
1097 * its inode list here
1098 */
1099 BUG_ON(!eie);
1100 while (eie->next)
1101 eie = eie->next;
1102 eie->next = ref->inode_list;
1103 }
1104 eie = NULL;
1105 }
1106 list_del(&ref->list);
1107 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1108 }
1109
1110 out:
1111 btrfs_free_path(path);
1112 while (!list_empty(&prefs)) {
1113 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1114 list_del(&ref->list);
1115 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1116 }
1117 while (!list_empty(&prefs_delayed)) {
1118 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1119 list);
1120 list_del(&ref->list);
1121 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1122 }
1123 if (ret < 0)
1124 free_inode_elem_list(eie);
1125 return ret;
1126 }
1127
1128 static void free_leaf_list(struct ulist *blocks)
1129 {
1130 struct ulist_node *node = NULL;
1131 struct extent_inode_elem *eie;
1132 struct ulist_iterator uiter;
1133
1134 ULIST_ITER_INIT(&uiter);
1135 while ((node = ulist_next(blocks, &uiter))) {
1136 if (!node->aux)
1137 continue;
1138 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1139 free_inode_elem_list(eie);
1140 node->aux = 0;
1141 }
1142
1143 ulist_free(blocks);
1144 }
1145
1146 /*
1147 * Finds all leafs with a reference to the specified combination of bytenr and
1148 * offset. key_list_head will point to a list of corresponding keys (caller must
1149 * free each list element). The leafs will be stored in the leafs ulist, which
1150 * must be freed with ulist_free.
1151 *
1152 * returns 0 on success, <0 on error
1153 */
1154 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1155 struct btrfs_fs_info *fs_info, u64 bytenr,
1156 u64 time_seq, struct ulist **leafs,
1157 const u64 *extent_item_pos)
1158 {
1159 int ret;
1160
1161 *leafs = ulist_alloc(GFP_NOFS);
1162 if (!*leafs)
1163 return -ENOMEM;
1164
1165 ret = find_parent_nodes(trans, fs_info, bytenr,
1166 time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1167 if (ret < 0 && ret != -ENOENT) {
1168 free_leaf_list(*leafs);
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * walk all backrefs for a given extent to find all roots that reference this
1177 * extent. Walking a backref means finding all extents that reference this
1178 * extent and in turn walk the backrefs of those, too. Naturally this is a
1179 * recursive process, but here it is implemented in an iterative fashion: We
1180 * find all referencing extents for the extent in question and put them on a
1181 * list. In turn, we find all referencing extents for those, further appending
1182 * to the list. The way we iterate the list allows adding more elements after
1183 * the current while iterating. The process stops when we reach the end of the
1184 * list. Found roots are added to the roots list.
1185 *
1186 * returns 0 on success, < 0 on error.
1187 */
1188 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1189 struct btrfs_fs_info *fs_info, u64 bytenr,
1190 u64 time_seq, struct ulist **roots)
1191 {
1192 struct ulist *tmp;
1193 struct ulist_node *node = NULL;
1194 struct ulist_iterator uiter;
1195 int ret;
1196
1197 tmp = ulist_alloc(GFP_NOFS);
1198 if (!tmp)
1199 return -ENOMEM;
1200 *roots = ulist_alloc(GFP_NOFS);
1201 if (!*roots) {
1202 ulist_free(tmp);
1203 return -ENOMEM;
1204 }
1205
1206 ULIST_ITER_INIT(&uiter);
1207 while (1) {
1208 ret = find_parent_nodes(trans, fs_info, bytenr,
1209 time_seq, tmp, *roots, NULL, 0, 0);
1210 if (ret < 0 && ret != -ENOENT) {
1211 ulist_free(tmp);
1212 ulist_free(*roots);
1213 return ret;
1214 }
1215 node = ulist_next(tmp, &uiter);
1216 if (!node)
1217 break;
1218 bytenr = node->val;
1219 cond_resched();
1220 }
1221
1222 ulist_free(tmp);
1223 return 0;
1224 }
1225
1226 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1227 struct btrfs_fs_info *fs_info, u64 bytenr,
1228 u64 time_seq, struct ulist **roots)
1229 {
1230 int ret;
1231
1232 if (!trans)
1233 down_read(&fs_info->commit_root_sem);
1234 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1235 if (!trans)
1236 up_read(&fs_info->commit_root_sem);
1237 return ret;
1238 }
1239
1240 /**
1241 * btrfs_check_shared - tell us whether an extent is shared
1242 *
1243 * @trans: optional trans handle
1244 *
1245 * btrfs_check_shared uses the backref walking code but will short
1246 * circuit as soon as it finds a root or inode that doesn't match the
1247 * one passed in. This provides a significant performance benefit for
1248 * callers (such as fiemap) which want to know whether the extent is
1249 * shared but do not need a ref count.
