]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/compression.c
mtd: rawnand: marvell: add missing clk_disable_unprepare() on error in marvell_nfc_re...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / compression.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 switch (type) {
37 case BTRFS_COMPRESS_ZLIB:
38 case BTRFS_COMPRESS_LZO:
39 case BTRFS_COMPRESS_ZSTD:
40 case BTRFS_COMPRESS_NONE:
41 return btrfs_compress_types[type];
42 default:
43 break;
44 }
45
46 return NULL;
47 }
48
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 int i;
52
53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 size_t comp_len = strlen(btrfs_compress_types[i]);
55
56 if (len < comp_len)
57 continue;
58
59 if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 return true;
61 }
62 return false;
63 }
64
65 static int compression_compress_pages(int type, struct list_head *ws,
66 struct address_space *mapping, u64 start, struct page **pages,
67 unsigned long *out_pages, unsigned long *total_in,
68 unsigned long *total_out)
69 {
70 switch (type) {
71 case BTRFS_COMPRESS_ZLIB:
72 return zlib_compress_pages(ws, mapping, start, pages,
73 out_pages, total_in, total_out);
74 case BTRFS_COMPRESS_LZO:
75 return lzo_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_ZSTD:
78 return zstd_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_NONE:
81 default:
82 /*
83 * This can happen when compression races with remount setting
84 * it to 'no compress', while caller doesn't call
85 * inode_need_compress() to check if we really need to
86 * compress.
87 *
88 * Not a big deal, just need to inform caller that we
89 * haven't allocated any pages yet.
90 */
91 *out_pages = 0;
92 return -E2BIG;
93 }
94 }
95
96 static int compression_decompress_bio(int type, struct list_head *ws,
97 struct compressed_bio *cb)
98 {
99 switch (type) {
100 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
101 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
102 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_NONE:
104 default:
105 /*
106 * This can't happen, the type is validated several times
107 * before we get here.
108 */
109 BUG();
110 }
111 }
112
113 static int compression_decompress(int type, struct list_head *ws,
114 unsigned char *data_in, struct page *dest_page,
115 unsigned long start_byte, size_t srclen, size_t destlen)
116 {
117 switch (type) {
118 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
119 start_byte, srclen, destlen);
120 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
121 start_byte, srclen, destlen);
122 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
123 start_byte, srclen, destlen);
124 case BTRFS_COMPRESS_NONE:
125 default:
126 /*
127 * This can't happen, the type is validated several times
128 * before we get here.
129 */
130 BUG();
131 }
132 }
133
134 static int btrfs_decompress_bio(struct compressed_bio *cb);
135
136 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137 unsigned long disk_size)
138 {
139 return sizeof(struct compressed_bio) +
140 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
141 }
142
143 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
144 u64 disk_start)
145 {
146 struct btrfs_fs_info *fs_info = inode->root->fs_info;
147 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148 const u32 csum_size = fs_info->csum_size;
149 struct page *page;
150 unsigned long i;
151 char *kaddr;
152 u8 csum[BTRFS_CSUM_SIZE];
153 struct compressed_bio *cb = bio->bi_private;
154 u8 *cb_sum = cb->sums;
155
156 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
157 return 0;
158
159 shash->tfm = fs_info->csum_shash;
160
161 for (i = 0; i < cb->nr_pages; i++) {
162 page = cb->compressed_pages[i];
163
164 kaddr = kmap_atomic(page);
165 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
166 kunmap_atomic(kaddr);
167
168 if (memcmp(&csum, cb_sum, csum_size)) {
169 btrfs_print_data_csum_error(inode, disk_start,
170 csum, cb_sum, cb->mirror_num);
171 if (btrfs_io_bio(bio)->device)
172 btrfs_dev_stat_inc_and_print(
173 btrfs_io_bio(bio)->device,
174 BTRFS_DEV_STAT_CORRUPTION_ERRS);
175 return -EIO;
176 }
177 cb_sum += csum_size;
178 }
179 return 0;
180 }
181
182 /* when we finish reading compressed pages from the disk, we
183 * decompress them and then run the bio end_io routines on the
184 * decompressed pages (in the inode address space).
185 *
186 * This allows the checksumming and other IO error handling routines
187 * to work normally
188 *
189 * The compressed pages are freed here, and it must be run
190 * in process context
191 */
192 static void end_compressed_bio_read(struct bio *bio)
193 {
194 struct compressed_bio *cb = bio->bi_private;
195 struct inode *inode;
196 struct page *page;
197 unsigned long index;
198 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
199 int ret = 0;
200
201 if (bio->bi_status)
202 cb->errors = 1;
203
204 /* if there are more bios still pending for this compressed
205 * extent, just exit
206 */
207 if (!refcount_dec_and_test(&cb->pending_bios))
208 goto out;
209
210 /*
211 * Record the correct mirror_num in cb->orig_bio so that
212 * read-repair can work properly.
213 */
214 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
215 cb->mirror_num = mirror;
216
217 /*
218 * Some IO in this cb have failed, just skip checksum as there
219 * is no way it could be correct.
220 */
221 if (cb->errors == 1)
222 goto csum_failed;
223
224 inode = cb->inode;
225 ret = check_compressed_csum(BTRFS_I(inode), bio,
226 bio->bi_iter.bi_sector << 9);
227 if (ret)
228 goto csum_failed;
229
230 /* ok, we're the last bio for this extent, lets start
231 * the decompression.
