]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/backref.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / backref.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "backref.h"
25 #include "ulist.h"
26 #include "transaction.h"
27 #include "delayed-ref.h"
28 #include "locking.h"
29
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
32
33 struct extent_inode_elem {
34 u64 inum;
35 u64 offset;
36 struct extent_inode_elem *next;
37 };
38
39 static int check_extent_in_eb(const struct btrfs_key *key,
40 const struct extent_buffer *eb,
41 const struct btrfs_file_extent_item *fi,
42 u64 extent_item_pos,
43 struct extent_inode_elem **eie,
44 bool ignore_offset)
45 {
46 u64 offset = 0;
47 struct extent_inode_elem *e;
48
49 if (!ignore_offset &&
50 !btrfs_file_extent_compression(eb, fi) &&
51 !btrfs_file_extent_encryption(eb, fi) &&
52 !btrfs_file_extent_other_encoding(eb, fi)) {
53 u64 data_offset;
54 u64 data_len;
55
56 data_offset = btrfs_file_extent_offset(eb, fi);
57 data_len = btrfs_file_extent_num_bytes(eb, fi);
58
59 if (extent_item_pos < data_offset ||
60 extent_item_pos >= data_offset + data_len)
61 return 1;
62 offset = extent_item_pos - data_offset;
63 }
64
65 e = kmalloc(sizeof(*e), GFP_NOFS);
66 if (!e)
67 return -ENOMEM;
68
69 e->next = *eie;
70 e->inum = key->objectid;
71 e->offset = key->offset + offset;
72 *eie = e;
73
74 return 0;
75 }
76
77 static void free_inode_elem_list(struct extent_inode_elem *eie)
78 {
79 struct extent_inode_elem *eie_next;
80
81 for (; eie; eie = eie_next) {
82 eie_next = eie->next;
83 kfree(eie);
84 }
85 }
86
87 static int find_extent_in_eb(const struct extent_buffer *eb,
88 u64 wanted_disk_byte, u64 extent_item_pos,
89 struct extent_inode_elem **eie,
90 bool ignore_offset)
91 {
92 u64 disk_byte;
93 struct btrfs_key key;
94 struct btrfs_file_extent_item *fi;
95 int slot;
96 int nritems;
97 int extent_type;
98 int ret;
99
100 /*
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
104 */
105 nritems = btrfs_header_nritems(eb);
106 for (slot = 0; slot < nritems; ++slot) {
107 btrfs_item_key_to_cpu(eb, &key, slot);
108 if (key.type != BTRFS_EXTENT_DATA_KEY)
109 continue;
110 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
111 extent_type = btrfs_file_extent_type(eb, fi);
112 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
113 continue;
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
116 if (disk_byte != wanted_disk_byte)
117 continue;
118
119 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
120 if (ret < 0)
121 return ret;
122 }
123
124 return 0;
125 }
126
127 struct preftree {
128 struct rb_root root;
129 unsigned int count;
130 };
131
132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
133
134 struct preftrees {
135 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys;
138 };
139
140 /*
141 * Checks for a shared extent during backref search.
142 *
143 * The share_count tracks prelim_refs (direct and indirect) having a
144 * ref->count >0:
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
147 */
148 struct share_check {
149 u64 root_objectid;
150 u64 inum;
151 int share_count;
152 };
153
154 static inline int extent_is_shared(struct share_check *sc)
155 {
156 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
157 }
158
159 static struct kmem_cache *btrfs_prelim_ref_cache;
160
161 int __init btrfs_prelim_ref_init(void)
162 {
163 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
164 sizeof(struct prelim_ref),
165 0,
166 SLAB_MEM_SPREAD,
167 NULL);
168 if (!btrfs_prelim_ref_cache)
169 return -ENOMEM;
170 return 0;
171 }
172
173 void btrfs_prelim_ref_exit(void)
174 {
175 kmem_cache_destroy(btrfs_prelim_ref_cache);
176 }
177
178 static void free_pref(struct prelim_ref *ref)
179 {
180 kmem_cache_free(btrfs_prelim_ref_cache, ref);
181 }
182
183 /*
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
187 */
188 static int prelim_ref_compare(struct prelim_ref *ref1,
189 struct prelim_ref *ref2)
190 {
191 if (ref1->level < ref2->level)
192 return -1;
193 if (ref1->level > ref2->level)
194 return 1;
195 if (ref1->root_id < ref2->root_id)
196 return -1;
197 if (ref1->root_id > ref2->root_id)
198 return 1;
199 if (ref1->key_for_search.type < ref2->key_for_search.type)
200 return -1;
201 if (ref1->key_for_search.type > ref2->key_for_search.type)
202 return 1;
203 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
204 return -1;
205 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
206 return 1;
207 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
208 return -1;
209 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
210 return 1;
211 if (ref1->parent < ref2->parent)
212 return -1;
213 if (ref1->parent > ref2->parent)
214 return 1;
215
216 return 0;
217 }
218
219 void update_share_count(struct share_check *sc, int oldcount, int newcount)
220 {
221 if ((!sc) || (oldcount == 0 && newcount < 1))
222 return;
223
224 if (oldcount > 0 && newcount < 1)
225 sc->share_count--;
226 else if (oldcount < 1 && newcount > 0)
227 sc->share_count++;
228 }
229
230 /*
231 * Add @newref to the @root rbtree, merging identical refs.
232 *
233 * Callers should assume that newref has been freed after calling.
234 */
235 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
236 struct preftree *preftree,
237 struct prelim_ref *newref,
238 struct share_check *sc)
239 {
240 struct rb_root *root;
241 struct rb_node **p;
242 struct rb_node *parent = NULL;
243 struct prelim_ref *ref;
244 int result;
245
246 root = &preftree->root;
247 p = &root->rb_node;
248
249 while (*p) {
250 parent = *p;
251 ref = rb_entry(parent, struct prelim_ref, rbnode);
252 result = prelim_ref_compare(ref, newref);
253 if (result < 0) {
254 p = &(*p)->rb_left;
255 } else if (result > 0) {
256 p = &(*p)->rb_right;
257 } else {
258 /* Identical refs, merge them and free @newref */
259 struct extent_inode_elem *eie = ref->inode_list;
260
261 while (eie && eie->next)
262 eie = eie->next;
263
264 if (!eie)
265 ref->inode_list = newref->inode_list;
266 else
267 eie->next = newref->inode_list;
268 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
269 preftree->count);
270 /*
271 * A delayed ref can have newref->count < 0.
272 * The ref->count is updated to follow any
273 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
274 */
275 update_share_count(sc, ref->count,
276 ref->count + newref->count);
277 ref->count += newref->count;
278 free_pref(newref);
279 return;
280 }
281 }
282
283 update_share_count(sc, 0, newref->count);
284 preftree->count++;
285 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
286 rb_link_node(&newref->rbnode, parent, p);
287 rb_insert_color(&newref->rbnode, root);
288 }
289
290 /*
291 * Release the entire tree. We don't care about internal consistency so
292 * just free everything and then reset the tree root.
293 */
294 static void prelim_release(struct preftree *preftree)
295 {
296 struct prelim_ref *ref, *next_ref;
297
298 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
299 rbnode)
300 free_pref(ref);
301
302 preftree->root = RB_ROOT;
303 preftree->count = 0;
304 }
305
306 /*
307 * the rules for all callers of this function are:
308 * - obtaining the parent is the goal
309 * - if you add a key, you must know that it is a correct key
310 * - if you cannot add the parent or a correct key, then we will look into the
311 * block later to set a correct key
312 *
313 * delayed refs
314 * ============
315 * backref type | shared | indirect | shared | indirect
316 * information | tree | tree | data | data
317 * --------------------+--------+----------+--------+----------
318 * parent logical | y | - | - | -
319 * key to resolve | - | y | y | y
320 * tree block logical | - | - | - | -
321 * root for resolving | y | y | y | y
322 *
323 * - column 1: we've the parent -> done
324 * - column 2, 3, 4: we use the key to find the parent
325 *
326 * on disk refs (inline or keyed)
327 * ==============================
328 * backref type | shared | indirect | shared | indirect
329 * information | tree | tree | data | data
330 * --------------------+--------+----------+--------+----------
331 * parent logical | y | - | y | -
332 * key to resolve | - | - | - | y
333 * tree block logical | y | y | y | y
334 * root for resolving | - | y | y | y
335 *
336 * - column 1, 3: we've the parent -> done
337 * - column 2: we take the first key from the block to find the parent
338 * (see add_missing_keys)
339 * - column 4: we use the key to find the parent
340 *
341 * additional information that's available but not required to find the parent
342 * block might help in merging entries to gain some speed.
