]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/check-integrity.c
btrfs: unsplit printed strings
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / check-integrity.c
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 /*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include <linux/vmalloc.h>
98 #include <linux/string.h>
99 #include "ctree.h"
100 #include "disk-io.h"
101 #include "hash.h"
102 #include "transaction.h"
103 #include "extent_io.h"
104 #include "volumes.h"
105 #include "print-tree.h"
106 #include "locking.h"
107 #include "check-integrity.h"
108 #include "rcu-string.h"
109 #include "compression.h"
110
111 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122 /*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141 struct btrfsic_dev_state;
142 struct btrfsic_state;
143
144 struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175 };
176
177 /*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188 struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197 };
198
199 struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207 };
208
209 struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211 };
212
213 struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215 };
216
217 struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219 };
220
221 struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229 };
230
231 /* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233 struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247 };
248
249 /* Some state per mounted filesystem */
250 struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_root *root;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262 };
263
264 static void btrfsic_block_init(struct btrfsic_block *b);
265 static struct btrfsic_block *btrfsic_block_alloc(void);
266 static void btrfsic_block_free(struct btrfsic_block *b);
267 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281 static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293 static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304 static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306 static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310 static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313 static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425 }
426
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436 }
437
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442 }
443
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453 }
454
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464 }
465
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470 }
471
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494 }
495
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501 }
502
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509 }
510
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513 {
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 list_del(&b->collision_resolving_node);
525 }
526
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531 {
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544 }
545
546 static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548 {
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553 }
554
555 static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558 {
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569 }
570
571 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572 {
573 list_del(&l->collision_resolving_node);
574 }
575
576 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582 {
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602 }
603
604 static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606 {
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611 }
612
613 static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616 {
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622 }
623
624 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625 {
626 list_del(&ds->collision_resolving_node);
627 }
628
629 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632 {
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644 }
645
646 static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648 {
649 int ret = 0;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int pass;
655
656 BUG_ON(NULL == state);
657 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
658 if (NULL == selected_super) {
659 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
660 return -ENOMEM;
661 }
662
663 list_for_each_entry(device, dev_head, dev_list) {
664 int i;
665 struct btrfsic_dev_state *dev_state;
666
667 if (!device->bdev || !device->name)
668 continue;
669
670 dev_state = btrfsic_dev_state_lookup(device->bdev);
671 BUG_ON(NULL == dev_state);
672 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
673 ret = btrfsic_process_superblock_dev_mirror(
674 state, dev_state, device, i,
675 &selected_dev_state, selected_super);
676 if (0 != ret && 0 == i) {
677 kfree(selected_super);
678 return ret;
679 }
680 }
681 }
682
683 if (NULL == state->latest_superblock) {
684 printk(KERN_INFO "btrfsic: no superblock found!\n");
685 kfree(selected_super);
686 return -1;
687 }
688
689 state->csum_size = btrfs_super_csum_size(selected_super);
690
691 for (pass = 0; pass < 3; pass++) {
692 int num_copies;
693 int mirror_num;
694 u64 next_bytenr;
695
696 switch (pass) {
697 case 0:
698 next_bytenr = btrfs_super_root(selected_super);
699 if (state->print_mask &
700 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
701 printk(KERN_INFO "root@%llu\n", next_bytenr);
702 break;
703 case 1:
704 next_bytenr = btrfs_super_chunk_root(selected_super);
705 if (state->print_mask &
706 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
707 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
708 break;
709 case 2:
710 next_bytenr = btrfs_super_log_root(selected_super);
711 if (0 == next_bytenr)
712 continue;
713 if (state->print_mask &
714 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715 printk(KERN_INFO "log@%llu\n", next_bytenr);
716 break;
717 }
718
719 num_copies =
720 btrfs_num_copies(state->root->fs_info,
721 next_bytenr, state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 printk(KERN_INFO "btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737 next_bytenr, mirror_num);
738 kfree(selected_super);
739 return -1;
740 }
741
742 next_block = btrfsic_block_hashtable_lookup(
743 tmp_next_block_ctx.dev->bdev,
744 tmp_next_block_ctx.dev_bytenr,
745 &state->block_hashtable);
746 BUG_ON(NULL == next_block);
747
748 l = btrfsic_block_link_hashtable_lookup(
749 tmp_next_block_ctx.dev->bdev,
750 tmp_next_block_ctx.dev_bytenr,
751 state->latest_superblock->dev_state->
752 bdev,
753 state->latest_superblock->dev_bytenr,
754 &state->block_link_hashtable);
755 BUG_ON(NULL == l);
756
757 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758 if (ret < (int)PAGE_SIZE) {
759 printk(KERN_INFO
760 "btrfsic: read @logical %llu failed!\n",
761 tmp_next_block_ctx.start);
762 btrfsic_release_block_ctx(&tmp_next_block_ctx);
763 kfree(selected_super);
764 return -1;
765 }
766
767 ret = btrfsic_process_metablock(state,
768 next_block,
769 &tmp_next_block_ctx,
770 BTRFS_MAX_LEVEL + 3, 1);
771 btrfsic_release_block_ctx(&tmp_next_block_ctx);
772 }
773 }
774
775 kfree(selected_super);
776 return ret;
777 }
778
779 static int btrfsic_process_superblock_dev_mirror(
780 struct btrfsic_state *state,
781 struct btrfsic_dev_state *dev_state,
782 struct btrfs_device *device,
783 int superblock_mirror_num,
784 struct btrfsic_dev_state **selected_dev_state,
785 struct btrfs_super_block *selected_super)
786 {
787 struct btrfs_super_block *super_tmp;
788 u64 dev_bytenr;
789 struct buffer_head *bh;
790 struct btrfsic_block *superblock_tmp;
791 int pass;
792 struct block_device *const superblock_bdev = device->bdev;
793
794 /* super block bytenr is always the unmapped device bytenr */
795 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
796 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
797 return -1;
798 bh = __bread(superblock_bdev, dev_bytenr / 4096,
799 BTRFS_SUPER_INFO_SIZE);
800 if (NULL == bh)
801 return -1;
802 super_tmp = (struct btrfs_super_block *)
803 (bh->b_data + (dev_bytenr & 4095));
804
805 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
806 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
807 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
808 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
809 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
810 brelse(bh);
811 return 0;
812 }
813
814 superblock_tmp =
815 btrfsic_block_hashtable_lookup(superblock_bdev,
816 dev_bytenr,
817 &state->block_hashtable);
818 if (NULL == superblock_tmp) {
819 superblock_tmp = btrfsic_block_alloc();
820 if (NULL == superblock_tmp) {
821 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
822 brelse(bh);
823 return -1;
824 }
825 /* for superblock, only the dev_bytenr makes sense */
826 superblock_tmp->dev_bytenr = dev_bytenr;
827 superblock_tmp->dev_state = dev_state;
828 superblock_tmp->logical_bytenr = dev_bytenr;
829 superblock_tmp->generation = btrfs_super_generation(super_tmp);
830 superblock_tmp->is_metadata = 1;
831 superblock_tmp->is_superblock = 1;
832 superblock_tmp->is_iodone = 1;
833 superblock_tmp->never_written = 0;
834 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
835 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
836 btrfs_info_in_rcu(device->dev_root->fs_info,
837 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
838 superblock_bdev,
839 rcu_str_deref(device->name), dev_bytenr,
840 dev_state->name, dev_bytenr,
841 superblock_mirror_num);
842 list_add(&superblock_tmp->all_blocks_node,
843 &state->all_blocks_list);
844 btrfsic_block_hashtable_add(superblock_tmp,
845 &state->block_hashtable);
846 }
847
848 /* select the one with the highest generation field */
849 if (btrfs_super_generation(super_tmp) >
850 state->max_superblock_generation ||
851 0 == state->max_superblock_generation) {
852 memcpy(selected_super, super_tmp, sizeof(*selected_super));
853 *selected_dev_state = dev_state;
854 state->max_superblock_generation =
855 btrfs_super_generation(super_tmp);
856 state->latest_superblock = superblock_tmp;
857 }
858
859 for (pass = 0; pass < 3; pass++) {
860 u64 next_bytenr;
861 int num_copies;
862 int mirror_num;
863 const char *additional_string = NULL;
864 struct btrfs_disk_key tmp_disk_key;
865
