]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/check-integrity.c
Merge tag 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford...
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / check-integrity.c
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 /*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include <linux/vmalloc.h>
98 #include <linux/string.h>
99 #include "ctree.h"
100 #include "disk-io.h"
101 #include "hash.h"
102 #include "transaction.h"
103 #include "extent_io.h"
104 #include "volumes.h"
105 #include "print-tree.h"
106 #include "locking.h"
107 #include "check-integrity.h"
108 #include "rcu-string.h"
109 #include "compression.h"
110
111 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122 /*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141 struct btrfsic_dev_state;
142 struct btrfsic_state;
143
144 struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175 };
176
177 /*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188 struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197 };
198
199 struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207 };
208
209 struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211 };
212
213 struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215 };
216
217 struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219 };
220
221 struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229 };
230
231 /* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233 struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247 };
248
249 /* Some state per mounted filesystem */
250 struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_root *root;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262 };
263
264 static void btrfsic_block_init(struct btrfsic_block *b);
265 static struct btrfsic_block *btrfsic_block_alloc(void);
266 static void btrfsic_block_free(struct btrfsic_block *b);
267 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281 static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293 static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304 static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306 static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310 static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313 static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425 }
426
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436 }
437
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442 }
443
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453 }
454
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464 }
465
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470 }
471
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494 }
495
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501 }
502
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509 }
510
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513 {
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 list_del(&b->collision_resolving_node);
525 }
526
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531 {
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544 }
545
546 static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548 {
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553 }
554
555 static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558 {
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569 }
570
571 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572 {
573 list_del(&l->collision_resolving_node);
574 }
575
576 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582 {
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602 }
603
604 static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606 {
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611 }
612
613 static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616 {
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622 }
623
624 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625 {
626 list_del(&ds->collision_resolving_node);
627 }
628
629 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632 {
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644 }
645
646 static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648 {
649 int ret = 0;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int pass;
655
656 BUG_ON(NULL == state);
657 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
658 if (NULL == selected_super) {
659 pr_info("btrfsic: error, kmalloc failed!\n");
660 return -ENOMEM;
661 }
662
663 list_for_each_entry(device, dev_head, dev_list) {
664 int i;
665 struct btrfsic_dev_state *dev_state;
666
667 if (!device->bdev || !device->name)
668 continue;
669
670 dev_state = btrfsic_dev_state_lookup(device->bdev);
671 BUG_ON(NULL == dev_state);
672 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
673 ret = btrfsic_process_superblock_dev_mirror(
674 state, dev_state, device, i,
675 &selected_dev_state, selected_super);
676 if (0 != ret && 0 == i) {
677 kfree(selected_super);
678 return ret;
679 }
680 }
681 }
682
683 if (NULL == state->latest_superblock) {
684 pr_info("btrfsic: no superblock found!\n");
685 kfree(selected_super);
686 return -1;
687 }
688
689 state->csum_size = btrfs_super_csum_size(selected_super);
690
691 for (pass = 0; pass < 3; pass++) {
692 int num_copies;
693 int mirror_num;
694 u64 next_bytenr;
695
696 switch (pass) {
697 case 0:
698 next_bytenr = btrfs_super_root(selected_super);
699 if (state->print_mask &
700 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
701 pr_info("root@%llu\n", next_bytenr);
702 break;
703 case 1:
704 next_bytenr = btrfs_super_chunk_root(selected_super);
705 if (state->print_mask &
706 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
707 pr_info("chunk@%llu\n", next_bytenr);
708 break;
709 case 2:
710 next_bytenr = btrfs_super_log_root(selected_super);
711 if (0 == next_bytenr)
712 continue;
713 if (state->print_mask &
714 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715 pr_info("log@%llu\n", next_bytenr);
716 break;
717 }
718
719 num_copies =
720 btrfs_num_copies(state->root->fs_info,
721 next_bytenr, state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 pr_info("num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
737 next_bytenr, mirror_num);
738 kfree(selected_super);
739 return -1;
740 }
741
742 next_block = btrfsic_block_hashtable_lookup(
743 tmp_next_block_ctx.dev->bdev,
744 tmp_next_block_ctx.dev_bytenr,
745 &state->block_hashtable);
746 BUG_ON(NULL == next_block);
747
748 l = btrfsic_block_link_hashtable_lookup(
749 tmp_next_block_ctx.dev->bdev,
750 tmp_next_block_ctx.dev_bytenr,
751 state->latest_superblock->dev_state->
752 bdev,
753 state->latest_superblock->dev_bytenr,
754 &state->block_link_hashtable);
755 BUG_ON(NULL == l);
756
757 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
758 if (ret < (int)PAGE_SIZE) {
759 pr_info("btrfsic: read @logical %llu failed!\n",
760 tmp_next_block_ctx.start);
761 btrfsic_release_block_ctx(&tmp_next_block_ctx);
762 kfree(selected_super);
763 return -1;
764 }
765
766 ret = btrfsic_process_metablock(state,
767 next_block,
768 &tmp_next_block_ctx,
769 BTRFS_MAX_LEVEL + 3, 1);
770 btrfsic_release_block_ctx(&tmp_next_block_ctx);
771 }
772 }
773
774 kfree(selected_super);
775 return ret;
776 }
777
778 static int btrfsic_process_superblock_dev_mirror(
779 struct btrfsic_state *state,
780 struct btrfsic_dev_state *dev_state,
781 struct btrfs_device *device,
782 int superblock_mirror_num,
783 struct btrfsic_dev_state **selected_dev_state,
784 struct btrfs_super_block *selected_super)
785 {
786 struct btrfs_super_block *super_tmp;
787 u64 dev_bytenr;
788 struct buffer_head *bh;
789 struct btrfsic_block *superblock_tmp;
790 int pass;
791 struct block_device *const superblock_bdev = device->bdev;
792
793 /* super block bytenr is always the unmapped device bytenr */
794 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
795 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
796 return -1;
797 bh = __bread(superblock_bdev, dev_bytenr / 4096,
798 BTRFS_SUPER_INFO_SIZE);
799 if (NULL == bh)
800 return -1;
801 super_tmp = (struct btrfs_super_block *)
802 (bh->b_data + (dev_bytenr & 4095));
803
804 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
805 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
806 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
807 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
808 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
809 brelse(bh);
810 return 0;
811 }
812
813 superblock_tmp =
814 btrfsic_block_hashtable_lookup(superblock_bdev,
815 dev_bytenr,
816 &state->block_hashtable);
817 if (NULL == superblock_tmp) {
818 superblock_tmp = btrfsic_block_alloc();
819 if (NULL == superblock_tmp) {
820 pr_info("btrfsic: error, kmalloc failed!\n");
821 brelse(bh);
822 return -1;
823 }
824 /* for superblock, only the dev_bytenr makes sense */
825 superblock_tmp->dev_bytenr = dev_bytenr;
826 superblock_tmp->dev_state = dev_state;
827 superblock_tmp->logical_bytenr = dev_bytenr;
828 superblock_tmp->generation = btrfs_super_generation(super_tmp);
829 superblock_tmp->is_metadata = 1;
830 superblock_tmp->is_superblock = 1;
831 superblock_tmp->is_iodone = 1;
832 superblock_tmp->never_written = 0;
833 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
834 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
835 btrfs_info_in_rcu(device->dev_root->fs_info,
836 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
837 superblock_bdev,
838 rcu_str_deref(device->name), dev_bytenr,
839 dev_state->name, dev_bytenr,
840 superblock_mirror_num);
841 list_add(&superblock_tmp->all_blocks_node,
842 &state->all_blocks_list);
843 btrfsic_block_hashtable_add(superblock_tmp,
844 &state->block_hashtable);
845 }
846
847 /* select the one with the highest generation field */
848 if (btrfs_super_generation(super_tmp) >
849 state->max_superblock_generation ||
850 0 == state->max_superblock_generation) {
851 memcpy(selected_super, super_tmp, sizeof(*selected_super));
852 *selected_dev_state = dev_state;
853 state->max_superblock_generation =
854 btrfs_super_generation(super_tmp);
855 state->latest_superblock = superblock_tmp;
856 }
857
858 for (pass = 0; pass < 3; pass++) {
859 u64 next_bytenr;