232 */
233 ret = btrfs_decompress_bio(cb);
234
235 csum_failed:
236 if (ret)
237 cb->errors = 1;
238
239 /* release the compressed pages */
240 index = 0;
241 for (index = 0; index < cb->nr_pages; index++) {
242 page = cb->compressed_pages[index];
243 page->mapping = NULL;
244 put_page(page);
245 }
246
247 /* do io completion on the original bio */
248 if (cb->errors) {
249 bio_io_error(cb->orig_bio);
250 } else {
251 struct bio_vec *bvec;
252 struct bvec_iter_all iter_all;
253
254 /*
255 * we have verified the checksum already, set page
256 * checked so the end_io handlers know about it
257 */
258 ASSERT(!bio_flagged(bio, BIO_CLONED));
259 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
260 SetPageChecked(bvec->bv_page);
261
262 bio_endio(cb->orig_bio);
263 }
264
265 /* finally free the cb struct */
266 kfree(cb->compressed_pages);
267 kfree(cb);
268 out:
269 bio_put(bio);
270 }
271
272 /*
273 * Clear the writeback bits on all of the file
274 * pages for a compressed write
275 */
276 static noinline void end_compressed_writeback(struct inode *inode,
277 const struct compressed_bio *cb)
278 {
279 unsigned long index = cb->start >> PAGE_SHIFT;
280 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
281 struct page *pages[16];
282 unsigned long nr_pages = end_index - index + 1;
283 int i;
284 int ret;
285
286 if (cb->errors)
287 mapping_set_error(inode->i_mapping, -EIO);
288
289 while (nr_pages > 0) {
290 ret = find_get_pages_contig(inode->i_mapping, index,
291 min_t(unsigned long,
292 nr_pages, ARRAY_SIZE(pages)), pages);
293 if (ret == 0) {
294 nr_pages -= 1;
295 index += 1;
296 continue;
297 }
298 for (i = 0; i < ret; i++) {
299 if (cb->errors)
300 SetPageError(pages[i]);
301 end_page_writeback(pages[i]);
302 put_page(pages[i]);
303 }
304 nr_pages -= ret;
305 index += ret;
306 }
307 /* the inode may be gone now */
308 }
309
310 /*
311 * do the cleanup once all the compressed pages hit the disk.
312 * This will clear writeback on the file pages and free the compressed
313 * pages.
314 *
315 * This also calls the writeback end hooks for the file pages so that
316 * metadata and checksums can be updated in the file.
317 */
318 static void end_compressed_bio_write(struct bio *bio)
319 {
320 struct compressed_bio *cb = bio->bi_private;
321 struct inode *inode;
322 struct page *page;
323 unsigned long index;
324
325 if (bio->bi_status)
326 cb->errors = 1;
327
328 /* if there are more bios still pending for this compressed
329 * extent, just exit
330 */
331 if (!refcount_dec_and_test(&cb->pending_bios))
332 goto out;
333
334 /* ok, we're the last bio for this extent, step one is to
335 * call back into the FS and do all the end_io operations
336 */
337 inode = cb->inode;
338 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
339 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
340 cb->start, cb->start + cb->len - 1,
341 bio->bi_status == BLK_STS_OK);
342 cb->compressed_pages[0]->mapping = NULL;
343
344 end_compressed_writeback(inode, cb);
345 /* note, our inode could be gone now */
346
347 /*
348 * release the compressed pages, these came from alloc_page and
349 * are not attached to the inode at all
350 */
351 index = 0;
352 for (index = 0; index < cb->nr_pages; index++) {
353 page = cb->compressed_pages[index];
354 page->mapping = NULL;
355 put_page(page);
356 }
357
358 /* finally free the cb struct */
359 kfree(cb->compressed_pages);
360 kfree(cb);
361 out:
362 bio_put(bio);
363 }
364
365 /*
366 * worker function to build and submit bios for previously compressed pages.
367 * The corresponding pages in the inode should be marked for writeback
368 * and the compressed pages should have a reference on them for dropping
369 * when the IO is complete.
370 *
371 * This also checksums the file bytes and gets things ready for
372 * the end io hooks.
373 */
374 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
375 unsigned long len, u64 disk_start,
376 unsigned long compressed_len,
377 struct page **compressed_pages,
378 unsigned long nr_pages,
379 unsigned int write_flags,
380 struct cgroup_subsys_state *blkcg_css)
381 {
382 struct btrfs_fs_info *fs_info = inode->root->fs_info;
383 struct bio *bio = NULL;
384 struct compressed_bio *cb;
385 unsigned long bytes_left;
386 int pg_index = 0;
387 struct page *page;
388 u64 first_byte = disk_start;
389 blk_status_t ret;
390 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
391
392 WARN_ON(!PAGE_ALIGNED(start));
393 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
394 if (!cb)
395 return BLK_STS_RESOURCE;
396 refcount_set(&cb->pending_bios, 0);
397 cb->errors = 0;
398 cb->inode = &inode->vfs_inode;
399 cb->start = start;
400 cb->len = len;
401 cb->mirror_num = 0;
402 cb->compressed_pages = compressed_pages;
403 cb->compressed_len = compressed_len;
404 cb->orig_bio = NULL;
405 cb->nr_pages = nr_pages;
406
407 bio = btrfs_bio_alloc(first_byte);
408 bio->bi_opf = REQ_OP_WRITE | write_flags;
409 bio->bi_private = cb;
410 bio->bi_end_io = end_compressed_bio_write;
411
412 if (blkcg_css) {
413 bio->bi_opf |= REQ_CGROUP_PUNT;