866 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
867 tmp_disk_key.offset = 0;
868 switch (pass) {
869 case 0:
870 btrfs_set_disk_key_objectid(&tmp_disk_key,
871 BTRFS_ROOT_TREE_OBJECTID);
872 additional_string = "initial root ";
873 next_bytenr = btrfs_super_root(super_tmp);
874 break;
875 case 1:
876 btrfs_set_disk_key_objectid(&tmp_disk_key,
877 BTRFS_CHUNK_TREE_OBJECTID);
878 additional_string = "initial chunk ";
879 next_bytenr = btrfs_super_chunk_root(super_tmp);
880 break;
881 case 2:
882 btrfs_set_disk_key_objectid(&tmp_disk_key,
883 BTRFS_TREE_LOG_OBJECTID);
884 additional_string = "initial log ";
885 next_bytenr = btrfs_super_log_root(super_tmp);
886 if (0 == next_bytenr)
887 continue;
888 break;
889 }
890
891 num_copies =
892 btrfs_num_copies(state->root->fs_info,
893 next_bytenr, state->metablock_size);
894 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
895 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
896 next_bytenr, num_copies);
897 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
898 struct btrfsic_block *next_block;
899 struct btrfsic_block_data_ctx tmp_next_block_ctx;
900 struct btrfsic_block_link *l;
901
902 if (btrfsic_map_block(state, next_bytenr,
903 state->metablock_size,
904 &tmp_next_block_ctx,
905 mirror_num)) {
906 printk(KERN_INFO "btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
907 next_bytenr, mirror_num);
908 brelse(bh);
909 return -1;
910 }
911
912 next_block = btrfsic_block_lookup_or_add(
913 state, &tmp_next_block_ctx,
914 additional_string, 1, 1, 0,
915 mirror_num, NULL);
916 if (NULL == next_block) {
917 btrfsic_release_block_ctx(&tmp_next_block_ctx);
918 brelse(bh);
919 return -1;
920 }
921
922 next_block->disk_key = tmp_disk_key;
923 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
924 l = btrfsic_block_link_lookup_or_add(
925 state, &tmp_next_block_ctx,
926 next_block, superblock_tmp,
927 BTRFSIC_GENERATION_UNKNOWN);
928 btrfsic_release_block_ctx(&tmp_next_block_ctx);
929 if (NULL == l) {
930 brelse(bh);
931 return -1;
932 }
933 }
934 }
935 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
936 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
937
938 brelse(bh);
939 return 0;
940 }
941
942 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
943 {
944 struct btrfsic_stack_frame *sf;
945
946 sf = kzalloc(sizeof(*sf), GFP_NOFS);
947 if (NULL == sf)
948 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
949 else
950 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
951 return sf;
952 }
953
954 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
955 {
956 BUG_ON(!(NULL == sf ||
957 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
958 kfree(sf);
959 }
960
961 static int btrfsic_process_metablock(
962 struct btrfsic_state *state,
963 struct btrfsic_block *const first_block,
964 struct btrfsic_block_data_ctx *const first_block_ctx,
965 int first_limit_nesting, int force_iodone_flag)
966 {
967 struct btrfsic_stack_frame initial_stack_frame = { 0 };
968 struct btrfsic_stack_frame *sf;
969 struct btrfsic_stack_frame *next_stack;
970 struct btrfs_header *const first_hdr =
971 (struct btrfs_header *)first_block_ctx->datav[0];
972
973 BUG_ON(!first_hdr);
974 sf = &initial_stack_frame;
975 sf->error = 0;
976 sf->i = -1;
977 sf->limit_nesting = first_limit_nesting;
978 sf->block = first_block;
979 sf->block_ctx = first_block_ctx;
980 sf->next_block = NULL;
981 sf->hdr = first_hdr;
982 sf->prev = NULL;
983
984 continue_with_new_stack_frame:
985 sf->block->generation = le64_to_cpu(sf->hdr->generation);
986 if (0 == sf->hdr->level) {
987 struct btrfs_leaf *const leafhdr =
988 (struct btrfs_leaf *)sf->hdr;
989
990 if (-1 == sf->i) {
991 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
992
993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
994 printk(KERN_INFO
995 "leaf %llu items %d generation %llu owner %llu\n",
996 sf->block_ctx->start, sf->nr,
997 btrfs_stack_header_generation(
998 &leafhdr->header),
999 btrfs_stack_header_owner(
1000 &leafhdr->header));
1001 }
1002
1003 continue_with_current_leaf_stack_frame:
1004 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1005 sf->i++;
1006 sf->num_copies = 0;
1007 }
1008
1009 if (sf->i < sf->nr) {
1010 struct btrfs_item disk_item;
1011 u32 disk_item_offset =
1012 (uintptr_t)(leafhdr->items + sf->i) -
1013 (uintptr_t)leafhdr;
1014 struct btrfs_disk_key *disk_key;
1015 u8 type;
1016 u32 item_offset;
1017 u32 item_size;
1018
1019 if (disk_item_offset + sizeof(struct btrfs_item) >
1020 sf->block_ctx->len) {
1021 leaf_item_out_of_bounce_error:
1022 printk(KERN_INFO
1023 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1024 sf->block_ctx->start,
1025 sf->block_ctx->dev->name);
1026 goto one_stack_frame_backwards;
1027 }
1028 btrfsic_read_from_block_data(sf->block_ctx,
1029 &disk_item,
1030 disk_item_offset,
1031 sizeof(struct btrfs_item));
1032 item_offset = btrfs_stack_item_offset(&disk_item);
1033 item_size = btrfs_stack_item_size(&disk_item);
1034 disk_key = &disk_item.key;
1035 type = btrfs_disk_key_type(disk_key);
1036
1037 if (BTRFS_ROOT_ITEM_KEY == type) {
1038 struct btrfs_root_item root_item;
1039 u32 root_item_offset;
1040 u64 next_bytenr;
1041
1042 root_item_offset = item_offset +
1043 offsetof(struct btrfs_leaf, items);
1044 if (root_item_offset + item_size >
1045 sf->block_ctx->len)
1046 goto leaf_item_out_of_bounce_error;
1047 btrfsic_read_from_block_data(
1048 sf->block_ctx, &root_item,
1049 root_item_offset,
1050 item_size);
1051 next_bytenr = btrfs_root_bytenr(&root_item);
1052
1053 sf->error =
1054 btrfsic_create_link_to_next_block(
1055 state,
1056 sf->block,
1057 sf->block_ctx,
1058 next_bytenr,
1059 sf->limit_nesting,
1060 &sf->next_block_ctx,
1061 &sf->next_block,
1062 force_iodone_flag,
1063 &sf->num_copies,
1064 &sf->mirror_num,
1065 disk_key,
1066 btrfs_root_generation(
1067 &root_item));
1068 if (sf->error)
1069 goto one_stack_frame_backwards;
1070
1071 if (NULL != sf->next_block) {
1072 struct btrfs_header *const next_hdr =
1073 (struct btrfs_header *)
1074 sf->next_block_ctx.datav[0];
1075
1076 next_stack =
1077 btrfsic_stack_frame_alloc();
1078 if (NULL == next_stack) {
1079 sf->error = -1;
1080 btrfsic_release_block_ctx(
1081 &sf->
1082 next_block_ctx);
1083 goto one_stack_frame_backwards;
1084 }
1085
1086 next_stack->i = -1;
1087 next_stack->block = sf->next_block;
1088 next_stack->block_ctx =
1089 &sf->next_block_ctx;
1090 next_stack->next_block = NULL;
1091 next_stack->hdr = next_hdr;
1092 next_stack->limit_nesting =
1093 sf->limit_nesting - 1;
1094 next_stack->prev = sf;
1095 sf = next_stack;
1096 goto continue_with_new_stack_frame;
1097 }
1098 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1099 state->include_extent_data) {
1100 sf->error = btrfsic_handle_extent_data(
1101 state,
1102 sf->block,
1103 sf->block_ctx,
1104 item_offset,
1105 force_iodone_flag);
1106 if (sf->error)
1107 goto one_stack_frame_backwards;
1108 }
1109
1110 goto continue_with_current_leaf_stack_frame;
1111 }
1112 } else {
1113 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1114
1115 if (-1 == sf->i) {
1116 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1117
1118 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1119 printk(KERN_INFO "node %llu level %d items %d generation %llu owner %llu\n",
1120 sf->block_ctx->start,
1121 nodehdr->header.level, sf->nr,
1122 btrfs_stack_header_generation(
1123 &nodehdr->header),
1124 btrfs_stack_header_owner(
1125 &nodehdr->header));
1126 }
1127
1128 continue_with_current_node_stack_frame:
1129 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1130 sf->i++;
1131 sf->num_copies = 0;
1132 }
1133
1134 if (sf->i < sf->nr) {
1135 struct btrfs_key_ptr key_ptr;
1136 u32 key_ptr_offset;
1137 u64 next_bytenr;
1138
1139 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1140 (uintptr_t)nodehdr;
1141 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1142 sf->block_ctx->len) {
1143 printk(KERN_INFO
1144 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1145 sf->block_ctx->start,
1146 sf->block_ctx->dev->name);
1147 goto one_stack_frame_backwards;
1148 }
1149 btrfsic_read_from_block_data(
1150 sf->block_ctx, &key_ptr, key_ptr_offset,
1151 sizeof(struct btrfs_key_ptr));
1152 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1153
1154 sf->error = btrfsic_create_link_to_next_block(
1155 state,
1156 sf->block,
1157 sf->block_ctx,
1158 next_bytenr,
1159 sf->limit_nesting,
1160 &sf->next_block_ctx,
1161 &sf->next_block,
1162 force_iodone_flag,
1163 &sf->num_copies,
1164 &sf->mirror_num,
1165 &key_ptr.key,
1166 btrfs_stack_key_generation(&key_ptr));
1167 if (sf->error)
1168 goto one_stack_frame_backwards;
1169
1170 if (NULL != sf->next_block) {
1171 struct btrfs_header *const next_hdr =
1172 (struct btrfs_header *)
1173 sf->next_block_ctx.datav[0];
1174
1175 next_stack = btrfsic_stack_frame_alloc();
1176 if (NULL == next_stack) {
1177 sf->error = -1;
1178 goto one_stack_frame_backwards;
1179 }
1180
1181 next_stack->i = -1;
1182 next_stack->block = sf->next_block;
1183 next_stack->block_ctx = &sf->next_block_ctx;
1184 next_stack->next_block = NULL;
1185 next_stack->hdr = next_hdr;
1186 next_stack->limit_nesting =
1187 sf->limit_nesting - 1;
1188 next_stack->prev = sf;
1189 sf = next_stack;
1190 goto continue_with_new_stack_frame;
1191 }
1192
1193 goto continue_with_current_node_stack_frame;
1194 }
1195 }
1196
1197 one_stack_frame_backwards:
1198 if (NULL != sf->prev) {
1199 struct btrfsic_stack_frame *const prev = sf->prev;
1200
1201 /* the one for the initial block is freed in the caller */
1202 btrfsic_release_block_ctx(sf->block_ctx);
1203
1204 if (sf->error) {
1205 prev->error = sf->error;
1206 btrfsic_stack_frame_free(sf);
1207 sf = prev;
1208 goto one_stack_frame_backwards;
1209 }
1210
1211 btrfsic_stack_frame_free(sf);
1212 sf = prev;
1213 goto continue_with_new_stack_frame;
1214 } else {
1215 BUG_ON(&initial_stack_frame != sf);
1216 }
1217
1218 return sf->error;
1219 }
1220
1221 static void btrfsic_read_from_block_data(
1222 struct btrfsic_block_data_ctx *block_ctx,
1223 void *dstv, u32 offset, size_t len)
1224 {
1225 size_t cur;
1226 size_t offset_in_page;
1227 char *kaddr;
1228 char *dst = (char *)dstv;
1229 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1230 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1231
1232 WARN_ON(offset + len > block_ctx->len);
1233 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1234
1235 while (len > 0) {