343 */
344 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
345 struct preftree *preftree, u64 root_id,
346 const struct btrfs_key *key, int level, u64 parent,
347 u64 wanted_disk_byte, int count,
348 struct share_check *sc, gfp_t gfp_mask)
349 {
350 struct prelim_ref *ref;
351
352 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
353 return 0;
354
355 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
356 if (!ref)
357 return -ENOMEM;
358
359 ref->root_id = root_id;
360 if (key) {
361 ref->key_for_search = *key;
362 /*
363 * We can often find data backrefs with an offset that is too
364 * large (>= LLONG_MAX, maximum allowed file offset) due to
365 * underflows when subtracting a file's offset with the data
366 * offset of its corresponding extent data item. This can
367 * happen for example in the clone ioctl.
368 * So if we detect such case we set the search key's offset to
369 * zero to make sure we will find the matching file extent item
370 * at add_all_parents(), otherwise we will miss it because the
371 * offset taken form the backref is much larger then the offset
372 * of the file extent item. This can make us scan a very large
373 * number of file extent items, but at least it will not make
374 * us miss any.
375 * This is an ugly workaround for a behaviour that should have
376 * never existed, but it does and a fix for the clone ioctl
377 * would touch a lot of places, cause backwards incompatibility
378 * and would not fix the problem for extents cloned with older
379 * kernels.
380 */
381 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
382 ref->key_for_search.offset >= LLONG_MAX)
383 ref->key_for_search.offset = 0;
384 } else {
385 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
386 }
387
388 ref->inode_list = NULL;
389 ref->level = level;
390 ref->count = count;
391 ref->parent = parent;
392 ref->wanted_disk_byte = wanted_disk_byte;
393 prelim_ref_insert(fs_info, preftree, ref, sc);
394 return extent_is_shared(sc);
395 }
396
397 /* direct refs use root == 0, key == NULL */
398 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
399 struct preftrees *preftrees, int level, u64 parent,
400 u64 wanted_disk_byte, int count,
401 struct share_check *sc, gfp_t gfp_mask)
402 {
403 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
404 parent, wanted_disk_byte, count, sc, gfp_mask);
405 }
406
407 /* indirect refs use parent == 0 */
408 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
409 struct preftrees *preftrees, u64 root_id,
410 const struct btrfs_key *key, int level,
411 u64 wanted_disk_byte, int count,
412 struct share_check *sc, gfp_t gfp_mask)
413 {
414 struct preftree *tree = &preftrees->indirect;
415
416 if (!key)
417 tree = &preftrees->indirect_missing_keys;
418 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
419 wanted_disk_byte, count, sc, gfp_mask);
420 }
421
422 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
423 struct ulist *parents, struct prelim_ref *ref,
424 int level, u64 time_seq, const u64 *extent_item_pos,
425 u64 total_refs, bool ignore_offset)
426 {
427 int ret = 0;
428 int slot;
429 struct extent_buffer *eb;
430 struct btrfs_key key;
431 struct btrfs_key *key_for_search = &ref->key_for_search;
432 struct btrfs_file_extent_item *fi;
433 struct extent_inode_elem *eie = NULL, *old = NULL;
434 u64 disk_byte;
435 u64 wanted_disk_byte = ref->wanted_disk_byte;
436 u64 count = 0;
437
438 if (level != 0) {
439 eb = path->nodes[level];
440 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
441 if (ret < 0)
442 return ret;
443 return 0;
444 }
445
446 /*
447 * We normally enter this function with the path already pointing to
448 * the first item to check. But sometimes, we may enter it with
449 * slot==nritems. In that case, go to the next leaf before we continue.
450 */
451 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
452 if (time_seq == SEQ_LAST)
453 ret = btrfs_next_leaf(root, path);
454 else
455 ret = btrfs_next_old_leaf(root, path, time_seq);
456 }
457
458 while (!ret && count < total_refs) {
459 eb = path->nodes[0];
460 slot = path->slots[0];
461
462 btrfs_item_key_to_cpu(eb, &key, slot);
463
464 if (key.objectid != key_for_search->objectid ||
465 key.type != BTRFS_EXTENT_DATA_KEY)
466 break;
467
468 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
469 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
470
471 if (disk_byte == wanted_disk_byte) {
472 eie = NULL;
473 old = NULL;
474 count++;
475 if (extent_item_pos) {
476 ret = check_extent_in_eb(&key, eb, fi,
477 *extent_item_pos,
478 &eie, ignore_offset);
479 if (ret < 0)
480 break;
481 }
482 if (ret > 0)
483 goto next;
484 ret = ulist_add_merge_ptr(parents, eb->start,
485 eie, (void **)&old, GFP_NOFS);
486 if (ret < 0)
487 break;
488 if (!ret && extent_item_pos) {
489 while (old->next)
490 old = old->next;
491 old->next = eie;
492 }
493 eie = NULL;
494 }
495 next:
496 if (time_seq == SEQ_LAST)
497 ret = btrfs_next_item(root, path);
498 else
499 ret = btrfs_next_old_item(root, path, time_seq);
500 }
501
502 if (ret > 0)
503 ret = 0;
504 else if (ret < 0)
505 free_inode_elem_list(eie);
506 return ret;
507 }
508
509 /*
510 * resolve an indirect backref in the form (root_id, key, level)
511 * to a logical address
512 */
513 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
514 struct btrfs_path *path, u64 time_seq,
515 struct prelim_ref *ref, struct ulist *parents,
516 const u64 *extent_item_pos, u64 total_refs,
517 bool ignore_offset)
518 {
519 struct btrfs_root *root;
520 struct btrfs_key root_key;
521 struct extent_buffer *eb;
522 int ret = 0;
523 int root_level;
524 int level = ref->level;
525 int index;
526
527 root_key.objectid = ref->root_id;
528 root_key.type = BTRFS_ROOT_ITEM_KEY;
529 root_key.offset = (u64)-1;
530
531 index = srcu_read_lock(&fs_info->subvol_srcu);
532
533 root = btrfs_get_fs_root(fs_info, &root_key, false);
534 if (IS_ERR(root)) {
535 srcu_read_unlock(&fs_info->subvol_srcu, index);
536 ret = PTR_ERR(root);
537 goto out;
538 }
539
540 if (btrfs_is_testing(fs_info)) {
541 srcu_read_unlock(&fs_info->subvol_srcu, index);
542 ret = -ENOENT;
543 goto out;
544 }
545
546 if (path->search_commit_root)
547 root_level = btrfs_header_level(root->commit_root);
548 else if (time_seq == SEQ_LAST)
549 root_level = btrfs_header_level(root->node);
550 else
551 root_level = btrfs_old_root_level(root, time_seq);
552
553 if (root_level + 1 == level) {
554 srcu_read_unlock(&fs_info->subvol_srcu, index);
555 goto out;
556 }
557
558 path->lowest_level = level;
559 if (time_seq == SEQ_LAST)
560 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
561 0, 0);
562 else
563 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
564 time_seq);
565
566 /* root node has been locked, we can release @subvol_srcu safely here */
567 srcu_read_unlock(&fs_info->subvol_srcu, index);
568
569 btrfs_debug(fs_info,
570 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
571 ref->root_id, level, ref->count, ret,
572 ref->key_for_search.objectid, ref->key_for_search.type,
573 ref->key_for_search.offset);
574 if (ret < 0)
575 goto out;
576
577 eb = path->nodes[level];
578 while (!eb) {
579 if (WARN_ON(!level)) {
580 ret = 1;
581 goto out;
582 }
583 level--;
584 eb = path->nodes[level];
585 }
586
587 ret = add_all_parents(root, path, parents, ref, level, time_seq,
588 extent_item_pos, total_refs, ignore_offset);
589 out:
590 path->lowest_level = 0;
591 btrfs_release_path(path);
592 return ret;
593 }
594
595 static struct extent_inode_elem *
596 unode_aux_to_inode_list(struct ulist_node *node)
597 {
598 if (!node)
599 return NULL;
600 return (struct extent_inode_elem *)(uintptr_t)node->aux;
601 }
602
603 /*
604 * We maintain three seperate rbtrees: one for direct refs, one for
605 * indirect refs which have a key, and one for indirect refs which do not
606 * have a key. Each tree does merge on insertion.