414 kthread_associate_blkcg(blkcg_css);
415 }
416 refcount_set(&cb->pending_bios, 1);
417
418 /* create and submit bios for the compressed pages */
419 bytes_left = compressed_len;
420 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
421 int submit = 0;
422
423 page = compressed_pages[pg_index];
424 page->mapping = inode->vfs_inode.i_mapping;
425 if (bio->bi_iter.bi_size)
426 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
427 0);
428
429 page->mapping = NULL;
430 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
431 PAGE_SIZE) {
432 /*
433 * inc the count before we submit the bio so
434 * we know the end IO handler won't happen before
435 * we inc the count. Otherwise, the cb might get
436 * freed before we're done setting it up
437 */
438 refcount_inc(&cb->pending_bios);
439 ret = btrfs_bio_wq_end_io(fs_info, bio,
440 BTRFS_WQ_ENDIO_DATA);
441 BUG_ON(ret); /* -ENOMEM */
442
443 if (!skip_sum) {
444 ret = btrfs_csum_one_bio(inode, bio, start, 1);
445 BUG_ON(ret); /* -ENOMEM */
446 }
447
448 ret = btrfs_map_bio(fs_info, bio, 0);
449 if (ret) {
450 bio->bi_status = ret;
451 bio_endio(bio);
452 }
453
454 bio = btrfs_bio_alloc(first_byte);
455 bio->bi_opf = REQ_OP_WRITE | write_flags;
456 bio->bi_private = cb;
457 bio->bi_end_io = end_compressed_bio_write;
458 if (blkcg_css)
459 bio->bi_opf |= REQ_CGROUP_PUNT;
460 bio_add_page(bio, page, PAGE_SIZE, 0);
461 }
462 if (bytes_left < PAGE_SIZE) {
463 btrfs_info(fs_info,
464 "bytes left %lu compress len %lu nr %lu",
465 bytes_left, cb->compressed_len, cb->nr_pages);
466 }
467 bytes_left -= PAGE_SIZE;
468 first_byte += PAGE_SIZE;
469 cond_resched();
470 }
471
472 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
473 BUG_ON(ret); /* -ENOMEM */
474
475 if (!skip_sum) {
476 ret = btrfs_csum_one_bio(inode, bio, start, 1);
477 BUG_ON(ret); /* -ENOMEM */
478 }
479
480 ret = btrfs_map_bio(fs_info, bio, 0);
481 if (ret) {
482 bio->bi_status = ret;
483 bio_endio(bio);
484 }
485
486 if (blkcg_css)
487 kthread_associate_blkcg(NULL);
488
489 return 0;
490 }
491
492 static u64 bio_end_offset(struct bio *bio)
493 {
494 struct bio_vec *last = bio_last_bvec_all(bio);
495
496 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
497 }
498
499 static noinline int add_ra_bio_pages(struct inode *inode,
500 u64 compressed_end,
501 struct compressed_bio *cb)
502 {
503 unsigned long end_index;
504 unsigned long pg_index;
505 u64 last_offset;
506 u64 isize = i_size_read(inode);
507 int ret;
508 struct page *page;
509 unsigned long nr_pages = 0;
510 struct extent_map *em;
511 struct address_space *mapping = inode->i_mapping;
512 struct extent_map_tree *em_tree;
513 struct extent_io_tree *tree;
514 u64 end;
515 int misses = 0;
516
517 last_offset = bio_end_offset(cb->orig_bio);
518 em_tree = &BTRFS_I(inode)->extent_tree;
519 tree = &BTRFS_I(inode)->io_tree;
520
521 if (isize == 0)
522 return 0;
523
524 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
525
526 while (last_offset < compressed_end) {
527 pg_index = last_offset >> PAGE_SHIFT;
528
529 if (pg_index > end_index)
530 break;
531
532 page = xa_load(&mapping->i_pages, pg_index);
533 if (page && !xa_is_value(page)) {
534 misses++;
535 if (misses > 4)
536 break;
537 goto next;
538 }
539
540 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
541 ~__GFP_FS));
542 if (!page)
543 break;
544
545 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
546 put_page(page);
547 goto next;
548 }
549
550 end = last_offset + PAGE_SIZE - 1;
551 /*
552 * at this point, we have a locked page in the page cache
553 * for these bytes in the file. But, we have to make
554 * sure they map to this compressed extent on disk.
555 */
556 set_page_extent_mapped(page);
557 lock_extent(tree, last_offset, end);
558 read_lock(&em_tree->lock);
559 em = lookup_extent_mapping(em_tree, last_offset,
560 PAGE_SIZE);
561 read_unlock(&em_tree->lock);
562
563 if (!em || last_offset < em->start ||
564 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
565 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
566 free_extent_map(em);
567 unlock_extent(tree, last_offset, end);
568 unlock_page(page);
569 put_page(page);
570 break;
571 }
572 free_extent_map(em);
573
574 if (page->index == end_index) {
575 char *userpage;
576 size_t zero_offset = offset_in_page(isize);
577
578 if (zero_offset) {
579 int zeros;
580 zeros = PAGE_SIZE - zero_offset;
581 userpage = kmap_atomic(page);
582 memset(userpage + zero_offset, 0, zeros);
583 flush_dcache_page(page);
584 kunmap_atomic(userpage);
585 }
586 }
587
588 ret = bio_add_page(cb->orig_bio, page,
589 PAGE_SIZE, 0);
590
591 if (ret == PAGE_SIZE) {
592 nr_pages++;
593 put_page(page);
594 } else {
595 unlock_extent(tree, last_offset, end);
596 unlock_page(page);
597 put_page(page);
598 break;
599 }
600 next:
601 last_offset += PAGE_SIZE;
602 }
603 return 0;
604 }
605
606 /*
607 * for a compressed read, the bio we get passed has all the inode pages
608 * in it. We don't actually do IO on those pages but allocate new ones
609 * to hold the compressed pages on disk.