1236 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1237 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1238 kaddr = block_ctx->datav[i];
1239 memcpy(dst, kaddr + offset_in_page, cur);
1240
1241 dst += cur;
1242 len -= cur;
1243 offset_in_page = 0;
1244 i++;
1245 }
1246 }
1247
1248 static int btrfsic_create_link_to_next_block(
1249 struct btrfsic_state *state,
1250 struct btrfsic_block *block,
1251 struct btrfsic_block_data_ctx *block_ctx,
1252 u64 next_bytenr,
1253 int limit_nesting,
1254 struct btrfsic_block_data_ctx *next_block_ctx,
1255 struct btrfsic_block **next_blockp,
1256 int force_iodone_flag,
1257 int *num_copiesp, int *mirror_nump,
1258 struct btrfs_disk_key *disk_key,
1259 u64 parent_generation)
1260 {
1261 struct btrfsic_block *next_block = NULL;
1262 int ret;
1263 struct btrfsic_block_link *l;
1264 int did_alloc_block_link;
1265 int block_was_created;
1266
1267 *next_blockp = NULL;
1268 if (0 == *num_copiesp) {
1269 *num_copiesp =
1270 btrfs_num_copies(state->root->fs_info,
1271 next_bytenr, state->metablock_size);
1272 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1273 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1274 next_bytenr, *num_copiesp);
1275 *mirror_nump = 1;
1276 }
1277
1278 if (*mirror_nump > *num_copiesp)
1279 return 0;
1280
1281 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1282 printk(KERN_INFO
1283 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1284 *mirror_nump);
1285 ret = btrfsic_map_block(state, next_bytenr,
1286 state->metablock_size,
1287 next_block_ctx, *mirror_nump);
1288 if (ret) {
1289 printk(KERN_INFO
1290 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1291 next_bytenr, *mirror_nump);
1292 btrfsic_release_block_ctx(next_block_ctx);
1293 *next_blockp = NULL;
1294 return -1;
1295 }
1296
1297 next_block = btrfsic_block_lookup_or_add(state,
1298 next_block_ctx, "referenced ",
1299 1, force_iodone_flag,
1300 !force_iodone_flag,
1301 *mirror_nump,
1302 &block_was_created);
1303 if (NULL == next_block) {
1304 btrfsic_release_block_ctx(next_block_ctx);
1305 *next_blockp = NULL;
1306 return -1;
1307 }
1308 if (block_was_created) {
1309 l = NULL;
1310 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1311 } else {
1312 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1313 if (next_block->logical_bytenr != next_bytenr &&
1314 !(!next_block->is_metadata &&
1315 0 == next_block->logical_bytenr))
1316 printk(KERN_INFO
1317 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1318 next_bytenr, next_block_ctx->dev->name,
1319 next_block_ctx->dev_bytenr, *mirror_nump,
1320 btrfsic_get_block_type(state,
1321 next_block),
1322 next_block->logical_bytenr);
1323 else
1324 printk(KERN_INFO
1325 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1326 next_bytenr, next_block_ctx->dev->name,
1327 next_block_ctx->dev_bytenr, *mirror_nump,
1328 btrfsic_get_block_type(state,
1329 next_block));
1330 }
1331 next_block->logical_bytenr = next_bytenr;
1332
1333 next_block->mirror_num = *mirror_nump;
1334 l = btrfsic_block_link_hashtable_lookup(
1335 next_block_ctx->dev->bdev,
1336 next_block_ctx->dev_bytenr,
1337 block_ctx->dev->bdev,
1338 block_ctx->dev_bytenr,
1339 &state->block_link_hashtable);
1340 }
1341
1342 next_block->disk_key = *disk_key;
1343 if (NULL == l) {
1344 l = btrfsic_block_link_alloc();
1345 if (NULL == l) {
1346 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1347 btrfsic_release_block_ctx(next_block_ctx);
1348 *next_blockp = NULL;
1349 return -1;
1350 }
1351
1352 did_alloc_block_link = 1;
1353 l->block_ref_to = next_block;
1354 l->block_ref_from = block;
1355 l->ref_cnt = 1;
1356 l->parent_generation = parent_generation;
1357
1358 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1359 btrfsic_print_add_link(state, l);
1360
1361 list_add(&l->node_ref_to, &block->ref_to_list);
1362 list_add(&l->node_ref_from, &next_block->ref_from_list);
1363
1364 btrfsic_block_link_hashtable_add(l,
1365 &state->block_link_hashtable);
1366 } else {
1367 did_alloc_block_link = 0;
1368 if (0 == limit_nesting) {
1369 l->ref_cnt++;
1370 l->parent_generation = parent_generation;
1371 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1372 btrfsic_print_add_link(state, l);
1373 }
1374 }
1375
1376 if (limit_nesting > 0 && did_alloc_block_link) {
1377 ret = btrfsic_read_block(state, next_block_ctx);
1378 if (ret < (int)next_block_ctx->len) {
1379 printk(KERN_INFO
1380 "btrfsic: read block @logical %llu failed!\n",
1381 next_bytenr);
1382 btrfsic_release_block_ctx(next_block_ctx);
1383 *next_blockp = NULL;
1384 return -1;
1385 }
1386
1387 *next_blockp = next_block;
1388 } else {
1389 *next_blockp = NULL;
1390 }
1391 (*mirror_nump)++;
1392
1393 return 0;
1394 }
1395
1396 static int btrfsic_handle_extent_data(
1397 struct btrfsic_state *state,
1398 struct btrfsic_block *block,
1399 struct btrfsic_block_data_ctx *block_ctx,
1400 u32 item_offset, int force_iodone_flag)
1401 {
1402 int ret;
1403 struct btrfs_file_extent_item file_extent_item;
1404 u64 file_extent_item_offset;
1405 u64 next_bytenr;
1406 u64 num_bytes;
1407 u64 generation;
1408 struct btrfsic_block_link *l;
1409
1410 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1411 item_offset;
1412 if (file_extent_item_offset +
1413 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1414 block_ctx->len) {
1415 printk(KERN_INFO
1416 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1417 block_ctx->start, block_ctx->dev->name);
1418 return -1;
1419 }
1420
1421 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1422 file_extent_item_offset,
1423 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1424 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1425 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1426 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1427 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1428 file_extent_item.type,
1429 btrfs_stack_file_extent_disk_bytenr(
1430 &file_extent_item));
1431 return 0;
1432 }
1433
1434 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1435 block_ctx->len) {
1436 printk(KERN_INFO
1437 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1438 block_ctx->start, block_ctx->dev->name);
1439 return -1;
1440 }
1441 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1442 file_extent_item_offset,
1443 sizeof(struct btrfs_file_extent_item));
1444 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1445 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1446 BTRFS_COMPRESS_NONE) {
1447 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1448 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1449 } else {
1450 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1451 }
1452 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1453
1454 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1455 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1456 file_extent_item.type,
1457 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1458 btrfs_stack_file_extent_offset(&file_extent_item),
1459 num_bytes);
1460 while (num_bytes > 0) {
1461 u32 chunk_len;
1462 int num_copies;
1463 int mirror_num;
1464
1465 if (num_bytes > state->datablock_size)
1466 chunk_len = state->datablock_size;
1467 else
1468 chunk_len = num_bytes;
1469
1470 num_copies =
1471 btrfs_num_copies(state->root->fs_info,
1472 next_bytenr, state->datablock_size);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1474 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1475 next_bytenr, num_copies);
1476 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1477 struct btrfsic_block_data_ctx next_block_ctx;
1478 struct btrfsic_block *next_block;
1479 int block_was_created;
1480
1481 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1482 printk(KERN_INFO "btrfsic_handle_extent_data(mirror_num=%d)\n", mirror_num);
1483 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1484 printk(KERN_INFO
1485 "\tdisk_bytenr = %llu, num_bytes %u\n",
1486 next_bytenr, chunk_len);
1487 ret = btrfsic_map_block(state, next_bytenr,
1488 chunk_len, &next_block_ctx,
1489 mirror_num);
1490 if (ret) {
1491 printk(KERN_INFO
1492 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1493 next_bytenr, mirror_num);
1494 return -1;
1495 }
1496
1497 next_block = btrfsic_block_lookup_or_add(
1498 state,
1499 &next_block_ctx,
1500 "referenced ",
1501 0,
1502 force_iodone_flag,
1503 !force_iodone_flag,
1504 mirror_num,
1505 &block_was_created);
1506 if (NULL == next_block) {
1507 printk(KERN_INFO
1508 "btrfsic: error, kmalloc failed!\n");
1509 btrfsic_release_block_ctx(&next_block_ctx);
1510 return -1;
1511 }
1512 if (!block_was_created) {
1513 if ((state->print_mask &
1514 BTRFSIC_PRINT_MASK_VERBOSE) &&
1515 next_block->logical_bytenr != next_bytenr &&
1516 !(!next_block->is_metadata &&
1517 0 == next_block->logical_bytenr)) {
1518 printk(KERN_INFO
1519 "Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1520 next_bytenr,
1521 next_block_ctx.dev->name,
1522 next_block_ctx.dev_bytenr,
1523 mirror_num,
1524 next_block->logical_bytenr);
1525 }
1526 next_block->logical_bytenr = next_bytenr;
1527 next_block->mirror_num = mirror_num;
1528 }
1529
1530 l = btrfsic_block_link_lookup_or_add(state,
1531 &next_block_ctx,
1532 next_block, block,
1533 generation);
1534 btrfsic_release_block_ctx(&next_block_ctx);
1535 if (NULL == l)
1536 return -1;
1537 }
1538
1539 next_bytenr += chunk_len;
1540 num_bytes -= chunk_len;
1541 }
1542
1543 return 0;
1544 }
1545
1546 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1547 struct btrfsic_block_data_ctx *block_ctx_out,
1548 int mirror_num)
1549 {
1550 int ret;
1551 u64 length;
1552 struct btrfs_bio *multi = NULL;
1553 struct btrfs_device *device;
1554
1555 length = len;
1556 ret = btrfs_map_block(state->root->fs_info, READ,
1557 bytenr, &length, &multi, mirror_num);
1558
1559 if (ret) {
1560 block_ctx_out->start = 0;
1561 block_ctx_out->dev_bytenr = 0;
1562 block_ctx_out->len = 0;
1563 block_ctx_out->dev = NULL;
1564 block_ctx_out->datav = NULL;
1565 block_ctx_out->pagev = NULL;
1566 block_ctx_out->mem_to_free = NULL;
1567
1568 return ret;
1569 }
1570
1571 device = multi->stripes[0].dev;
1572 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1573 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1574 block_ctx_out->start = bytenr;
1575 block_ctx_out->len = len;
1576 block_ctx_out->datav = NULL;
1577 block_ctx_out->pagev = NULL;
1578 block_ctx_out->mem_to_free = NULL;
1579
