]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/block-rsv.c
Merge tag 'fixes-v5.9a' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / block-rsv.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9
10 /*
11 * HOW DO BLOCK RESERVES WORK
12 *
13 * Think of block_rsv's as buckets for logically grouped metadata
14 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is
15 * how large we want our block rsv to be, ->reserved is how much space is
16 * currently reserved for this block reserve.
17 *
18 * ->failfast exists for the truncate case, and is described below.
19 *
20 * NORMAL OPERATION
21 *
22 * -> Reserve
23 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
24 *
25 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is
26 * accounted for in space_info->bytes_may_use, and then add the bytes to
27 * ->reserved, and ->size in the case of btrfs_block_rsv_add.
28 *
29 * ->size is an over-estimation of how much we may use for a particular
30 * operation.
31 *
32 * -> Use
33 * Entrance: btrfs_use_block_rsv
34 *
35 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
36 * to determine the appropriate block_rsv to use, and then verify that
37 * ->reserved has enough space for our tree block allocation. Once
38 * successful we subtract fs_info->nodesize from ->reserved.
39 *
40 * -> Finish
41 * Entrance: btrfs_block_rsv_release
42 *
43 * We are finished with our operation, subtract our individual reservation
44 * from ->size, and then subtract ->size from ->reserved and free up the
45 * excess if there is any.
46 *
47 * There is some logic here to refill the delayed refs rsv or the global rsv
48 * as needed, otherwise the excess is subtracted from
49 * space_info->bytes_may_use.
50 *
51 * TYPES OF BLOCK RESERVES
52 *
53 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
54 * These behave normally, as described above, just within the confines of the
55 * lifetime of their particular operation (transaction for the whole trans
56 * handle lifetime, for example).
57 *
58 * BLOCK_RSV_GLOBAL
59 * It is impossible to properly account for all the space that may be required
60 * to make our extent tree updates. This block reserve acts as an overflow
61 * buffer in case our delayed refs reserve does not reserve enough space to
62 * update the extent tree.
63 *
64 * We can steal from this in some cases as well, notably on evict() or
65 * truncate() in order to help users recover from ENOSPC conditions.
66 *
67 * BLOCK_RSV_DELALLOC
68 * The individual item sizes are determined by the per-inode size
69 * calculations, which are described with the delalloc code. This is pretty
70 * straightforward, it's just the calculation of ->size encodes a lot of
71 * different items, and thus it gets used when updating inodes, inserting file
72 * extents, and inserting checksums.
73 *
74 * BLOCK_RSV_DELREFS
75 * We keep a running tally of how many delayed refs we have on the system.
76 * We assume each one of these delayed refs are going to use a full
77 * reservation. We use the transaction items and pre-reserve space for every
78 * operation, and use this reservation to refill any gap between ->size and
79 * ->reserved that may exist.
80 *
81 * From there it's straightforward, removing a delayed ref means we remove its
82 * count from ->size and free up reservations as necessary. Since this is
83 * the most dynamic block reserve in the system, we will try to refill this
84 * block reserve first with any excess returned by any other block reserve.
85 *
86 * BLOCK_RSV_EMPTY
87 * This is the fallback block reserve to make us try to reserve space if we
88 * don't have a specific bucket for this allocation. It is mostly used for
89 * updating the device tree and such, since that is a separate pool we're
90 * content to just reserve space from the space_info on demand.
91 *
92 * BLOCK_RSV_TEMP
93 * This is used by things like truncate and iput. We will temporarily
94 * allocate a block reserve, set it to some size, and then truncate bytes
95 * until we have no space left. With ->failfast set we'll simply return
96 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
97 * to make a new reservation. This is because these operations are
98 * unbounded, so we want to do as much work as we can, and then back off and
99 * re-reserve.