610 *
611 * bio->bi_iter.bi_sector points to the compressed extent on disk
612 * bio->bi_io_vec points to all of the inode pages
613 *
614 * After the compressed pages are read, we copy the bytes into the
615 * bio we were passed and then call the bio end_io calls
616 */
617 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
618 int mirror_num, unsigned long bio_flags)
619 {
620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
621 struct extent_map_tree *em_tree;
622 struct compressed_bio *cb;
623 unsigned long compressed_len;
624 unsigned long nr_pages;
625 unsigned long pg_index;
626 struct page *page;
627 struct bio *comp_bio;
628 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
629 u64 em_len;
630 u64 em_start;
631 struct extent_map *em;
632 blk_status_t ret = BLK_STS_RESOURCE;
633 int faili = 0;
634 u8 *sums;
635
636 em_tree = &BTRFS_I(inode)->extent_tree;
637
638 /* we need the actual starting offset of this extent in the file */
639 read_lock(&em_tree->lock);
640 em = lookup_extent_mapping(em_tree,
641 page_offset(bio_first_page_all(bio)),
642 PAGE_SIZE);
643 read_unlock(&em_tree->lock);
644 if (!em)
645 return BLK_STS_IOERR;
646
647 compressed_len = em->block_len;
648 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
649 if (!cb)
650 goto out;
651
652 refcount_set(&cb->pending_bios, 0);
653 cb->errors = 0;
654 cb->inode = inode;
655 cb->mirror_num = mirror_num;
656 sums = cb->sums;
657
658 cb->start = em->orig_start;
659 em_len = em->len;
660 em_start = em->start;
661
662 free_extent_map(em);
663 em = NULL;
664
665 cb->len = bio->bi_iter.bi_size;
666 cb->compressed_len = compressed_len;
667 cb->compress_type = extent_compress_type(bio_flags);
668 cb->orig_bio = bio;
669
670 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
671 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
672 GFP_NOFS);
673 if (!cb->compressed_pages)
674 goto fail1;
675
676 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
677 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
678 __GFP_HIGHMEM);
679 if (!cb->compressed_pages[pg_index]) {
680 faili = pg_index - 1;
681 ret = BLK_STS_RESOURCE;
682 goto fail2;
683 }
684 }
685 faili = nr_pages - 1;
686 cb->nr_pages = nr_pages;
687
688 add_ra_bio_pages(inode, em_start + em_len, cb);
689
690 /* include any pages we added in add_ra-bio_pages */
691 cb->len = bio->bi_iter.bi_size;
692
693 comp_bio = btrfs_bio_alloc(cur_disk_byte);
694 comp_bio->bi_opf = REQ_OP_READ;
695 comp_bio->bi_private = cb;
696 comp_bio->bi_end_io = end_compressed_bio_read;
697 refcount_set(&cb->pending_bios, 1);
698
699 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
700 int submit = 0;
701
702 page = cb->compressed_pages[pg_index];
703 page->mapping = inode->i_mapping;
704 page->index = em_start >> PAGE_SHIFT;
705
706 if (comp_bio->bi_iter.bi_size)
707 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
708 comp_bio, 0);
709
710 page->mapping = NULL;
711 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
712 PAGE_SIZE) {
713 unsigned int nr_sectors;
714
715 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
716 BTRFS_WQ_ENDIO_DATA);
717 BUG_ON(ret); /* -ENOMEM */
718
719 /*
720 * inc the count before we submit the bio so
721 * we know the end IO handler won't happen before
722 * we inc the count. Otherwise, the cb might get
723 * freed before we're done setting it up
724 */
725 refcount_inc(&cb->pending_bios);
726
727 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
728 BUG_ON(ret); /* -ENOMEM */
729
730 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
731 fs_info->sectorsize);
732 sums += fs_info->csum_size * nr_sectors;
733
734 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
735 if (ret) {
736 comp_bio->bi_status = ret;
737 bio_endio(comp_bio);
738 }
739
740 comp_bio = btrfs_bio_alloc(cur_disk_byte);
741 comp_bio->bi_opf = REQ_OP_READ;
742 comp_bio->bi_private = cb;
743 comp_bio->bi_end_io = end_compressed_bio_read;
744
745 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
746 }
747 cur_disk_byte += PAGE_SIZE;
748 }
749
750 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
751 BUG_ON(ret); /* -ENOMEM */
752
753 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
754 BUG_ON(ret); /* -ENOMEM */
755
756 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
757 if (ret) {
758 comp_bio->bi_status = ret;
759 bio_endio(comp_bio);
760 }
761
762 return 0;
763
764 fail2:
765 while (faili >= 0) {
766 __free_page(cb->compressed_pages[faili]);
767 faili--;
768 }
769
770 kfree(cb->compressed_pages);
771 fail1:
772 kfree(cb);
773 out:
774 free_extent_map(em);
775 return ret;
776 }
777
778 /*
779 * Heuristic uses systematic sampling to collect data from the input data
780 * range, the logic can be tuned by the following constants:
781 *
782 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
783 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
784 */
785 #define SAMPLING_READ_SIZE (16)
786 #define SAMPLING_INTERVAL (256)
787
788 /*
789 * For statistical analysis of the input data we consider bytes that form a
790 * Galois Field of 256 objects. Each object has an attribute count, ie. how
791 * many times the object appeared in the sample.
792 */
793 #define BUCKET_SIZE (256)
794
795 /*
796 * The size of the sample is based on a statistical sampling rule of thumb.
797 * The common way is to perform sampling tests as long as the number of
798 * elements in each cell is at least 5.
799 *
800 * Instead of 5, we choose 32 to obtain more accurate results.
801 * If the data contain the maximum number of symbols, which is 256, we obtain a
802 * sample size bound by 8192.
803 *
804 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
805 * from up to 512 locations.
806 */
807 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
808 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
809
810 struct bucket_item {
811 u32 count;
812 };
813
814 struct heuristic_ws {
815 /* Partial copy of input data */
816 u8 *sample;
817 u32 sample_size;
818 /* Buckets store counters for each byte value */
819 struct bucket_item *bucket;
820 /* Sorting buffer */
821 struct bucket_item *bucket_b;
822 struct list_head list;
823 };
824
825 static struct workspace_manager heuristic_wsm;
826
827 static void free_heuristic_ws(struct list_head *ws)
828 {
829 struct heuristic_ws *workspace;
830
831 workspace = list_entry(ws, struct heuristic_ws, list);
832
833 kvfree(workspace->sample);
834 kfree(workspace->bucket);
835 kfree(workspace->bucket_b);
836 kfree(workspace);
837 }
838
839 static struct list_head *alloc_heuristic_ws(unsigned int level)
840 {
841 struct heuristic_ws *ws;
842
843 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
844 if (!ws)
845 return ERR_PTR(-ENOMEM);
846
847 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
848 if (!ws->sample)
849 goto fail;
850
851 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
852 if (!ws->bucket)
853 goto fail;
854
855 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
856 if (!ws->bucket_b)
857 goto fail;
858
859 INIT_LIST_HEAD(&ws->list);
860 return &ws->list;
861 fail:
862 free_heuristic_ws(&ws->list);
863 return ERR_PTR(-ENOMEM);
864 }
865
866 const struct btrfs_compress_op btrfs_heuristic_compress = {
867 .workspace_manager = &heuristic_wsm,
868 };
869
870 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
871 /* The heuristic is represented as compression type 0 */
872 &btrfs_heuristic_compress,
873 &btrfs_zlib_compress,
874 &btrfs_lzo_compress,
875 &btrfs_zstd_compress,
876 };
877
878 static struct list_head *alloc_workspace(int type, unsigned int level)
879 {
880 switch (type) {
881 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
882 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
883 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
884 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
885 default:
886 /*
887 * This can't happen, the type is validated several times
888 * before we get here.
889 */
890 BUG();
891 }
892 }
893
894 static void free_workspace(int type, struct list_head *ws)
895 {
896 switch (type) {
897 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
898 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
899 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
900 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
901 default:
902 /*
903 * This can't happen, the type is validated several times
904 * before we get here.