1250 *
1251 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1252 */
1253 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info, u64 root_objectid,
1255 u64 inum, u64 bytenr)
1256 {
1257 struct ulist *tmp = NULL;
1258 struct ulist *roots = NULL;
1259 struct ulist_iterator uiter;
1260 struct ulist_node *node;
1261 struct seq_list elem = SEQ_LIST_INIT(elem);
1262 int ret = 0;
1263
1264 tmp = ulist_alloc(GFP_NOFS);
1265 roots = ulist_alloc(GFP_NOFS);
1266 if (!tmp || !roots) {
1267 ulist_free(tmp);
1268 ulist_free(roots);
1269 return -ENOMEM;
1270 }
1271
1272 if (trans)
1273 btrfs_get_tree_mod_seq(fs_info, &elem);
1274 else
1275 down_read(&fs_info->commit_root_sem);
1276 ULIST_ITER_INIT(&uiter);
1277 while (1) {
1278 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1279 roots, NULL, root_objectid, inum);
1280 if (ret == BACKREF_FOUND_SHARED) {
1281 /* this is the only condition under which we return 1 */
1282 ret = 1;
1283 break;
1284 }
1285 if (ret < 0 && ret != -ENOENT)
1286 break;
1287 ret = 0;
1288 node = ulist_next(tmp, &uiter);
1289 if (!node)
1290 break;
1291 bytenr = node->val;
1292 cond_resched();
1293 }
1294 if (trans)
1295 btrfs_put_tree_mod_seq(fs_info, &elem);
1296 else
1297 up_read(&fs_info->commit_root_sem);
1298 ulist_free(tmp);
1299 ulist_free(roots);
1300 return ret;
1301 }
1302
1303 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1304 u64 start_off, struct btrfs_path *path,
1305 struct btrfs_inode_extref **ret_extref,
1306 u64 *found_off)
1307 {
1308 int ret, slot;
1309 struct btrfs_key key;
1310 struct btrfs_key found_key;
1311 struct btrfs_inode_extref *extref;
1312 struct extent_buffer *leaf;
1313 unsigned long ptr;
1314
1315 key.objectid = inode_objectid;
1316 key.type = BTRFS_INODE_EXTREF_KEY;
1317 key.offset = start_off;
1318
1319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1320 if (ret < 0)
1321 return ret;
1322
1323 while (1) {
1324 leaf = path->nodes[0];
1325 slot = path->slots[0];
1326 if (slot >= btrfs_header_nritems(leaf)) {
1327 /*
1328 * If the item at offset is not found,
1329 * btrfs_search_slot will point us to the slot
1330 * where it should be inserted. In our case
1331 * that will be the slot directly before the
1332 * next INODE_REF_KEY_V2 item. In the case
1333 * that we're pointing to the last slot in a
1334 * leaf, we must move one leaf over.
1335 */
1336 ret = btrfs_next_leaf(root, path);
1337 if (ret) {
1338 if (ret >= 1)
1339 ret = -ENOENT;
1340 break;
1341 }
1342 continue;
1343 }
1344
1345 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1346
1347 /*
1348 * Check that we're still looking at an extended ref key for
1349 * this particular objectid. If we have different
1350 * objectid or type then there are no more to be found
1351 * in the tree and we can exit.