607 *
608 * Once all of the references are located, we iterate over the tree of
609 * indirect refs with missing keys. An appropriate key is located and
610 * the ref is moved onto the tree for indirect refs. After all missing
611 * keys are thus located, we iterate over the indirect ref tree, resolve
612 * each reference, and then insert the resolved reference onto the
613 * direct tree (merging there too).
614 *
615 * New backrefs (i.e., for parent nodes) are added to the appropriate
616 * rbtree as they are encountered. The new backrefs are subsequently
617 * resolved as above.
618 */
619 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
620 struct btrfs_path *path, u64 time_seq,
621 struct preftrees *preftrees,
622 const u64 *extent_item_pos, u64 total_refs,
623 struct share_check *sc, bool ignore_offset)
624 {
625 int err;
626 int ret = 0;
627 struct ulist *parents;
628 struct ulist_node *node;
629 struct ulist_iterator uiter;
630 struct rb_node *rnode;
631
632 parents = ulist_alloc(GFP_NOFS);
633 if (!parents)
634 return -ENOMEM;
635
636 /*
637 * We could trade memory usage for performance here by iterating
638 * the tree, allocating new refs for each insertion, and then
639 * freeing the entire indirect tree when we're done. In some test
640 * cases, the tree can grow quite large (~200k objects).
641 */
642 while ((rnode = rb_first(&preftrees->indirect.root))) {
643 struct prelim_ref *ref;
644
645 ref = rb_entry(rnode, struct prelim_ref, rbnode);
646 if (WARN(ref->parent,
647 "BUG: direct ref found in indirect tree")) {
648 ret = -EINVAL;
649 goto out;
650 }
651
652 rb_erase(&ref->rbnode, &preftrees->indirect.root);
653 preftrees->indirect.count--;
654
655 if (ref->count == 0) {
656 free_pref(ref);
657 continue;
658 }
659
660 if (sc && sc->root_objectid &&
661 ref->root_id != sc->root_objectid) {
662 free_pref(ref);
663 ret = BACKREF_FOUND_SHARED;
664 goto out;
665 }
666 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
667 parents, extent_item_pos,
668 total_refs, ignore_offset);
669 /*
670 * we can only tolerate ENOENT,otherwise,we should catch error
671 * and return directly.
672 */
673 if (err == -ENOENT) {
674 prelim_ref_insert(fs_info, &preftrees->direct, ref,
675 NULL);
676 continue;
677 } else if (err) {
678 free_pref(ref);
679 ret = err;
680 goto out;
681 }
682
683 /* we put the first parent into the ref at hand */
684 ULIST_ITER_INIT(&uiter);
685 node = ulist_next(parents, &uiter);
686 ref->parent = node ? node->val : 0;
687 ref->inode_list = unode_aux_to_inode_list(node);
688
689 /* Add a prelim_ref(s) for any other parent(s). */
690 while ((node = ulist_next(parents, &uiter))) {
691 struct prelim_ref *new_ref;
692
693 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
694 GFP_NOFS);
695 if (!new_ref) {
696 free_pref(ref);
697 ret = -ENOMEM;
698 goto out;
699 }
700 memcpy(new_ref, ref, sizeof(*ref));
701 new_ref->parent = node->val;
702 new_ref->inode_list = unode_aux_to_inode_list(node);
703 prelim_ref_insert(fs_info, &preftrees->direct,
704 new_ref, NULL);
705 }
706
707 /*
708 * Now it's a direct ref, put it in the the direct tree. We must
709 * do this last because the ref could be merged/freed here.
710 */
711 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
712
713 ulist_reinit(parents);
714 cond_resched();
715 }
716 out:
717 ulist_free(parents);
718 return ret;
719 }
720
721 /*
722 * read tree blocks and add keys where required.
723 */
724 static int add_missing_keys(struct btrfs_fs_info *fs_info,
725 struct preftrees *preftrees)
726 {
727 struct prelim_ref *ref;
728 struct extent_buffer *eb;
729 struct preftree *tree = &preftrees->indirect_missing_keys;
730 struct rb_node *node;
731
732 while ((node = rb_first(&tree->root))) {
733 ref = rb_entry(node, struct prelim_ref, rbnode);
734 rb_erase(node, &tree->root);
735
736 BUG_ON(ref->parent); /* should not be a direct ref */
737 BUG_ON(ref->key_for_search.type);
738 BUG_ON(!ref->wanted_disk_byte);
739
740 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
741 if (IS_ERR(eb)) {
742 free_pref(ref);
743 return PTR_ERR(eb);
744 } else if (!extent_buffer_uptodate(eb)) {
745 free_pref(ref);
746 free_extent_buffer(eb);
747 return -EIO;
748 }
749 btrfs_tree_read_lock(eb);
750 if (btrfs_header_level(eb) == 0)
751 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
752 else
753 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
754 btrfs_tree_read_unlock(eb);
755 free_extent_buffer(eb);
756 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
757 cond_resched();
758 }
759 return 0;
760 }
761
762 /*
763 * add all currently queued delayed refs from this head whose seq nr is
764 * smaller or equal that seq to the list
765 */
766 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
767 struct btrfs_delayed_ref_head *head, u64 seq,
768 struct preftrees *preftrees, u64 *total_refs,
769 struct share_check *sc)
770 {
771 struct btrfs_delayed_ref_node *node;
772 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
773 struct btrfs_key key;
774 struct btrfs_key tmp_op_key;
775 struct btrfs_key *op_key = NULL;
776 struct rb_node *n;
777 int count;
778 int ret = 0;
779
780 if (extent_op && extent_op->update_key) {
781 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
782 op_key = &tmp_op_key;
783 }
784
785 spin_lock(&head->lock);
786 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
787 node = rb_entry(n, struct btrfs_delayed_ref_node,
788 ref_node);
789 if (node->seq > seq)
790 continue;
791
792 switch (node->action) {
793 case BTRFS_ADD_DELAYED_EXTENT:
794 case BTRFS_UPDATE_DELAYED_HEAD:
795 WARN_ON(1);
796 continue;
797 case BTRFS_ADD_DELAYED_REF:
798 count = node->ref_mod;
799 break;
800 case BTRFS_DROP_DELAYED_REF:
801 count = node->ref_mod * -1;
802 break;
803 default:
804 BUG_ON(1);
805 }
806 *total_refs += count;
807 switch (node->type) {
808 case BTRFS_TREE_BLOCK_REF_KEY: {
809 /* NORMAL INDIRECT METADATA backref */
810 struct btrfs_delayed_tree_ref *ref;
811
812 ref = btrfs_delayed_node_to_tree_ref(node);
813 ret = add_indirect_ref(fs_info, preftrees, ref->root,
814 &tmp_op_key, ref->level + 1,
815 node->bytenr, count, sc,
816 GFP_ATOMIC);
817 break;
818 }
819 case BTRFS_SHARED_BLOCK_REF_KEY: {
820 /* SHARED DIRECT METADATA backref */
821 struct btrfs_delayed_tree_ref *ref;
822
823 ref = btrfs_delayed_node_to_tree_ref(node);
824
825 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
826 ref->parent, node->bytenr, count,
827 sc, GFP_ATOMIC);
828 break;
829 }
830 case BTRFS_EXTENT_DATA_REF_KEY: {
831 /* NORMAL INDIRECT DATA backref */
832 struct btrfs_delayed_data_ref *ref;
833 ref = btrfs_delayed_node_to_data_ref(node);
834
835 key.objectid = ref->objectid;
836 key.type = BTRFS_EXTENT_DATA_KEY;
837 key.offset = ref->offset;
838
839 /*
840 * Found a inum that doesn't match our known inum, we
841 * know it's shared.
842 */
843 if (sc && sc->inum && ref->objectid != sc->inum) {
844 ret = BACKREF_FOUND_SHARED;
845 goto out;
846 }
847
848 ret = add_indirect_ref(fs_info, preftrees, ref->root,
849 &key, 0, node->bytenr, count, sc,
850 GFP_ATOMIC);
851 break;
852 }
853 case BTRFS_SHARED_DATA_REF_KEY: {
854 /* SHARED DIRECT FULL backref */
855 struct btrfs_delayed_data_ref *ref;
856
857 ref = btrfs_delayed_node_to_data_ref(node);
858
859 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
860 node->bytenr, count, sc,
861 GFP_ATOMIC);
862 break;
863 }
864 default:
865 WARN_ON(1);
866 }
867 /*
868 * We must ignore BACKREF_FOUND_SHARED until all delayed
869 * refs have been checked.
