]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/btrfs/compression.c
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / fs / btrfs / compression.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
22 #include "misc.h"
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
32 #include "zoned.h"
33
34 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35
36 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37 {
38 switch (type) {
39 case BTRFS_COMPRESS_ZLIB:
40 case BTRFS_COMPRESS_LZO:
41 case BTRFS_COMPRESS_ZSTD:
42 case BTRFS_COMPRESS_NONE:
43 return btrfs_compress_types[type];
44 default:
45 break;
46 }
47
48 return NULL;
49 }
50
51 bool btrfs_compress_is_valid_type(const char *str, size_t len)
52 {
53 int i;
54
55 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
56 size_t comp_len = strlen(btrfs_compress_types[i]);
57
58 if (len < comp_len)
59 continue;
60
61 if (!strncmp(btrfs_compress_types[i], str, comp_len))
62 return true;
63 }
64 return false;
65 }
66
67 static int compression_compress_pages(int type, struct list_head *ws,
68 struct address_space *mapping, u64 start, struct page **pages,
69 unsigned long *out_pages, unsigned long *total_in,
70 unsigned long *total_out)
71 {
72 switch (type) {
73 case BTRFS_COMPRESS_ZLIB:
74 return zlib_compress_pages(ws, mapping, start, pages,
75 out_pages, total_in, total_out);
76 case BTRFS_COMPRESS_LZO:
77 return lzo_compress_pages(ws, mapping, start, pages,
78 out_pages, total_in, total_out);
79 case BTRFS_COMPRESS_ZSTD:
80 return zstd_compress_pages(ws, mapping, start, pages,
81 out_pages, total_in, total_out);
82 case BTRFS_COMPRESS_NONE:
83 default:
84 /*
85 * This can happen when compression races with remount setting
86 * it to 'no compress', while caller doesn't call
87 * inode_need_compress() to check if we really need to
88 * compress.
89 *
90 * Not a big deal, just need to inform caller that we
91 * haven't allocated any pages yet.
92 */
93 *out_pages = 0;
94 return -E2BIG;
95 }
96 }
97
98 static int compression_decompress_bio(int type, struct list_head *ws,
99 struct compressed_bio *cb)
100 {
101 switch (type) {
102 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
103 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_NONE:
106 default:
107 /*
108 * This can't happen, the type is validated several times
109 * before we get here.
110 */
111 BUG();
112 }
113 }
114
115 static int compression_decompress(int type, struct list_head *ws,
116 unsigned char *data_in, struct page *dest_page,
117 unsigned long start_byte, size_t srclen, size_t destlen)
118 {
119 switch (type) {
120 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
121 start_byte, srclen, destlen);
122 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
123 start_byte, srclen, destlen);
124 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
125 start_byte, srclen, destlen);
126 case BTRFS_COMPRESS_NONE:
127 default:
128 /*
129 * This can't happen, the type is validated several times
130 * before we get here.
131 */
132 BUG();
133 }
134 }
135
136 static int btrfs_decompress_bio(struct compressed_bio *cb);
137
138 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 unsigned long disk_size)
140 {
141 return sizeof(struct compressed_bio) +
142 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 }
144
145 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 u64 disk_start)
147 {
148 struct btrfs_fs_info *fs_info = inode->root->fs_info;
149 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150 const u32 csum_size = fs_info->csum_size;
151 const u32 sectorsize = fs_info->sectorsize;
152 struct page *page;
153 unsigned int i;
154 char *kaddr;
155 u8 csum[BTRFS_CSUM_SIZE];
156 struct compressed_bio *cb = bio->bi_private;
157 u8 *cb_sum = cb->sums;
158
159 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 return 0;
161
162 shash->tfm = fs_info->csum_shash;
163
164 for (i = 0; i < cb->nr_pages; i++) {
165 u32 pg_offset;
166 u32 bytes_left = PAGE_SIZE;
167 page = cb->compressed_pages[i];
168
169 /* Determine the remaining bytes inside the page first */
170 if (i == cb->nr_pages - 1)
171 bytes_left = cb->compressed_len - i * PAGE_SIZE;
172
173 /* Hash through the page sector by sector */
174 for (pg_offset = 0; pg_offset < bytes_left;
175 pg_offset += sectorsize) {
176 kaddr = kmap_atomic(page);
177 crypto_shash_digest(shash, kaddr + pg_offset,
178 sectorsize, csum);
179 kunmap_atomic(kaddr);
180
181 if (memcmp(&csum, cb_sum, csum_size) != 0) {
182 btrfs_print_data_csum_error(inode, disk_start,
183 csum, cb_sum, cb->mirror_num);
184 if (btrfs_io_bio(bio)->device)
185 btrfs_dev_stat_inc_and_print(
186 btrfs_io_bio(bio)->device,
187 BTRFS_DEV_STAT_CORRUPTION_ERRS);
188 return -EIO;
189 }
190 cb_sum += csum_size;
191 disk_start += sectorsize;
192 }
193 }
194 return 0;
195 }
196
197 /* when we finish reading compressed pages from the disk, we
198 * decompress them and then run the bio end_io routines on the
199 * decompressed pages (in the inode address space).