100 */
101
102 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
103 struct btrfs_block_rsv *block_rsv,
104 struct btrfs_block_rsv *dest, u64 num_bytes,
105 u64 *qgroup_to_release_ret)
106 {
107 struct btrfs_space_info *space_info = block_rsv->space_info;
108 u64 qgroup_to_release = 0;
109 u64 ret;
110
111 spin_lock(&block_rsv->lock);
112 if (num_bytes == (u64)-1) {
113 num_bytes = block_rsv->size;
114 qgroup_to_release = block_rsv->qgroup_rsv_size;
115 }
116 block_rsv->size -= num_bytes;
117 if (block_rsv->reserved >= block_rsv->size) {
118 num_bytes = block_rsv->reserved - block_rsv->size;
119 block_rsv->reserved = block_rsv->size;
120 block_rsv->full = 1;
121 } else {
122 num_bytes = 0;
123 }
124 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
125 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
126 block_rsv->qgroup_rsv_size;
127 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
128 } else {
129 qgroup_to_release = 0;
130 }
131 spin_unlock(&block_rsv->lock);
132
133 ret = num_bytes;
134 if (num_bytes > 0) {
135 if (dest) {
136 spin_lock(&dest->lock);
137 if (!dest->full) {
138 u64 bytes_to_add;
139
140 bytes_to_add = dest->size - dest->reserved;
141 bytes_to_add = min(num_bytes, bytes_to_add);
142 dest->reserved += bytes_to_add;
143 if (dest->reserved >= dest->size)
144 dest->full = 1;
145 num_bytes -= bytes_to_add;
146 }
147 spin_unlock(&dest->lock);
148 }
149 if (num_bytes)
150 btrfs_space_info_free_bytes_may_use(fs_info,
151 space_info,
152 num_bytes);
153 }
154 if (qgroup_to_release_ret)
155 *qgroup_to_release_ret = qgroup_to_release;
156 return ret;
157 }
158
159 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
160 struct btrfs_block_rsv *dst, u64 num_bytes,
161 bool update_size)
162 {
163 int ret;
164
165 ret = btrfs_block_rsv_use_bytes(src, num_bytes);
166 if (ret)
167 return ret;
168
169 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
170 return 0;
171 }
172
173 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
174 {
175 memset(rsv, 0, sizeof(*rsv));
176 spin_lock_init(&rsv->lock);
177 rsv->type = type;
178 }
179
180 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
181 struct btrfs_block_rsv *rsv,
182 unsigned short type)
183 {
184 btrfs_init_block_rsv(rsv, type);
185 rsv->space_info = btrfs_find_space_info(fs_info,
186 BTRFS_BLOCK_GROUP_METADATA);
187 }
188
189 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
190 unsigned short type)
191 {
192 struct btrfs_block_rsv *block_rsv;
193
194 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
195 if (!block_rsv)
196 return NULL;
197
198 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
199 return block_rsv;
200 }
201
202 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
203 struct btrfs_block_rsv *rsv)
204 {
205 if (!rsv)
206 return;
207 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
208 kfree(rsv);
209 }
210
211 int btrfs_block_rsv_add(struct btrfs_root *root,
212 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
213 enum btrfs_reserve_flush_enum flush)
214 {
215 int ret;
216
217 if (num_bytes == 0)
218 return 0;
219
220 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
221 if (!ret)
222 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
223
224 return ret;
225 }
226
227 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
228 {
229 u64 num_bytes = 0;
230 int ret = -ENOSPC;
231
232 if (!block_rsv)
233 return 0;
234
235 spin_lock(&block_rsv->lock);
236 num_bytes = div_factor(block_rsv->size, min_factor);
237 if (block_rsv->reserved >= num_bytes)
238 ret = 0;
239 spin_unlock(&block_rsv->lock);
240
241 return ret;
242 }
243
244 int btrfs_block_rsv_refill(struct btrfs_root *root,
245 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
246 enum btrfs_reserve_flush_enum flush)
247 {
248 u64 num_bytes = 0;
249 int ret = -ENOSPC;
250
251 if (!block_rsv)
252 return 0;
253
254 spin_lock(&block_rsv->lock);
255 num_bytes = min_reserved;
256 if (block_rsv->reserved >= num_bytes)
257 ret = 0;
258 else
259 num_bytes -= block_rsv->reserved;
260 spin_unlock(&block_rsv->lock);
261
262 if (!ret)
263 return 0;
264
265 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
266 if (!ret) {
267 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
268 return 0;
269 }
270
271 return ret;
272 }
273
274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
275 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
276 u64 *qgroup_to_release)
277 {
278 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
279 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
280 struct btrfs_block_rsv *target = NULL;
281
282 /*
283 * If we are the delayed_rsv then push to the global rsv, otherwise dump
284 * into the delayed rsv if it is not full.