870 */
871 if (ret && (ret != BACKREF_FOUND_SHARED))
872 break;
873 }
874 if (!ret)
875 ret = extent_is_shared(sc);
876 out:
877 spin_unlock(&head->lock);
878 return ret;
879 }
880
881 /*
882 * add all inline backrefs for bytenr to the list
883 *
884 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
885 */
886 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
887 struct btrfs_path *path, u64 bytenr,
888 int *info_level, struct preftrees *preftrees,
889 u64 *total_refs, struct share_check *sc)
890 {
891 int ret = 0;
892 int slot;
893 struct extent_buffer *leaf;
894 struct btrfs_key key;
895 struct btrfs_key found_key;
896 unsigned long ptr;
897 unsigned long end;
898 struct btrfs_extent_item *ei;
899 u64 flags;
900 u64 item_size;
901
902 /*
903 * enumerate all inline refs
904 */
905 leaf = path->nodes[0];
906 slot = path->slots[0];
907
908 item_size = btrfs_item_size_nr(leaf, slot);
909 BUG_ON(item_size < sizeof(*ei));
910
911 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
912 flags = btrfs_extent_flags(leaf, ei);
913 *total_refs += btrfs_extent_refs(leaf, ei);
914 btrfs_item_key_to_cpu(leaf, &found_key, slot);
915
916 ptr = (unsigned long)(ei + 1);
917 end = (unsigned long)ei + item_size;
918
919 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
920 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
921 struct btrfs_tree_block_info *info;
922
923 info = (struct btrfs_tree_block_info *)ptr;
924 *info_level = btrfs_tree_block_level(leaf, info);
925 ptr += sizeof(struct btrfs_tree_block_info);
926 BUG_ON(ptr > end);
927 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
928 *info_level = found_key.offset;
929 } else {
930 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
931 }
932
933 while (ptr < end) {
934 struct btrfs_extent_inline_ref *iref;
935 u64 offset;
936 int type;
937
938 iref = (struct btrfs_extent_inline_ref *)ptr;
939 type = btrfs_get_extent_inline_ref_type(leaf, iref,
940 BTRFS_REF_TYPE_ANY);
941 if (type == BTRFS_REF_TYPE_INVALID)
942 return -EINVAL;
943
944 offset = btrfs_extent_inline_ref_offset(leaf, iref);
945
946 switch (type) {
947 case BTRFS_SHARED_BLOCK_REF_KEY:
948 ret = add_direct_ref(fs_info, preftrees,
949 *info_level + 1, offset,
950 bytenr, 1, NULL, GFP_NOFS);
951 break;
952 case BTRFS_SHARED_DATA_REF_KEY: {
953 struct btrfs_shared_data_ref *sdref;
954 int count;
955
956 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
957 count = btrfs_shared_data_ref_count(leaf, sdref);
958
959 ret = add_direct_ref(fs_info, preftrees, 0, offset,
960 bytenr, count, sc, GFP_NOFS);
961 break;
962 }
963 case BTRFS_TREE_BLOCK_REF_KEY:
964 ret = add_indirect_ref(fs_info, preftrees, offset,
965 NULL, *info_level + 1,
966 bytenr, 1, NULL, GFP_NOFS);
967 break;
968 case BTRFS_EXTENT_DATA_REF_KEY: {
969 struct btrfs_extent_data_ref *dref;
970 int count;
971 u64 root;
972
973 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
974 count = btrfs_extent_data_ref_count(leaf, dref);
975 key.objectid = btrfs_extent_data_ref_objectid(leaf,
976 dref);
977 key.type = BTRFS_EXTENT_DATA_KEY;
978 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
979
980 if (sc && sc->inum && key.objectid != sc->inum) {
981 ret = BACKREF_FOUND_SHARED;
982 break;
983 }
984
985 root = btrfs_extent_data_ref_root(leaf, dref);
986
987 ret = add_indirect_ref(fs_info, preftrees, root,
988 &key, 0, bytenr, count,
989 sc, GFP_NOFS);
990 break;
991 }
992 default:
993 WARN_ON(1);
994 }
995 if (ret)
996 return ret;
997 ptr += btrfs_extent_inline_ref_size(type);
998 }
999
1000 return 0;
1001 }
1002
1003 /*
1004 * add all non-inline backrefs for bytenr to the list
1005 *
1006 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1007 */
1008 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1009 struct btrfs_path *path, u64 bytenr,
1010 int info_level, struct preftrees *preftrees,
1011 struct share_check *sc)
1012 {
1013 struct btrfs_root *extent_root = fs_info->extent_root;
1014 int ret;
1015 int slot;
1016 struct extent_buffer *leaf;
1017 struct btrfs_key key;
1018
1019 while (1) {
1020 ret = btrfs_next_item(extent_root, path);
1021 if (ret < 0)
1022 break;
1023 if (ret) {
1024 ret = 0;
1025 break;
1026 }
1027
1028 slot = path->slots[0];
1029 leaf = path->nodes[0];
1030 btrfs_item_key_to_cpu(leaf, &key, slot);
1031
1032 if (key.objectid != bytenr)
1033 break;
1034 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1035 continue;
1036 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1037 break;
1038
1039 switch (key.type) {
1040 case BTRFS_SHARED_BLOCK_REF_KEY:
1041 /* SHARED DIRECT METADATA backref */
1042 ret = add_direct_ref(fs_info, preftrees,
1043 info_level + 1, key.offset,
1044 bytenr, 1, NULL, GFP_NOFS);
1045 break;
1046 case BTRFS_SHARED_DATA_REF_KEY: {
1047 /* SHARED DIRECT FULL backref */
1048 struct btrfs_shared_data_ref *sdref;
1049 int count;
1050
1051 sdref = btrfs_item_ptr(leaf, slot,
1052 struct btrfs_shared_data_ref);
1053 count = btrfs_shared_data_ref_count(leaf, sdref);
1054 ret = add_direct_ref(fs_info, preftrees, 0,
1055 key.offset, bytenr, count,
1056 sc, GFP_NOFS);
1057 break;
1058 }
1059 case BTRFS_TREE_BLOCK_REF_KEY:
1060 /* NORMAL INDIRECT METADATA backref */
1061 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1062 NULL, info_level + 1, bytenr,
1063 1, NULL, GFP_NOFS);
1064 break;
1065 case BTRFS_EXTENT_DATA_REF_KEY: {
1066 /* NORMAL INDIRECT DATA backref */
1067 struct btrfs_extent_data_ref *dref;
1068 int count;
1069 u64 root;
1070
1071 dref = btrfs_item_ptr(leaf, slot,
1072 struct btrfs_extent_data_ref);
1073 count = btrfs_extent_data_ref_count(leaf, dref);
1074 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1075 dref);
1076 key.type = BTRFS_EXTENT_DATA_KEY;
1077 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1078
1079 if (sc && sc->inum && key.objectid != sc->inum) {
1080 ret = BACKREF_FOUND_SHARED;
1081 break;
1082 }
1083
1084 root = btrfs_extent_data_ref_root(leaf, dref);
1085 ret = add_indirect_ref(fs_info, preftrees, root,
1086 &key, 0, bytenr, count,
1087 sc, GFP_NOFS);
1088 break;
1089 }
1090 default:
1091 WARN_ON(1);
1092 }
1093 if (ret)
1094 return ret;
1095
1096 }
1097
1098 return ret;
1099 }
1100
1101 /*
1102 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1103 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1104 * indirect refs to their parent bytenr.
1105 * When roots are found, they're added to the roots list
1106 *
1107 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1108 * much like trans == NULL case, the difference only lies in it will not
1109 * commit root.
1110 * The special case is for qgroup to search roots in commit_transaction().
1111 *
1112 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1113 * shared extent is detected.
1114 *
1115 * Otherwise this returns 0 for success and <0 for an error.
1116 *
1117 * If ignore_offset is set to false, only extent refs whose offsets match
1118 * extent_item_pos are returned. If true, every extent ref is returned
1119 * and extent_item_pos is ignored.