1580 kfree(multi);
1581 if (NULL == block_ctx_out->dev) {
1582 ret = -ENXIO;
1583 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1584 }
1585
1586 return ret;
1587 }
1588
1589 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1590 {
1591 if (block_ctx->mem_to_free) {
1592 unsigned int num_pages;
1593
1594 BUG_ON(!block_ctx->datav);
1595 BUG_ON(!block_ctx->pagev);
1596 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1597 PAGE_SHIFT;
1598 while (num_pages > 0) {
1599 num_pages--;
1600 if (block_ctx->datav[num_pages]) {
1601 kunmap(block_ctx->pagev[num_pages]);
1602 block_ctx->datav[num_pages] = NULL;
1603 }
1604 if (block_ctx->pagev[num_pages]) {
1605 __free_page(block_ctx->pagev[num_pages]);
1606 block_ctx->pagev[num_pages] = NULL;
1607 }
1608 }
1609
1610 kfree(block_ctx->mem_to_free);
1611 block_ctx->mem_to_free = NULL;
1612 block_ctx->pagev = NULL;
1613 block_ctx->datav = NULL;
1614 }
1615 }
1616
1617 static int btrfsic_read_block(struct btrfsic_state *state,
1618 struct btrfsic_block_data_ctx *block_ctx)
1619 {
1620 unsigned int num_pages;
1621 unsigned int i;
1622 u64 dev_bytenr;
1623 int ret;
1624
1625 BUG_ON(block_ctx->datav);
1626 BUG_ON(block_ctx->pagev);
1627 BUG_ON(block_ctx->mem_to_free);
1628 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1629 printk(KERN_INFO
1630 "btrfsic: read_block() with unaligned bytenr %llu\n",
1631 block_ctx->dev_bytenr);
1632 return -1;
1633 }
1634
1635 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1636 PAGE_SHIFT;
1637 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1638 sizeof(*block_ctx->pagev)) *
1639 num_pages, GFP_NOFS);
1640 if (!block_ctx->mem_to_free)
1641 return -ENOMEM;
1642 block_ctx->datav = block_ctx->mem_to_free;
1643 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1644 for (i = 0; i < num_pages; i++) {
1645 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1646 if (!block_ctx->pagev[i])
1647 return -1;
1648 }
1649
1650 dev_bytenr = block_ctx->dev_bytenr;
1651 for (i = 0; i < num_pages;) {
1652 struct bio *bio;
1653 unsigned int j;
1654
1655 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1656 if (!bio) {
1657 printk(KERN_INFO
1658 "btrfsic: bio_alloc() for %u pages failed!\n",
1659 num_pages - i);
1660 return -1;
1661 }
1662 bio->bi_bdev = block_ctx->dev->bdev;
1663 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1664 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1665
1666 for (j = i; j < num_pages; j++) {
1667 ret = bio_add_page(bio, block_ctx->pagev[j],
1668 PAGE_SIZE, 0);
1669 if (PAGE_SIZE != ret)
1670 break;
1671 }
1672 if (j == i) {
1673 printk(KERN_INFO
1674 "btrfsic: error, failed to add a single page!\n");
1675 return -1;
1676 }
1677 if (submit_bio_wait(bio)) {
1678 printk(KERN_INFO
1679 "btrfsic: read error at logical %llu dev %s!\n",
1680 block_ctx->start, block_ctx->dev->name);
1681 bio_put(bio);
1682 return -1;
1683 }
1684 bio_put(bio);
1685 dev_bytenr += (j - i) * PAGE_SIZE;
1686 i = j;
1687 }
1688 for (i = 0; i < num_pages; i++) {
1689 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1690 if (!block_ctx->datav[i]) {
1691 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1692 block_ctx->dev->name);
1693 return -1;
1694 }
1695 }
1696
1697 return block_ctx->len;
1698 }
1699
1700 static void btrfsic_dump_database(struct btrfsic_state *state)
1701 {
1702 const struct btrfsic_block *b_all;
1703
1704 BUG_ON(NULL == state);
1705
1706 printk(KERN_INFO "all_blocks_list:\n");
1707 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1708 const struct btrfsic_block_link *l;
1709
1710 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1711 btrfsic_get_block_type(state, b_all),
1712 b_all->logical_bytenr, b_all->dev_state->name,
1713 b_all->dev_bytenr, b_all->mirror_num);
1714
1715 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1716 printk(KERN_INFO " %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1717 btrfsic_get_block_type(state, b_all),
1718 b_all->logical_bytenr, b_all->dev_state->name,
1719 b_all->dev_bytenr, b_all->mirror_num,
1720 l->ref_cnt,
1721 btrfsic_get_block_type(state, l->block_ref_to),
1722 l->block_ref_to->logical_bytenr,
1723 l->block_ref_to->dev_state->name,
1724 l->block_ref_to->dev_bytenr,
1725 l->block_ref_to->mirror_num);
1726 }
1727
1728 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1729 printk(KERN_INFO " %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1730 btrfsic_get_block_type(state, b_all),
1731 b_all->logical_bytenr, b_all->dev_state->name,
1732 b_all->dev_bytenr, b_all->mirror_num,
1733 l->ref_cnt,
1734 btrfsic_get_block_type(state, l->block_ref_from),
1735 l->block_ref_from->logical_bytenr,
1736 l->block_ref_from->dev_state->name,
1737 l->block_ref_from->dev_bytenr,
1738 l->block_ref_from->mirror_num);
1739 }
1740
1741 printk(KERN_INFO "\n");
1742 }
1743 }
1744
1745 /*
1746 * Test whether the disk block contains a tree block (leaf or node)
1747 * (note that this test fails for the super block)
1748 */
1749 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1750 char **datav, unsigned int num_pages)
1751 {
1752 struct btrfs_header *h;
1753 u8 csum[BTRFS_CSUM_SIZE];
1754 u32 crc = ~(u32)0;
1755 unsigned int i;
1756
1757 if (num_pages * PAGE_SIZE < state->metablock_size)
1758 return 1; /* not metadata */
1759 num_pages = state->metablock_size >> PAGE_SHIFT;
1760 h = (struct btrfs_header *)datav[0];
1761
1762 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1763 return 1;
1764
1765 for (i = 0; i < num_pages; i++) {
1766 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1767 size_t sublen = i ? PAGE_SIZE :
1768 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1769
1770 crc = btrfs_crc32c(crc, data, sublen);
1771 }
1772 btrfs_csum_final(crc, csum);
1773 if (memcmp(csum, h->csum, state->csum_size))
1774 return 1;
1775
1776 return 0; /* is metadata */
1777 }
1778
1779 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1780 u64 dev_bytenr, char **mapped_datav,
1781 unsigned int num_pages,
1782 struct bio *bio, int *bio_is_patched,
1783 struct buffer_head *bh,
1784 int submit_bio_bh_rw)
1785 {
1786 int is_metadata;
1787 struct btrfsic_block *block;
1788 struct btrfsic_block_data_ctx block_ctx;
1789 int ret;
1790 struct btrfsic_state *state = dev_state->state;
1791 struct block_device *bdev = dev_state->bdev;
1792 unsigned int processed_len;
1793
1794 if (NULL != bio_is_patched)
1795 *bio_is_patched = 0;
1796
1797 again:
1798 if (num_pages == 0)
1799 return;
1800
1801 processed_len = 0;
1802 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1803 num_pages));
1804
1805 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1806 &state->block_hashtable);
1807 if (NULL != block) {
1808 u64 bytenr = 0;
1809 struct btrfsic_block_link *l, *tmp;
1810
1811 if (block->is_superblock) {
1812 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1813 mapped_datav[0]);
1814 if (num_pages * PAGE_SIZE <
1815 BTRFS_SUPER_INFO_SIZE) {
1816 printk(KERN_INFO
1817 "btrfsic: cannot work with too short bios!\n");
1818 return;
1819 }
1820 is_metadata = 1;
1821 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1822 processed_len = BTRFS_SUPER_INFO_SIZE;
1823 if (state->print_mask &
1824 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1825 printk(KERN_INFO
1826 "[before new superblock is written]:\n");
1827 btrfsic_dump_tree_sub(state, block, 0);
1828 }
1829 }
1830 if (is_metadata) {
1831 if (!block->is_superblock) {
1832 if (num_pages * PAGE_SIZE <
1833 state->metablock_size) {
1834 printk(KERN_INFO
1835 "btrfsic: cannot work with too short bios!\n");
1836 return;
1837 }
1838 processed_len = state->metablock_size;
1839 bytenr = btrfs_stack_header_bytenr(
1840 (struct btrfs_header *)
1841 mapped_datav[0]);
1842 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1843 dev_state,
1844 dev_bytenr);
1845 }
1846 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1847 if (block->logical_bytenr != bytenr &&
1848 !(!block->is_metadata &&
1849 block->logical_bytenr == 0))
1850 printk(KERN_INFO
1851 "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1852 bytenr, dev_state->name,
1853 dev_bytenr,
1854 block->mirror_num,
1855 btrfsic_get_block_type(state,
1856 block),
1857 block->logical_bytenr);
1858 else
1859 printk(KERN_INFO
1860 "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1861 bytenr, dev_state->name,
1862 dev_bytenr, block->mirror_num,
1863 btrfsic_get_block_type(state,
1864 block));
1865 }
1866 block->logical_bytenr = bytenr;
1867 } else {
1868 if (num_pages * PAGE_SIZE <
1869 state->datablock_size) {
1870 printk(KERN_INFO
1871 "btrfsic: cannot work with too short bios!\n");
1872 return;
1873 }
1874 processed_len = state->datablock_size;
1875 bytenr = block->logical_bytenr;
1876 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1877 printk(KERN_INFO
1878 "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1879 bytenr, dev_state->name, dev_bytenr,
1880 block->mirror_num,
1881 btrfsic_get_block_type(state, block));
1882 }
1883
1884 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1885 printk(KERN_INFO
1886 "ref_to_list: %cE, ref_from_list: %cE\n",
1887 list_empty(&block->ref_to_list) ? ' ' : '!',
1888 list_empty(&block->ref_from_list) ? ' ' : '!');
1889 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1890 printk(KERN_INFO "btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1891 btrfsic_get_block_type(state, block), bytenr,
1892 dev_state->name, dev_bytenr, block->mirror_num,
1893 block->generation,
1894 btrfs_disk_key_objectid(&block->disk_key),
1895 block->disk_key.type,
1896 btrfs_disk_key_offset(&block->disk_key),
1897 btrfs_stack_header_generation(
1898 (struct btrfs_header *) mapped_datav[0]),
1899 state->max_superblock_generation);
1900 btrfsic_dump_tree(state);
1901 }
1902
1903 if (!block->is_iodone && !block->never_written) {
1904 printk(KERN_INFO "btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1905 btrfsic_get_block_type(state, block), bytenr,
1906 dev_state->name, dev_bytenr, block->mirror_num,
1907 block->generation,
1908 btrfs_stack_header_generation(
1909 (struct btrfs_header *)
1910 mapped_datav[0]));
1911 /* it would not be safe to go on */
1912 btrfsic_dump_tree(state);
1913 goto continue_loop;
1914 }
1915
1916 /*
1917 * Clear all references of this block. Do not free
1918 * the block itself even if is not referenced anymore
1919 * because it still carries valuable information
1920 * like whether it was ever written and IO completed.
