]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/compression.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 static int btrfs_decompress_bio(struct compressed_bio *cb);
47
48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
49 unsigned long disk_size)
50 {
51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
52
53 return sizeof(struct compressed_bio) +
54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
55 }
56
57 static int check_compressed_csum(struct btrfs_inode *inode,
58 struct compressed_bio *cb,
59 u64 disk_start)
60 {
61 int ret;
62 struct page *page;
63 unsigned long i;
64 char *kaddr;
65 u32 csum;
66 u32 *cb_sum = &cb->sums;
67
68 if (inode->flags & BTRFS_INODE_NODATASUM)
69 return 0;
70
71 for (i = 0; i < cb->nr_pages; i++) {
72 page = cb->compressed_pages[i];
73 csum = ~(u32)0;
74
75 kaddr = kmap_atomic(page);
76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
77 btrfs_csum_final(csum, (u8 *)&csum);
78 kunmap_atomic(kaddr);
79
80 if (csum != *cb_sum) {
81 btrfs_print_data_csum_error(inode, disk_start, csum,
82 *cb_sum, cb->mirror_num);
83 ret = -EIO;
84 goto fail;
85 }
86 cb_sum++;
87
88 }
89 ret = 0;
90 fail:
91 return ret;
92 }
93
94 /* when we finish reading compressed pages from the disk, we
95 * decompress them and then run the bio end_io routines on the
96 * decompressed pages (in the inode address space).
97 *
98 * This allows the checksumming and other IO error handling routines
99 * to work normally
100 *
101 * The compressed pages are freed here, and it must be run
102 * in process context
103 */
104 static void end_compressed_bio_read(struct bio *bio)
105 {
106 struct compressed_bio *cb = bio->bi_private;
107 struct inode *inode;
108 struct page *page;
109 unsigned long index;
110 int ret;
111
112 if (bio->bi_status)
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
120
121 inode = cb->inode;
122 ret = check_compressed_csum(BTRFS_I(inode), cb,
123 (u64)bio->bi_iter.bi_sector << 9);
124 if (ret)
125 goto csum_failed;
126
127 /* ok, we're the last bio for this extent, lets start
128 * the decompression.
129 */
130 ret = btrfs_decompress_bio(cb);
131
132 csum_failed:
133 if (ret)
134 cb->errors = 1;
135
136 /* release the compressed pages */
137 index = 0;
138 for (index = 0; index < cb->nr_pages; index++) {
139 page = cb->compressed_pages[index];
140 page->mapping = NULL;
141 put_page(page);
142 }
143
144 /* do io completion on the original bio */
145 if (cb->errors) {
146 bio_io_error(cb->orig_bio);
147 } else {
148 int i;
149 struct bio_vec *bvec;
150
151 /*
152 * we have verified the checksum already, set page
153 * checked so the end_io handlers know about it
154 */
155 bio_for_each_segment_all(bvec, cb->orig_bio, i)
156 SetPageChecked(bvec->bv_page);
157
158 bio_endio(cb->orig_bio);
159 }
160
161 /* finally free the cb struct */
162 kfree(cb->compressed_pages);
163 kfree(cb);
164 out:
165 bio_put(bio);
166 }
167
168 /*
169 * Clear the writeback bits on all of the file
170 * pages for a compressed write
171 */
172 static noinline void end_compressed_writeback(struct inode *inode,
173 const struct compressed_bio *cb)
174 {
175 unsigned long index = cb->start >> PAGE_SHIFT;
176 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
177 struct page *pages[16];
178 unsigned long nr_pages = end_index - index + 1;
179 int i;
180 int ret;
181
182 if (cb->errors)
183 mapping_set_error(inode->i_mapping, -EIO);
184
185 while (nr_pages > 0) {
186 ret = find_get_pages_contig(inode->i_mapping, index,
187 min_t(unsigned long,
188 nr_pages, ARRAY_SIZE(pages)), pages);
189 if (ret == 0) {
190 nr_pages -= 1;
191 index += 1;
192 continue;
193 }
194 for (i = 0; i < ret; i++) {
195 if (cb->errors)
196 SetPageError(pages[i]);
197 end_page_writeback(pages[i]);
198 put_page(pages[i]);
199 }
200 nr_pages -= ret;
201 index += ret;
202 }
203 /* the inode may be gone now */
204 }
205
206 /*
207 * do the cleanup once all the compressed pages hit the disk.