1352 */
1353 ret = -ENOENT;
1354 if (found_key.objectid != inode_objectid)
1355 break;
1356 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1357 break;
1358
1359 ret = 0;
1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 extref = (struct btrfs_inode_extref *)ptr;
1362 *ret_extref = extref;
1363 if (found_off)
1364 *found_off = found_key.offset;
1365 break;
1366 }
1367
1368 return ret;
1369 }
1370
1371 /*
1372 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1373 * Elements of the path are separated by '/' and the path is guaranteed to be
1374 * 0-terminated. the path is only given within the current file system.
1375 * Therefore, it never starts with a '/'. the caller is responsible to provide
1376 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1377 * the start point of the resulting string is returned. this pointer is within
1378 * dest, normally.
1379 * in case the path buffer would overflow, the pointer is decremented further
1380 * as if output was written to the buffer, though no more output is actually
1381 * generated. that way, the caller can determine how much space would be
1382 * required for the path to fit into the buffer. in that case, the returned
1383 * value will be smaller than dest. callers must check this!
1384 */
1385 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1386 u32 name_len, unsigned long name_off,
1387 struct extent_buffer *eb_in, u64 parent,
1388 char *dest, u32 size)
1389 {
1390 int slot;
1391 u64 next_inum;
1392 int ret;
1393 s64 bytes_left = ((s64)size) - 1;
1394 struct extent_buffer *eb = eb_in;
1395 struct btrfs_key found_key;
1396 int leave_spinning = path->leave_spinning;
1397 struct btrfs_inode_ref *iref;
1398
1399 if (bytes_left >= 0)
1400 dest[bytes_left] = '\0';
1401
1402 path->leave_spinning = 1;
1403 while (1) {
1404 bytes_left -= name_len;
1405 if (bytes_left >= 0)
1406 read_extent_buffer(eb, dest + bytes_left,
1407 name_off, name_len);
1408 if (eb != eb_in) {
1409 btrfs_tree_read_unlock_blocking(eb);
1410 free_extent_buffer(eb);
1411 }
1412 ret = btrfs_find_item(fs_root, path, parent, 0,
1413 BTRFS_INODE_REF_KEY, &found_key);
1414 if (ret > 0)
1415 ret = -ENOENT;
1416 if (ret)
1417 break;
1418
1419 next_inum = found_key.offset;
1420
1421 /* regular exit ahead */
1422 if (parent == next_inum)
1423 break;
1424
1425 slot = path->slots[0];
1426 eb = path->nodes[0];
1427 /* make sure we can use eb after releasing the path */
1428 if (eb != eb_in) {
1429 atomic_inc(&eb->refs);
1430 btrfs_tree_read_lock(eb);
1431 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1432 }
1433 btrfs_release_path(path);
1434 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1435
1436 name_len = btrfs_inode_ref_name_len(eb, iref);
1437 name_off = (unsigned long)(iref + 1);
1438
1439 parent = next_inum;
1440 --bytes_left;
1441 if (bytes_left >= 0)
1442 dest[bytes_left] = '/';
1443 }
1444
1445 btrfs_release_path(path);
1446 path->leave_spinning = leave_spinning;
1447
1448 if (ret)
1449 return ERR_PTR(ret);
1450
1451 return dest + bytes_left;
1452 }
1453
1454 /*
1455 * this makes the path point to (logical EXTENT_ITEM *)
1456 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1457 * tree blocks and <0 on error.