860 int num_copies;
861 int mirror_num;
862 const char *additional_string = NULL;
863 struct btrfs_disk_key tmp_disk_key;
864
865 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
866 tmp_disk_key.offset = 0;
867 switch (pass) {
868 case 0:
869 btrfs_set_disk_key_objectid(&tmp_disk_key,
870 BTRFS_ROOT_TREE_OBJECTID);
871 additional_string = "initial root ";
872 next_bytenr = btrfs_super_root(super_tmp);
873 break;
874 case 1:
875 btrfs_set_disk_key_objectid(&tmp_disk_key,
876 BTRFS_CHUNK_TREE_OBJECTID);
877 additional_string = "initial chunk ";
878 next_bytenr = btrfs_super_chunk_root(super_tmp);
879 break;
880 case 2:
881 btrfs_set_disk_key_objectid(&tmp_disk_key,
882 BTRFS_TREE_LOG_OBJECTID);
883 additional_string = "initial log ";
884 next_bytenr = btrfs_super_log_root(super_tmp);
885 if (0 == next_bytenr)
886 continue;
887 break;
888 }
889
890 num_copies =
891 btrfs_num_copies(state->root->fs_info,
892 next_bytenr, state->metablock_size);
893 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
894 pr_info("num_copies(log_bytenr=%llu) = %d\n",
895 next_bytenr, num_copies);
896 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
897 struct btrfsic_block *next_block;
898 struct btrfsic_block_data_ctx tmp_next_block_ctx;
899 struct btrfsic_block_link *l;
900
901 if (btrfsic_map_block(state, next_bytenr,
902 state->metablock_size,
903 &tmp_next_block_ctx,
904 mirror_num)) {
905 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
906 next_bytenr, mirror_num);
907 brelse(bh);
908 return -1;
909 }
910
911 next_block = btrfsic_block_lookup_or_add(
912 state, &tmp_next_block_ctx,
913 additional_string, 1, 1, 0,
914 mirror_num, NULL);
915 if (NULL == next_block) {
916 btrfsic_release_block_ctx(&tmp_next_block_ctx);
917 brelse(bh);
918 return -1;
919 }
920
921 next_block->disk_key = tmp_disk_key;
922 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
923 l = btrfsic_block_link_lookup_or_add(
924 state, &tmp_next_block_ctx,
925 next_block, superblock_tmp,
926 BTRFSIC_GENERATION_UNKNOWN);
927 btrfsic_release_block_ctx(&tmp_next_block_ctx);
928 if (NULL == l) {
929 brelse(bh);
930 return -1;
931 }
932 }
933 }
934 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
935 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
936
937 brelse(bh);
938 return 0;
939 }
940
941 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
942 {
943 struct btrfsic_stack_frame *sf;
944
945 sf = kzalloc(sizeof(*sf), GFP_NOFS);
946 if (NULL == sf)
947 pr_info("btrfsic: alloc memory failed!\n");
948 else
949 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
950 return sf;
951 }
952
953 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
954 {
955 BUG_ON(!(NULL == sf ||
956 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
957 kfree(sf);
958 }
959
960 static int btrfsic_process_metablock(
961 struct btrfsic_state *state,
962 struct btrfsic_block *const first_block,
963 struct btrfsic_block_data_ctx *const first_block_ctx,
964 int first_limit_nesting, int force_iodone_flag)
965 {
966 struct btrfsic_stack_frame initial_stack_frame = { 0 };
967 struct btrfsic_stack_frame *sf;
968 struct btrfsic_stack_frame *next_stack;
969 struct btrfs_header *const first_hdr =
970 (struct btrfs_header *)first_block_ctx->datav[0];
971
972 BUG_ON(!first_hdr);
973 sf = &initial_stack_frame;
974 sf->error = 0;
975 sf->i = -1;
976 sf->limit_nesting = first_limit_nesting;
977 sf->block = first_block;
978 sf->block_ctx = first_block_ctx;
979 sf->next_block = NULL;
980 sf->hdr = first_hdr;
981 sf->prev = NULL;
982
983 continue_with_new_stack_frame:
984 sf->block->generation = le64_to_cpu(sf->hdr->generation);
985 if (0 == sf->hdr->level) {
986 struct btrfs_leaf *const leafhdr =
987 (struct btrfs_leaf *)sf->hdr;
988
989 if (-1 == sf->i) {
990 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
991
992 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
993 pr_info("leaf %llu items %d generation %llu owner %llu\n",
994 sf->block_ctx->start, sf->nr,
995 btrfs_stack_header_generation(
996 &leafhdr->header),
997 btrfs_stack_header_owner(
998 &leafhdr->header));
999 }
1000
1001 continue_with_current_leaf_stack_frame:
1002 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1003 sf->i++;
1004 sf->num_copies = 0;
1005 }
1006
1007 if (sf->i < sf->nr) {
1008 struct btrfs_item disk_item;
1009 u32 disk_item_offset =
1010 (uintptr_t)(leafhdr->items + sf->i) -
1011 (uintptr_t)leafhdr;
1012 struct btrfs_disk_key *disk_key;
1013 u8 type;
1014 u32 item_offset;
1015 u32 item_size;
1016
1017 if (disk_item_offset + sizeof(struct btrfs_item) >
1018 sf->block_ctx->len) {
1019 leaf_item_out_of_bounce_error:
1020 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1021 sf->block_ctx->start,
1022 sf->block_ctx->dev->name);
1023 goto one_stack_frame_backwards;
1024 }
1025 btrfsic_read_from_block_data(sf->block_ctx,
1026 &disk_item,
1027 disk_item_offset,
1028 sizeof(struct btrfs_item));
1029 item_offset = btrfs_stack_item_offset(&disk_item);
1030 item_size = btrfs_stack_item_size(&disk_item);
1031 disk_key = &disk_item.key;
1032 type = btrfs_disk_key_type(disk_key);
1033
1034 if (BTRFS_ROOT_ITEM_KEY == type) {
1035 struct btrfs_root_item root_item;
1036 u32 root_item_offset;
1037 u64 next_bytenr;
1038
1039 root_item_offset = item_offset +
1040 offsetof(struct btrfs_leaf, items);
1041 if (root_item_offset + item_size >
1042 sf->block_ctx->len)
1043 goto leaf_item_out_of_bounce_error;
1044 btrfsic_read_from_block_data(
1045 sf->block_ctx, &root_item,
1046 root_item_offset,
1047 item_size);
1048 next_bytenr = btrfs_root_bytenr(&root_item);
1049
1050 sf->error =
1051 btrfsic_create_link_to_next_block(
1052 state,
1053 sf->block,
1054 sf->block_ctx,
1055 next_bytenr,
1056 sf->limit_nesting,
1057 &sf->next_block_ctx,
1058 &sf->next_block,
1059 force_iodone_flag,
1060 &sf->num_copies,
1061 &sf->mirror_num,
1062 disk_key,
1063 btrfs_root_generation(
1064 &root_item));
1065 if (sf->error)
1066 goto one_stack_frame_backwards;
1067
1068 if (NULL != sf->next_block) {
1069 struct btrfs_header *const next_hdr =
1070 (struct btrfs_header *)
1071 sf->next_block_ctx.datav[0];
1072
1073 next_stack =
1074 btrfsic_stack_frame_alloc();
1075 if (NULL == next_stack) {
1076 sf->error = -1;
1077 btrfsic_release_block_ctx(
1078 &sf->
1079 next_block_ctx);
1080 goto one_stack_frame_backwards;
1081 }
1082
1083 next_stack->i = -1;
1084 next_stack->block = sf->next_block;
1085 next_stack->block_ctx =
1086 &sf->next_block_ctx;
1087 next_stack->next_block = NULL;
1088 next_stack->hdr = next_hdr;
1089 next_stack->limit_nesting =
1090 sf->limit_nesting - 1;
1091 next_stack->prev = sf;
1092 sf = next_stack;
1093 goto continue_with_new_stack_frame;
1094 }
1095 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1096 state->include_extent_data) {
1097 sf->error = btrfsic_handle_extent_data(
1098 state,
1099 sf->block,
1100 sf->block_ctx,
1101 item_offset,
1102 force_iodone_flag);
1103 if (sf->error)
1104 goto one_stack_frame_backwards;
1105 }
1106
1107 goto continue_with_current_leaf_stack_frame;
1108 }
1109 } else {
1110 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1111
1112 if (-1 == sf->i) {
1113 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1114
1115 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1116 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1117 sf->block_ctx->start,
1118 nodehdr->header.level, sf->nr,
1119 btrfs_stack_header_generation(
1120 &nodehdr->header),
1121 btrfs_stack_header_owner(
1122 &nodehdr->header));
1123 }
1124
1125 continue_with_current_node_stack_frame:
1126 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1127 sf->i++;
1128 sf->num_copies = 0;
1129 }
1130
1131 if (sf->i < sf->nr) {
1132 struct btrfs_key_ptr key_ptr;
1133 u32 key_ptr_offset;
1134 u64 next_bytenr;
1135
1136 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1137 (uintptr_t)nodehdr;
1138 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1139 sf->block_ctx->len) {
1140 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1141 sf->block_ctx->start,
1142 sf->block_ctx->dev->name);
1143 goto one_stack_frame_backwards;
1144 }
1145 btrfsic_read_from_block_data(
1146 sf->block_ctx, &key_ptr, key_ptr_offset,
1147 sizeof(struct btrfs_key_ptr));
1148 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1149
1150 sf->error = btrfsic_create_link_to_next_block(
1151 state,
1152 sf->block,
1153 sf->block_ctx,
1154 next_bytenr,
1155 sf->limit_nesting,
1156 &sf->next_block_ctx,
1157 &sf->next_block,
1158 force_iodone_flag,
1159 &sf->num_copies,
1160 &sf->mirror_num,
1161 &key_ptr.key,
1162 btrfs_stack_key_generation(&key_ptr));
1163 if (sf->error)
1164 goto one_stack_frame_backwards;
1165
1166 if (NULL != sf->next_block) {
1167 struct btrfs_header *const next_hdr =
1168 (struct btrfs_header *)
1169 sf->next_block_ctx.datav[0];
1170
1171 next_stack = btrfsic_stack_frame_alloc();
1172 if (NULL == next_stack) {
1173 sf->error = -1;
1174 goto one_stack_frame_backwards;
1175 }
1176
1177 next_stack->i = -1;
1178 next_stack->block = sf->next_block;
1179 next_stack->block_ctx = &sf->next_block_ctx;
1180 next_stack->next_block = NULL;
1181 next_stack->hdr = next_hdr;
1182 next_stack->limit_nesting =
1183 sf->limit_nesting - 1;
1184 next_stack->prev = sf;
1185 sf = next_stack;
1186 goto continue_with_new_stack_frame;
1187 }
1188
1189 goto continue_with_current_node_stack_frame;
1190 }
1191 }
1192
1193 one_stack_frame_backwards:
1194 if (NULL != sf->prev) {
1195 struct btrfsic_stack_frame *const prev = sf->prev;
1196
1197 /* the one for the initial block is freed in the caller */
1198 btrfsic_release_block_ctx(sf->block_ctx);
1199
1200 if (sf->error) {
1201 prev->error = sf->error;
1202 btrfsic_stack_frame_free(sf);
1203 sf = prev;
1204 goto one_stack_frame_backwards;
1205 }
1206
1207 btrfsic_stack_frame_free(sf);
1208 sf = prev;
1209 goto continue_with_new_stack_frame;
1210 } else {
1211 BUG_ON(&initial_stack_frame != sf);
1212 }
1213
1214 return sf->error;
1215 }
1216
1217 static void btrfsic_read_from_block_data(
1218 struct btrfsic_block_data_ctx *block_ctx,
1219 void *dstv, u32 offset, size_t len)
1220 {
1221 size_t cur;
1222 size_t offset_in_page;
1223 char *kaddr;
1224 char *dst = (char *)dstv;