208 * This will clear writeback on the file pages and free the compressed
209 * pages.
210 *
211 * This also calls the writeback end hooks for the file pages so that
212 * metadata and checksums can be updated in the file.
213 */
214 static void end_compressed_bio_write(struct bio *bio)
215 {
216 struct extent_io_tree *tree;
217 struct compressed_bio *cb = bio->bi_private;
218 struct inode *inode;
219 struct page *page;
220 unsigned long index;
221
222 if (bio->bi_status)
223 cb->errors = 1;
224
225 /* if there are more bios still pending for this compressed
226 * extent, just exit
227 */
228 if (!refcount_dec_and_test(&cb->pending_bios))
229 goto out;
230
231 /* ok, we're the last bio for this extent, step one is to
232 * call back into the FS and do all the end_io operations
233 */
234 inode = cb->inode;
235 tree = &BTRFS_I(inode)->io_tree;
236 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
237 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
238 cb->start,
239 cb->start + cb->len - 1,
240 NULL,
241 bio->bi_status ? 0 : 1);
242 cb->compressed_pages[0]->mapping = NULL;
243
244 end_compressed_writeback(inode, cb);
245 /* note, our inode could be gone now */
246
247 /*
248 * release the compressed pages, these came from alloc_page and
249 * are not attached to the inode at all
250 */
251 index = 0;
252 for (index = 0; index < cb->nr_pages; index++) {
253 page = cb->compressed_pages[index];
254 page->mapping = NULL;
255 put_page(page);
256 }
257
258 /* finally free the cb struct */
259 kfree(cb->compressed_pages);
260 kfree(cb);
261 out:
262 bio_put(bio);
263 }
264
265 /*
266 * worker function to build and submit bios for previously compressed pages.
267 * The corresponding pages in the inode should be marked for writeback
268 * and the compressed pages should have a reference on them for dropping
269 * when the IO is complete.
270 *
271 * This also checksums the file bytes and gets things ready for
272 * the end io hooks.
273 */
274 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
275 unsigned long len, u64 disk_start,
276 unsigned long compressed_len,
277 struct page **compressed_pages,
278 unsigned long nr_pages)
279 {
280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
281 struct bio *bio = NULL;
282 struct compressed_bio *cb;
283 unsigned long bytes_left;
284 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
285 int pg_index = 0;
286 struct page *page;
287 u64 first_byte = disk_start;
288 struct block_device *bdev;
289 blk_status_t ret;
290 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
291
292 WARN_ON(start & ((u64)PAGE_SIZE - 1));
293 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
294 if (!cb)
295 return BLK_STS_RESOURCE;
296 refcount_set(&cb->pending_bios, 0);
297 cb->errors = 0;
298 cb->inode = inode;
299 cb->start = start;
300 cb->len = len;
301 cb->mirror_num = 0;
302 cb->compressed_pages = compressed_pages;
303 cb->compressed_len = compressed_len;
304 cb->orig_bio = NULL;
305 cb->nr_pages = nr_pages;
306
307 bdev = fs_info->fs_devices->latest_bdev;
308
309 bio = btrfs_bio_alloc(bdev, first_byte);
310 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
311 bio->bi_private = cb;
312 bio->bi_end_io = end_compressed_bio_write;
313 refcount_set(&cb->pending_bios, 1);
314
315 /* create and submit bios for the compressed pages */
316 bytes_left = compressed_len;
317 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
318 int submit = 0;
319