1458 */
1459 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1460 struct btrfs_path *path, struct btrfs_key *found_key,
1461 u64 *flags_ret)
1462 {
1463 int ret;
1464 u64 flags;
1465 u64 size = 0;
1466 u32 item_size;
1467 struct extent_buffer *eb;
1468 struct btrfs_extent_item *ei;
1469 struct btrfs_key key;
1470
1471 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1472 key.type = BTRFS_METADATA_ITEM_KEY;
1473 else
1474 key.type = BTRFS_EXTENT_ITEM_KEY;
1475 key.objectid = logical;
1476 key.offset = (u64)-1;
1477
1478 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1479 if (ret < 0)
1480 return ret;
1481
1482 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1483 if (ret) {
1484 if (ret > 0)
1485 ret = -ENOENT;
1486 return ret;
1487 }
1488 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1489 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1490 size = fs_info->extent_root->nodesize;
1491 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1492 size = found_key->offset;
1493
1494 if (found_key->objectid > logical ||
1495 found_key->objectid + size <= logical) {
1496 pr_debug("logical %llu is not within any extent\n", logical);
1497 return -ENOENT;
1498 }
1499
1500 eb = path->nodes[0];
1501 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1502 BUG_ON(item_size < sizeof(*ei));
1503
1504 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1505 flags = btrfs_extent_flags(eb, ei);
1506
1507 pr_debug("logical %llu is at position %llu within the extent (%llu "
1508 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1509 logical, logical - found_key->objectid, found_key->objectid,
1510 found_key->offset, flags, item_size);
1511
1512 WARN_ON(!flags_ret);
1513 if (flags_ret) {
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1515 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1516 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1517 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1518 else
1519 BUG_ON(1);
1520 return 0;
1521 }
1522
1523 return -EIO;
1524 }
1525
1526 /*
1527 * helper function to iterate extent inline refs. ptr must point to a 0 value
1528 * for the first call and may be modified. it is used to track state.
1529 * if more refs exist, 0 is returned and the next call to
1530 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1531 * next ref. after the last ref was processed, 1 is returned.
1532 * returns <0 on error
1533 */
1534 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1535 struct btrfs_key *key,
1536 struct btrfs_extent_item *ei, u32 item_size,
1537 struct btrfs_extent_inline_ref **out_eiref,
1538 int *out_type)
1539 {
1540 unsigned long end;
1541 u64 flags;
1542 struct btrfs_tree_block_info *info;
1543
1544 if (!*ptr) {
1545 /* first call */
1546 flags = btrfs_extent_flags(eb, ei);
1547 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1548 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1549 /* a skinny metadata extent */
1550 *out_eiref =
1551 (struct btrfs_extent_inline_ref *)(ei + 1);
1552 } else {
1553 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1554 info = (struct btrfs_tree_block_info *)(ei + 1);
1555 *out_eiref =
1556 (struct btrfs_extent_inline_ref *)(info + 1);
1557 }
1558 } else {
1559 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1560 }
1561 *ptr = (unsigned long)*out_eiref;
1562 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1563 return -ENOENT;
1564 }
1565
1566 end = (unsigned long)ei + item_size;
1567 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1568 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1569
1570 *ptr += btrfs_extent_inline_ref_size(*out_type);
1571 WARN_ON(*ptr > end);
1572 if (*ptr == end)
1573 return 1; /* last */
1574
1575 return 0;
1576 }
1577
1578 /*
1579 * reads the tree block backref for an extent. tree level and root are returned
1580 * through out_level and out_root. ptr must point to a 0 value for the first
1581 * call and may be modified (see __get_extent_inline_ref comment).
1582 * returns 0 if data was provided, 1 if there was no more data to provide or
1583 * <0 on error.