905 */
906 BUG();
907 }
908 }
909
910 static void btrfs_init_workspace_manager(int type)
911 {
912 struct workspace_manager *wsm;
913 struct list_head *workspace;
914
915 wsm = btrfs_compress_op[type]->workspace_manager;
916 INIT_LIST_HEAD(&wsm->idle_ws);
917 spin_lock_init(&wsm->ws_lock);
918 atomic_set(&wsm->total_ws, 0);
919 init_waitqueue_head(&wsm->ws_wait);
920
921 /*
922 * Preallocate one workspace for each compression type so we can
923 * guarantee forward progress in the worst case
924 */
925 workspace = alloc_workspace(type, 0);
926 if (IS_ERR(workspace)) {
927 pr_warn(
928 "BTRFS: cannot preallocate compression workspace, will try later\n");
929 } else {
930 atomic_set(&wsm->total_ws, 1);
931 wsm->free_ws = 1;
932 list_add(workspace, &wsm->idle_ws);
933 }
934 }
935
936 static void btrfs_cleanup_workspace_manager(int type)
937 {
938 struct workspace_manager *wsman;
939 struct list_head *ws;
940
941 wsman = btrfs_compress_op[type]->workspace_manager;
942 while (!list_empty(&wsman->idle_ws)) {
943 ws = wsman->idle_ws.next;
944 list_del(ws);
945 free_workspace(type, ws);
946 atomic_dec(&wsman->total_ws);
947 }
948 }
949
950 /*
951 * This finds an available workspace or allocates a new one.
952 * If it's not possible to allocate a new one, waits until there's one.
953 * Preallocation makes a forward progress guarantees and we do not return
954 * errors.
955 */
956 struct list_head *btrfs_get_workspace(int type, unsigned int level)
957 {
958 struct workspace_manager *wsm;
959 struct list_head *workspace;
960 int cpus = num_online_cpus();
961 unsigned nofs_flag;
962 struct list_head *idle_ws;
963 spinlock_t *ws_lock;
964 atomic_t *total_ws;
965 wait_queue_head_t *ws_wait;
966 int *free_ws;
967
968 wsm = btrfs_compress_op[type]->workspace_manager;
969 idle_ws = &wsm->idle_ws;
970 ws_lock = &wsm->ws_lock;
971 total_ws = &wsm->total_ws;
972 ws_wait = &wsm->ws_wait;
973 free_ws = &wsm->free_ws;
974
975 again:
976 spin_lock(ws_lock);
977 if (!list_empty(idle_ws)) {
978 workspace = idle_ws->next;
979 list_del(workspace);
980 (*free_ws)--;
981 spin_unlock(ws_lock);
982 return workspace;
983
984 }
985 if (atomic_read(total_ws) > cpus) {
986 DEFINE_WAIT(wait);
987
988 spin_unlock(ws_lock);
989 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
990 if (atomic_read(total_ws) > cpus && !*free_ws)
991 schedule();
992 finish_wait(ws_wait, &wait);
993 goto again;
994 }
995 atomic_inc(total_ws);
996 spin_unlock(ws_lock);
997
998 /*
999 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1000 * to turn it off here because we might get called from the restricted
1001 * context of btrfs_compress_bio/btrfs_compress_pages
1002 */
1003 nofs_flag = memalloc_nofs_save();
1004 workspace = alloc_workspace(type, level);
1005 memalloc_nofs_restore(nofs_flag);
1006
1007 if (IS_ERR(workspace)) {
1008 atomic_dec(total_ws);
1009 wake_up(ws_wait);
1010
1011 /*
1012 * Do not return the error but go back to waiting. There's a
1013 * workspace preallocated for each type and the compression
1014 * time is bounded so we get to a workspace eventually. This
1015 * makes our caller's life easier.
1016 *
1017 * To prevent silent and low-probability deadlocks (when the
1018 * initial preallocation fails), check if there are any
1019 * workspaces at all.
1020 */
1021 if (atomic_read(total_ws) == 0) {
1022 static DEFINE_RATELIMIT_STATE(_rs,
1023 /* once per minute */ 60 * HZ,
1024 /* no burst */ 1);
1025
1026 if (__ratelimit(&_rs)) {
1027 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1028 }
1029 }
1030 goto again;
1031 }
1032 return workspace;
1033 }
1034
1035 static struct list_head *get_workspace(int type, int level)
1036 {
1037 switch (type) {
1038 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1039 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1040 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1041 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1042 default:
1043 /*
1044 * This can't happen, the type is validated several times
1045 * before we get here.
1046 */
1047 BUG();
1048 }
1049 }
1050
1051 /*
1052 * put a workspace struct back on the list or free it if we have enough
1053 * idle ones sitting around
1054 */
1055 void btrfs_put_workspace(int type, struct list_head *ws)
1056 {
1057 struct workspace_manager *wsm;
1058 struct list_head *idle_ws;
1059 spinlock_t *ws_lock;
1060 atomic_t *total_ws;
1061 wait_queue_head_t *ws_wait;
1062 int *free_ws;
1063
1064 wsm = btrfs_compress_op[type]->workspace_manager;
1065 idle_ws = &wsm->idle_ws;
1066 ws_lock = &wsm->ws_lock;
1067 total_ws = &wsm->total_ws;
1068 ws_wait = &wsm->ws_wait;
1069 free_ws = &wsm->free_ws;
1070
1071 spin_lock(ws_lock);
1072 if (*free_ws <= num_online_cpus()) {
1073 list_add(ws, idle_ws);
1074 (*free_ws)++;
1075 spin_unlock(ws_lock);
1076 goto wake;
1077 }
1078 spin_unlock(ws_lock);
1079
1080 free_workspace(type, ws);
1081 atomic_dec(total_ws);
1082 wake:
1083 cond_wake_up(ws_wait);
1084 }
1085
1086 static void put_workspace(int type, struct list_head *ws)
1087 {
1088 switch (type) {
1089 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1090 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1091 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1092 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1093 default:
1094 /*
1095 * This can't happen, the type is validated several times
1096 * before we get here.