320 page = compressed_pages[pg_index];
321 page->mapping = inode->i_mapping;
322 if (bio->bi_iter.bi_size)
323 submit = io_tree->ops->merge_bio_hook(page, 0,
324 PAGE_SIZE,
325 bio, 0);
326
327 page->mapping = NULL;
328 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
329 PAGE_SIZE) {
330 bio_get(bio);
331
332 /*
333 * inc the count before we submit the bio so
334 * we know the end IO handler won't happen before
335 * we inc the count. Otherwise, the cb might get
336 * freed before we're done setting it up
337 */
338 refcount_inc(&cb->pending_bios);
339 ret = btrfs_bio_wq_end_io(fs_info, bio,
340 BTRFS_WQ_ENDIO_DATA);
341 BUG_ON(ret); /* -ENOMEM */
342
343 if (!skip_sum) {
344 ret = btrfs_csum_one_bio(inode, bio, start, 1);
345 BUG_ON(ret); /* -ENOMEM */
346 }
347
348 ret = btrfs_map_bio(fs_info, bio, 0, 1);
349 if (ret) {
350 bio->bi_status = ret;
351 bio_endio(bio);
352 }
353
354 bio_put(bio);
355
356 bio = btrfs_bio_alloc(bdev, first_byte);
357 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
358 bio->bi_private = cb;
359 bio->bi_end_io = end_compressed_bio_write;
360 bio_add_page(bio, page, PAGE_SIZE, 0);
361 }
362 if (bytes_left < PAGE_SIZE) {
363 btrfs_info(fs_info,
364 "bytes left %lu compress len %lu nr %lu",
365 bytes_left, cb->compressed_len, cb->nr_pages);
366 }
367 bytes_left -= PAGE_SIZE;
368 first_byte += PAGE_SIZE;
369 cond_resched();
370 }
371 bio_get(bio);
372
373 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
374 BUG_ON(ret); /* -ENOMEM */
375
376 if (!skip_sum) {
377 ret = btrfs_csum_one_bio(inode, bio, start, 1);
378 BUG_ON(ret); /* -ENOMEM */
379 }
380
381 ret = btrfs_map_bio(fs_info, bio, 0, 1);
382 if (ret) {
383 bio->bi_status = ret;
384 bio_endio(bio);
385 }
386
387 bio_put(bio);
388 return 0;
389 }
390
391 static u64 bio_end_offset(struct bio *bio)
392 {
393 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
394
395 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
396 }
397
398 static noinline int add_ra_bio_pages(struct inode *inode,
399 u64 compressed_end,
400 struct compressed_bio *cb)
401 {
402 unsigned long end_index;
403 unsigned long pg_index;
404 u64 last_offset;
405 u64 isize = i_size_read(inode);
406 int ret;
407 struct page *page;
408 unsigned long nr_pages = 0;
409 struct extent_map *em;
410 struct address_space *mapping = inode->i_mapping;
411 struct extent_map_tree *em_tree;
412 struct extent_io_tree *tree;
413 u64 end;
414 int misses = 0;
415
416 last_offset = bio_end_offset(cb->orig_bio);
417 em_tree = &BTRFS_I(inode)->extent_tree;
418 tree = &BTRFS_I(inode)->io_tree;
419
420 if (isize == 0)
421 return 0;
422
423 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
424
425 while (last_offset < compressed_end) {
426 pg_index = last_offset >> PAGE_SHIFT;
427
428 if (pg_index > end_index)
429 break;
430
431 rcu_read_lock();
432 page = radix_tree_lookup(&mapping->page_tree, pg_index);
433 rcu_read_unlock();
434 if (page && !radix_tree_exceptional_entry(page)) {
435 misses++;
436 if (misses > 4)
437 break;
438 goto next;
439 }
440
441 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
442 ~__GFP_FS));
443 if (!page)
444 break;
445
446 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
447 put_page(page);
448 goto next;
449 }
450
451 end = last_offset + PAGE_SIZE - 1;
452 /*
453 * at this point, we have a locked page in the page cache
454 * for these bytes in the file. But, we have to make
455 * sure they map to this compressed extent on disk.