1120 *
1121 * FIXME some caching might speed things up
1122 */
1123 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1124 struct btrfs_fs_info *fs_info, u64 bytenr,
1125 u64 time_seq, struct ulist *refs,
1126 struct ulist *roots, const u64 *extent_item_pos,
1127 struct share_check *sc, bool ignore_offset)
1128 {
1129 struct btrfs_key key;
1130 struct btrfs_path *path;
1131 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1132 struct btrfs_delayed_ref_head *head;
1133 int info_level = 0;
1134 int ret;
1135 struct prelim_ref *ref;
1136 struct rb_node *node;
1137 struct extent_inode_elem *eie = NULL;
1138 /* total of both direct AND indirect refs! */
1139 u64 total_refs = 0;
1140 struct preftrees preftrees = {
1141 .direct = PREFTREE_INIT,
1142 .indirect = PREFTREE_INIT,
1143 .indirect_missing_keys = PREFTREE_INIT
1144 };
1145
1146 key.objectid = bytenr;
1147 key.offset = (u64)-1;
1148 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1149 key.type = BTRFS_METADATA_ITEM_KEY;
1150 else
1151 key.type = BTRFS_EXTENT_ITEM_KEY;
1152
1153 path = btrfs_alloc_path();
1154 if (!path)
1155 return -ENOMEM;
1156 if (!trans) {
1157 path->search_commit_root = 1;
1158 path->skip_locking = 1;
1159 }
1160
1161 if (time_seq == SEQ_LAST)
1162 path->skip_locking = 1;
1163
1164 /*
1165 * grab both a lock on the path and a lock on the delayed ref head.
1166 * We need both to get a consistent picture of how the refs look
1167 * at a specified point in time
1168 */
1169 again:
1170 head = NULL;
1171
1172 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1173 if (ret < 0)
1174 goto out;
1175 BUG_ON(ret == 0);
1176
1177 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1178 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1179 time_seq != SEQ_LAST) {
1180 #else
1181 if (trans && time_seq != SEQ_LAST) {
1182 #endif
1183 /*
1184 * look if there are updates for this ref queued and lock the
1185 * head
1186 */
1187 delayed_refs = &trans->transaction->delayed_refs;
1188 spin_lock(&delayed_refs->lock);
1189 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1190 if (head) {
1191 if (!mutex_trylock(&head->mutex)) {
1192 refcount_inc(&head->refs);
1193 spin_unlock(&delayed_refs->lock);
1194
1195 btrfs_release_path(path);
1196
1197 /*
1198 * Mutex was contended, block until it's
1199 * released and try again
1200 */
1201 mutex_lock(&head->mutex);
1202 mutex_unlock(&head->mutex);
1203 btrfs_put_delayed_ref_head(head);
1204 goto again;
1205 }
1206 spin_unlock(&delayed_refs->lock);
1207 ret = add_delayed_refs(fs_info, head, time_seq,
1208 &preftrees, &total_refs, sc);
1209 mutex_unlock(&head->mutex);
1210 if (ret)
1211 goto out;
1212 } else {
1213 spin_unlock(&delayed_refs->lock);
1214 }
1215 }
1216
1217 if (path->slots[0]) {
1218 struct extent_buffer *leaf;
1219 int slot;
1220
1221 path->slots[0]--;
1222 leaf = path->nodes[0];
1223 slot = path->slots[0];
1224 btrfs_item_key_to_cpu(leaf, &key, slot);
1225 if (key.objectid == bytenr &&
1226 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1227 key.type == BTRFS_METADATA_ITEM_KEY)) {
1228 ret = add_inline_refs(fs_info, path, bytenr,
1229 &info_level, &preftrees,
1230 &total_refs, sc);
1231 if (ret)
1232 goto out;
1233 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1234 &preftrees, sc);
1235 if (ret)
1236 goto out;
1237 }
1238 }
1239
1240 btrfs_release_path(path);
1241
1242 ret = add_missing_keys(fs_info, &preftrees);
1243 if (ret)
1244 goto out;
1245
1246 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1247
1248 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1249 extent_item_pos, total_refs, sc, ignore_offset);
1250 if (ret)
1251 goto out;
1252
1253 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1254
1255 /*
1256 * This walks the tree of merged and resolved refs. Tree blocks are
1257 * read in as needed. Unique entries are added to the ulist, and
1258 * the list of found roots is updated.
1259 *
1260 * We release the entire tree in one go before returning.
1261 */
1262 node = rb_first(&preftrees.direct.root);
1263 while (node) {
1264 ref = rb_entry(node, struct prelim_ref, rbnode);
1265 node = rb_next(&ref->rbnode);
1266 WARN_ON(ref->count < 0);
1267 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1268 if (sc && sc->root_objectid &&
1269 ref->root_id != sc->root_objectid) {
1270 ret = BACKREF_FOUND_SHARED;
1271 goto out;
1272 }
1273
1274 /* no parent == root of tree */
1275 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1276 if (ret < 0)
1277 goto out;
1278 }
1279 if (ref->count && ref->parent) {
1280 if (extent_item_pos && !ref->inode_list &&
1281 ref->level == 0) {
1282 struct extent_buffer *eb;
1283
1284 eb = read_tree_block(fs_info, ref->parent, 0);
1285 if (IS_ERR(eb)) {
1286 ret = PTR_ERR(eb);
1287 goto out;
1288 } else if (!extent_buffer_uptodate(eb)) {
1289 free_extent_buffer(eb);
1290 ret = -EIO;
1291 goto out;
1292 }
1293 btrfs_tree_read_lock(eb);
1294 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1295 ret = find_extent_in_eb(eb, bytenr,
1296 *extent_item_pos, &eie, ignore_offset);
1297 btrfs_tree_read_unlock_blocking(eb);
1298 free_extent_buffer(eb);
1299 if (ret < 0)
1300 goto out;
1301 ref->inode_list = eie;
1302 }
1303 ret = ulist_add_merge_ptr(refs, ref->parent,
1304 ref->inode_list,
1305 (void **)&eie, GFP_NOFS);
1306 if (ret < 0)
1307 goto out;
1308 if (!ret && extent_item_pos) {
1309 /*
1310 * we've recorded that parent, so we must extend
1311 * its inode list here
1312 */
1313 BUG_ON(!eie);
1314 while (eie->next)
1315 eie = eie->next;
1316 eie->next = ref->inode_list;
1317 }
1318 eie = NULL;
1319 }
1320 cond_resched();
1321 }
1322
1323 out:
1324 btrfs_free_path(path);
1325
1326 prelim_release(&preftrees.direct);
1327 prelim_release(&preftrees.indirect);
1328 prelim_release(&preftrees.indirect_missing_keys);
1329
1330 if (ret < 0)
1331 free_inode_elem_list(eie);
1332 return ret;
1333 }
1334
1335 static void free_leaf_list(struct ulist *blocks)
1336 {
1337 struct ulist_node *node = NULL;
1338 struct extent_inode_elem *eie;
1339 struct ulist_iterator uiter;
1340
1341 ULIST_ITER_INIT(&uiter);
1342 while ((node = ulist_next(blocks, &uiter))) {
1343 if (!node->aux)
1344 continue;
1345 eie = unode_aux_to_inode_list(node);
1346 free_inode_elem_list(eie);
1347 node->aux = 0;
1348 }
1349
1350 ulist_free(blocks);
1351 }
1352
1353 /*
1354 * Finds all leafs with a reference to the specified combination of bytenr and
1355 * offset. key_list_head will point to a list of corresponding keys (caller must
1356 * free each list element). The leafs will be stored in the leafs ulist, which
1357 * must be freed with ulist_free.
1358 *
1359 * returns 0 on success, <0 on error
1360 */
1361 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1362 struct btrfs_fs_info *fs_info, u64 bytenr,
1363 u64 time_seq, struct ulist **leafs,
1364 const u64 *extent_item_pos, bool ignore_offset)
1365 {
1366 int ret;
1367
1368 *leafs = ulist_alloc(GFP_NOFS);
1369 if (!*leafs)
1370 return -ENOMEM;
1371
1372 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1373 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1374 if (ret < 0 && ret != -ENOENT) {
1375 free_leaf_list(*leafs);
1376 return ret;
1377 }
1378
1379 return 0;
1380 }
1381
1382 /*
1383 * walk all backrefs for a given extent to find all roots that reference this
1384 * extent. Walking a backref means finding all extents that reference this
1385 * extent and in turn walk the backrefs of those, too. Naturally this is a
1386 * recursive process, but here it is implemented in an iterative fashion: We
1387 * find all referencing extents for the extent in question and put them on a
1388 * list. In turn, we find all referencing extents for those, further appending
1389 * to the list. The way we iterate the list allows adding more elements after
1390 * the current while iterating. The process stops when we reach the end of the
1391 * list. Found roots are added to the roots list.
1392 *
1393 * returns 0 on success, < 0 on error.