1225 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1226 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1227
1228 WARN_ON(offset + len > block_ctx->len);
1229 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1230
1231 while (len > 0) {
1232 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1233 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1234 kaddr = block_ctx->datav[i];
1235 memcpy(dst, kaddr + offset_in_page, cur);
1236
1237 dst += cur;
1238 len -= cur;
1239 offset_in_page = 0;
1240 i++;
1241 }
1242 }
1243
1244 static int btrfsic_create_link_to_next_block(
1245 struct btrfsic_state *state,
1246 struct btrfsic_block *block,
1247 struct btrfsic_block_data_ctx *block_ctx,
1248 u64 next_bytenr,
1249 int limit_nesting,
1250 struct btrfsic_block_data_ctx *next_block_ctx,
1251 struct btrfsic_block **next_blockp,
1252 int force_iodone_flag,
1253 int *num_copiesp, int *mirror_nump,
1254 struct btrfs_disk_key *disk_key,
1255 u64 parent_generation)
1256 {
1257 struct btrfsic_block *next_block = NULL;
1258 int ret;
1259 struct btrfsic_block_link *l;
1260 int did_alloc_block_link;
1261 int block_was_created;
1262
1263 *next_blockp = NULL;
1264 if (0 == *num_copiesp) {
1265 *num_copiesp =
1266 btrfs_num_copies(state->root->fs_info,
1267 next_bytenr, state->metablock_size);
1268 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1269 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1270 next_bytenr, *num_copiesp);
1271 *mirror_nump = 1;
1272 }
1273
1274 if (*mirror_nump > *num_copiesp)
1275 return 0;
1276
1277 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1278 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1279 *mirror_nump);
1280 ret = btrfsic_map_block(state, next_bytenr,
1281 state->metablock_size,
1282 next_block_ctx, *mirror_nump);
1283 if (ret) {
1284 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1285 next_bytenr, *mirror_nump);
1286 btrfsic_release_block_ctx(next_block_ctx);
1287 *next_blockp = NULL;
1288 return -1;
1289 }
1290
1291 next_block = btrfsic_block_lookup_or_add(state,
1292 next_block_ctx, "referenced ",
1293 1, force_iodone_flag,
1294 !force_iodone_flag,
1295 *mirror_nump,
1296 &block_was_created);
1297 if (NULL == next_block) {
1298 btrfsic_release_block_ctx(next_block_ctx);
1299 *next_blockp = NULL;
1300 return -1;
1301 }
1302 if (block_was_created) {
1303 l = NULL;
1304 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1305 } else {
1306 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1307 if (next_block->logical_bytenr != next_bytenr &&
1308 !(!next_block->is_metadata &&
1309 0 == next_block->logical_bytenr))
1310 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1311 next_bytenr, next_block_ctx->dev->name,
1312 next_block_ctx->dev_bytenr, *mirror_nump,
1313 btrfsic_get_block_type(state,
1314 next_block),
1315 next_block->logical_bytenr);
1316 else
1317 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1318 next_bytenr, next_block_ctx->dev->name,
1319 next_block_ctx->dev_bytenr, *mirror_nump,
1320 btrfsic_get_block_type(state,
1321 next_block));
1322 }
1323 next_block->logical_bytenr = next_bytenr;
1324
1325 next_block->mirror_num = *mirror_nump;
1326 l = btrfsic_block_link_hashtable_lookup(
1327 next_block_ctx->dev->bdev,
1328 next_block_ctx->dev_bytenr,
1329 block_ctx->dev->bdev,
1330 block_ctx->dev_bytenr,
1331 &state->block_link_hashtable);
1332 }
1333
1334 next_block->disk_key = *disk_key;
1335 if (NULL == l) {
1336 l = btrfsic_block_link_alloc();
1337 if (NULL == l) {
1338 pr_info("btrfsic: error, kmalloc failed!\n");
1339 btrfsic_release_block_ctx(next_block_ctx);
1340 *next_blockp = NULL;
1341 return -1;
1342 }
1343
1344 did_alloc_block_link = 1;
1345 l->block_ref_to = next_block;
1346 l->block_ref_from = block;
1347 l->ref_cnt = 1;
1348 l->parent_generation = parent_generation;
1349
1350 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1351 btrfsic_print_add_link(state, l);
1352
1353 list_add(&l->node_ref_to, &block->ref_to_list);
1354 list_add(&l->node_ref_from, &next_block->ref_from_list);
1355
1356 btrfsic_block_link_hashtable_add(l,
1357 &state->block_link_hashtable);
1358 } else {
1359 did_alloc_block_link = 0;
1360 if (0 == limit_nesting) {
1361 l->ref_cnt++;
1362 l->parent_generation = parent_generation;
1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364 btrfsic_print_add_link(state, l);
1365 }
1366 }
1367
1368 if (limit_nesting > 0 && did_alloc_block_link) {
1369 ret = btrfsic_read_block(state, next_block_ctx);
1370 if (ret < (int)next_block_ctx->len) {
1371 pr_info("btrfsic: read block @logical %llu failed!\n",
1372 next_bytenr);
1373 btrfsic_release_block_ctx(next_block_ctx);
1374 *next_blockp = NULL;
1375 return -1;
1376 }
1377
1378 *next_blockp = next_block;
1379 } else {
1380 *next_blockp = NULL;
1381 }
1382 (*mirror_nump)++;
1383
1384 return 0;
1385 }
1386
1387 static int btrfsic_handle_extent_data(
1388 struct btrfsic_state *state,
1389 struct btrfsic_block *block,
1390 struct btrfsic_block_data_ctx *block_ctx,
1391 u32 item_offset, int force_iodone_flag)
1392 {
1393 int ret;
1394 struct btrfs_file_extent_item file_extent_item;
1395 u64 file_extent_item_offset;
1396 u64 next_bytenr;
1397 u64 num_bytes;
1398 u64 generation;
1399 struct btrfsic_block_link *l;
1400
1401 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1402 item_offset;
1403 if (file_extent_item_offset +
1404 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1405 block_ctx->len) {
1406 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1407 block_ctx->start, block_ctx->dev->name);
1408 return -1;
1409 }
1410
1411 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1412 file_extent_item_offset,
1413 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1414 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1415 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1416 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1417 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1418 file_extent_item.type,
1419 btrfs_stack_file_extent_disk_bytenr(
1420 &file_extent_item));
1421 return 0;
1422 }
1423
1424 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1425 block_ctx->len) {
1426 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1427 block_ctx->start, block_ctx->dev->name);
1428 return -1;
1429 }
1430 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1431 file_extent_item_offset,
1432 sizeof(struct btrfs_file_extent_item));
1433 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1434 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1435 BTRFS_COMPRESS_NONE) {
1436 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1437 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1438 } else {
1439 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1440 }
1441 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1442
1443 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1444 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1445 file_extent_item.type,
1446 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1447 btrfs_stack_file_extent_offset(&file_extent_item),
1448 num_bytes);
1449 while (num_bytes > 0) {
1450 u32 chunk_len;
1451 int num_copies;
1452 int mirror_num;
1453
1454 if (num_bytes > state->datablock_size)
1455 chunk_len = state->datablock_size;
1456 else
1457 chunk_len = num_bytes;
1458
1459 num_copies =
1460 btrfs_num_copies(state->root->fs_info,
1461 next_bytenr, state->datablock_size);
1462 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1463 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1464 next_bytenr, num_copies);
1465 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1466 struct btrfsic_block_data_ctx next_block_ctx;
1467 struct btrfsic_block *next_block;
1468 int block_was_created;
1469
1470 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1471 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1472 mirror_num);
1473 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1474 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1475 next_bytenr, chunk_len);
1476 ret = btrfsic_map_block(state, next_bytenr,
1477 chunk_len, &next_block_ctx,
1478 mirror_num);
1479 if (ret) {
1480 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1481 next_bytenr, mirror_num);
1482 return -1;
1483 }
1484
1485 next_block = btrfsic_block_lookup_or_add(
1486 state,
1487 &next_block_ctx,
1488 "referenced ",
1489 0,
1490 force_iodone_flag,
1491 !force_iodone_flag,
1492 mirror_num,
1493 &block_was_created);
1494 if (NULL == next_block) {
1495 pr_info("btrfsic: error, kmalloc failed!\n");
1496 btrfsic_release_block_ctx(&next_block_ctx);
1497 return -1;
1498 }
1499 if (!block_was_created) {
1500 if ((state->print_mask &
1501 BTRFSIC_PRINT_MASK_VERBOSE) &&
1502 next_block->logical_bytenr != next_bytenr &&
1503 !(!next_block->is_metadata &&
1504 0 == next_block->logical_bytenr)) {
1505 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1506 next_bytenr,
1507 next_block_ctx.dev->name,
1508 next_block_ctx.dev_bytenr,
1509 mirror_num,
1510 next_block->logical_bytenr);
1511 }
1512 next_block->logical_bytenr = next_bytenr;
1513 next_block->mirror_num = mirror_num;
1514 }
1515
1516 l = btrfsic_block_link_lookup_or_add(state,
1517 &next_block_ctx,
1518 next_block, block,
1519 generation);
1520 btrfsic_release_block_ctx(&next_block_ctx);
1521 if (NULL == l)
1522 return -1;
1523 }
1524
1525 next_bytenr += chunk_len;
1526 num_bytes -= chunk_len;
1527 }
1528
1529 return 0;
1530 }
1531
1532 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1533 struct btrfsic_block_data_ctx *block_ctx_out,
1534 int mirror_num)
1535 {
1536 int ret;
1537 u64 length;
1538 struct btrfs_bio *multi = NULL;
1539 struct btrfs_device *device;
1540
1541 length = len;
1542 ret = btrfs_map_block(state->root->fs_info, READ,
1543 bytenr, &length, &multi, mirror_num);
1544
1545 if (ret) {
1546 block_ctx_out->start = 0;
1547 block_ctx_out->dev_bytenr = 0;
1548 block_ctx_out->len = 0;
1549 block_ctx_out->dev = NULL;
1550 block_ctx_out->datav = NULL;
1551 block_ctx_out->pagev = NULL;
1552 block_ctx_out->mem_to_free = NULL;
1553
1554 return ret;
1555 }
1556
1557 device = multi->stripes[0].dev;
1558 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1559 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1560 block_ctx_out->start = bytenr;