1584 */
1585 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1586 struct btrfs_key *key, struct btrfs_extent_item *ei,
1587 u32 item_size, u64 *out_root, u8 *out_level)
1588 {
1589 int ret;
1590 int type;
1591 struct btrfs_extent_inline_ref *eiref;
1592
1593 if (*ptr == (unsigned long)-1)
1594 return 1;
1595
1596 while (1) {
1597 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1598 &eiref, &type);
1599 if (ret < 0)
1600 return ret;
1601
1602 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1603 type == BTRFS_SHARED_BLOCK_REF_KEY)
1604 break;
1605
1606 if (ret == 1)
1607 return 1;
1608 }
1609
1610 /* we can treat both ref types equally here */
1611 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1612
1613 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1614 struct btrfs_tree_block_info *info;
1615
1616 info = (struct btrfs_tree_block_info *)(ei + 1);
1617 *out_level = btrfs_tree_block_level(eb, info);
1618 } else {
1619 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1620 *out_level = (u8)key->offset;
1621 }
1622
1623 if (ret == 1)
1624 *ptr = (unsigned long)-1;
1625
1626 return 0;
1627 }
1628
1629 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1630 u64 root, u64 extent_item_objectid,
1631 iterate_extent_inodes_t *iterate, void *ctx)
1632 {
1633 struct extent_inode_elem *eie;
1634 int ret = 0;
1635
1636 for (eie = inode_list; eie; eie = eie->next) {
1637 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1638 "root %llu\n", extent_item_objectid,
1639 eie->inum, eie->offset, root);
1640 ret = iterate(eie->inum, eie->offset, root, ctx);
1641 if (ret) {
1642 pr_debug("stopping iteration for %llu due to ret=%d\n",
1643 extent_item_objectid, ret);
1644 break;
1645 }
1646 }
1647
1648 return ret;
1649 }
1650
1651 /*
1652 * calls iterate() for every inode that references the extent identified by
1653 * the given parameters.
1654 * when the iterator function returns a non-zero value, iteration stops.
1655 */
1656 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1657 u64 extent_item_objectid, u64 extent_item_pos,
1658 int search_commit_root,
1659 iterate_extent_inodes_t *iterate, void *ctx)
1660 {
1661 int ret;
1662 struct btrfs_trans_handle *trans = NULL;
1663 struct ulist *refs = NULL;
1664 struct ulist *roots = NULL;
1665 struct ulist_node *ref_node = NULL;
1666 struct ulist_node *root_node = NULL;
1667 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1668 struct ulist_iterator ref_uiter;
1669 struct ulist_iterator root_uiter;
1670
1671 pr_debug("resolving all inodes for extent %llu\n",
1672 extent_item_objectid);
1673
1674 if (!search_commit_root) {
1675 trans = btrfs_join_transaction(fs_info->extent_root);
1676 if (IS_ERR(trans))
1677 return PTR_ERR(trans);
1678 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1679 } else {
1680 down_read(&fs_info->commit_root_sem);
1681 }
1682
1683 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1684 tree_mod_seq_elem.seq, &refs,
1685 &extent_item_pos);
1686 if (ret)
1687 goto out;
1688
1689 ULIST_ITER_INIT(&ref_uiter);
1690 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1691 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1692 tree_mod_seq_elem.seq, &roots);
1693 if (ret)
1694 break;
1695 ULIST_ITER_INIT(&root_uiter);
1696 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1697 pr_debug("root %llu references leaf %llu, data list "
1698 "%#llx\n", root_node->val, ref_node->val,
1699 ref_node->aux);
1700 ret = iterate_leaf_refs((struct extent_inode_elem *)
1701 (uintptr_t)ref_node->aux,
1702 root_node->val,
1703 extent_item_objectid,
1704 iterate, ctx);
1705 }
1706 ulist_free(roots);
1707 }
1708
1709 free_leaf_list(refs);
1710 out:
1711 if (!search_commit_root) {
1712 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1713 btrfs_end_transaction(trans, fs_info->extent_root);
1714 } else {
1715 up_read(&fs_info->commit_root_sem);
1716 }
1717
1718 return ret;
1719 }
1720