1394 */
1395 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info, u64 bytenr,
1397 u64 time_seq, struct ulist **roots,
1398 bool ignore_offset)
1399 {
1400 struct ulist *tmp;
1401 struct ulist_node *node = NULL;
1402 struct ulist_iterator uiter;
1403 int ret;
1404
1405 tmp = ulist_alloc(GFP_NOFS);
1406 if (!tmp)
1407 return -ENOMEM;
1408 *roots = ulist_alloc(GFP_NOFS);
1409 if (!*roots) {
1410 ulist_free(tmp);
1411 return -ENOMEM;
1412 }
1413
1414 ULIST_ITER_INIT(&uiter);
1415 while (1) {
1416 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1417 tmp, *roots, NULL, NULL, ignore_offset);
1418 if (ret < 0 && ret != -ENOENT) {
1419 ulist_free(tmp);
1420 ulist_free(*roots);
1421 return ret;
1422 }
1423 node = ulist_next(tmp, &uiter);
1424 if (!node)
1425 break;
1426 bytenr = node->val;
1427 cond_resched();
1428 }
1429
1430 ulist_free(tmp);
1431 return 0;
1432 }
1433
1434 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1435 struct btrfs_fs_info *fs_info, u64 bytenr,
1436 u64 time_seq, struct ulist **roots,
1437 bool ignore_offset)
1438 {
1439 int ret;
1440
1441 if (!trans)
1442 down_read(&fs_info->commit_root_sem);
1443 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1444 time_seq, roots, ignore_offset);
1445 if (!trans)
1446 up_read(&fs_info->commit_root_sem);
1447 return ret;
1448 }
1449
1450 /**
1451 * btrfs_check_shared - tell us whether an extent is shared
1452 *
1453 * btrfs_check_shared uses the backref walking code but will short
1454 * circuit as soon as it finds a root or inode that doesn't match the
1455 * one passed in. This provides a significant performance benefit for
1456 * callers (such as fiemap) which want to know whether the extent is
1457 * shared but do not need a ref count.
1458 *
1459 * This attempts to allocate a transaction in order to account for
1460 * delayed refs, but continues on even when the alloc fails.
1461 *
1462 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1463 */
1464 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1465 {
1466 struct btrfs_fs_info *fs_info = root->fs_info;
1467 struct btrfs_trans_handle *trans;
1468 struct ulist *tmp = NULL;
1469 struct ulist *roots = NULL;
1470 struct ulist_iterator uiter;
1471 struct ulist_node *node;
1472 struct seq_list elem = SEQ_LIST_INIT(elem);
1473 int ret = 0;
1474 struct share_check shared = {
1475 .root_objectid = root->objectid,
1476 .inum = inum,
1477 .share_count = 0,
1478 };
1479
1480 tmp = ulist_alloc(GFP_NOFS);
1481 roots = ulist_alloc(GFP_NOFS);
1482 if (!tmp || !roots) {
1483 ulist_free(tmp);
1484 ulist_free(roots);
1485 return -ENOMEM;
1486 }
1487
1488 trans = btrfs_join_transaction(root);
1489 if (IS_ERR(trans)) {
1490 trans = NULL;
1491 down_read(&fs_info->commit_root_sem);
1492 } else {
1493 btrfs_get_tree_mod_seq(fs_info, &elem);
1494 }
1495
1496 ULIST_ITER_INIT(&uiter);
1497 while (1) {
1498 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1499 roots, NULL, &shared, false);
1500 if (ret == BACKREF_FOUND_SHARED) {
1501 /* this is the only condition under which we return 1 */
1502 ret = 1;
1503 break;
1504 }
1505 if (ret < 0 && ret != -ENOENT)
1506 break;
1507 ret = 0;
1508 node = ulist_next(tmp, &uiter);
1509 if (!node)
1510 break;
1511 bytenr = node->val;
1512 cond_resched();
1513 }
1514
1515 if (trans) {
1516 btrfs_put_tree_mod_seq(fs_info, &elem);
1517 btrfs_end_transaction(trans);
1518 } else {
1519 up_read(&fs_info->commit_root_sem);
1520 }
1521 ulist_free(tmp);
1522 ulist_free(roots);
1523 return ret;
1524 }
1525
1526 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1527 u64 start_off, struct btrfs_path *path,
1528 struct btrfs_inode_extref **ret_extref,
1529 u64 *found_off)
1530 {
1531 int ret, slot;
1532 struct btrfs_key key;
1533 struct btrfs_key found_key;
1534 struct btrfs_inode_extref *extref;
1535 const struct extent_buffer *leaf;
1536 unsigned long ptr;
1537
1538 key.objectid = inode_objectid;
1539 key.type = BTRFS_INODE_EXTREF_KEY;
1540 key.offset = start_off;
1541
1542 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1543 if (ret < 0)
1544 return ret;
1545
1546 while (1) {
1547 leaf = path->nodes[0];
1548 slot = path->slots[0];
1549 if (slot >= btrfs_header_nritems(leaf)) {
1550 /*
1551 * If the item at offset is not found,
1552 * btrfs_search_slot will point us to the slot
1553 * where it should be inserted. In our case
1554 * that will be the slot directly before the
1555 * next INODE_REF_KEY_V2 item. In the case
1556 * that we're pointing to the last slot in a
1557 * leaf, we must move one leaf over.
1558 */
1559 ret = btrfs_next_leaf(root, path);
1560 if (ret) {
1561 if (ret >= 1)
1562 ret = -ENOENT;
1563 break;
1564 }
1565 continue;
1566 }
1567
1568 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1569
1570 /*
1571 * Check that we're still looking at an extended ref key for
1572 * this particular objectid. If we have different
1573 * objectid or type then there are no more to be found
1574 * in the tree and we can exit.
1575 */
1576 ret = -ENOENT;
1577 if (found_key.objectid != inode_objectid)
1578 break;
1579 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1580 break;
1581
1582 ret = 0;
1583 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1584 extref = (struct btrfs_inode_extref *)ptr;
1585 *ret_extref = extref;
1586 if (found_off)
1587 *found_off = found_key.offset;
1588 break;
1589 }
1590
1591 return ret;
1592 }
1593
1594 /*
1595 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1596 * Elements of the path are separated by '/' and the path is guaranteed to be
1597 * 0-terminated. the path is only given within the current file system.
1598 * Therefore, it never starts with a '/'. the caller is responsible to provide
1599 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1600 * the start point of the resulting string is returned. this pointer is within
1601 * dest, normally.
1602 * in case the path buffer would overflow, the pointer is decremented further
1603 * as if output was written to the buffer, though no more output is actually
1604 * generated. that way, the caller can determine how much space would be
1605 * required for the path to fit into the buffer. in that case, the returned
1606 * value will be smaller than dest. callers must check this!
1607 */
1608 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1609 u32 name_len, unsigned long name_off,
1610 struct extent_buffer *eb_in, u64 parent,
1611 char *dest, u32 size)
1612 {
1613 int slot;
1614 u64 next_inum;
1615 int ret;
1616 s64 bytes_left = ((s64)size) - 1;
1617 struct extent_buffer *eb = eb_in;
1618 struct btrfs_key found_key;
1619 int leave_spinning = path->leave_spinning;
1620 struct btrfs_inode_ref *iref;
1621
1622 if (bytes_left >= 0)
1623 dest[bytes_left] = '\0';
1624
1625 path->leave_spinning = 1;
1626 while (1) {
1627 bytes_left -= name_len;
1628 if (bytes_left >= 0)
1629 read_extent_buffer(eb, dest + bytes_left,
1630 name_off, name_len);
1631 if (eb != eb_in) {
1632 if (!path->skip_locking)
1633 btrfs_tree_read_unlock_blocking(eb);
1634 free_extent_buffer(eb);
1635 }
1636 ret = btrfs_find_item(fs_root, path, parent, 0,
1637 BTRFS_INODE_REF_KEY, &found_key);
1638 if (ret > 0)
1639 ret = -ENOENT;
1640 if (ret)
1641 break;
1642
1643 next_inum = found_key.offset;
1644
1645 /* regular exit ahead */
1646 if (parent == next_inum)
1647 break;
1648
1649 slot = path->slots[0];
1650 eb = path->nodes[0];
1651 /* make sure we can use eb after releasing the path */
1652 if (eb != eb_in) {
1653 if (!path->skip_locking)
1654 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1655 path->nodes[0] = NULL;
1656 path->locks[0] = 0;
1657 }
1658 btrfs_release_path(path);
1659 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1660
1661 name_len = btrfs_inode_ref_name_len(eb, iref);
1662 name_off = (unsigned long)(iref + 1);
1663
1664 parent = next_inum;
1665 --bytes_left;
1666 if (bytes_left >= 0)
1667 dest[bytes_left] = '/';
1668 }
1669
1670 btrfs_release_path(path);
1671 path->leave_spinning = leave_spinning;
1672
1673 if (ret)
1674 return ERR_PTR(ret);
1675
1676 return dest + bytes_left;
1677 }
1678
1679 /*
1680 * this makes the path point to (logical EXTENT_ITEM *)
1681 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1682 * tree blocks and <0 on error.