1097 */
1098 BUG();
1099 }
1100 }
1101
1102 /*
1103 * Adjust @level according to the limits of the compression algorithm or
1104 * fallback to default
1105 */
1106 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1107 {
1108 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1109
1110 if (level == 0)
1111 level = ops->default_level;
1112 else
1113 level = min(level, ops->max_level);
1114
1115 return level;
1116 }
1117
1118 /*
1119 * Given an address space and start and length, compress the bytes into @pages
1120 * that are allocated on demand.
1121 *
1122 * @type_level is encoded algorithm and level, where level 0 means whatever
1123 * default the algorithm chooses and is opaque here;
1124 * - compression algo are 0-3
1125 * - the level are bits 4-7
1126 *
1127 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1128 * and returns number of actually allocated pages
1129 *
1130 * @total_in is used to return the number of bytes actually read. It
1131 * may be smaller than the input length if we had to exit early because we
1132 * ran out of room in the pages array or because we cross the
1133 * max_out threshold.
1134 *
1135 * @total_out is an in/out parameter, must be set to the input length and will
1136 * be also used to return the total number of compressed bytes
1137 *
1138 * @max_out tells us the max number of bytes that we're allowed to
1139 * stuff into pages
1140 */
1141 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1142 u64 start, struct page **pages,
1143 unsigned long *out_pages,
1144 unsigned long *total_in,
1145 unsigned long *total_out)
1146 {
1147 int type = btrfs_compress_type(type_level);
1148 int level = btrfs_compress_level(type_level);
1149 struct list_head *workspace;
1150 int ret;
1151
1152 level = btrfs_compress_set_level(type, level);
1153 workspace = get_workspace(type, level);
1154 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1155 out_pages, total_in, total_out);
1156 put_workspace(type, workspace);
1157 return ret;
1158 }
1159
1160 /*
1161 * pages_in is an array of pages with compressed data.
1162 *
1163 * disk_start is the starting logical offset of this array in the file
1164 *
1165 * orig_bio contains the pages from the file that we want to decompress into
1166 *
1167 * srclen is the number of bytes in pages_in
1168 *
1169 * The basic idea is that we have a bio that was created by readpages.
1170 * The pages in the bio are for the uncompressed data, and they may not
1171 * be contiguous. They all correspond to the range of bytes covered by
1172 * the compressed extent.
1173 */
1174 static int btrfs_decompress_bio(struct compressed_bio *cb)
1175 {
1176 struct list_head *workspace;
1177 int ret;
1178 int type = cb->compress_type;
1179
1180 workspace = get_workspace(type, 0);
1181 ret = compression_decompress_bio(type, workspace, cb);
1182 put_workspace(type, workspace);
1183
1184 return ret;
1185 }
1186
1187 /*
1188 * a less complex decompression routine. Our compressed data fits in a
1189 * single page, and we want to read a single page out of it.
1190 * start_byte tells us the offset into the compressed data we're interested in
1191 */
1192 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1193 unsigned long start_byte, size_t srclen, size_t destlen)
1194 {
1195 struct list_head *workspace;
1196 int ret;
1197
1198 workspace = get_workspace(type, 0);
1199 ret = compression_decompress(type, workspace, data_in, dest_page,
1200 start_byte, srclen, destlen);
1201 put_workspace(type, workspace);
1202
1203 return ret;
1204 }
1205
1206 void __init btrfs_init_compress(void)
1207 {
1208 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1209 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1210 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1211 zstd_init_workspace_manager();
1212 }
1213
1214 void __cold btrfs_exit_compress(void)
1215 {
1216 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1217 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1218 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1219 zstd_cleanup_workspace_manager();
1220 }
1221
1222 /*
1223 * Copy uncompressed data from working buffer to pages.
1224 *
1225 * buf_start is the byte offset we're of the start of our workspace buffer.
1226 *
1227 * total_out is the last byte of the buffer
1228 */
1229 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1230 unsigned long total_out, u64 disk_start,
1231 struct bio *bio)
1232 {
1233 unsigned long buf_offset;
1234 unsigned long current_buf_start;
1235 unsigned long start_byte;
1236 unsigned long prev_start_byte;
1237 unsigned long working_bytes = total_out - buf_start;
1238 unsigned long bytes;
1239 char *kaddr;
1240 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1241
1242 /*
1243 * start byte is the first byte of the page we're currently
1244 * copying into relative to the start of the compressed data.
1245 */
1246 start_byte = page_offset(bvec.bv_page) - disk_start;
1247
1248 /* we haven't yet hit data corresponding to this page */
1249 if (total_out <= start_byte)
1250 return 1;
1251
1252 /*
1253 * the start of the data we care about is offset into
1254 * the middle of our working buffer
1255 */
1256 if (total_out > start_byte && buf_start < start_byte) {
1257 buf_offset = start_byte - buf_start;
1258 working_bytes -= buf_offset;
1259 } else {
1260 buf_offset = 0;
1261 }
1262 current_buf_start = buf_start;
1263
1264 /* copy bytes from the working buffer into the pages */
1265 while (working_bytes > 0) {
1266 bytes = min_t(unsigned long, bvec.bv_len,
1267 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1268 bytes = min(bytes, working_bytes);
1269
1270 kaddr = kmap_atomic(bvec.bv_page);
1271 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1272 kunmap_atomic(kaddr);
1273 flush_dcache_page(bvec.bv_page);
1274
1275 buf_offset += bytes;
1276 working_bytes -= bytes;
1277 current_buf_start += bytes;
1278
1279 /* check if we need to pick another page */
1280 bio_advance(bio, bytes);
1281 if (!bio->bi_iter.bi_size)
1282 return 0;
1283 bvec = bio_iter_iovec(bio, bio->bi_iter);
1284 prev_start_byte = start_byte;
1285 start_byte = page_offset(bvec.bv_page) - disk_start;
1286
1287 /*
1288 * We need to make sure we're only adjusting
1289 * our offset into compression working buffer when
1290 * we're switching pages. Otherwise we can incorrectly
1291 * keep copying when we were actually done.