1561 block_ctx_out->len = len;
1562 block_ctx_out->datav = NULL;
1563 block_ctx_out->pagev = NULL;
1564 block_ctx_out->mem_to_free = NULL;
1565
1566 kfree(multi);
1567 if (NULL == block_ctx_out->dev) {
1568 ret = -ENXIO;
1569 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1570 }
1571
1572 return ret;
1573 }
1574
1575 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1576 {
1577 if (block_ctx->mem_to_free) {
1578 unsigned int num_pages;
1579
1580 BUG_ON(!block_ctx->datav);
1581 BUG_ON(!block_ctx->pagev);
1582 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1583 PAGE_SHIFT;
1584 while (num_pages > 0) {
1585 num_pages--;
1586 if (block_ctx->datav[num_pages]) {
1587 kunmap(block_ctx->pagev[num_pages]);
1588 block_ctx->datav[num_pages] = NULL;
1589 }
1590 if (block_ctx->pagev[num_pages]) {
1591 __free_page(block_ctx->pagev[num_pages]);
1592 block_ctx->pagev[num_pages] = NULL;
1593 }
1594 }
1595
1596 kfree(block_ctx->mem_to_free);
1597 block_ctx->mem_to_free = NULL;
1598 block_ctx->pagev = NULL;
1599 block_ctx->datav = NULL;
1600 }
1601 }
1602
1603 static int btrfsic_read_block(struct btrfsic_state *state,
1604 struct btrfsic_block_data_ctx *block_ctx)
1605 {
1606 unsigned int num_pages;
1607 unsigned int i;
1608 u64 dev_bytenr;
1609 int ret;
1610
1611 BUG_ON(block_ctx->datav);
1612 BUG_ON(block_ctx->pagev);
1613 BUG_ON(block_ctx->mem_to_free);
1614 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1615 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1616 block_ctx->dev_bytenr);
1617 return -1;
1618 }
1619
1620 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1621 PAGE_SHIFT;
1622 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1623 sizeof(*block_ctx->pagev)) *
1624 num_pages, GFP_NOFS);
1625 if (!block_ctx->mem_to_free)
1626 return -ENOMEM;
1627 block_ctx->datav = block_ctx->mem_to_free;
1628 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1629 for (i = 0; i < num_pages; i++) {
1630 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1631 if (!block_ctx->pagev[i])
1632 return -1;
1633 }
1634
1635 dev_bytenr = block_ctx->dev_bytenr;
1636 for (i = 0; i < num_pages;) {
1637 struct bio *bio;
1638 unsigned int j;
1639
1640 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1641 if (!bio) {
1642 pr_info("btrfsic: bio_alloc() for %u pages failed!\n",
1643 num_pages - i);
1644 return -1;
1645 }
1646 bio->bi_bdev = block_ctx->dev->bdev;
1647 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1648 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1649
1650 for (j = i; j < num_pages; j++) {
1651 ret = bio_add_page(bio, block_ctx->pagev[j],
1652 PAGE_SIZE, 0);
1653 if (PAGE_SIZE != ret)
1654 break;
1655 }
1656 if (j == i) {
1657 pr_info("btrfsic: error, failed to add a single page!\n");
1658 return -1;
1659 }
1660 if (submit_bio_wait(bio)) {
1661 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1662 block_ctx->start, block_ctx->dev->name);
1663 bio_put(bio);
1664 return -1;
1665 }
1666 bio_put(bio);
1667 dev_bytenr += (j - i) * PAGE_SIZE;
1668 i = j;
1669 }
1670 for (i = 0; i < num_pages; i++) {
1671 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1672 if (!block_ctx->datav[i]) {
1673 pr_info("btrfsic: kmap() failed (dev %s)!\n",
1674 block_ctx->dev->name);
1675 return -1;
1676 }
1677 }
1678
1679 return block_ctx->len;
1680 }
1681
1682 static void btrfsic_dump_database(struct btrfsic_state *state)
1683 {
1684 const struct btrfsic_block *b_all;
1685
1686 BUG_ON(NULL == state);
1687
1688 pr_info("all_blocks_list:\n");
1689 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1690 const struct btrfsic_block_link *l;
1691
1692 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1693 btrfsic_get_block_type(state, b_all),
1694 b_all->logical_bytenr, b_all->dev_state->name,
1695 b_all->dev_bytenr, b_all->mirror_num);
1696
1697 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1698 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1699 btrfsic_get_block_type(state, b_all),
1700 b_all->logical_bytenr, b_all->dev_state->name,
1701 b_all->dev_bytenr, b_all->mirror_num,
1702 l->ref_cnt,
1703 btrfsic_get_block_type(state, l->block_ref_to),
1704 l->block_ref_to->logical_bytenr,
1705 l->block_ref_to->dev_state->name,
1706 l->block_ref_to->dev_bytenr,
1707 l->block_ref_to->mirror_num);
1708 }
1709
1710 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1711 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1712 btrfsic_get_block_type(state, b_all),
1713 b_all->logical_bytenr, b_all->dev_state->name,
1714 b_all->dev_bytenr, b_all->mirror_num,
1715 l->ref_cnt,
1716 btrfsic_get_block_type(state, l->block_ref_from),
1717 l->block_ref_from->logical_bytenr,
1718 l->block_ref_from->dev_state->name,
1719 l->block_ref_from->dev_bytenr,
1720 l->block_ref_from->mirror_num);
1721 }
1722
1723 pr_info("\n");
1724 }
1725 }
1726
1727 /*
1728 * Test whether the disk block contains a tree block (leaf or node)
1729 * (note that this test fails for the super block)
1730 */
1731 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1732 char **datav, unsigned int num_pages)
1733 {
1734 struct btrfs_header *h;
1735 u8 csum[BTRFS_CSUM_SIZE];
1736 u32 crc = ~(u32)0;
1737 unsigned int i;
1738
1739 if (num_pages * PAGE_SIZE < state->metablock_size)
1740 return 1; /* not metadata */
1741 num_pages = state->metablock_size >> PAGE_SHIFT;
1742 h = (struct btrfs_header *)datav[0];
1743
1744 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1745 return 1;
1746
1747 for (i = 0; i < num_pages; i++) {
1748 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1749 size_t sublen = i ? PAGE_SIZE :
1750 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1751
1752 crc = btrfs_crc32c(crc, data, sublen);
1753 }
1754 btrfs_csum_final(crc, csum);
1755 if (memcmp(csum, h->csum, state->csum_size))
1756 return 1;
1757
1758 return 0; /* is metadata */
1759 }
1760
1761 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1762 u64 dev_bytenr, char **mapped_datav,
1763 unsigned int num_pages,
1764 struct bio *bio, int *bio_is_patched,
1765 struct buffer_head *bh,
1766 int submit_bio_bh_rw)
1767 {
1768 int is_metadata;
1769 struct btrfsic_block *block;
1770 struct btrfsic_block_data_ctx block_ctx;
1771 int ret;
1772 struct btrfsic_state *state = dev_state->state;
1773 struct block_device *bdev = dev_state->bdev;
1774 unsigned int processed_len;
1775
1776 if (NULL != bio_is_patched)
1777 *bio_is_patched = 0;
1778
1779 again:
1780 if (num_pages == 0)
1781 return;
1782
1783 processed_len = 0;
1784 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1785 num_pages));
1786
1787 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1788 &state->block_hashtable);
1789 if (NULL != block) {
1790 u64 bytenr = 0;
1791 struct btrfsic_block_link *l, *tmp;
1792
1793 if (block->is_superblock) {
1794 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1795 mapped_datav[0]);
1796 if (num_pages * PAGE_SIZE <
1797 BTRFS_SUPER_INFO_SIZE) {
1798 pr_info("btrfsic: cannot work with too short bios!\n");
1799 return;
1800 }
1801 is_metadata = 1;
1802 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1803 processed_len = BTRFS_SUPER_INFO_SIZE;
1804 if (state->print_mask &
1805 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1806 pr_info("[before new superblock is written]:\n");
1807 btrfsic_dump_tree_sub(state, block, 0);
1808 }
1809 }
1810 if (is_metadata) {
1811 if (!block->is_superblock) {
1812 if (num_pages * PAGE_SIZE <
1813 state->metablock_size) {
1814 pr_info("btrfsic: cannot work with too short bios!\n");
1815 return;
1816 }
1817 processed_len = state->metablock_size;
1818 bytenr = btrfs_stack_header_bytenr(
1819 (struct btrfs_header *)
1820 mapped_datav[0]);
1821 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1822 dev_state,
1823 dev_bytenr);
1824 }
1825 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1826 if (block->logical_bytenr != bytenr &&
1827 !(!block->is_metadata &&
1828 block->logical_bytenr == 0))
1829 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1830 bytenr, dev_state->name,
1831 dev_bytenr,
1832 block->mirror_num,
1833 btrfsic_get_block_type(state,
1834 block),
1835 block->logical_bytenr);
1836 else
1837 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1838 bytenr, dev_state->name,
1839 dev_bytenr, block->mirror_num,
1840 btrfsic_get_block_type(state,
1841 block));
1842 }
1843 block->logical_bytenr = bytenr;
1844 } else {
1845 if (num_pages * PAGE_SIZE <
1846 state->datablock_size) {
1847 pr_info("btrfsic: cannot work with too short bios!\n");
1848 return;
1849 }
1850 processed_len = state->datablock_size;
1851 bytenr = block->logical_bytenr;
1852 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1853 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1854 bytenr, dev_state->name, dev_bytenr,
1855 block->mirror_num,
1856 btrfsic_get_block_type(state, block));
1857 }
1858
1859 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1860 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1861 list_empty(&block->ref_to_list) ? ' ' : '!',
1862 list_empty(&block->ref_from_list) ? ' ' : '!');
1863 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1864 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1865 btrfsic_get_block_type(state, block), bytenr,
1866 dev_state->name, dev_bytenr, block->mirror_num,
1867 block->generation,
1868 btrfs_disk_key_objectid(&block->disk_key),
1869 block->disk_key.type,
1870 btrfs_disk_key_offset(&block->disk_key),
1871 btrfs_stack_header_generation(
1872 (struct btrfs_header *) mapped_datav[0]),
1873 state->max_superblock_generation);
1874 btrfsic_dump_tree(state);
1875 }
1876
1877 if (!block->is_iodone && !block->never_written) {
1878 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1879 btrfsic_get_block_type(state, block), bytenr,
1880 dev_state->name, dev_bytenr, block->mirror_num,
1881 block->generation,
1882 btrfs_stack_header_generation(
1883 (struct btrfs_header *)
1884 mapped_datav[0]));
1885 /* it would not be safe to go on */
1886 btrfsic_dump_tree(state);
1887 goto continue_loop;
1888 }
1889
1890 /*
1891 * Clear all references of this block. Do not free
1892 * the block itself even if is not referenced anymore
1893 * because it still carries valuable information
1894 * like whether it was ever written and IO completed.