1683 */
1684 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1685 struct btrfs_path *path, struct btrfs_key *found_key,
1686 u64 *flags_ret)
1687 {
1688 int ret;
1689 u64 flags;
1690 u64 size = 0;
1691 u32 item_size;
1692 const struct extent_buffer *eb;
1693 struct btrfs_extent_item *ei;
1694 struct btrfs_key key;
1695
1696 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1697 key.type = BTRFS_METADATA_ITEM_KEY;
1698 else
1699 key.type = BTRFS_EXTENT_ITEM_KEY;
1700 key.objectid = logical;
1701 key.offset = (u64)-1;
1702
1703 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1704 if (ret < 0)
1705 return ret;
1706
1707 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1708 if (ret) {
1709 if (ret > 0)
1710 ret = -ENOENT;
1711 return ret;
1712 }
1713 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1714 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1715 size = fs_info->nodesize;
1716 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1717 size = found_key->offset;
1718
1719 if (found_key->objectid > logical ||
1720 found_key->objectid + size <= logical) {
1721 btrfs_debug(fs_info,
1722 "logical %llu is not within any extent", logical);
1723 return -ENOENT;
1724 }
1725
1726 eb = path->nodes[0];
1727 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1728 BUG_ON(item_size < sizeof(*ei));
1729
1730 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1731 flags = btrfs_extent_flags(eb, ei);
1732
1733 btrfs_debug(fs_info,
1734 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1735 logical, logical - found_key->objectid, found_key->objectid,
1736 found_key->offset, flags, item_size);
1737
1738 WARN_ON(!flags_ret);
1739 if (flags_ret) {
1740 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1741 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1742 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1743 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1744 else
1745 BUG_ON(1);
1746 return 0;
1747 }
1748
1749 return -EIO;
1750 }
1751
1752 /*
1753 * helper function to iterate extent inline refs. ptr must point to a 0 value
1754 * for the first call and may be modified. it is used to track state.
1755 * if more refs exist, 0 is returned and the next call to
1756 * get_extent_inline_ref must pass the modified ptr parameter to get the
1757 * next ref. after the last ref was processed, 1 is returned.
1758 * returns <0 on error
1759 */
1760 static int get_extent_inline_ref(unsigned long *ptr,
1761 const struct extent_buffer *eb,
1762 const struct btrfs_key *key,
1763 const struct btrfs_extent_item *ei,
1764 u32 item_size,
1765 struct btrfs_extent_inline_ref **out_eiref,
1766 int *out_type)
1767 {
1768 unsigned long end;
1769 u64 flags;
1770 struct btrfs_tree_block_info *info;
1771
1772 if (!*ptr) {
1773 /* first call */
1774 flags = btrfs_extent_flags(eb, ei);
1775 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1776 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1777 /* a skinny metadata extent */
1778 *out_eiref =
1779 (struct btrfs_extent_inline_ref *)(ei + 1);
1780 } else {
1781 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1782 info = (struct btrfs_tree_block_info *)(ei + 1);
1783 *out_eiref =
1784 (struct btrfs_extent_inline_ref *)(info + 1);
1785 }
1786 } else {
1787 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1788 }
1789 *ptr = (unsigned long)*out_eiref;
1790 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1791 return -ENOENT;
1792 }
1793
1794 end = (unsigned long)ei + item_size;
1795 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1796 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1797 BTRFS_REF_TYPE_ANY);
1798 if (*out_type == BTRFS_REF_TYPE_INVALID)
1799 return -EINVAL;
1800
1801 *ptr += btrfs_extent_inline_ref_size(*out_type);
1802 WARN_ON(*ptr > end);
1803 if (*ptr == end)
1804 return 1; /* last */
1805
1806 return 0;
1807 }
1808
1809 /*
1810 * reads the tree block backref for an extent. tree level and root are returned
1811 * through out_level and out_root. ptr must point to a 0 value for the first
1812 * call and may be modified (see get_extent_inline_ref comment).
1813 * returns 0 if data was provided, 1 if there was no more data to provide or
1814 * <0 on error.
1815 */
1816 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1817 struct btrfs_key *key, struct btrfs_extent_item *ei,
1818 u32 item_size, u64 *out_root, u8 *out_level)
1819 {
1820 int ret;
1821 int type;
1822 struct btrfs_extent_inline_ref *eiref;
1823
1824 if (*ptr == (unsigned long)-1)
1825 return 1;
1826
1827 while (1) {
1828 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1829 &eiref, &type);
1830 if (ret < 0)
1831 return ret;
1832
1833 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1834 type == BTRFS_SHARED_BLOCK_REF_KEY)
1835 break;
1836
1837 if (ret == 1)
1838 return 1;
1839 }
1840
1841 /* we can treat both ref types equally here */
1842 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1843
1844 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1845 struct btrfs_tree_block_info *info;
1846
1847 info = (struct btrfs_tree_block_info *)(ei + 1);
1848 *out_level = btrfs_tree_block_level(eb, info);
1849 } else {
1850 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1851 *out_level = (u8)key->offset;
1852 }
1853
1854 if (ret == 1)
1855 *ptr = (unsigned long)-1;
1856
1857 return 0;
1858 }
1859
1860 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1861 struct extent_inode_elem *inode_list,
1862 u64 root, u64 extent_item_objectid,
1863 iterate_extent_inodes_t *iterate, void *ctx)
1864 {
1865 struct extent_inode_elem *eie;
1866 int ret = 0;
1867
1868 for (eie = inode_list; eie; eie = eie->next) {
1869 btrfs_debug(fs_info,
1870 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1871 extent_item_objectid, eie->inum,
1872 eie->offset, root);
1873 ret = iterate(eie->inum, eie->offset, root, ctx);
1874 if (ret) {
1875 btrfs_debug(fs_info,
1876 "stopping iteration for %llu due to ret=%d",
1877 extent_item_objectid, ret);
1878 break;
1879 }
1880 }
1881
1882 return ret;
1883 }
1884
1885 /*
1886 * calls iterate() for every inode that references the extent identified by
1887 * the given parameters.
1888 * when the iterator function returns a non-zero value, iteration stops.