1292 */
1293 if (start_byte != prev_start_byte) {
1294 /*
1295 * make sure our new page is covered by this
1296 * working buffer
1297 */
1298 if (total_out <= start_byte)
1299 return 1;
1300
1301 /*
1302 * the next page in the biovec might not be adjacent
1303 * to the last page, but it might still be found
1304 * inside this working buffer. bump our offset pointer
1305 */
1306 if (total_out > start_byte &&
1307 current_buf_start < start_byte) {
1308 buf_offset = start_byte - buf_start;
1309 working_bytes = total_out - start_byte;
1310 current_buf_start = buf_start + buf_offset;
1311 }
1312 }
1313 }
1314
1315 return 1;
1316 }
1317
1318 /*
1319 * Shannon Entropy calculation
1320 *
1321 * Pure byte distribution analysis fails to determine compressibility of data.
1322 * Try calculating entropy to estimate the average minimum number of bits
1323 * needed to encode the sampled data.
1324 *
1325 * For convenience, return the percentage of needed bits, instead of amount of
1326 * bits directly.
1327 *
1328 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1329 * and can be compressible with high probability
1330 *
1331 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1332 *
1333 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1334 */
1335 #define ENTROPY_LVL_ACEPTABLE (65)
1336 #define ENTROPY_LVL_HIGH (80)
1337
1338 /*
1339 * For increasead precision in shannon_entropy calculation,
1340 * let's do pow(n, M) to save more digits after comma:
1341 *
1342 * - maximum int bit length is 64
1343 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1344 * - 13 * 4 = 52 < 64 -> M = 4
1345 *
1346 * So use pow(n, 4).
1347 */
1348 static inline u32 ilog2_w(u64 n)
1349 {
1350 return ilog2(n * n * n * n);
1351 }
1352
1353 static u32 shannon_entropy(struct heuristic_ws *ws)
1354 {
1355 const u32 entropy_max = 8 * ilog2_w(2);
1356 u32 entropy_sum = 0;
1357 u32 p, p_base, sz_base;
1358 u32 i;
1359
1360 sz_base = ilog2_w(ws->sample_size);
1361 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1362 p = ws->bucket[i].count;
1363 p_base = ilog2_w(p);
1364 entropy_sum += p * (sz_base - p_base);
1365 }
1366
1367 entropy_sum /= ws->sample_size;
1368 return entropy_sum * 100 / entropy_max;
1369 }
1370
1371 #define RADIX_BASE 4U
1372 #define COUNTERS_SIZE (1U << RADIX_BASE)
1373
1374 static u8 get4bits(u64 num, int shift) {
1375 u8 low4bits;
1376
1377 num >>= shift;
1378 /* Reverse order */
1379 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1380 return low4bits;
1381 }
1382
1383 /*
1384 * Use 4 bits as radix base
1385 * Use 16 u32 counters for calculating new position in buf array
1386 *
1387 * @array - array that will be sorted
1388 * @array_buf - buffer array to store sorting results
1389 * must be equal in size to @array
1390 * @num - array size
1391 */
1392 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1393 int num)
1394 {
1395 u64 max_num;
1396 u64 buf_num;
1397 u32 counters[COUNTERS_SIZE];
1398 u32 new_addr;
1399 u32 addr;
1400 int bitlen;
1401 int shift;
1402 int i;
1403
1404 /*
1405 * Try avoid useless loop iterations for small numbers stored in big
1406 * counters. Example: 48 33 4 ... in 64bit array
1407 */
1408 max_num = array[0].count;
1409 for (i = 1; i < num; i++) {
1410 buf_num = array[i].count;
1411 if (buf_num > max_num)
1412 max_num = buf_num;
1413 }
1414
1415 buf_num = ilog2(max_num);
1416 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1417
1418 shift = 0;
1419 while (shift < bitlen) {
1420 memset(counters, 0, sizeof(counters));
1421
1422 for (i = 0; i < num; i++) {
1423 buf_num = array[i].count;
1424 addr = get4bits(buf_num, shift);
1425 counters[addr]++;
1426 }
1427
1428 for (i = 1; i < COUNTERS_SIZE; i++)
1429 counters[i] += counters[i - 1];
1430
1431 for (i = num - 1; i >= 0; i--) {
1432 buf_num = array[i].count;
1433 addr = get4bits(buf_num, shift);
1434 counters[addr]--;
1435 new_addr = counters[addr];
1436 array_buf[new_addr] = array[i];
1437 }
1438
1439 shift += RADIX_BASE;
1440
1441 /*
1442 * Normal radix expects to move data from a temporary array, to
1443 * the main one. But that requires some CPU time. Avoid that
1444 * by doing another sort iteration to original array instead of
1445 * memcpy()
1446 */
1447 memset(counters, 0, sizeof(counters));
1448
1449 for (i = 0; i < num; i ++) {
1450 buf_num = array_buf[i].count;
1451 addr = get4bits(buf_num, shift);
1452 counters[addr]++;
1453 }
1454
1455 for (i = 1; i < COUNTERS_SIZE; i++)
1456 counters[i] += counters[i - 1];
1457
1458 for (i = num - 1; i >= 0; i--) {
1459 buf_num = array_buf[i].count;
1460 addr = get4bits(buf_num, shift);
1461 counters[addr]--;
1462 new_addr = counters[addr];
1463 array[new_addr] = array_buf[i];
1464 }
1465
1466 shift += RADIX_BASE;
1467 }
1468 }
1469
1470 /*
1471 * Size of the core byte set - how many bytes cover 90% of the sample
1472 *
1473 * There are several types of structured binary data that use nearly all byte
1474 * values. The distribution can be uniform and counts in all buckets will be
1475 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1476 *
1477 * Other possibility is normal (Gaussian) distribution, where the data could
1478 * be potentially compressible, but we have to take a few more steps to decide
1479 * how much.
1480 *
1481 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1482 * compression algo can easy fix that
1483 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1484 * probability is not compressible
1485 */
1486 #define BYTE_CORE_SET_LOW (64)
1487 #define BYTE_CORE_SET_HIGH (200)
1488
1489 static int byte_core_set_size(struct heuristic_ws *ws)
1490 {
1491 u32 i;
1492 u32 coreset_sum = 0;
1493 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1494 struct bucket_item *bucket = ws->bucket;
1495
1496 /* Sort in reverse order */
1497 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1498
1499 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1500 coreset_sum += bucket[i].count;
1501
1502 if (coreset_sum > core_set_threshold)
1503 return i;
1504
1505 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1506 coreset_sum += bucket[i].count;
1507 if (coreset_sum > core_set_threshold)
1508 break;
1509 }
1510
1511 return i;
1512 }
1513
1514 /*
1515 * Count byte values in buckets.