1895 */
1896 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1897 node_ref_to) {
1898 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1899 btrfsic_print_rem_link(state, l);
1900 l->ref_cnt--;
1901 if (0 == l->ref_cnt) {
1902 list_del(&l->node_ref_to);
1903 list_del(&l->node_ref_from);
1904 btrfsic_block_link_hashtable_remove(l);
1905 btrfsic_block_link_free(l);
1906 }
1907 }
1908
1909 block_ctx.dev = dev_state;
1910 block_ctx.dev_bytenr = dev_bytenr;
1911 block_ctx.start = bytenr;
1912 block_ctx.len = processed_len;
1913 block_ctx.pagev = NULL;
1914 block_ctx.mem_to_free = NULL;
1915 block_ctx.datav = mapped_datav;
1916
1917 if (is_metadata || state->include_extent_data) {
1918 block->never_written = 0;
1919 block->iodone_w_error = 0;
1920 if (NULL != bio) {
1921 block->is_iodone = 0;
1922 BUG_ON(NULL == bio_is_patched);
1923 if (!*bio_is_patched) {
1924 block->orig_bio_bh_private =
1925 bio->bi_private;
1926 block->orig_bio_bh_end_io.bio =
1927 bio->bi_end_io;
1928 block->next_in_same_bio = NULL;
1929 bio->bi_private = block;
1930 bio->bi_end_io = btrfsic_bio_end_io;
1931 *bio_is_patched = 1;
1932 } else {
1933 struct btrfsic_block *chained_block =
1934 (struct btrfsic_block *)
1935 bio->bi_private;
1936
1937 BUG_ON(NULL == chained_block);
1938 block->orig_bio_bh_private =
1939 chained_block->orig_bio_bh_private;
1940 block->orig_bio_bh_end_io.bio =
1941 chained_block->orig_bio_bh_end_io.
1942 bio;
1943 block->next_in_same_bio = chained_block;
1944 bio->bi_private = block;
1945 }
1946 } else if (NULL != bh) {
1947 block->is_iodone = 0;
1948 block->orig_bio_bh_private = bh->b_private;
1949 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1950 block->next_in_same_bio = NULL;
1951 bh->b_private = block;
1952 bh->b_end_io = btrfsic_bh_end_io;
1953 } else {
1954 block->is_iodone = 1;
1955 block->orig_bio_bh_private = NULL;
1956 block->orig_bio_bh_end_io.bio = NULL;
1957 block->next_in_same_bio = NULL;
1958 }
1959 }
1960
1961 block->flush_gen = dev_state->last_flush_gen + 1;
1962 block->submit_bio_bh_rw = submit_bio_bh_rw;
1963 if (is_metadata) {
1964 block->logical_bytenr = bytenr;
1965 block->is_metadata = 1;
1966 if (block->is_superblock) {
1967 BUG_ON(PAGE_SIZE !=
1968 BTRFS_SUPER_INFO_SIZE);
1969 ret = btrfsic_process_written_superblock(
1970 state,
1971 block,
1972 (struct btrfs_super_block *)
1973 mapped_datav[0]);
1974 if (state->print_mask &
1975 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1976 pr_info("[after new superblock is written]:\n");
1977 btrfsic_dump_tree_sub(state, block, 0);
1978 }
1979 } else {
1980 block->mirror_num = 0; /* unknown */
1981 ret = btrfsic_process_metablock(
1982 state,
1983 block,
1984 &block_ctx,
1985 0, 0);
1986 }
1987 if (ret)
1988 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1989 dev_bytenr);
1990 } else {
1991 block->is_metadata = 0;
1992 block->mirror_num = 0; /* unknown */
1993 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1994 if (!state->include_extent_data
1995 && list_empty(&block->ref_from_list)) {
1996 /*
1997 * disk block is overwritten with extent
1998 * data (not meta data) and we are configured
1999 * to not include extent data: take the
2000 * chance and free the block's memory
2001 */
2002 btrfsic_block_hashtable_remove(block);
2003 list_del(&block->all_blocks_node);
2004 btrfsic_block_free(block);
2005 }
2006 }
2007 btrfsic_release_block_ctx(&block_ctx);
2008 } else {
2009 /* block has not been found in hash table */
2010 u64 bytenr;
2011
2012 if (!is_metadata) {
2013 processed_len = state->datablock_size;
2014 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2015 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
2016 dev_state->name, dev_bytenr);
2017 if (!state->include_extent_data) {
2018 /* ignore that written D block */
2019 goto continue_loop;
2020 }
2021
2022 /* this is getting ugly for the
2023 * include_extent_data case... */
2024 bytenr = 0; /* unknown */
2025 } else {
2026 processed_len = state->metablock_size;
2027 bytenr = btrfs_stack_header_bytenr(
2028 (struct btrfs_header *)
2029 mapped_datav[0]);
2030 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2031 dev_bytenr);
2032 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2033 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2034 bytenr, dev_state->name, dev_bytenr);
2035 }
2036
2037 block_ctx.dev = dev_state;
2038 block_ctx.dev_bytenr = dev_bytenr;
2039 block_ctx.start = bytenr;
2040 block_ctx.len = processed_len;
2041 block_ctx.pagev = NULL;
2042 block_ctx.mem_to_free = NULL;
2043 block_ctx.datav = mapped_datav;
2044
2045 block = btrfsic_block_alloc();
2046 if (NULL == block) {
2047 pr_info("btrfsic: error, kmalloc failed!\n");
2048 btrfsic_release_block_ctx(&block_ctx);
2049 goto continue_loop;
2050 }
2051 block->dev_state = dev_state;
2052 block->dev_bytenr = dev_bytenr;
2053 block->logical_bytenr = bytenr;
2054 block->is_metadata = is_metadata;
2055 block->never_written = 0;
2056 block->iodone_w_error = 0;
2057 block->mirror_num = 0; /* unknown */
2058 block->flush_gen = dev_state->last_flush_gen + 1;
2059 block->submit_bio_bh_rw = submit_bio_bh_rw;
2060 if (NULL != bio) {
2061 block->is_iodone = 0;
2062 BUG_ON(NULL == bio_is_patched);
2063 if (!*bio_is_patched) {
2064 block->orig_bio_bh_private = bio->bi_private;
2065 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2066 block->next_in_same_bio = NULL;
2067 bio->bi_private = block;
2068 bio->bi_end_io = btrfsic_bio_end_io;
2069 *bio_is_patched = 1;
2070 } else {
2071 struct btrfsic_block *chained_block =
2072 (struct btrfsic_block *)
2073 bio->bi_private;
2074
2075 BUG_ON(NULL == chained_block);
2076 block->orig_bio_bh_private =
2077 chained_block->orig_bio_bh_private;
2078 block->orig_bio_bh_end_io.bio =
2079 chained_block->orig_bio_bh_end_io.bio;
2080 block->next_in_same_bio = chained_block;
2081 bio->bi_private = block;
2082 }
2083 } else if (NULL != bh) {
2084 block->is_iodone = 0;
2085 block->orig_bio_bh_private = bh->b_private;
2086 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2087 block->next_in_same_bio = NULL;
2088 bh->b_private = block;
2089 bh->b_end_io = btrfsic_bh_end_io;
2090 } else {
2091 block->is_iodone = 1;
2092 block->orig_bio_bh_private = NULL;
2093 block->orig_bio_bh_end_io.bio = NULL;
2094 block->next_in_same_bio = NULL;
2095 }
2096 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2097 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2098 is_metadata ? 'M' : 'D',
2099 block->logical_bytenr, block->dev_state->name,
2100 block->dev_bytenr, block->mirror_num);
2101 list_add(&block->all_blocks_node, &state->all_blocks_list);
2102 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2103
2104 if (is_metadata) {
2105 ret = btrfsic_process_metablock(state, block,
2106 &block_ctx, 0, 0);
2107 if (ret)
2108 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2109 dev_bytenr);
2110 }
2111 btrfsic_release_block_ctx(&block_ctx);
2112 }
2113
2114 continue_loop:
2115 BUG_ON(!processed_len);
2116 dev_bytenr += processed_len;
2117 mapped_datav += processed_len >> PAGE_SHIFT;
2118 num_pages -= processed_len >> PAGE_SHIFT;
2119 goto again;
2120 }
2121
2122 static void btrfsic_bio_end_io(struct bio *bp)
2123 {
2124 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2125 int iodone_w_error;
2126
2127 /* mutex is not held! This is not save if IO is not yet completed
2128 * on umount */
2129 iodone_w_error = 0;
2130 if (bp->bi_error)
2131 iodone_w_error = 1;
2132
2133 BUG_ON(NULL == block);
2134 bp->bi_private = block->orig_bio_bh_private;
2135 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2136
2137 do {
2138 struct btrfsic_block *next_block;
2139 struct btrfsic_dev_state *const dev_state = block->dev_state;
2140
2141 if ((dev_state->state->print_mask &
2142 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2143 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2144 bp->bi_error,
2145 btrfsic_get_block_type(dev_state->state, block),
2146 block->logical_bytenr, dev_state->name,
2147 block->dev_bytenr, block->mirror_num);
2148 next_block = block->next_in_same_bio;
2149 block->iodone_w_error = iodone_w_error;
2150 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2151 dev_state->last_flush_gen++;
2152 if ((dev_state->state->print_mask &
2153 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2154 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2155 dev_state->name,
2156 dev_state->last_flush_gen);
2157 }
2158 if (block->submit_bio_bh_rw & REQ_FUA)
2159 block->flush_gen = 0; /* FUA completed means block is
2160 * on disk */
2161 block->is_iodone = 1; /* for FLUSH, this releases the block */
2162 block = next_block;
2163 } while (NULL != block);
2164
2165 bp->bi_end_io(bp);
2166 }
2167
2168 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2169 {
2170 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2171 int iodone_w_error = !uptodate;
2172 struct btrfsic_dev_state *dev_state;
2173
2174 BUG_ON(NULL == block);
2175 dev_state = block->dev_state;
2176 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2177 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2178 iodone_w_error,
2179 btrfsic_get_block_type(dev_state->state, block),
2180 block->logical_bytenr, block->dev_state->name,
2181 block->dev_bytenr, block->mirror_num);
2182
2183 block->iodone_w_error = iodone_w_error;