1889 */
1890 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1891 u64 extent_item_objectid, u64 extent_item_pos,
1892 int search_commit_root,
1893 iterate_extent_inodes_t *iterate, void *ctx,
1894 bool ignore_offset)
1895 {
1896 int ret;
1897 struct btrfs_trans_handle *trans = NULL;
1898 struct ulist *refs = NULL;
1899 struct ulist *roots = NULL;
1900 struct ulist_node *ref_node = NULL;
1901 struct ulist_node *root_node = NULL;
1902 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1903 struct ulist_iterator ref_uiter;
1904 struct ulist_iterator root_uiter;
1905
1906 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1907 extent_item_objectid);
1908
1909 if (!search_commit_root) {
1910 trans = btrfs_join_transaction(fs_info->extent_root);
1911 if (IS_ERR(trans))
1912 return PTR_ERR(trans);
1913 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1914 } else {
1915 down_read(&fs_info->commit_root_sem);
1916 }
1917
1918 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1919 tree_mod_seq_elem.seq, &refs,
1920 &extent_item_pos, ignore_offset);
1921 if (ret)
1922 goto out;
1923
1924 ULIST_ITER_INIT(&ref_uiter);
1925 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1926 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1927 tree_mod_seq_elem.seq, &roots,
1928 ignore_offset);
1929 if (ret)
1930 break;
1931 ULIST_ITER_INIT(&root_uiter);
1932 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1933 btrfs_debug(fs_info,
1934 "root %llu references leaf %llu, data list %#llx",
1935 root_node->val, ref_node->val,
1936 ref_node->aux);
1937 ret = iterate_leaf_refs(fs_info,
1938 (struct extent_inode_elem *)
1939 (uintptr_t)ref_node->aux,
1940 root_node->val,
1941 extent_item_objectid,
1942 iterate, ctx);
1943 }
1944 ulist_free(roots);
1945 }
1946
1947 free_leaf_list(refs);
1948 out:
1949 if (!search_commit_root) {
1950 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1951 btrfs_end_transaction(trans);
1952 } else {
1953 up_read(&fs_info->commit_root_sem);
1954 }
1955
1956 return ret;
1957 }
1958
1959 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1960 struct btrfs_path *path,
1961 iterate_extent_inodes_t *iterate, void *ctx,
1962 bool ignore_offset)
1963 {
1964 int ret;
1965 u64 extent_item_pos;
1966 u64 flags = 0;
1967 struct btrfs_key found_key;
1968 int search_commit_root = path->search_commit_root;
1969
1970 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1971 btrfs_release_path(path);
1972 if (ret < 0)
1973 return ret;
1974 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1975 return -EINVAL;
1976
1977 extent_item_pos = logical - found_key.objectid;
1978 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1979 extent_item_pos, search_commit_root,
1980 iterate, ctx, ignore_offset);
1981
1982 return ret;
1983 }
1984
1985 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1986 struct extent_buffer *eb, void *ctx);
1987
1988 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1989 struct btrfs_path *path,
1990 iterate_irefs_t *iterate, void *ctx)
1991 {
1992 int ret = 0;
1993 int slot;
1994 u32 cur;
1995 u32 len;
1996 u32 name_len;
1997 u64 parent = 0;
1998 int found = 0;
1999 struct extent_buffer *eb;
2000 struct btrfs_item *item;
2001 struct btrfs_inode_ref *iref;
2002 struct btrfs_key found_key;
2003
2004 while (!ret) {
2005 ret = btrfs_find_item(fs_root, path, inum,
2006 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2007 &found_key);
2008
2009 if (ret < 0)
2010 break;
2011 if (ret) {
2012 ret = found ? 0 : -ENOENT;
2013 break;
2014 }
2015 ++found;
2016
2017 parent = found_key.offset;
2018 slot = path->slots[0];
2019 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2020 if (!eb) {
2021 ret = -ENOMEM;
2022 break;
2023 }
2024 extent_buffer_get(eb);
2025 btrfs_tree_read_lock(eb);
2026 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2027 btrfs_release_path(path);
2028
2029 item = btrfs_item_nr(slot);
2030 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2031
2032 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2033 name_len = btrfs_inode_ref_name_len(eb, iref);
2034 /* path must be released before calling iterate()! */
2035 btrfs_debug(fs_root->fs_info,
2036 "following ref at offset %u for inode %llu in tree %llu",
2037 cur, found_key.objectid, fs_root->objectid);
2038 ret = iterate(parent, name_len,
2039 (unsigned long)(iref + 1), eb, ctx);
2040 if (ret)
2041 break;
2042 len = sizeof(*iref) + name_len;
2043 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2044 }
2045 btrfs_tree_read_unlock_blocking(eb);
2046 free_extent_buffer(eb);
2047 }
2048
2049 btrfs_release_path(path);
2050
2051 return ret;
2052 }
2053
2054 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2055 struct btrfs_path *path,
2056 iterate_irefs_t *iterate, void *ctx)
2057 {
2058 int ret;
2059 int slot;
2060 u64 offset = 0;
2061 u64 parent;
2062 int found = 0;
2063 struct extent_buffer *eb;
2064 struct btrfs_inode_extref *extref;
2065 u32 item_size;
2066 u32 cur_offset;
2067 unsigned long ptr;
2068
2069 while (1) {
2070 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2071 &offset);
2072 if (ret < 0)
2073 break;
2074 if (ret) {
2075 ret = found ? 0 : -ENOENT;
2076 break;
2077 }
2078 ++found;
2079
2080 slot = path->slots[0];
2081 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2082 if (!eb) {
2083 ret = -ENOMEM;
2084 break;
2085 }
2086 extent_buffer_get(eb);
2087
2088 btrfs_tree_read_lock(eb);
2089 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2090 btrfs_release_path(path);
2091
2092 item_size = btrfs_item_size_nr(eb, slot);
2093 ptr = btrfs_item_ptr_offset(eb, slot);
2094 cur_offset = 0;
2095
2096 while (cur_offset < item_size) {
2097 u32 name_len;
2098
2099 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2100 parent = btrfs_inode_extref_parent(eb, extref);
2101 name_len = btrfs_inode_extref_name_len(eb, extref);
2102 ret = iterate(parent, name_len,
2103 (unsigned long)&extref->name, eb, ctx);
2104 if (ret)
2105 break;
2106
2107 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2108 cur_offset += sizeof(*extref);
2109 }
2110 btrfs_tree_read_unlock_blocking(eb);
2111 free_extent_buffer(eb);
2112
2113 offset++;
2114 }
2115
2116 btrfs_release_path(path);
2117
2118 return ret;
2119 }
2120
2121 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2122 struct btrfs_path *path, iterate_irefs_t *iterate,
2123 void *ctx)
2124 {
2125 int ret;
2126 int found_refs = 0;
2127
2128 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2129 if (!ret)
2130 ++found_refs;
2131 else if (ret != -ENOENT)
2132 return ret;
2133
2134 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2135 if (ret == -ENOENT && found_refs)
2136 return 0;
2137
2138 return ret;
2139 }
2140
2141 /*
2142 * returns 0 if the path could be dumped (probably truncated)
2143 * returns <0 in case of an error
2144 */
2145 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2146 struct extent_buffer *eb, void *ctx)
2147 {
2148 struct inode_fs_paths *ipath = ctx;
2149 char *fspath;
2150 char *fspath_min;
2151 int i = ipath->fspath->elem_cnt;
2152 const int s_ptr = sizeof(char *);
2153 u32 bytes_left;
2154
2155 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2156 ipath->fspath->bytes_left - s_ptr : 0;
2157
2158 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2159 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2160 name_off, eb, inum, fspath_min, bytes_left);
2161 if (IS_ERR(fspath))
2162 return PTR_ERR(fspath);
2163
2164 if (fspath > fspath_min) {
2165 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2166 ++ipath->fspath->elem_cnt;
2167 ipath->fspath->bytes_left = fspath - fspath_min;
2168 } else {
2169 ++ipath->fspath->elem_missed;
2170 ipath->fspath->bytes_missing += fspath_min - fspath;
2171 ipath->fspath->bytes_left = 0;
2172 }
2173
2174 return 0;
2175 }
2176
2177 /*
2178 * this dumps all file system paths to the inode into the ipath struct, provided
2179 * is has been created large enough. each path is zero-terminated and accessed
2180 * from ipath->fspath->val[i].
2181 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2182 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2183 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2184 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2185 * have been needed to return all paths.
2186 */
2187 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2188 {
2189 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2190 inode_to_path, ipath);
2191 }
2192
2193 struct btrfs_data_container *init_data_container(u32 total_bytes)
2194 {
2195 struct btrfs_data_container *data;
2196 size_t alloc_bytes;
2197
2198 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2199 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2200 if (!data)
2201 return ERR_PTR(-ENOMEM);
2202
2203 if (total_bytes >= sizeof(*data)) {
2204 data->bytes_left = total_bytes - sizeof(*data);
2205 data->bytes_missing = 0;
2206 } else {
2207 data->bytes_missing = sizeof(*data) - total_bytes;
2208 data->bytes_left = 0;
2209 }
2210
2211 data->elem_cnt = 0;
2212 data->elem_missed = 0;
2213
2214 return data;
2215 }
2216
2217 /*
2218 * allocates space to return multiple file system paths for an inode.
2219 * total_bytes to allocate are passed, note that space usable for actual path
2220 * information will be total_bytes - sizeof(struct inode_fs_paths).
2221 * the returned pointer must be freed with free_ipath() in the end.
2222 */
2223 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2224 struct btrfs_path *path)
2225 {
2226 struct inode_fs_paths *ifp;
2227 struct btrfs_data_container *fspath;
2228
2229 fspath = init_data_container(total_bytes);
2230 if (IS_ERR(fspath))
2231 return (void *)fspath;
2232
2233 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2234 if (!ifp) {
2235 kvfree(fspath);
2236 return ERR_PTR(-ENOMEM);
2237 }
2238
2239 ifp->btrfs_path = path;
2240 ifp->fspath = fspath;
2241 ifp->fs_root = fs_root;
2242
2243 return ifp;
2244 }
2245
2246 void free_ipath(struct inode_fs_paths *ipath)
2247 {
2248 if (!ipath)
2249 return;
2250 kvfree(ipath->fspath);
2251 kfree(ipath);
2252 }