285 */
286 if (block_rsv == delayed_rsv)
287 target = global_rsv;
288 else if (block_rsv != global_rsv && !delayed_rsv->full)
289 target = delayed_rsv;
290
291 if (target && block_rsv->space_info != target->space_info)
292 target = NULL;
293
294 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
295 qgroup_to_release);
296 }
297
298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
299 {
300 int ret = -ENOSPC;
301
302 spin_lock(&block_rsv->lock);
303 if (block_rsv->reserved >= num_bytes) {
304 block_rsv->reserved -= num_bytes;
305 if (block_rsv->reserved < block_rsv->size)
306 block_rsv->full = 0;
307 ret = 0;
308 }
309 spin_unlock(&block_rsv->lock);
310 return ret;
311 }
312
313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
314 u64 num_bytes, bool update_size)
315 {
316 spin_lock(&block_rsv->lock);
317 block_rsv->reserved += num_bytes;
318 if (update_size)
319 block_rsv->size += num_bytes;
320 else if (block_rsv->reserved >= block_rsv->size)
321 block_rsv->full = 1;
322 spin_unlock(&block_rsv->lock);
323 }
324
325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
326 struct btrfs_block_rsv *dest, u64 num_bytes,
327 int min_factor)
328 {
329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
330 u64 min_bytes;
331
332 if (global_rsv->space_info != dest->space_info)
333 return -ENOSPC;
334
335 spin_lock(&global_rsv->lock);
336 min_bytes = div_factor(global_rsv->size, min_factor);
337 if (global_rsv->reserved < min_bytes + num_bytes) {
338 spin_unlock(&global_rsv->lock);
339 return -ENOSPC;
340 }
341 global_rsv->reserved -= num_bytes;
342 if (global_rsv->reserved < global_rsv->size)
343 global_rsv->full = 0;
344 spin_unlock(&global_rsv->lock);
345
346 btrfs_block_rsv_add_bytes(dest, num_bytes, true);
347 return 0;
348 }
349
350 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
351 {
352 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
353 struct btrfs_space_info *sinfo = block_rsv->space_info;
354 u64 num_bytes;
355 unsigned min_items;
356
357 /*
358 * The global block rsv is based on the size of the extent tree, the
359 * checksum tree and the root tree. If the fs is empty we want to set
360 * it to a minimal amount for safety.
361 */
362 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
363 btrfs_root_used(&fs_info->csum_root->root_item) +
364 btrfs_root_used(&fs_info->tree_root->root_item);
365
366 /*
367 * We at a minimum are going to modify the csum root, the tree root, and
368 * the extent root.
369 */
370 min_items = 3;
371
372 /*
373 * But we also want to reserve enough space so we can do the fallback
374 * global reserve for an unlink, which is an additional 5 items (see the
375 * comment in __unlink_start_trans for what we're modifying.)
376 *
377 * But we also need space for the delayed ref updates from the unlink,
378 * so its 10, 5 for the actual operation, and 5 for the delayed ref
379 * updates.