2184 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2185 dev_state->last_flush_gen++;
2186 if ((dev_state->state->print_mask &
2187 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2188 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2189 dev_state->name, dev_state->last_flush_gen);
2190 }
2191 if (block->submit_bio_bh_rw & REQ_FUA)
2192 block->flush_gen = 0; /* FUA completed means block is on disk */
2193
2194 bh->b_private = block->orig_bio_bh_private;
2195 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2196 block->is_iodone = 1; /* for FLUSH, this releases the block */
2197 bh->b_end_io(bh, uptodate);
2198 }
2199
2200 static int btrfsic_process_written_superblock(
2201 struct btrfsic_state *state,
2202 struct btrfsic_block *const superblock,
2203 struct btrfs_super_block *const super_hdr)
2204 {
2205 int pass;
2206
2207 superblock->generation = btrfs_super_generation(super_hdr);
2208 if (!(superblock->generation > state->max_superblock_generation ||
2209 0 == state->max_superblock_generation)) {
2210 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2211 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2212 superblock->logical_bytenr,
2213 superblock->dev_state->name,
2214 superblock->dev_bytenr, superblock->mirror_num,
2215 btrfs_super_generation(super_hdr),
2216 state->max_superblock_generation);
2217 } else {
2218 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2219 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2220 superblock->logical_bytenr,
2221 superblock->dev_state->name,
2222 superblock->dev_bytenr, superblock->mirror_num,
2223 btrfs_super_generation(super_hdr),
2224 state->max_superblock_generation);
2225
2226 state->max_superblock_generation =
2227 btrfs_super_generation(super_hdr);
2228 state->latest_superblock = superblock;
2229 }
2230
2231 for (pass = 0; pass < 3; pass++) {
2232 int ret;
2233 u64 next_bytenr;
2234 struct btrfsic_block *next_block;
2235 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2236 struct btrfsic_block_link *l;
2237 int num_copies;
2238 int mirror_num;
2239 const char *additional_string = NULL;
2240 struct btrfs_disk_key tmp_disk_key = {0};
2241
2242 btrfs_set_disk_key_objectid(&tmp_disk_key,
2243 BTRFS_ROOT_ITEM_KEY);
2244 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2245
2246 switch (pass) {
2247 case 0:
2248 btrfs_set_disk_key_objectid(&tmp_disk_key,
2249 BTRFS_ROOT_TREE_OBJECTID);
2250 additional_string = "root ";
2251 next_bytenr = btrfs_super_root(super_hdr);
2252 if (state->print_mask &
2253 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2254 pr_info("root@%llu\n", next_bytenr);
2255 break;
2256 case 1:
2257 btrfs_set_disk_key_objectid(&tmp_disk_key,
2258 BTRFS_CHUNK_TREE_OBJECTID);
2259 additional_string = "chunk ";
2260 next_bytenr = btrfs_super_chunk_root(super_hdr);
2261 if (state->print_mask &
2262 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2263 pr_info("chunk@%llu\n", next_bytenr);
2264 break;
2265 case 2:
2266 btrfs_set_disk_key_objectid(&tmp_disk_key,
2267 BTRFS_TREE_LOG_OBJECTID);
2268 additional_string = "log ";
2269 next_bytenr = btrfs_super_log_root(super_hdr);
2270 if (0 == next_bytenr)
2271 continue;
2272 if (state->print_mask &
2273 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2274 pr_info("log@%llu\n", next_bytenr);
2275 break;
2276 }
2277
2278 num_copies =
2279 btrfs_num_copies(state->root->fs_info,
2280 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2281 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2282 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2283 next_bytenr, num_copies);
2284 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2285 int was_created;
2286
2287 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2288 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2289 ret = btrfsic_map_block(state, next_bytenr,
2290 BTRFS_SUPER_INFO_SIZE,
2291 &tmp_next_block_ctx,
2292 mirror_num);
2293 if (ret) {
2294 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2295 next_bytenr, mirror_num);
2296 return -1;
2297 }
2298
2299 next_block = btrfsic_block_lookup_or_add(
2300 state,
2301 &tmp_next_block_ctx,
2302 additional_string,
2303 1, 0, 1,
2304 mirror_num,
2305 &was_created);
2306 if (NULL == next_block) {
2307 pr_info("btrfsic: error, kmalloc failed!\n");
2308 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2309 return -1;
2310 }
2311
2312 next_block->disk_key = tmp_disk_key;
2313 if (was_created)
2314 next_block->generation =
2315 BTRFSIC_GENERATION_UNKNOWN;
2316 l = btrfsic_block_link_lookup_or_add(
2317 state,
2318 &tmp_next_block_ctx,
2319 next_block,
2320 superblock,
2321 BTRFSIC_GENERATION_UNKNOWN);
2322 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2323 if (NULL == l)
2324 return -1;
2325 }
2326 }
2327
2328 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2329 btrfsic_dump_tree(state);
2330
2331 return 0;
2332 }
2333
2334 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2335 struct btrfsic_block *const block,
2336 int recursion_level)
2337 {
2338 const struct btrfsic_block_link *l;
2339 int ret = 0;
2340
2341 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2342 /*
2343 * Note that this situation can happen and does not
2344 * indicate an error in regular cases. It happens
2345 * when disk blocks are freed and later reused.
2346 * The check-integrity module is not aware of any
2347 * block free operations, it just recognizes block
2348 * write operations. Therefore it keeps the linkage
2349 * information for a block until a block is
2350 * rewritten. This can temporarily cause incorrect
2351 * and even circular linkage informations. This
2352 * causes no harm unless such blocks are referenced
2353 * by the most recent super block.
2354 */
2355 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2356 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2357
2358 return ret;
2359 }
2360
2361 /*
2362 * This algorithm is recursive because the amount of used stack
2363 * space is very small and the max recursion depth is limited.
2364 */
2365 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2366 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2367 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2368 recursion_level,
2369 btrfsic_get_block_type(state, block),
2370 block->logical_bytenr, block->dev_state->name,
2371 block->dev_bytenr, block->mirror_num,
2372 l->ref_cnt,
2373 btrfsic_get_block_type(state, l->block_ref_to),
2374 l->block_ref_to->logical_bytenr,
2375 l->block_ref_to->dev_state->name,
2376 l->block_ref_to->dev_bytenr,
2377 l->block_ref_to->mirror_num);
2378 if (l->block_ref_to->never_written) {
2379 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2380 btrfsic_get_block_type(state, l->block_ref_to),
2381 l->block_ref_to->logical_bytenr,
2382 l->block_ref_to->dev_state->name,
2383 l->block_ref_to->dev_bytenr,
2384 l->block_ref_to->mirror_num);
2385 ret = -1;
2386 } else if (!l->block_ref_to->is_iodone) {
2387 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2388 btrfsic_get_block_type(state, l->block_ref_to),
2389 l->block_ref_to->logical_bytenr,
2390 l->block_ref_to->dev_state->name,
2391 l->block_ref_to->dev_bytenr,
2392 l->block_ref_to->mirror_num);
2393 ret = -1;
2394 } else if (l->block_ref_to->iodone_w_error) {
2395 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2396 btrfsic_get_block_type(state, l->block_ref_to),
2397 l->block_ref_to->logical_bytenr,
2398 l->block_ref_to->dev_state->name,
2399 l->block_ref_to->dev_bytenr,
2400 l->block_ref_to->mirror_num);
2401 ret = -1;
2402 } else if (l->parent_generation !=
2403 l->block_ref_to->generation &&
2404 BTRFSIC_GENERATION_UNKNOWN !=
2405 l->parent_generation &&
2406 BTRFSIC_GENERATION_UNKNOWN !=
2407 l->block_ref_to->generation) {
2408 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2409 btrfsic_get_block_type(state, l->block_ref_to),
2410 l->block_ref_to->logical_bytenr,
2411 l->block_ref_to->dev_state->name,
2412 l->block_ref_to->dev_bytenr,
2413 l->block_ref_to->mirror_num,
2414 l->block_ref_to->generation,
2415 l->parent_generation);
2416 ret = -1;
2417 } else if (l->block_ref_to->flush_gen >
2418 l->block_ref_to->dev_state->last_flush_gen) {
2419 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2420 btrfsic_get_block_type(state, l->block_ref_to),
2421 l->block_ref_to->logical_bytenr,
2422 l->block_ref_to->dev_state->name,
2423 l->block_ref_to->dev_bytenr,
2424 l->block_ref_to->mirror_num, block->flush_gen,
2425 l->block_ref_to->dev_state->last_flush_gen);
2426 ret = -1;
2427 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2428 l->block_ref_to,
2429 recursion_level +
2430 1)) {
2431 ret = -1;
2432 }
2433 }
2434
2435 return ret;
2436 }
2437
2438 static int btrfsic_is_block_ref_by_superblock(
2439 const struct btrfsic_state *state,
2440 const struct btrfsic_block *block,
2441 int recursion_level)
2442 {
2443 const struct btrfsic_block_link *l;
2444
2445 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2446 /* refer to comment at "abort cyclic linkage (case 1)" */
2447 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2448 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2449
2450 return 0;
2451 }
2452
2453 /*
2454 * This algorithm is recursive because the amount of used stack space
2455 * is very small and the max recursion depth is limited.