456 */
457 set_page_extent_mapped(page);
458 lock_extent(tree, last_offset, end);
459 read_lock(&em_tree->lock);
460 em = lookup_extent_mapping(em_tree, last_offset,
461 PAGE_SIZE);
462 read_unlock(&em_tree->lock);
463
464 if (!em || last_offset < em->start ||
465 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
466 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
467 free_extent_map(em);
468 unlock_extent(tree, last_offset, end);
469 unlock_page(page);
470 put_page(page);
471 break;
472 }
473 free_extent_map(em);
474
475 if (page->index == end_index) {
476 char *userpage;
477 size_t zero_offset = isize & (PAGE_SIZE - 1);
478
479 if (zero_offset) {
480 int zeros;
481 zeros = PAGE_SIZE - zero_offset;
482 userpage = kmap_atomic(page);
483 memset(userpage + zero_offset, 0, zeros);
484 flush_dcache_page(page);
485 kunmap_atomic(userpage);
486 }
487 }
488
489 ret = bio_add_page(cb->orig_bio, page,
490 PAGE_SIZE, 0);
491
492 if (ret == PAGE_SIZE) {
493 nr_pages++;
494 put_page(page);
495 } else {
496 unlock_extent(tree, last_offset, end);
497 unlock_page(page);
498 put_page(page);
499 break;
500 }
501 next:
502 last_offset += PAGE_SIZE;
503 }
504 return 0;
505 }
506
507 /*
508 * for a compressed read, the bio we get passed has all the inode pages
509 * in it. We don't actually do IO on those pages but allocate new ones
510 * to hold the compressed pages on disk.
511 *
512 * bio->bi_iter.bi_sector points to the compressed extent on disk
513 * bio->bi_io_vec points to all of the inode pages
514 *
515 * After the compressed pages are read, we copy the bytes into the
516 * bio we were passed and then call the bio end_io calls
517 */
518 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
519 int mirror_num, unsigned long bio_flags)
520 {
521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
522 struct extent_io_tree *tree;
523 struct extent_map_tree *em_tree;
524 struct compressed_bio *cb;
525 unsigned long compressed_len;
526 unsigned long nr_pages;
527 unsigned long pg_index;
528 struct page *page;
529 struct block_device *bdev;
530 struct bio *comp_bio;
531 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
532 u64 em_len;
533 u64 em_start;
534 struct extent_map *em;
535 blk_status_t ret = BLK_STS_RESOURCE;
536 int faili = 0;
537 u32 *sums;
538
539 tree = &BTRFS_I(inode)->io_tree;
540 em_tree = &BTRFS_I(inode)->extent_tree;
541
542 /* we need the actual starting offset of this extent in the file */
543 read_lock(&em_tree->lock);
544 em = lookup_extent_mapping(em_tree,
545 page_offset(bio->bi_io_vec->bv_page),
546 PAGE_SIZE);
547 read_unlock(&em_tree->lock);
548 if (!em)
549 return BLK_STS_IOERR;
550
551 compressed_len = em->block_len;
552 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
553 if (!cb)
554 goto out;
555
556 refcount_set(&cb->pending_bios, 0);
557 cb->errors = 0;
558 cb->inode = inode;
559 cb->mirror_num = mirror_num;
560 sums = &cb->sums;
561
562 cb->start = em->orig_start;
563 em_len = em->len;
564 em_start = em->start;
565
566 free_extent_map(em);
567 em = NULL;
568
569 cb->len = bio->bi_iter.bi_size;
570 cb->compressed_len = compressed_len;
571 cb->compress_type = extent_compress_type(bio_flags);
572 cb->orig_bio = bio;
573
574 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
575 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
576 GFP_NOFS);
577 if (!cb->compressed_pages)
578 goto fail1;
579
580 bdev = fs_info->fs_devices->latest_bdev;
581
582 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
583 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
584 __GFP_HIGHMEM);
585 if (!cb->compressed_pages[pg_index]) {
586 faili = pg_index - 1;
587 ret = BLK_STS_RESOURCE;
588 goto fail2;
589 }
590 }
591 faili = nr_pages - 1;
592 cb->nr_pages = nr_pages;
593
594 add_ra_bio_pages(inode, em_start + em_len, cb);
595
596 /* include any pages we added in add_ra-bio_pages */
597 cb->len = bio->bi_iter.bi_size;
598
599 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