1921 */
1922 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1923 node_ref_to) {
1924 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1925 btrfsic_print_rem_link(state, l);
1926 l->ref_cnt--;
1927 if (0 == l->ref_cnt) {
1928 list_del(&l->node_ref_to);
1929 list_del(&l->node_ref_from);
1930 btrfsic_block_link_hashtable_remove(l);
1931 btrfsic_block_link_free(l);
1932 }
1933 }
1934
1935 block_ctx.dev = dev_state;
1936 block_ctx.dev_bytenr = dev_bytenr;
1937 block_ctx.start = bytenr;
1938 block_ctx.len = processed_len;
1939 block_ctx.pagev = NULL;
1940 block_ctx.mem_to_free = NULL;
1941 block_ctx.datav = mapped_datav;
1942
1943 if (is_metadata || state->include_extent_data) {
1944 block->never_written = 0;
1945 block->iodone_w_error = 0;
1946 if (NULL != bio) {
1947 block->is_iodone = 0;
1948 BUG_ON(NULL == bio_is_patched);
1949 if (!*bio_is_patched) {
1950 block->orig_bio_bh_private =
1951 bio->bi_private;
1952 block->orig_bio_bh_end_io.bio =
1953 bio->bi_end_io;
1954 block->next_in_same_bio = NULL;
1955 bio->bi_private = block;
1956 bio->bi_end_io = btrfsic_bio_end_io;
1957 *bio_is_patched = 1;
1958 } else {
1959 struct btrfsic_block *chained_block =
1960 (struct btrfsic_block *)
1961 bio->bi_private;
1962
1963 BUG_ON(NULL == chained_block);
1964 block->orig_bio_bh_private =
1965 chained_block->orig_bio_bh_private;
1966 block->orig_bio_bh_end_io.bio =
1967 chained_block->orig_bio_bh_end_io.
1968 bio;
1969 block->next_in_same_bio = chained_block;
1970 bio->bi_private = block;
1971 }
1972 } else if (NULL != bh) {
1973 block->is_iodone = 0;
1974 block->orig_bio_bh_private = bh->b_private;
1975 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1976 block->next_in_same_bio = NULL;
1977 bh->b_private = block;
1978 bh->b_end_io = btrfsic_bh_end_io;
1979 } else {
1980 block->is_iodone = 1;
1981 block->orig_bio_bh_private = NULL;
1982 block->orig_bio_bh_end_io.bio = NULL;
1983 block->next_in_same_bio = NULL;
1984 }
1985 }
1986
1987 block->flush_gen = dev_state->last_flush_gen + 1;
1988 block->submit_bio_bh_rw = submit_bio_bh_rw;
1989 if (is_metadata) {
1990 block->logical_bytenr = bytenr;
1991 block->is_metadata = 1;
1992 if (block->is_superblock) {
1993 BUG_ON(PAGE_SIZE !=
1994 BTRFS_SUPER_INFO_SIZE);
1995 ret = btrfsic_process_written_superblock(
1996 state,
1997 block,
1998 (struct btrfs_super_block *)
1999 mapped_datav[0]);
2000 if (state->print_mask &
2001 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2002 printk(KERN_INFO
2003 "[after new superblock is written]:\n");
2004 btrfsic_dump_tree_sub(state, block, 0);
2005 }
2006 } else {
2007 block->mirror_num = 0; /* unknown */
2008 ret = btrfsic_process_metablock(
2009 state,
2010 block,
2011 &block_ctx,
2012 0, 0);
2013 }
2014 if (ret)
2015 printk(KERN_INFO
2016 "btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
2017 dev_bytenr);
2018 } else {
2019 block->is_metadata = 0;
2020 block->mirror_num = 0; /* unknown */
2021 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2022 if (!state->include_extent_data
2023 && list_empty(&block->ref_from_list)) {
2024 /*
2025 * disk block is overwritten with extent
2026 * data (not meta data) and we are configured
2027 * to not include extent data: take the
2028 * chance and free the block's memory
2029 */
2030 btrfsic_block_hashtable_remove(block);
2031 list_del(&block->all_blocks_node);
2032 btrfsic_block_free(block);
2033 }
2034 }
2035 btrfsic_release_block_ctx(&block_ctx);
2036 } else {
2037 /* block has not been found in hash table */
2038 u64 bytenr;
2039
2040 if (!is_metadata) {
2041 processed_len = state->datablock_size;
2042 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2043 printk(KERN_INFO "Written block (%s/%llu/?) !found in hash table, D.\n",
2044 dev_state->name, dev_bytenr);
2045 if (!state->include_extent_data) {
2046 /* ignore that written D block */
2047 goto continue_loop;
2048 }
2049
2050 /* this is getting ugly for the
2051 * include_extent_data case... */
2052 bytenr = 0; /* unknown */
2053 } else {
2054 processed_len = state->metablock_size;
2055 bytenr = btrfs_stack_header_bytenr(
2056 (struct btrfs_header *)
2057 mapped_datav[0]);
2058 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2059 dev_bytenr);
2060 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2061 printk(KERN_INFO
2062 "Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2063 bytenr, dev_state->name, dev_bytenr);
2064 }
2065
2066 block_ctx.dev = dev_state;
2067 block_ctx.dev_bytenr = dev_bytenr;
2068 block_ctx.start = bytenr;
2069 block_ctx.len = processed_len;
2070 block_ctx.pagev = NULL;
2071 block_ctx.mem_to_free = NULL;
2072 block_ctx.datav = mapped_datav;
2073
2074 block = btrfsic_block_alloc();
2075 if (NULL == block) {
2076 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2077 btrfsic_release_block_ctx(&block_ctx);
2078 goto continue_loop;
2079 }
2080 block->dev_state = dev_state;
2081 block->dev_bytenr = dev_bytenr;
2082 block->logical_bytenr = bytenr;
2083 block->is_metadata = is_metadata;
2084 block->never_written = 0;
2085 block->iodone_w_error = 0;
2086 block->mirror_num = 0; /* unknown */
2087 block->flush_gen = dev_state->last_flush_gen + 1;
2088 block->submit_bio_bh_rw = submit_bio_bh_rw;
2089 if (NULL != bio) {
2090 block->is_iodone = 0;
2091 BUG_ON(NULL == bio_is_patched);
2092 if (!*bio_is_patched) {
2093 block->orig_bio_bh_private = bio->bi_private;
2094 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2095 block->next_in_same_bio = NULL;
2096 bio->bi_private = block;
2097 bio->bi_end_io = btrfsic_bio_end_io;
2098 *bio_is_patched = 1;
2099 } else {
2100 struct btrfsic_block *chained_block =
2101 (struct btrfsic_block *)
2102 bio->bi_private;
2103
2104 BUG_ON(NULL == chained_block);
2105 block->orig_bio_bh_private =
2106 chained_block->orig_bio_bh_private;
2107 block->orig_bio_bh_end_io.bio =
2108 chained_block->orig_bio_bh_end_io.bio;
2109 block->next_in_same_bio = chained_block;
2110 bio->bi_private = block;
2111 }
2112 } else if (NULL != bh) {
2113 block->is_iodone = 0;
2114 block->orig_bio_bh_private = bh->b_private;
2115 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2116 block->next_in_same_bio = NULL;
2117 bh->b_private = block;
2118 bh->b_end_io = btrfsic_bh_end_io;
2119 } else {
2120 block->is_iodone = 1;
2121 block->orig_bio_bh_private = NULL;
2122 block->orig_bio_bh_end_io.bio = NULL;
2123 block->next_in_same_bio = NULL;
2124 }
2125 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2126 printk(KERN_INFO
2127 "New written %c-block @%llu (%s/%llu/%d)\n",
2128 is_metadata ? 'M' : 'D',
2129 block->logical_bytenr, block->dev_state->name,
2130 block->dev_bytenr, block->mirror_num);
2131 list_add(&block->all_blocks_node, &state->all_blocks_list);
2132 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2133
2134 if (is_metadata) {
2135 ret = btrfsic_process_metablock(state, block,
2136 &block_ctx, 0, 0);
2137 if (ret)
2138 printk(KERN_INFO
2139 "btrfsic: process_metablock(root @%llu) failed!\n",
2140 dev_bytenr);
2141 }
2142 btrfsic_release_block_ctx(&block_ctx);
2143 }
2144
2145 continue_loop:
2146 BUG_ON(!processed_len);
2147 dev_bytenr += processed_len;
2148 mapped_datav += processed_len >> PAGE_SHIFT;
2149 num_pages -= processed_len >> PAGE_SHIFT;
2150 goto again;
2151 }
2152
2153 static void btrfsic_bio_end_io(struct bio *bp)
2154 {
2155 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2156 int iodone_w_error;
2157
2158 /* mutex is not held! This is not save if IO is not yet completed
2159 * on umount */
2160 iodone_w_error = 0;
2161 if (bp->bi_error)
2162 iodone_w_error = 1;
2163
2164 BUG_ON(NULL == block);
2165 bp->bi_private = block->orig_bio_bh_private;
2166 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2167
2168 do {
2169 struct btrfsic_block *next_block;
2170 struct btrfsic_dev_state *const dev_state = block->dev_state;
2171
2172 if ((dev_state->state->print_mask &
2173 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2174 printk(KERN_INFO
2175 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2176 bp->bi_error,
2177 btrfsic_get_block_type(dev_state->state, block),
2178 block->logical_bytenr, dev_state->name,
2179 block->dev_bytenr, block->mirror_num);
2180 next_block = block->next_in_same_bio;
2181 block->iodone_w_error = iodone_w_error;
2182 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2183 dev_state->last_flush_gen++;
2184 if ((dev_state->state->print_mask &
2185 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2186 printk(KERN_INFO
2187 "bio_end_io() new %s flush_gen=%llu\n",
2188 dev_state->name,
2189 dev_state->last_flush_gen);
2190 }
2191 if (block->submit_bio_bh_rw & REQ_FUA)
2192 block->flush_gen = 0; /* FUA completed means block is
2193 * on disk */
2194 block->is_iodone = 1; /* for FLUSH, this releases the block */
2195 block = next_block;
2196 } while (NULL != block);
2197
2198 bp->bi_end_io(bp);
2199 }
2200
2201 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2202 {
2203 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2204 int iodone_w_error = !uptodate;
2205 struct btrfsic_dev_state *dev_state;
2206
2207 BUG_ON(NULL == block);
2208 dev_state = block->dev_state;
2209 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2210 printk(KERN_INFO
2211 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2212 iodone_w_error,
2213 btrfsic_get_block_type(dev_state->state, block),
2214 block->logical_bytenr, block->dev_state->name,
2215 block->dev_bytenr, block->mirror_num);
2216
2217 block->iodone_w_error = iodone_w_error;
2218 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2219 dev_state->last_flush_gen++;