2456 */
2457 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2458 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2459 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2460 recursion_level,
2461 btrfsic_get_block_type(state, block),
2462 block->logical_bytenr, block->dev_state->name,
2463 block->dev_bytenr, block->mirror_num,
2464 l->ref_cnt,
2465 btrfsic_get_block_type(state, l->block_ref_from),
2466 l->block_ref_from->logical_bytenr,
2467 l->block_ref_from->dev_state->name,
2468 l->block_ref_from->dev_bytenr,
2469 l->block_ref_from->mirror_num);
2470 if (l->block_ref_from->is_superblock &&
2471 state->latest_superblock->dev_bytenr ==
2472 l->block_ref_from->dev_bytenr &&
2473 state->latest_superblock->dev_state->bdev ==
2474 l->block_ref_from->dev_state->bdev)
2475 return 1;
2476 else if (btrfsic_is_block_ref_by_superblock(state,
2477 l->block_ref_from,
2478 recursion_level +
2479 1))
2480 return 1;
2481 }
2482
2483 return 0;
2484 }
2485
2486 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2487 const struct btrfsic_block_link *l)
2488 {
2489 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2490 l->ref_cnt,
2491 btrfsic_get_block_type(state, l->block_ref_from),
2492 l->block_ref_from->logical_bytenr,
2493 l->block_ref_from->dev_state->name,
2494 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2495 btrfsic_get_block_type(state, l->block_ref_to),
2496 l->block_ref_to->logical_bytenr,
2497 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2498 l->block_ref_to->mirror_num);
2499 }
2500
2501 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2502 const struct btrfsic_block_link *l)
2503 {
2504 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2505 l->ref_cnt,
2506 btrfsic_get_block_type(state, l->block_ref_from),
2507 l->block_ref_from->logical_bytenr,
2508 l->block_ref_from->dev_state->name,
2509 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2510 btrfsic_get_block_type(state, l->block_ref_to),
2511 l->block_ref_to->logical_bytenr,
2512 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2513 l->block_ref_to->mirror_num);
2514 }
2515
2516 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2517 const struct btrfsic_block *block)
2518 {
2519 if (block->is_superblock &&
2520 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2521 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2522 return 'S';
2523 else if (block->is_superblock)
2524 return 's';
2525 else if (block->is_metadata)
2526 return 'M';
2527 else
2528 return 'D';
2529 }
2530
2531 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2532 {
2533 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2534 }
2535
2536 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2537 const struct btrfsic_block *block,
2538 int indent_level)
2539 {
2540 const struct btrfsic_block_link *l;
2541 int indent_add;
2542 static char buf[80];
2543 int cursor_position;
2544
2545 /*
2546 * Should better fill an on-stack buffer with a complete line and
2547 * dump it at once when it is time to print a newline character.
2548 */
2549
2550 /*
2551 * This algorithm is recursive because the amount of used stack space
2552 * is very small and the max recursion depth is limited.
2553 */
2554 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2555 btrfsic_get_block_type(state, block),
2556 block->logical_bytenr, block->dev_state->name,
2557 block->dev_bytenr, block->mirror_num);
2558 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2559 printk("[...]\n");
2560 return;
2561 }
2562 printk(buf);
2563 indent_level += indent_add;
2564 if (list_empty(&block->ref_to_list)) {
2565 printk("\n");
2566 return;
2567 }
2568 if (block->mirror_num > 1 &&
2569 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2570 printk(" [...]\n");
2571 return;
2572 }
2573
2574 cursor_position = indent_level;
2575 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2576 while (cursor_position < indent_level) {
2577 printk(" ");
2578 cursor_position++;
2579 }
2580 if (l->ref_cnt > 1)
2581 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2582 else
2583 indent_add = sprintf(buf, " --> ");
2584 if (indent_level + indent_add >
2585 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2586 printk("[...]\n");
2587 cursor_position = 0;
2588 continue;
2589 }
2590
2591 printk(buf);
2592
2593 btrfsic_dump_tree_sub(state, l->block_ref_to,
2594 indent_level + indent_add);
2595 cursor_position = 0;
2596 }
2597 }
2598
2599 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2600 struct btrfsic_state *state,
2601 struct btrfsic_block_data_ctx *next_block_ctx,
2602 struct btrfsic_block *next_block,
2603 struct btrfsic_block *from_block,
2604 u64 parent_generation)
2605 {
2606 struct btrfsic_block_link *l;
2607
2608 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2609 next_block_ctx->dev_bytenr,
2610 from_block->dev_state->bdev,
2611 from_block->dev_bytenr,
2612 &state->block_link_hashtable);
2613 if (NULL == l) {
2614 l = btrfsic_block_link_alloc();
2615 if (NULL == l) {
2616 pr_info("btrfsic: error, kmalloc failed!\n");
2617 return NULL;
2618 }
2619
2620 l->block_ref_to = next_block;
2621 l->block_ref_from = from_block;
2622 l->ref_cnt = 1;
2623 l->parent_generation = parent_generation;
2624
2625 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2626 btrfsic_print_add_link(state, l);
2627
2628 list_add(&l->node_ref_to, &from_block->ref_to_list);
2629 list_add(&l->node_ref_from, &next_block->ref_from_list);
2630
2631 btrfsic_block_link_hashtable_add(l,
2632 &state->block_link_hashtable);
2633 } else {
2634 l->ref_cnt++;
2635 l->parent_generation = parent_generation;
2636 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2637 btrfsic_print_add_link(state, l);
2638 }
2639
2640 return l;
2641 }
2642
2643 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2644 struct btrfsic_state *state,
2645 struct btrfsic_block_data_ctx *block_ctx,
2646 const char *additional_string,
2647 int is_metadata,
2648 int is_iodone,
2649 int never_written,
2650 int mirror_num,
2651 int *was_created)
2652 {
2653 struct btrfsic_block *block;
2654
2655 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2656 block_ctx->dev_bytenr,
2657 &state->block_hashtable);
2658 if (NULL == block) {
2659 struct btrfsic_dev_state *dev_state;
2660
2661 block = btrfsic_block_alloc();
2662 if (NULL == block) {
2663 pr_info("btrfsic: error, kmalloc failed!\n");
2664 return NULL;
2665 }
2666 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2667 if (NULL == dev_state) {
2668 pr_info("btrfsic: error, lookup dev_state failed!\n");
2669 btrfsic_block_free(block);
2670 return NULL;
2671 }
2672 block->dev_state = dev_state;
2673 block->dev_bytenr = block_ctx->dev_bytenr;
2674 block->logical_bytenr = block_ctx->start;
2675 block->is_metadata = is_metadata;
2676 block->is_iodone = is_iodone;
2677 block->never_written = never_written;
2678 block->mirror_num = mirror_num;
2679 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2680 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2681 additional_string,
2682 btrfsic_get_block_type(state, block),
2683 block->logical_bytenr, dev_state->name,
2684 block->dev_bytenr, mirror_num);
2685 list_add(&block->all_blocks_node, &state->all_blocks_list);
2686 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2687 if (NULL != was_created)
2688 *was_created = 1;
2689 } else {
2690 if (NULL != was_created)
2691 *was_created = 0;
2692 }
2693
2694 return block;
2695 }
2696
2697 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2698 u64 bytenr,
2699 struct btrfsic_dev_state *dev_state,
2700 u64 dev_bytenr)
2701 {
2702 int num_copies;
2703 int mirror_num;
2704 int ret;
2705 struct btrfsic_block_data_ctx block_ctx;
2706 int match = 0;
2707
2708 num_copies = btrfs_num_copies(state->root->fs_info,
2709 bytenr, state->metablock_size);
2710
2711 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2712 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2713 &block_ctx, mirror_num);
2714 if (ret) {
2715 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2716 bytenr, mirror_num);
2717 continue;
2718 }
2719
2720 if (dev_state->bdev == block_ctx.dev->bdev &&
2721 dev_bytenr == block_ctx.dev_bytenr) {
2722 match++;
2723 btrfsic_release_block_ctx(&block_ctx);
2724 break;
2725 }
2726 btrfsic_release_block_ctx(&block_ctx);
2727 }
2728
2729 if (WARN_ON(!match)) {
2730 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2731 bytenr, dev_state->name, dev_bytenr);
2732 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2733 ret = btrfsic_map_block(state, bytenr,
2734 state->metablock_size,
2735 &block_ctx, mirror_num);
2736 if (ret)
2737 continue;
2738
2739 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2740 bytenr, block_ctx.dev->name,
2741 block_ctx.dev_bytenr, mirror_num);
2742 }
2743 }
2744 }
2745
2746 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2747 struct block_device *bdev)
2748 {
2749 return btrfsic_dev_state_hashtable_lookup(bdev,
2750 &btrfsic_dev_state_hashtable);
2751 }
2752
2753 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2754 {
2755 struct btrfsic_dev_state *dev_state;
2756
2757 if (!btrfsic_is_initialized)
2758 return submit_bh(op, op_flags, bh);
2759
2760 mutex_lock(&btrfsic_mutex);
2761 /* since btrfsic_submit_bh() might also be called before
2762 * btrfsic_mount(), this might return NULL */
2763 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2764
2765 /* Only called to write the superblock (incl. FLUSH/FUA) */
2766 if (NULL != dev_state &&