600 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
601 comp_bio->bi_private = cb;
602 comp_bio->bi_end_io = end_compressed_bio_read;
603 refcount_set(&cb->pending_bios, 1);
604
605 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
606 int submit = 0;
607
608 page = cb->compressed_pages[pg_index];
609 page->mapping = inode->i_mapping;
610 page->index = em_start >> PAGE_SHIFT;
611
612 if (comp_bio->bi_iter.bi_size)
613 submit = tree->ops->merge_bio_hook(page, 0,
614 PAGE_SIZE,
615 comp_bio, 0);
616
617 page->mapping = NULL;
618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 PAGE_SIZE) {
620 bio_get(comp_bio);
621
622 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
623 BTRFS_WQ_ENDIO_DATA);
624 BUG_ON(ret); /* -ENOMEM */
625
626 /*
627 * inc the count before we submit the bio so
628 * we know the end IO handler won't happen before
629 * we inc the count. Otherwise, the cb might get
630 * freed before we're done setting it up
631 */
632 refcount_inc(&cb->pending_bios);
633
634 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
635 ret = btrfs_lookup_bio_sums(inode, comp_bio,
636 sums);
637 BUG_ON(ret); /* -ENOMEM */
638 }
639 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
640 fs_info->sectorsize);
641
642 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
643 if (ret) {
644 comp_bio->bi_status = ret;
645 bio_endio(comp_bio);
646 }
647
648 bio_put(comp_bio);
649
650 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
651 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
652 comp_bio->bi_private = cb;
653 comp_bio->bi_end_io = end_compressed_bio_read;
654
655 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
656 }
657 cur_disk_byte += PAGE_SIZE;
658 }
659 bio_get(comp_bio);
660
661 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
662 BUG_ON(ret); /* -ENOMEM */
663
664 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
665 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
666 BUG_ON(ret); /* -ENOMEM */
667 }
668
669 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
670 if (ret) {
671 comp_bio->bi_status = ret;
672 bio_endio(comp_bio);
673 }
674
675 bio_put(comp_bio);
676 return 0;
677
678 fail2:
679 while (faili >= 0) {
680 __free_page(cb->compressed_pages[faili]);
681 faili--;
682 }
683
684 kfree(cb->compressed_pages);
685 fail1:
686 kfree(cb);
687 out:
688 free_extent_map(em);
689 return ret;
690 }
691
692 static struct {
693 struct list_head idle_ws;
694 spinlock_t ws_lock;
695 /* Number of free workspaces */
696 int free_ws;
697 /* Total number of allocated workspaces */
698 atomic_t total_ws;
699 /* Waiters for a free workspace */
700 wait_queue_head_t ws_wait;
701 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
702
703 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
704 &btrfs_zlib_compress,
705 &btrfs_lzo_compress,
706 };
707
708 void __init btrfs_init_compress(void)
709 {
710 int i;
711
712 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
713 struct list_head *workspace;
714
715 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
716 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
717 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
718 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
719
720 /*
721 * Preallocate one workspace for each compression type so
722 * we can guarantee forward progress in the worst case
723 */
724 workspace = btrfs_compress_op[i]->alloc_workspace();
725 if (IS_ERR(workspace)) {
726 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
727 } else {
728 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
729 btrfs_comp_ws[i].free_ws = 1;
730 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
731 }
732 }
733 }
734
735 /*
736 * This finds an available workspace or allocates a new one.
737 * If it's not possible to allocate a new one, waits until there's one.
738 * Preallocation makes a forward progress guarantees and we do not return
739 * errors.