2220 if ((dev_state->state->print_mask &
2221 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2222 printk(KERN_INFO
2223 "bh_end_io() new %s flush_gen=%llu\n",
2224 dev_state->name, dev_state->last_flush_gen);
2225 }
2226 if (block->submit_bio_bh_rw & REQ_FUA)
2227 block->flush_gen = 0; /* FUA completed means block is on disk */
2228
2229 bh->b_private = block->orig_bio_bh_private;
2230 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2231 block->is_iodone = 1; /* for FLUSH, this releases the block */
2232 bh->b_end_io(bh, uptodate);
2233 }
2234
2235 static int btrfsic_process_written_superblock(
2236 struct btrfsic_state *state,
2237 struct btrfsic_block *const superblock,
2238 struct btrfs_super_block *const super_hdr)
2239 {
2240 int pass;
2241
2242 superblock->generation = btrfs_super_generation(super_hdr);
2243 if (!(superblock->generation > state->max_superblock_generation ||
2244 0 == state->max_superblock_generation)) {
2245 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2246 printk(KERN_INFO
2247 "btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2248 superblock->logical_bytenr,
2249 superblock->dev_state->name,
2250 superblock->dev_bytenr, superblock->mirror_num,
2251 btrfs_super_generation(super_hdr),
2252 state->max_superblock_generation);
2253 } else {
2254 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2255 printk(KERN_INFO
2256 "btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2257 superblock->logical_bytenr,
2258 superblock->dev_state->name,
2259 superblock->dev_bytenr, superblock->mirror_num,
2260 btrfs_super_generation(super_hdr),
2261 state->max_superblock_generation);
2262
2263 state->max_superblock_generation =
2264 btrfs_super_generation(super_hdr);
2265 state->latest_superblock = superblock;
2266 }
2267
2268 for (pass = 0; pass < 3; pass++) {
2269 int ret;
2270 u64 next_bytenr;
2271 struct btrfsic_block *next_block;
2272 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2273 struct btrfsic_block_link *l;
2274 int num_copies;
2275 int mirror_num;
2276 const char *additional_string = NULL;
2277 struct btrfs_disk_key tmp_disk_key = {0};
2278
2279 btrfs_set_disk_key_objectid(&tmp_disk_key,
2280 BTRFS_ROOT_ITEM_KEY);
2281 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2282
2283 switch (pass) {
2284 case 0:
2285 btrfs_set_disk_key_objectid(&tmp_disk_key,
2286 BTRFS_ROOT_TREE_OBJECTID);
2287 additional_string = "root ";
2288 next_bytenr = btrfs_super_root(super_hdr);
2289 if (state->print_mask &
2290 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2291 printk(KERN_INFO "root@%llu\n", next_bytenr);
2292 break;
2293 case 1:
2294 btrfs_set_disk_key_objectid(&tmp_disk_key,
2295 BTRFS_CHUNK_TREE_OBJECTID);
2296 additional_string = "chunk ";
2297 next_bytenr = btrfs_super_chunk_root(super_hdr);
2298 if (state->print_mask &
2299 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2300 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2301 break;
2302 case 2:
2303 btrfs_set_disk_key_objectid(&tmp_disk_key,
2304 BTRFS_TREE_LOG_OBJECTID);
2305 additional_string = "log ";
2306 next_bytenr = btrfs_super_log_root(super_hdr);
2307 if (0 == next_bytenr)
2308 continue;
2309 if (state->print_mask &
2310 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2311 printk(KERN_INFO "log@%llu\n", next_bytenr);
2312 break;
2313 }
2314
2315 num_copies =
2316 btrfs_num_copies(state->root->fs_info,
2317 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2318 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2319 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2320 next_bytenr, num_copies);
2321 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2322 int was_created;
2323
2324 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2325 printk(KERN_INFO
2326 "btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2327 ret = btrfsic_map_block(state, next_bytenr,
2328 BTRFS_SUPER_INFO_SIZE,
2329 &tmp_next_block_ctx,
2330 mirror_num);
2331 if (ret) {
2332 printk(KERN_INFO
2333 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2334 next_bytenr, mirror_num);
2335 return -1;
2336 }
2337
2338 next_block = btrfsic_block_lookup_or_add(
2339 state,
2340 &tmp_next_block_ctx,
2341 additional_string,
2342 1, 0, 1,
2343 mirror_num,
2344 &was_created);
2345 if (NULL == next_block) {
2346 printk(KERN_INFO
2347 "btrfsic: error, kmalloc failed!\n");
2348 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2349 return -1;
2350 }
2351
2352 next_block->disk_key = tmp_disk_key;
2353 if (was_created)
2354 next_block->generation =
2355 BTRFSIC_GENERATION_UNKNOWN;
2356 l = btrfsic_block_link_lookup_or_add(
2357 state,
2358 &tmp_next_block_ctx,
2359 next_block,
2360 superblock,
2361 BTRFSIC_GENERATION_UNKNOWN);
2362 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2363 if (NULL == l)
2364 return -1;
2365 }
2366 }
2367
2368 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2369 btrfsic_dump_tree(state);
2370
2371 return 0;
2372 }
2373
2374 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2375 struct btrfsic_block *const block,
2376 int recursion_level)
2377 {
2378 const struct btrfsic_block_link *l;
2379 int ret = 0;
2380
2381 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2382 /*
2383 * Note that this situation can happen and does not
2384 * indicate an error in regular cases. It happens
2385 * when disk blocks are freed and later reused.
2386 * The check-integrity module is not aware of any
2387 * block free operations, it just recognizes block
2388 * write operations. Therefore it keeps the linkage
2389 * information for a block until a block is
2390 * rewritten. This can temporarily cause incorrect
2391 * and even circular linkage informations. This
2392 * causes no harm unless such blocks are referenced
2393 * by the most recent super block.
2394 */
2395 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2396 printk(KERN_INFO
2397 "btrfsic: abort cyclic linkage (case 1).\n");
2398
2399 return ret;
2400 }
2401
2402 /*
2403 * This algorithm is recursive because the amount of used stack
2404 * space is very small and the max recursion depth is limited.
2405 */
2406 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2407 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2408 printk(KERN_INFO
2409 "rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2410 recursion_level,
2411 btrfsic_get_block_type(state, block),
2412 block->logical_bytenr, block->dev_state->name,
2413 block->dev_bytenr, block->mirror_num,
2414 l->ref_cnt,
2415 btrfsic_get_block_type(state, l->block_ref_to),
2416 l->block_ref_to->logical_bytenr,
2417 l->block_ref_to->dev_state->name,
2418 l->block_ref_to->dev_bytenr,
2419 l->block_ref_to->mirror_num);
2420 if (l->block_ref_to->never_written) {
2421 printk(KERN_INFO "btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2422 btrfsic_get_block_type(state, l->block_ref_to),
2423 l->block_ref_to->logical_bytenr,
2424 l->block_ref_to->dev_state->name,
2425 l->block_ref_to->dev_bytenr,
2426 l->block_ref_to->mirror_num);
2427 ret = -1;
2428 } else if (!l->block_ref_to->is_iodone) {
2429 printk(KERN_INFO "btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2430 btrfsic_get_block_type(state, l->block_ref_to),
2431 l->block_ref_to->logical_bytenr,
2432 l->block_ref_to->dev_state->name,
2433 l->block_ref_to->dev_bytenr,
2434 l->block_ref_to->mirror_num);
2435 ret = -1;
2436 } else if (l->block_ref_to->iodone_w_error) {
2437 printk(KERN_INFO "btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2438 btrfsic_get_block_type(state, l->block_ref_to),
2439 l->block_ref_to->logical_bytenr,
2440 l->block_ref_to->dev_state->name,
2441 l->block_ref_to->dev_bytenr,
2442 l->block_ref_to->mirror_num);
2443 ret = -1;
2444 } else if (l->parent_generation !=
2445 l->block_ref_to->generation &&
2446 BTRFSIC_GENERATION_UNKNOWN !=
2447 l->parent_generation &&
2448 BTRFSIC_GENERATION_UNKNOWN !=
2449 l->block_ref_to->generation) {
2450 printk(KERN_INFO "btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2451 btrfsic_get_block_type(state, l->block_ref_to),
2452 l->block_ref_to->logical_bytenr,
2453 l->block_ref_to->dev_state->name,
2454 l->block_ref_to->dev_bytenr,
2455 l->block_ref_to->mirror_num,
2456 l->block_ref_to->generation,
2457 l->parent_generation);
2458 ret = -1;
2459 } else if (l->block_ref_to->flush_gen >
2460 l->block_ref_to->dev_state->last_flush_gen) {
2461 printk(KERN_INFO "btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2462 btrfsic_get_block_type(state, l->block_ref_to),
2463 l->block_ref_to->logical_bytenr,
2464 l->block_ref_to->dev_state->name,
2465 l->block_ref_to->dev_bytenr,
2466 l->block_ref_to->mirror_num, block->flush_gen,
2467 l->block_ref_to->dev_state->last_flush_gen);
2468 ret = -1;
2469 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2470 l->block_ref_to,
2471 recursion_level +
2472 1)) {
2473 ret = -1;
2474 }
2475 }
2476
2477 return ret;
2478 }
2479
2480 static int btrfsic_is_block_ref_by_superblock(
2481 const struct btrfsic_state *state,
2482 const struct btrfsic_block *block,
2483 int recursion_level)
2484 {
2485 const struct btrfsic_block_link *l;
2486
2487 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2488 /* refer to comment at "abort cyclic linkage (case 1)" */
2489 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2490 printk(KERN_INFO
2491 "btrfsic: abort cyclic linkage (case 2).\n");
2492
2493 return 0;
2494 }
2495
2496 /*
2497 * This algorithm is recursive because the amount of used stack space
2498 * is very small and the max recursion depth is limited.