1721 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1722 struct btrfs_path *path,
1723 iterate_extent_inodes_t *iterate, void *ctx)
1724 {
1725 int ret;
1726 u64 extent_item_pos;
1727 u64 flags = 0;
1728 struct btrfs_key found_key;
1729 int search_commit_root = path->search_commit_root;
1730
1731 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1732 btrfs_release_path(path);
1733 if (ret < 0)
1734 return ret;
1735 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1736 return -EINVAL;
1737
1738 extent_item_pos = logical - found_key.objectid;
1739 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1740 extent_item_pos, search_commit_root,
1741 iterate, ctx);
1742
1743 return ret;
1744 }
1745
1746 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1747 struct extent_buffer *eb, void *ctx);
1748
1749 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1750 struct btrfs_path *path,
1751 iterate_irefs_t *iterate, void *ctx)
1752 {
1753 int ret = 0;
1754 int slot;
1755 u32 cur;
1756 u32 len;
1757 u32 name_len;
1758 u64 parent = 0;
1759 int found = 0;
1760 struct extent_buffer *eb;
1761 struct btrfs_item *item;
1762 struct btrfs_inode_ref *iref;
1763 struct btrfs_key found_key;
1764
1765 while (!ret) {
1766 ret = btrfs_find_item(fs_root, path, inum,
1767 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1768 &found_key);
1769
1770 if (ret < 0)
1771 break;
1772 if (ret) {
1773 ret = found ? 0 : -ENOENT;
1774 break;
1775 }
1776 ++found;
1777
1778 parent = found_key.offset;
1779 slot = path->slots[0];
1780 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1781 if (!eb) {
1782 ret = -ENOMEM;
1783 break;
1784 }
1785 extent_buffer_get(eb);
1786 btrfs_tree_read_lock(eb);
1787 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1788 btrfs_release_path(path);
1789
1790 item = btrfs_item_nr(slot);
1791 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1792
1793 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1794 name_len = btrfs_inode_ref_name_len(eb, iref);
1795 /* path must be released before calling iterate()! */
1796 pr_debug("following ref at offset %u for inode %llu in "
1797 "tree %llu\n", cur, found_key.objectid,
1798 fs_root->objectid);
1799 ret = iterate(parent, name_len,
1800 (unsigned long)(iref + 1), eb, ctx);
1801 if (ret)
1802 break;
1803 len = sizeof(*iref) + name_len;
1804 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1805 }
1806 btrfs_tree_read_unlock_blocking(eb);
1807 free_extent_buffer(eb);
1808 }
1809
1810 btrfs_release_path(path);
1811
1812 return ret;
1813 }
1814
1815 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1816 struct btrfs_path *path,
1817 iterate_irefs_t *iterate, void *ctx)
1818 {
1819 int ret;
1820 int slot;
1821 u64 offset = 0;
1822 u64 parent;
1823 int found = 0;
1824 struct extent_buffer *eb;
1825 struct btrfs_inode_extref *extref;
1826 u32 item_size;
1827 u32 cur_offset;
1828 unsigned long ptr;
1829
1830 while (1) {
1831 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1832 &offset);
1833 if (ret < 0)
1834 break;
1835 if (ret) {
1836 ret = found ? 0 : -ENOENT;
1837 break;
1838 }
1839 ++found;
1840
1841 slot = path->slots[0];
1842 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1843 if (!eb) {
1844 ret = -ENOMEM;
1845 break;
1846 }
1847 extent_buffer_get(eb);
1848
1849 btrfs_tree_read_lock(eb);
1850 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1851 btrfs_release_path(path);
1852
1853 item_size = btrfs_item_size_nr(eb, slot);
1854 ptr = btrfs_item_ptr_offset(eb, slot);
1855 cur_offset = 0;
1856
1857 while (cur_offset < item_size) {
1858 u32 name_len;
1859
1860 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1861 parent = btrfs_inode_extref_parent(eb, extref);
1862 name_len = btrfs_inode_extref_name_len(eb, extref);
1863 ret = iterate(parent, name_len,
1864 (unsigned long)&extref->name, eb, ctx);
1865 if (ret)
1866 break;
1867
1868 cur_offset += btrfs_inode_extref_name_len(eb, extref);
1869 cur_offset += sizeof(*extref);
1870 }
1871 btrfs_tree_read_unlock_blocking(eb);