740 */
741 static struct list_head *find_workspace(int type)
742 {
743 struct list_head *workspace;
744 int cpus = num_online_cpus();
745 int idx = type - 1;
746 unsigned nofs_flag;
747
748 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
749 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
750 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
751 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
752 int *free_ws = &btrfs_comp_ws[idx].free_ws;
753 again:
754 spin_lock(ws_lock);
755 if (!list_empty(idle_ws)) {
756 workspace = idle_ws->next;
757 list_del(workspace);
758 (*free_ws)--;
759 spin_unlock(ws_lock);
760 return workspace;
761
762 }
763 if (atomic_read(total_ws) > cpus) {
764 DEFINE_WAIT(wait);
765
766 spin_unlock(ws_lock);
767 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
768 if (atomic_read(total_ws) > cpus && !*free_ws)
769 schedule();
770 finish_wait(ws_wait, &wait);
771 goto again;
772 }
773 atomic_inc(total_ws);
774 spin_unlock(ws_lock);
775
776 /*
777 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
778 * to turn it off here because we might get called from the restricted
779 * context of btrfs_compress_bio/btrfs_compress_pages
780 */
781 nofs_flag = memalloc_nofs_save();
782 workspace = btrfs_compress_op[idx]->alloc_workspace();
783 memalloc_nofs_restore(nofs_flag);
784
785 if (IS_ERR(workspace)) {
786 atomic_dec(total_ws);
787 wake_up(ws_wait);
788
789 /*
790 * Do not return the error but go back to waiting. There's a
791 * workspace preallocated for each type and the compression
792 * time is bounded so we get to a workspace eventually. This
793 * makes our caller's life easier.
794 *
795 * To prevent silent and low-probability deadlocks (when the
796 * initial preallocation fails), check if there are any
797 * workspaces at all.
798 */
799 if (atomic_read(total_ws) == 0) {
800 static DEFINE_RATELIMIT_STATE(_rs,
801 /* once per minute */ 60 * HZ,
802 /* no burst */ 1);
803
804 if (__ratelimit(&_rs)) {
805 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
806 }
807 }
808 goto again;
809 }
810 return workspace;
811 }
812
813 /*
814 * put a workspace struct back on the list or free it if we have enough
815 * idle ones sitting around
816 */
817 static void free_workspace(int type, struct list_head *workspace)
818 {
819 int idx = type - 1;
820 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
821 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
822 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
823 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
824 int *free_ws = &btrfs_comp_ws[idx].free_ws;
825
826 spin_lock(ws_lock);
827 if (*free_ws < num_online_cpus()) {
828 list_add(workspace, idle_ws);
829 (*free_ws)++;
830 spin_unlock(ws_lock);
831 goto wake;
832 }
833 spin_unlock(ws_lock);
834
835 btrfs_compress_op[idx]->free_workspace(workspace);
836 atomic_dec(total_ws);
837 wake:
838 /*
839 * Make sure counter is updated before we wake up waiters.
840 */
841 smp_mb();
842 if (waitqueue_active(ws_wait))
843 wake_up(ws_wait);
844 }
845
846 /*
847 * cleanup function for module exit
848 */
849 static void free_workspaces(void)
850 {
851 struct list_head *workspace;
852 int i;
853
854 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
855 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
856 workspace = btrfs_comp_ws[i].idle_ws.next;
857 list_del(workspace);
858 btrfs_compress_op[i]->free_workspace(workspace);
859 atomic_dec(&btrfs_comp_ws[i].total_ws);
860 }
861 }
862 }
863
864 /*
865 * Given an address space and start and length, compress the bytes into @pages
866 * that are allocated on demand.
867 *
868 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
869 * and returns number of actually allocated pages
870 *
871 * @total_in is used to return the number of bytes actually read. It
872 * may be smaller than the input length if we had to exit early because we
873 * ran out of room in the pages array or because we cross the
874 * max_out threshold.
875 *
876 * @total_out is an in/out parameter, must be set to the input length and will
877 * be also used to return the total number of compressed bytes
878 *
879 * @max_out tells us the max number of bytes that we're allowed to
880 * stuff into pages
881 */
882 int btrfs_compress_pages(int type, struct address_space *mapping,
883 u64 start, struct page **pages,
884 unsigned long *out_pages,
885 unsigned long *total_in,
886 unsigned long *total_out)
887 {
888 struct list_head *workspace;
889 int ret;
890
891 workspace = find_workspace(type);
892
893 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 start, pages,
895 out_pages,
896 total_in, total_out);
897 free_workspace(type, workspace);
898 return ret;
899 }
900
901 /*
902 * pages_in is an array of pages with compressed data.
903 *
904 * disk_start is the starting logical offset of this array in the file
905 *
906 * orig_bio contains the pages from the file that we want to decompress into
907 *
908 * srclen is the number of bytes in pages_in
909 *
910 * The basic idea is that we have a bio that was created by readpages.