380 */
381 min_items += 10;
382
383 num_bytes = max_t(u64, num_bytes,
384 btrfs_calc_insert_metadata_size(fs_info, min_items));
385
386 spin_lock(&sinfo->lock);
387 spin_lock(&block_rsv->lock);
388
389 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
390
391 if (block_rsv->reserved < block_rsv->size) {
392 num_bytes = block_rsv->size - block_rsv->reserved;
393 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
394 num_bytes);
395 block_rsv->reserved = block_rsv->size;
396 } else if (block_rsv->reserved > block_rsv->size) {
397 num_bytes = block_rsv->reserved - block_rsv->size;
398 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
399 -num_bytes);
400 block_rsv->reserved = block_rsv->size;
401 btrfs_try_granting_tickets(fs_info, sinfo);
402 }
403
404 if (block_rsv->reserved == block_rsv->size)
405 block_rsv->full = 1;
406 else
407 block_rsv->full = 0;
408
409 if (block_rsv->size >= sinfo->total_bytes)
410 sinfo->force_alloc = CHUNK_ALLOC_FORCE;
411 spin_unlock(&block_rsv->lock);
412 spin_unlock(&sinfo->lock);
413 }
414
415 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
416 {
417 struct btrfs_space_info *space_info;
418
419 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
420 fs_info->chunk_block_rsv.space_info = space_info;
421
422 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
423 fs_info->global_block_rsv.space_info = space_info;
424 fs_info->trans_block_rsv.space_info = space_info;
425 fs_info->empty_block_rsv.space_info = space_info;
426 fs_info->delayed_block_rsv.space_info = space_info;
427 fs_info->delayed_refs_rsv.space_info = space_info;
428
429 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
430 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
431 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
432 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
433 if (fs_info->quota_root)
434 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
435 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
436
437 btrfs_update_global_block_rsv(fs_info);
438 }
439
440 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
441 {
442 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
443 NULL);
444 WARN_ON(fs_info->trans_block_rsv.size > 0);
445 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
446 WARN_ON(fs_info->chunk_block_rsv.size > 0);
447 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
448 WARN_ON(fs_info->delayed_block_rsv.size > 0);
449 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
450 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
451 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
452 }
453
454 static struct btrfs_block_rsv *get_block_rsv(
455 const struct btrfs_trans_handle *trans,
456 const struct btrfs_root *root)
457 {
458 struct btrfs_fs_info *fs_info = root->fs_info;
459 struct btrfs_block_rsv *block_rsv = NULL;
460
461 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
462 (root == fs_info->csum_root && trans->adding_csums) ||
463 (root == fs_info->uuid_root))
464 block_rsv = trans->block_rsv;
465
466 if (!block_rsv)
467 block_rsv = root->block_rsv;
468
469 if (!block_rsv)
470 block_rsv = &fs_info->empty_block_rsv;
471
472 return block_rsv;
473 }
474
475 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
476 struct btrfs_root *root,
477 u32 blocksize)
478 {
479 struct btrfs_fs_info *fs_info = root->fs_info;
480 struct btrfs_block_rsv *block_rsv;
481 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
482 int ret;
483 bool global_updated = false;
484
485 block_rsv = get_block_rsv(trans, root);
486
487 if (unlikely(block_rsv->size == 0))
488 goto try_reserve;
489 again:
490 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
491 if (!ret)
492 return block_rsv;
493
494 if (block_rsv->failfast)
495 return ERR_PTR(ret);
496
497 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
498 global_updated = true;
499 btrfs_update_global_block_rsv(fs_info);
500 goto again;
501 }
502
503 /*
504 * The global reserve still exists to save us from ourselves, so don't
505 * warn_on if we are short on our delayed refs reserve.
506 */
507 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
508 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
509 static DEFINE_RATELIMIT_STATE(_rs,
510 DEFAULT_RATELIMIT_INTERVAL * 10,
511 /*DEFAULT_RATELIMIT_BURST*/ 1);
512 if (__ratelimit(&_rs))
513 WARN(1, KERN_DEBUG
514 "BTRFS: block rsv returned %d\n", ret);
515 }
516 try_reserve:
517 ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize,
518 BTRFS_RESERVE_NO_FLUSH);
519 if (!ret)
520 return block_rsv;
521 /*
522 * If we couldn't reserve metadata bytes try and use some from
523 * the global reserve if its space type is the same as the global
524 * reservation.
525 */
526 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
527 block_rsv->space_info == global_rsv->space_info) {
528 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
529 if (!ret)
530 return global_rsv;
531 }
532 return ERR_PTR(ret);
533 }