2499 */
2500 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2501 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2502 printk(KERN_INFO
2503 "rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2504 recursion_level,
2505 btrfsic_get_block_type(state, block),
2506 block->logical_bytenr, block->dev_state->name,
2507 block->dev_bytenr, block->mirror_num,
2508 l->ref_cnt,
2509 btrfsic_get_block_type(state, l->block_ref_from),
2510 l->block_ref_from->logical_bytenr,
2511 l->block_ref_from->dev_state->name,
2512 l->block_ref_from->dev_bytenr,
2513 l->block_ref_from->mirror_num);
2514 if (l->block_ref_from->is_superblock &&
2515 state->latest_superblock->dev_bytenr ==
2516 l->block_ref_from->dev_bytenr &&
2517 state->latest_superblock->dev_state->bdev ==
2518 l->block_ref_from->dev_state->bdev)
2519 return 1;
2520 else if (btrfsic_is_block_ref_by_superblock(state,
2521 l->block_ref_from,
2522 recursion_level +
2523 1))
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2531 const struct btrfsic_block_link *l)
2532 {
2533 printk(KERN_INFO
2534 "Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2535 l->ref_cnt,
2536 btrfsic_get_block_type(state, l->block_ref_from),
2537 l->block_ref_from->logical_bytenr,
2538 l->block_ref_from->dev_state->name,
2539 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2540 btrfsic_get_block_type(state, l->block_ref_to),
2541 l->block_ref_to->logical_bytenr,
2542 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2543 l->block_ref_to->mirror_num);
2544 }
2545
2546 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2547 const struct btrfsic_block_link *l)
2548 {
2549 printk(KERN_INFO
2550 "Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2551 l->ref_cnt,
2552 btrfsic_get_block_type(state, l->block_ref_from),
2553 l->block_ref_from->logical_bytenr,
2554 l->block_ref_from->dev_state->name,
2555 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2556 btrfsic_get_block_type(state, l->block_ref_to),
2557 l->block_ref_to->logical_bytenr,
2558 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2559 l->block_ref_to->mirror_num);
2560 }
2561
2562 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2563 const struct btrfsic_block *block)
2564 {
2565 if (block->is_superblock &&
2566 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2567 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2568 return 'S';
2569 else if (block->is_superblock)
2570 return 's';
2571 else if (block->is_metadata)
2572 return 'M';
2573 else
2574 return 'D';
2575 }
2576
2577 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2578 {
2579 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2580 }
2581
2582 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2583 const struct btrfsic_block *block,
2584 int indent_level)
2585 {
2586 const struct btrfsic_block_link *l;
2587 int indent_add;
2588 static char buf[80];
2589 int cursor_position;
2590
2591 /*
2592 * Should better fill an on-stack buffer with a complete line and
2593 * dump it at once when it is time to print a newline character.
2594 */
2595
2596 /*
2597 * This algorithm is recursive because the amount of used stack space
2598 * is very small and the max recursion depth is limited.
2599 */
2600 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2601 btrfsic_get_block_type(state, block),
2602 block->logical_bytenr, block->dev_state->name,
2603 block->dev_bytenr, block->mirror_num);
2604 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2605 printk("[...]\n");
2606 return;
2607 }
2608 printk(buf);
2609 indent_level += indent_add;
2610 if (list_empty(&block->ref_to_list)) {
2611 printk("\n");
2612 return;
2613 }
2614 if (block->mirror_num > 1 &&
2615 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2616 printk(" [...]\n");
2617 return;
2618 }
2619
2620 cursor_position = indent_level;
2621 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2622 while (cursor_position < indent_level) {
2623 printk(" ");
2624 cursor_position++;
2625 }
2626 if (l->ref_cnt > 1)
2627 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2628 else
2629 indent_add = sprintf(buf, " --> ");
2630 if (indent_level + indent_add >
2631 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2632 printk("[...]\n");
2633 cursor_position = 0;
2634 continue;
2635 }
2636
2637 printk(buf);
2638
2639 btrfsic_dump_tree_sub(state, l->block_ref_to,
2640 indent_level + indent_add);
2641 cursor_position = 0;
2642 }
2643 }
2644
2645 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2646 struct btrfsic_state *state,
2647 struct btrfsic_block_data_ctx *next_block_ctx,
2648 struct btrfsic_block *next_block,
2649 struct btrfsic_block *from_block,
2650 u64 parent_generation)
2651 {
2652 struct btrfsic_block_link *l;
2653
2654 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2655 next_block_ctx->dev_bytenr,
2656 from_block->dev_state->bdev,
2657 from_block->dev_bytenr,
2658 &state->block_link_hashtable);
2659 if (NULL == l) {
2660 l = btrfsic_block_link_alloc();
2661 if (NULL == l) {
2662 printk(KERN_INFO
2663 "btrfsic: error, kmalloc failed!\n");
2664 return NULL;
2665 }
2666
2667 l->block_ref_to = next_block;
2668 l->block_ref_from = from_block;
2669 l->ref_cnt = 1;
2670 l->parent_generation = parent_generation;
2671
2672 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2673 btrfsic_print_add_link(state, l);
2674
2675 list_add(&l->node_ref_to, &from_block->ref_to_list);
2676 list_add(&l->node_ref_from, &next_block->ref_from_list);
2677
2678 btrfsic_block_link_hashtable_add(l,
2679 &state->block_link_hashtable);
2680 } else {
2681 l->ref_cnt++;
2682 l->parent_generation = parent_generation;
2683 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2684 btrfsic_print_add_link(state, l);
2685 }
2686
2687 return l;
2688 }
2689
2690 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2691 struct btrfsic_state *state,
2692 struct btrfsic_block_data_ctx *block_ctx,
2693 const char *additional_string,
2694 int is_metadata,
2695 int is_iodone,
2696 int never_written,
2697 int mirror_num,
2698 int *was_created)
2699 {
2700 struct btrfsic_block *block;
2701
2702 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2703 block_ctx->dev_bytenr,
2704 &state->block_hashtable);
2705 if (NULL == block) {
2706 struct btrfsic_dev_state *dev_state;
2707
2708 block = btrfsic_block_alloc();
2709 if (NULL == block) {
2710 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2711 return NULL;
2712 }
2713 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2714 if (NULL == dev_state) {
2715 printk(KERN_INFO
2716 "btrfsic: error, lookup dev_state failed!\n");
2717 btrfsic_block_free(block);
2718 return NULL;
2719 }
2720 block->dev_state = dev_state;
2721 block->dev_bytenr = block_ctx->dev_bytenr;
2722 block->logical_bytenr = block_ctx->start;
2723 block->is_metadata = is_metadata;
2724 block->is_iodone = is_iodone;
2725 block->never_written = never_written;
2726 block->mirror_num = mirror_num;
2727 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2728 printk(KERN_INFO
2729 "New %s%c-block @%llu (%s/%llu/%d)\n",
2730 additional_string,
2731 btrfsic_get_block_type(state, block),
2732 block->logical_bytenr, dev_state->name,
2733 block->dev_bytenr, mirror_num);
2734 list_add(&block->all_blocks_node, &state->all_blocks_list);
2735 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2736 if (NULL != was_created)
2737 *was_created = 1;
2738 } else {
2739 if (NULL != was_created)
2740 *was_created = 0;
2741 }
2742
2743 return block;
2744 }
2745
2746 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2747 u64 bytenr,
2748 struct btrfsic_dev_state *dev_state,
2749 u64 dev_bytenr)
2750 {
2751 int num_copies;
2752 int mirror_num;
2753 int ret;
2754 struct btrfsic_block_data_ctx block_ctx;
2755 int match = 0;
2756
2757 num_copies = btrfs_num_copies(state->root->fs_info,
2758 bytenr, state->metablock_size);
2759
2760 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2761 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2762 &block_ctx, mirror_num);
2763 if (ret) {
2764 printk(KERN_INFO "btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2765 bytenr, mirror_num);
2766 continue;
2767 }
2768
2769 if (dev_state->bdev == block_ctx.dev->bdev &&
2770 dev_bytenr == block_ctx.dev_bytenr) {
2771 match++;
2772 btrfsic_release_block_ctx(&block_ctx);
2773 break;
2774 }
2775 btrfsic_release_block_ctx(&block_ctx);
2776 }
2777
2778 if (WARN_ON(!match)) {
2779 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2780 bytenr, dev_state->name, dev_bytenr);
2781 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2782 ret = btrfsic_map_block(state, bytenr,
2783 state->metablock_size,
2784 &block_ctx, mirror_num);
2785 if (ret)
2786 continue;
2787
2788 printk(KERN_INFO "Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2789 bytenr, block_ctx.dev->name,
2790 block_ctx.dev_bytenr, mirror_num);
2791 }
2792 }
2793 }
2794
2795 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2796 struct block_device *bdev)
2797 {
2798 return btrfsic_dev_state_hashtable_lookup(bdev,
2799 &btrfsic_dev_state_hashtable);
2800 }
2801
2802 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2803 {
2804 struct btrfsic_dev_state *dev_state;
2805
2806 if (!btrfsic_is_initialized)
2807 return submit_bh(op, op_flags, bh);
2808
2809 mutex_lock(&btrfsic_mutex);
2810 /* since btrfsic_submit_bh() might also be called before
2811 * btrfsic_mount(), this might return NULL */
2812 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2813
2814 /* Only called to write the superblock (incl. FLUSH/FUA) */
2815 if (NULL != dev_state &&
2816 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2817 u64 dev_bytenr;
2818