2767 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2768 u64 dev_bytenr;
2769
2770 dev_bytenr = 4096 * bh->b_blocknr;
2771 if (dev_state->state->print_mask &
2772 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2773 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2774 op, op_flags, (unsigned long long)bh->b_blocknr,
2775 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2776 btrfsic_process_written_block(dev_state, dev_bytenr,
2777 &bh->b_data, 1, NULL,
2778 NULL, bh, op_flags);
2779 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2780 if (dev_state->state->print_mask &
2781 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2782 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2783 op, op_flags, bh->b_bdev);
2784 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2785 if ((dev_state->state->print_mask &
2786 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2787 BTRFSIC_PRINT_MASK_VERBOSE)))
2788 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2789 dev_state->name);
2790 } else {
2791 struct btrfsic_block *const block =
2792 &dev_state->dummy_block_for_bio_bh_flush;
2793
2794 block->is_iodone = 0;
2795 block->never_written = 0;
2796 block->iodone_w_error = 0;
2797 block->flush_gen = dev_state->last_flush_gen + 1;
2798 block->submit_bio_bh_rw = op_flags;
2799 block->orig_bio_bh_private = bh->b_private;
2800 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2801 block->next_in_same_bio = NULL;
2802 bh->b_private = block;
2803 bh->b_end_io = btrfsic_bh_end_io;
2804 }
2805 }
2806 mutex_unlock(&btrfsic_mutex);
2807 return submit_bh(op, op_flags, bh);
2808 }
2809
2810 static void __btrfsic_submit_bio(struct bio *bio)
2811 {
2812 struct btrfsic_dev_state *dev_state;
2813
2814 if (!btrfsic_is_initialized)
2815 return;
2816
2817 mutex_lock(&btrfsic_mutex);
2818 /* since btrfsic_submit_bio() is also called before
2819 * btrfsic_mount(), this might return NULL */
2820 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2821 if (NULL != dev_state &&
2822 (bio_op(bio) == REQ_OP_WRITE) && NULL != bio->bi_io_vec) {
2823 unsigned int i;
2824 u64 dev_bytenr;
2825 u64 cur_bytenr;
2826 int bio_is_patched;
2827 char **mapped_datav;
2828
2829 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2830 bio_is_patched = 0;
2831 if (dev_state->state->print_mask &
2832 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2833 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2834 bio_op(bio), bio->bi_opf, bio->bi_vcnt,
2835 (unsigned long long)bio->bi_iter.bi_sector,
2836 dev_bytenr, bio->bi_bdev);
2837
2838 mapped_datav = kmalloc_array(bio->bi_vcnt,
2839 sizeof(*mapped_datav), GFP_NOFS);
2840 if (!mapped_datav)
2841 goto leave;
2842 cur_bytenr = dev_bytenr;
2843 for (i = 0; i < bio->bi_vcnt; i++) {
2844 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_SIZE);
2845 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
2846 if (!mapped_datav[i]) {
2847 while (i > 0) {
2848 i--;
2849 kunmap(bio->bi_io_vec[i].bv_page);
2850 }
2851 kfree(mapped_datav);
2852 goto leave;
2853 }
2854 if (dev_state->state->print_mask &
2855 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2856 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2857 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2858 bio->bi_io_vec[i].bv_offset);
2859 cur_bytenr += bio->bi_io_vec[i].bv_len;
2860 }
2861 btrfsic_process_written_block(dev_state, dev_bytenr,
2862 mapped_datav, bio->bi_vcnt,
2863 bio, &bio_is_patched,
2864 NULL, bio->bi_opf);
2865 while (i > 0) {
2866 i--;
2867 kunmap(bio->bi_io_vec[i].bv_page);
2868 }
2869 kfree(mapped_datav);
2870 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2871 if (dev_state->state->print_mask &
2872 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2873 pr_info("submit_bio(rw=%d,0x%x FLUSH, bdev=%p)\n",
2874 bio_op(bio), bio->bi_opf, bio->bi_bdev);
2875 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2876 if ((dev_state->state->print_mask &
2877 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2878 BTRFSIC_PRINT_MASK_VERBOSE)))
2879 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2880 dev_state->name);
2881 } else {
2882 struct btrfsic_block *const block =
2883 &dev_state->dummy_block_for_bio_bh_flush;
2884
2885 block->is_iodone = 0;
2886 block->never_written = 0;
2887 block->iodone_w_error = 0;
2888 block->flush_gen = dev_state->last_flush_gen + 1;
2889 block->submit_bio_bh_rw = bio->bi_opf;
2890 block->orig_bio_bh_private = bio->bi_private;
2891 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2892 block->next_in_same_bio = NULL;
2893 bio->bi_private = block;
2894 bio->bi_end_io = btrfsic_bio_end_io;
2895 }
2896 }
2897 leave:
2898 mutex_unlock(&btrfsic_mutex);
2899 }
2900
2901 void btrfsic_submit_bio(struct bio *bio)
2902 {
2903 __btrfsic_submit_bio(bio);
2904 submit_bio(bio);
2905 }
2906
2907 int btrfsic_submit_bio_wait(struct bio *bio)
2908 {
2909 __btrfsic_submit_bio(bio);
2910 return submit_bio_wait(bio);
2911 }
2912
2913 int btrfsic_mount(struct btrfs_root *root,
2914 struct btrfs_fs_devices *fs_devices,
2915 int including_extent_data, u32 print_mask)
2916 {
2917 int ret;
2918 struct btrfsic_state *state;
2919 struct list_head *dev_head = &fs_devices->devices;
2920 struct btrfs_device *device;
2921
2922 if (root->nodesize & ((u64)PAGE_SIZE - 1)) {
2923 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2924 root->nodesize, PAGE_SIZE);
2925 return -1;
2926 }
2927 if (root->sectorsize & ((u64)PAGE_SIZE - 1)) {
2928 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2929 root->sectorsize, PAGE_SIZE);
2930 return -1;
2931 }
2932 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
2933 if (!state) {
2934 state = vzalloc(sizeof(*state));
2935 if (!state) {
2936 pr_info("btrfs check-integrity: vzalloc() failed!\n");
2937 return -1;
2938 }
2939 }
2940
2941 if (!btrfsic_is_initialized) {
2942 mutex_init(&btrfsic_mutex);
2943 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2944 btrfsic_is_initialized = 1;
2945 }
2946 mutex_lock(&btrfsic_mutex);
2947 state->root = root;
2948 state->print_mask = print_mask;
2949 state->include_extent_data = including_extent_data;
2950 state->csum_size = 0;
2951 state->metablock_size = root->nodesize;
2952 state->datablock_size = root->sectorsize;
2953 INIT_LIST_HEAD(&state->all_blocks_list);
2954 btrfsic_block_hashtable_init(&state->block_hashtable);
2955 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2956 state->max_superblock_generation = 0;
2957 state->latest_superblock = NULL;
2958
2959 list_for_each_entry(device, dev_head, dev_list) {
2960 struct btrfsic_dev_state *ds;
2961 const char *p;
2962
2963 if (!device->bdev || !device->name)
2964 continue;
2965
2966 ds = btrfsic_dev_state_alloc();
2967 if (NULL == ds) {
2968 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2969 mutex_unlock(&btrfsic_mutex);
2970 return -1;
2971 }
2972 ds->bdev = device->bdev;
2973 ds->state = state;
2974 bdevname(ds->bdev, ds->name);
2975 ds->name[BDEVNAME_SIZE - 1] = '\0';
2976 p = kbasename(ds->name);
2977 strlcpy(ds->name, p, sizeof(ds->name));
2978 btrfsic_dev_state_hashtable_add(ds,
2979 &btrfsic_dev_state_hashtable);
2980 }
2981
2982 ret = btrfsic_process_superblock(state, fs_devices);
2983 if (0 != ret) {
2984 mutex_unlock(&btrfsic_mutex);
2985 btrfsic_unmount(root, fs_devices);
2986 return ret;
2987 }
2988
2989 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2990 btrfsic_dump_database(state);
2991 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2992 btrfsic_dump_tree(state);
2993
2994 mutex_unlock(&btrfsic_mutex);
2995 return 0;
2996 }
2997
2998 void btrfsic_unmount(struct btrfs_root *root,
2999 struct btrfs_fs_devices *fs_devices)
3000 {
3001 struct btrfsic_block *b_all, *tmp_all;
3002 struct btrfsic_state *state;
3003 struct list_head *dev_head = &fs_devices->devices;
3004 struct btrfs_device *device;
3005
3006 if (!btrfsic_is_initialized)
3007 return;
3008
3009 mutex_lock(&btrfsic_mutex);
3010
3011 state = NULL;
3012 list_for_each_entry(device, dev_head, dev_list) {
3013 struct btrfsic_dev_state *ds;
3014
3015 if (!device->bdev || !device->name)
3016 continue;
3017
3018 ds = btrfsic_dev_state_hashtable_lookup(
3019 device->bdev,
3020 &btrfsic_dev_state_hashtable);
3021 if (NULL != ds) {
3022 state = ds->state;
3023 btrfsic_dev_state_hashtable_remove(ds);
3024 btrfsic_dev_state_free(ds);
3025 }
3026 }
3027
3028 if (NULL == state) {
3029 pr_info("btrfsic: error, cannot find state information on umount!\n");
3030 mutex_unlock(&btrfsic_mutex);
3031 return;
3032 }
3033
3034 /*
3035 * Don't care about keeping the lists' state up to date,
3036 * just free all memory that was allocated dynamically.
3037 * Free the blocks and the block_links.
3038 */
3039 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3040 all_blocks_node) {
3041 struct btrfsic_block_link *l, *tmp;
3042
3043 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3044 node_ref_to) {
3045 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3046 btrfsic_print_rem_link(state, l);
3047
3048 l->ref_cnt--;
3049 if (0 == l->ref_cnt)
3050 btrfsic_block_link_free(l);
3051 }
3052
3053 if (b_all->is_iodone || b_all->never_written)
3054 btrfsic_block_free(b_all);
3055 else
3056 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3057 btrfsic_get_block_type(state, b_all),
3058 b_all->logical_bytenr, b_all->dev_state->name,
3059 b_all->dev_bytenr, b_all->mirror_num);
3060 }
3061
3062 mutex_unlock(&btrfsic_mutex);
3063
3064 kvfree(state);
3065 }