1872 free_extent_buffer(eb);
1873
1874 offset++;
1875 }
1876
1877 btrfs_release_path(path);
1878
1879 return ret;
1880 }
1881
1882 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1883 struct btrfs_path *path, iterate_irefs_t *iterate,
1884 void *ctx)
1885 {
1886 int ret;
1887 int found_refs = 0;
1888
1889 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1890 if (!ret)
1891 ++found_refs;
1892 else if (ret != -ENOENT)
1893 return ret;
1894
1895 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1896 if (ret == -ENOENT && found_refs)
1897 return 0;
1898
1899 return ret;
1900 }
1901
1902 /*
1903 * returns 0 if the path could be dumped (probably truncated)
1904 * returns <0 in case of an error
1905 */
1906 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1907 struct extent_buffer *eb, void *ctx)
1908 {
1909 struct inode_fs_paths *ipath = ctx;
1910 char *fspath;
1911 char *fspath_min;
1912 int i = ipath->fspath->elem_cnt;
1913 const int s_ptr = sizeof(char *);
1914 u32 bytes_left;
1915
1916 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1917 ipath->fspath->bytes_left - s_ptr : 0;
1918
1919 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1920 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1921 name_off, eb, inum, fspath_min, bytes_left);
1922 if (IS_ERR(fspath))
1923 return PTR_ERR(fspath);
1924
1925 if (fspath > fspath_min) {
1926 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1927 ++ipath->fspath->elem_cnt;
1928 ipath->fspath->bytes_left = fspath - fspath_min;
1929 } else {
1930 ++ipath->fspath->elem_missed;
1931 ipath->fspath->bytes_missing += fspath_min - fspath;
1932 ipath->fspath->bytes_left = 0;
1933 }
1934
1935 return 0;
1936 }
1937
1938 /*
1939 * this dumps all file system paths to the inode into the ipath struct, provided
1940 * is has been created large enough. each path is zero-terminated and accessed
1941 * from ipath->fspath->val[i].
1942 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1943 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1944 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1945 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1946 * have been needed to return all paths.
1947 */
1948 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1949 {
1950 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1951 inode_to_path, ipath);
1952 }
1953
1954 struct btrfs_data_container *init_data_container(u32 total_bytes)
1955 {
1956 struct btrfs_data_container *data;
1957 size_t alloc_bytes;
1958
1959 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1960 data = vmalloc(alloc_bytes);
1961 if (!data)
1962 return ERR_PTR(-ENOMEM);
1963
1964 if (total_bytes >= sizeof(*data)) {
1965 data->bytes_left = total_bytes - sizeof(*data);
1966 data->bytes_missing = 0;
1967 } else {
1968 data->bytes_missing = sizeof(*data) - total_bytes;
1969 data->bytes_left = 0;
1970 }
1971
1972 data->elem_cnt = 0;
1973 data->elem_missed = 0;
1974
1975 return data;
1976 }
1977
1978 /*
1979 * allocates space to return multiple file system paths for an inode.
1980 * total_bytes to allocate are passed, note that space usable for actual path
1981 * information will be total_bytes - sizeof(struct inode_fs_paths).
1982 * the returned pointer must be freed with free_ipath() in the end.
1983 */
1984 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1985 struct btrfs_path *path)
1986 {
1987 struct inode_fs_paths *ifp;
1988 struct btrfs_data_container *fspath;
1989
1990 fspath = init_data_container(total_bytes);
1991 if (IS_ERR(fspath))
1992 return (void *)fspath;
1993
1994 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1995 if (!ifp) {
1996 kfree(fspath);
1997 return ERR_PTR(-ENOMEM);
1998 }
1999
2000 ifp->btrfs_path = path;
2001 ifp->fspath = fspath;
2002 ifp->fs_root = fs_root;
2003
2004 return ifp;
2005 }
2006
2007 void free_ipath(struct inode_fs_paths *ipath)
2008 {
2009 if (!ipath)
2010 return;
2011 vfree(ipath->fspath);
2012 kfree(ipath);
2013 }