911 * The pages in the bio are for the uncompressed data, and they may not
912 * be contiguous. They all correspond to the range of bytes covered by
913 * the compressed extent.
914 */
915 static int btrfs_decompress_bio(struct compressed_bio *cb)
916 {
917 struct list_head *workspace;
918 int ret;
919 int type = cb->compress_type;
920
921 workspace = find_workspace(type);
922 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
923 free_workspace(type, workspace);
924
925 return ret;
926 }
927
928 /*
929 * a less complex decompression routine. Our compressed data fits in a
930 * single page, and we want to read a single page out of it.
931 * start_byte tells us the offset into the compressed data we're interested in
932 */
933 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
934 unsigned long start_byte, size_t srclen, size_t destlen)
935 {
936 struct list_head *workspace;
937 int ret;
938
939 workspace = find_workspace(type);
940
941 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
942 dest_page, start_byte,
943 srclen, destlen);
944
945 free_workspace(type, workspace);
946 return ret;
947 }
948
949 void btrfs_exit_compress(void)
950 {
951 free_workspaces();
952 }
953
954 /*
955 * Copy uncompressed data from working buffer to pages.
956 *
957 * buf_start is the byte offset we're of the start of our workspace buffer.
958 *
959 * total_out is the last byte of the buffer
960 */
961 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
962 unsigned long total_out, u64 disk_start,
963 struct bio *bio)
964 {
965 unsigned long buf_offset;
966 unsigned long current_buf_start;
967 unsigned long start_byte;
968 unsigned long prev_start_byte;
969 unsigned long working_bytes = total_out - buf_start;
970 unsigned long bytes;
971 char *kaddr;
972 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
973
974 /*
975 * start byte is the first byte of the page we're currently
976 * copying into relative to the start of the compressed data.
977 */
978 start_byte = page_offset(bvec.bv_page) - disk_start;
979
980 /* we haven't yet hit data corresponding to this page */
981 if (total_out <= start_byte)
982 return 1;
983
984 /*
985 * the start of the data we care about is offset into
986 * the middle of our working buffer
987 */
988 if (total_out > start_byte && buf_start < start_byte) {
989 buf_offset = start_byte - buf_start;
990 working_bytes -= buf_offset;
991 } else {
992 buf_offset = 0;
993 }
994 current_buf_start = buf_start;
995
996 /* copy bytes from the working buffer into the pages */
997 while (working_bytes > 0) {
998 bytes = min_t(unsigned long, bvec.bv_len,
999 PAGE_SIZE - buf_offset);
1000 bytes = min(bytes, working_bytes);
1001
1002 kaddr = kmap_atomic(bvec.bv_page);
1003 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1004 kunmap_atomic(kaddr);
1005 flush_dcache_page(bvec.bv_page);
1006
1007 buf_offset += bytes;
1008 working_bytes -= bytes;
1009 current_buf_start += bytes;
1010
1011 /* check if we need to pick another page */
1012 bio_advance(bio, bytes);
1013 if (!bio->bi_iter.bi_size)
1014 return 0;
1015 bvec = bio_iter_iovec(bio, bio->bi_iter);
1016 prev_start_byte = start_byte;
1017 start_byte = page_offset(bvec.bv_page) - disk_start;
1018
1019 /*
1020 * We need to make sure we're only adjusting
1021 * our offset into compression working buffer when
1022 * we're switching pages. Otherwise we can incorrectly
1023 * keep copying when we were actually done.
1024 */
1025 if (start_byte != prev_start_byte) {
1026 /*
1027 * make sure our new page is covered by this
1028 * working buffer
1029 */
1030 if (total_out <= start_byte)
1031 return 1;
1032
1033 /*
1034 * the next page in the biovec might not be adjacent
1035 * to the last page, but it might still be found
1036 * inside this working buffer. bump our offset pointer
1037 */
1038 if (total_out > start_byte &&
1039 current_buf_start < start_byte) {
1040 buf_offset = start_byte - buf_start;
1041 working_bytes = total_out - start_byte;
1042 current_buf_start = buf_start + buf_offset;
1043 }
1044 }
1045 }
1046
1047 return 1;
1048 }