2819 dev_bytenr = 4096 * bh->b_blocknr;
2820 if (dev_state->state->print_mask &
2821 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2822 printk(KERN_INFO
2823 "submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2824 op, op_flags, (unsigned long long)bh->b_blocknr,
2825 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2826 btrfsic_process_written_block(dev_state, dev_bytenr,
2827 &bh->b_data, 1, NULL,
2828 NULL, bh, op_flags);
2829 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2830 if (dev_state->state->print_mask &
2831 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2832 printk(KERN_INFO
2833 "submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2834 op, op_flags, bh->b_bdev);
2835 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2836 if ((dev_state->state->print_mask &
2837 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2838 BTRFSIC_PRINT_MASK_VERBOSE)))
2839 printk(KERN_INFO
2840 "btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2841 dev_state->name);
2842 } else {
2843 struct btrfsic_block *const block =
2844 &dev_state->dummy_block_for_bio_bh_flush;
2845
2846 block->is_iodone = 0;
2847 block->never_written = 0;
2848 block->iodone_w_error = 0;
2849 block->flush_gen = dev_state->last_flush_gen + 1;
2850 block->submit_bio_bh_rw = op_flags;
2851 block->orig_bio_bh_private = bh->b_private;
2852 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2853 block->next_in_same_bio = NULL;
2854 bh->b_private = block;
2855 bh->b_end_io = btrfsic_bh_end_io;
2856 }
2857 }
2858 mutex_unlock(&btrfsic_mutex);
2859 return submit_bh(op, op_flags, bh);
2860 }
2861
2862 static void __btrfsic_submit_bio(struct bio *bio)
2863 {
2864 struct btrfsic_dev_state *dev_state;
2865
2866 if (!btrfsic_is_initialized)
2867 return;
2868
2869 mutex_lock(&btrfsic_mutex);
2870 /* since btrfsic_submit_bio() is also called before
2871 * btrfsic_mount(), this might return NULL */
2872 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2873 if (NULL != dev_state &&
2874 (bio_op(bio) == REQ_OP_WRITE) && NULL != bio->bi_io_vec) {
2875 unsigned int i;
2876 u64 dev_bytenr;
2877 u64 cur_bytenr;
2878 int bio_is_patched;
2879 char **mapped_datav;
2880
2881 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2882 bio_is_patched = 0;
2883 if (dev_state->state->print_mask &
2884 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2885 printk(KERN_INFO
2886 "submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2887 bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2888 (unsigned long long)bio->bi_iter.bi_sector,
2889 dev_bytenr, bio->bi_bdev);
2890
2891 mapped_datav = kmalloc_array(bio->bi_vcnt,
2892 sizeof(*mapped_datav), GFP_NOFS);
2893 if (!mapped_datav)
2894 goto leave;
2895 cur_bytenr = dev_bytenr;
2896 for (i = 0; i < bio->bi_vcnt; i++) {
2897 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_SIZE);
2898 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
2899 if (!mapped_datav[i]) {
2900 while (i > 0) {
2901 i--;
2902 kunmap(bio->bi_io_vec[i].bv_page);
2903 }
2904 kfree(mapped_datav);
2905 goto leave;
2906 }
2907 if (dev_state->state->print_mask &
2908 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2909 printk(KERN_INFO
2910 "#%u: bytenr=%llu, len=%u, offset=%u\n",
2911 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2912 bio->bi_io_vec[i].bv_offset);
2913 cur_bytenr += bio->bi_io_vec[i].bv_len;
2914 }
2915 btrfsic_process_written_block(dev_state, dev_bytenr,
2916 mapped_datav, bio->bi_vcnt,
2917 bio, &bio_is_patched,
2918 NULL, bio->bi_opf);
2919 while (i > 0) {
2920 i--;
2921 kunmap(bio->bi_io_vec[i].bv_page);
2922 }
2923 kfree(mapped_datav);
2924 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2925 if (dev_state->state->print_mask &
2926 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2927 printk(KERN_INFO
2928 "submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2929 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2930 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2931 if ((dev_state->state->print_mask &
2932 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2933 BTRFSIC_PRINT_MASK_VERBOSE)))
2934 printk(KERN_INFO
2935 "btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2936 dev_state->name);
2937 } else {
2938 struct btrfsic_block *const block =
2939 &dev_state->dummy_block_for_bio_bh_flush;
2940
2941 block->is_iodone = 0;
2942 block->never_written = 0;
2943 block->iodone_w_error = 0;
2944 block->flush_gen = dev_state->last_flush_gen + 1;
2945 block->submit_bio_bh_rw = bio->bi_opf;
2946 block->orig_bio_bh_private = bio->bi_private;
2947 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2948 block->next_in_same_bio = NULL;
2949 bio->bi_private = block;
2950 bio->bi_end_io = btrfsic_bio_end_io;
2951 }
2952 }
2953 leave:
2954 mutex_unlock(&btrfsic_mutex);
2955 }
2956
2957 void btrfsic_submit_bio(struct bio *bio)
2958 {
2959 __btrfsic_submit_bio(bio);
2960 submit_bio(bio);
2961 }
2962
2963 int btrfsic_submit_bio_wait(struct bio *bio)
2964 {
2965 __btrfsic_submit_bio(bio);
2966 return submit_bio_wait(bio);
2967 }
2968
2969 int btrfsic_mount(struct btrfs_root *root,
2970 struct btrfs_fs_devices *fs_devices,
2971 int including_extent_data, u32 print_mask)
2972 {
2973 int ret;
2974 struct btrfsic_state *state;
2975 struct list_head *dev_head = &fs_devices->devices;
2976 struct btrfs_device *device;
2977
2978 if (root->nodesize & ((u64)PAGE_SIZE - 1)) {
2979 printk(KERN_INFO
2980 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2981 root->nodesize, PAGE_SIZE);
2982 return -1;
2983 }
2984 if (root->sectorsize & ((u64)PAGE_SIZE - 1)) {
2985 printk(KERN_INFO
2986 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2987 root->sectorsize, PAGE_SIZE);
2988 return -1;
2989 }
2990 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
2991 if (!state) {
2992 state = vzalloc(sizeof(*state));
2993 if (!state) {
2994 printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
2995 return -1;
2996 }
2997 }
2998
2999 if (!btrfsic_is_initialized) {
3000 mutex_init(&btrfsic_mutex);
3001 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3002 btrfsic_is_initialized = 1;
3003 }
3004 mutex_lock(&btrfsic_mutex);
3005 state->root = root;
3006 state->print_mask = print_mask;
3007 state->include_extent_data = including_extent_data;
3008 state->csum_size = 0;
3009 state->metablock_size = root->nodesize;
3010 state->datablock_size = root->sectorsize;
3011 INIT_LIST_HEAD(&state->all_blocks_list);
3012 btrfsic_block_hashtable_init(&state->block_hashtable);
3013 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3014 state->max_superblock_generation = 0;
3015 state->latest_superblock = NULL;
3016
3017 list_for_each_entry(device, dev_head, dev_list) {
3018 struct btrfsic_dev_state *ds;
3019 const char *p;
3020
3021 if (!device->bdev || !device->name)
3022 continue;
3023
3024 ds = btrfsic_dev_state_alloc();
3025 if (NULL == ds) {
3026 printk(KERN_INFO
3027 "btrfs check-integrity: kmalloc() failed!\n");
3028 mutex_unlock(&btrfsic_mutex);
3029 return -1;
3030 }
3031 ds->bdev = device->bdev;
3032 ds->state = state;
3033 bdevname(ds->bdev, ds->name);
3034 ds->name[BDEVNAME_SIZE - 1] = '\0';
3035 p = kbasename(ds->name);
3036 strlcpy(ds->name, p, sizeof(ds->name));
3037 btrfsic_dev_state_hashtable_add(ds,
3038 &btrfsic_dev_state_hashtable);
3039 }
3040
3041 ret = btrfsic_process_superblock(state, fs_devices);
3042 if (0 != ret) {
3043 mutex_unlock(&btrfsic_mutex);
3044 btrfsic_unmount(root, fs_devices);
3045 return ret;
3046 }
3047
3048 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3049 btrfsic_dump_database(state);
3050 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3051 btrfsic_dump_tree(state);
3052
3053 mutex_unlock(&btrfsic_mutex);
3054 return 0;
3055 }
3056
3057 void btrfsic_unmount(struct btrfs_root *root,
3058 struct btrfs_fs_devices *fs_devices)
3059 {
3060 struct btrfsic_block *b_all, *tmp_all;
3061 struct btrfsic_state *state;
3062 struct list_head *dev_head = &fs_devices->devices;
3063 struct btrfs_device *device;
3064
3065 if (!btrfsic_is_initialized)
3066 return;
3067
3068 mutex_lock(&btrfsic_mutex);
3069
3070 state = NULL;
3071 list_for_each_entry(device, dev_head, dev_list) {
3072 struct btrfsic_dev_state *ds;
3073
3074 if (!device->bdev || !device->name)
3075 continue;
3076
3077 ds = btrfsic_dev_state_hashtable_lookup(
3078 device->bdev,
3079 &btrfsic_dev_state_hashtable);
3080 if (NULL != ds) {
3081 state = ds->state;
3082 btrfsic_dev_state_hashtable_remove(ds);
3083 btrfsic_dev_state_free(ds);
3084 }
3085 }
3086
3087 if (NULL == state) {
3088 printk(KERN_INFO
3089 "btrfsic: error, cannot find state information on umount!\n");
3090 mutex_unlock(&btrfsic_mutex);
3091 return;
3092 }
3093
3094 /*
3095 * Don't care about keeping the lists' state up to date,
3096 * just free all memory that was allocated dynamically.
3097 * Free the blocks and the block_links.
3098 */
3099 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3100 all_blocks_node) {
3101 struct btrfsic_block_link *l, *tmp;
3102
3103 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3104 node_ref_to) {
3105 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3106 btrfsic_print_rem_link(state, l);
3107
3108 l->ref_cnt--;
3109 if (0 == l->ref_cnt)
3110 btrfsic_block_link_free(l);
3111 }
3112
3113 if (b_all->is_iodone || b_all->never_written)
3114 btrfsic_block_free(b_all);
3115 else
3116 printk(KERN_INFO "btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3117 btrfsic_get_block_type(state, b_all),
3118 b_all->logical_bytenr, b_all->dev_state->name,
3119 b_all->dev_bytenr, b_all->mirror_num);
3120 }
3121
3122 mutex_unlock(&btrfsic_mutex);
3123
3124 kvfree(state);
3125 }