1516 * This heuristic can detect textual data (configs, xml, json, html, etc).
1517 * Because in most text-like data byte set is restricted to limited number of
1518 * possible characters, and that restriction in most cases makes data easy to
1519 * compress.
1520 *
1521 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1522 * less - compressible
1523 * more - need additional analysis
1524 */
1525 #define BYTE_SET_THRESHOLD (64)
1526
1527 static u32 byte_set_size(const struct heuristic_ws *ws)
1528 {
1529 u32 i;
1530 u32 byte_set_size = 0;
1531
1532 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1533 if (ws->bucket[i].count > 0)
1534 byte_set_size++;
1535 }
1536
1537 /*
1538 * Continue collecting count of byte values in buckets. If the byte
1539 * set size is bigger then the threshold, it's pointless to continue,
1540 * the detection technique would fail for this type of data.
1541 */
1542 for (; i < BUCKET_SIZE; i++) {
1543 if (ws->bucket[i].count > 0) {
1544 byte_set_size++;
1545 if (byte_set_size > BYTE_SET_THRESHOLD)
1546 return byte_set_size;
1547 }
1548 }
1549
1550 return byte_set_size;
1551 }
1552
1553 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1554 {
1555 const u32 half_of_sample = ws->sample_size / 2;
1556 const u8 *data = ws->sample;
1557
1558 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1559 }
1560
1561 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1562 struct heuristic_ws *ws)
1563 {
1564 struct page *page;
1565 u64 index, index_end;
1566 u32 i, curr_sample_pos;
1567 u8 *in_data;
1568
1569 /*
1570 * Compression handles the input data by chunks of 128KiB
1571 * (defined by BTRFS_MAX_UNCOMPRESSED)
1572 *
1573 * We do the same for the heuristic and loop over the whole range.
1574 *
1575 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1576 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1577 */
1578 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1579 end = start + BTRFS_MAX_UNCOMPRESSED;
1580
1581 index = start >> PAGE_SHIFT;
1582 index_end = end >> PAGE_SHIFT;
1583
1584 /* Don't miss unaligned end */
1585 if (!IS_ALIGNED(end, PAGE_SIZE))
1586 index_end++;
1587
1588 curr_sample_pos = 0;
1589 while (index < index_end) {
1590 page = find_get_page(inode->i_mapping, index);
1591 in_data = kmap(page);
1592 /* Handle case where the start is not aligned to PAGE_SIZE */
1593 i = start % PAGE_SIZE;
1594 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1595 /* Don't sample any garbage from the last page */
1596 if (start > end - SAMPLING_READ_SIZE)
1597 break;
1598 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1599 SAMPLING_READ_SIZE);
1600 i += SAMPLING_INTERVAL;
1601 start += SAMPLING_INTERVAL;
1602 curr_sample_pos += SAMPLING_READ_SIZE;
1603 }
1604 kunmap(page);
1605 put_page(page);
1606
1607 index++;
1608 }
1609
1610 ws->sample_size = curr_sample_pos;
1611 }
1612
1613 /*
1614 * Compression heuristic.
1615 *
1616 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1617 * quickly (compared to direct compression) detect data characteristics
1618 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1619 * data.
1620 *
1621 * The following types of analysis can be performed:
1622 * - detect mostly zero data
1623 * - detect data with low "byte set" size (text, etc)
1624 * - detect data with low/high "core byte" set
1625 *
1626 * Return non-zero if the compression should be done, 0 otherwise.
1627 */
1628 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1629 {
1630 struct list_head *ws_list = get_workspace(0, 0);
1631 struct heuristic_ws *ws;
1632 u32 i;
1633 u8 byte;
1634 int ret = 0;
1635
1636 ws = list_entry(ws_list, struct heuristic_ws, list);
1637
1638 heuristic_collect_sample(inode, start, end, ws);
1639
1640 if (sample_repeated_patterns(ws)) {
1641 ret = 1;
1642 goto out;
1643 }
1644
1645 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1646
1647 for (i = 0; i < ws->sample_size; i++) {
1648 byte = ws->sample[i];
1649 ws->bucket[byte].count++;
1650 }
1651
1652 i = byte_set_size(ws);
1653 if (i < BYTE_SET_THRESHOLD) {
1654 ret = 2;
1655 goto out;
1656 }
1657
1658 i = byte_core_set_size(ws);
1659 if (i <= BYTE_CORE_SET_LOW) {
1660 ret = 3;
1661 goto out;
1662 }
1663
1664 if (i >= BYTE_CORE_SET_HIGH) {
1665 ret = 0;
1666 goto out;
1667 }
1668
1669 i = shannon_entropy(ws);
1670 if (i <= ENTROPY_LVL_ACEPTABLE) {
1671 ret = 4;
1672 goto out;
1673 }
1674
1675 /*
1676 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1677 * needed to give green light to compression.
1678 *
1679 * For now just assume that compression at that level is not worth the
1680 * resources because:
1681 *
1682 * 1. it is possible to defrag the data later
1683 *
1684 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1685 * values, every bucket has counter at level ~54. The heuristic would
1686 * be confused. This can happen when data have some internal repeated
1687 * patterns like "abbacbbc...". This can be detected by analyzing
1688 * pairs of bytes, which is too costly.
1689 */
1690 if (i < ENTROPY_LVL_HIGH) {
1691 ret = 5;
1692 goto out;
1693 } else {
1694 ret = 0;
1695 goto out;
1696 }
1697
1698 out:
1699 put_workspace(0, ws_list);
1700 return ret;
1701 }
1702
1703 /*
1704 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1705 * level, unrecognized string will set the default level
1706 */
1707 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1708 {
1709 unsigned int level = 0;
1710 int ret;
1711
1712 if (!type)
1713 return 0;
1714
1715 if (str[0] == ':') {
1716 ret = kstrtouint(str + 1, 10, &level);
1717 if (ret)
1718 level = 0;
1719 }
1720
1721 level = btrfs_compress_set_level(type, level);
1722
1723 return level;
1724 }