200 *
201 * This allows the checksumming and other IO error handling routines
202 * to work normally
203 *
204 * The compressed pages are freed here, and it must be run
205 * in process context
206 */
207 static void end_compressed_bio_read(struct bio *bio)
208 {
209 struct compressed_bio *cb = bio->bi_private;
210 struct inode *inode;
211 struct page *page;
212 unsigned int index;
213 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
214 int ret = 0;
215
216 if (bio->bi_status)
217 cb->errors = 1;
218
219 /* if there are more bios still pending for this compressed
220 * extent, just exit
221 */
222 if (!refcount_dec_and_test(&cb->pending_bios))
223 goto out;
224
225 /*
226 * Record the correct mirror_num in cb->orig_bio so that
227 * read-repair can work properly.
228 */
229 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
230 cb->mirror_num = mirror;
231
232 /*
233 * Some IO in this cb have failed, just skip checksum as there
234 * is no way it could be correct.
235 */
236 if (cb->errors == 1)
237 goto csum_failed;
238
239 inode = cb->inode;
240 ret = check_compressed_csum(BTRFS_I(inode), bio,
241 bio->bi_iter.bi_sector << 9);
242 if (ret)
243 goto csum_failed;
244
245 /* ok, we're the last bio for this extent, lets start
246 * the decompression.
247 */
248 ret = btrfs_decompress_bio(cb);
249
250 csum_failed:
251 if (ret)
252 cb->errors = 1;
253
254 /* release the compressed pages */
255 index = 0;
256 for (index = 0; index < cb->nr_pages; index++) {
257 page = cb->compressed_pages[index];
258 page->mapping = NULL;
259 put_page(page);
260 }
261
262 /* do io completion on the original bio */
263 if (cb->errors) {
264 bio_io_error(cb->orig_bio);
265 } else {
266 struct bio_vec *bvec;
267 struct bvec_iter_all iter_all;
268
269 /*
270 * we have verified the checksum already, set page
271 * checked so the end_io handlers know about it
272 */
273 ASSERT(!bio_flagged(bio, BIO_CLONED));
274 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
275 SetPageChecked(bvec->bv_page);
276
277 bio_endio(cb->orig_bio);
278 }
279
280 /* finally free the cb struct */
281 kfree(cb->compressed_pages);
282 kfree(cb);
283 out:
284 bio_put(bio);
285 }
286
287 /*
288 * Clear the writeback bits on all of the file
289 * pages for a compressed write
290 */
291 static noinline void end_compressed_writeback(struct inode *inode,
292 const struct compressed_bio *cb)
293 {
294 unsigned long index = cb->start >> PAGE_SHIFT;
295 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
296 struct page *pages[16];
297 unsigned long nr_pages = end_index - index + 1;
298 int i;
299 int ret;
300
301 if (cb->errors)
302 mapping_set_error(inode->i_mapping, -EIO);
303
304 while (nr_pages > 0) {
305 ret = find_get_pages_contig(inode->i_mapping, index,
306 min_t(unsigned long,
307 nr_pages, ARRAY_SIZE(pages)), pages);
308 if (ret == 0) {
309 nr_pages -= 1;
310 index += 1;
311 continue;
312 }
313 for (i = 0; i < ret; i++) {
314 if (cb->errors)
315 SetPageError(pages[i]);
316 end_page_writeback(pages[i]);
317 put_page(pages[i]);
318 }
319 nr_pages -= ret;
320 index += ret;
321 }
322 /* the inode may be gone now */
323 }
324
325 /*
326 * do the cleanup once all the compressed pages hit the disk.
327 * This will clear writeback on the file pages and free the compressed
328 * pages.
329 *
330 * This also calls the writeback end hooks for the file pages so that
331 * metadata and checksums can be updated in the file.
332 */
333 static void end_compressed_bio_write(struct bio *bio)
334 {
335 struct compressed_bio *cb = bio->bi_private;
336 struct inode *inode;
337 struct page *page;
338 unsigned int index;
339
340 if (bio->bi_status)
341 cb->errors = 1;
342
343 /* if there are more bios still pending for this compressed
344 * extent, just exit
345 */
346 if (!refcount_dec_and_test(&cb->pending_bios))
347 goto out;
348
349 /* ok, we're the last bio for this extent, step one is to
350 * call back into the FS and do all the end_io operations
351 */
352 inode = cb->inode;
353 btrfs_record_physical_zoned(inode, cb->start, bio);
354 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
355 cb->start, cb->start + cb->len - 1,
356 !cb->errors);
357
358 end_compressed_writeback(inode, cb);
359 /* note, our inode could be gone now */
360
361 /*
362 * release the compressed pages, these came from alloc_page and
363 * are not attached to the inode at all
364 */
365 index = 0;
366 for (index = 0; index < cb->nr_pages; index++) {
367 page = cb->compressed_pages[index];
368 page->mapping = NULL;
369 put_page(page);
370 }
371
372 /* finally free the cb struct */
373 kfree(cb->compressed_pages);
374 kfree(cb);
375 out:
376 bio_put(bio);
377 }
378
379 /*
380 * worker function to build and submit bios for previously compressed pages.
381 * The corresponding pages in the inode should be marked for writeback
382 * and the compressed pages should have a reference on them for dropping
383 * when the IO is complete.
384 *
385 * This also checksums the file bytes and gets things ready for
386 * the end io hooks.
387 */
388 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
389 unsigned int len, u64 disk_start,
390 unsigned int compressed_len,
391 struct page **compressed_pages,
392 unsigned int nr_pages,
393 unsigned int write_flags,
394 struct cgroup_subsys_state *blkcg_css)
395 {
396 struct btrfs_fs_info *fs_info = inode->root->fs_info;
397 struct bio *bio = NULL;
398 struct compressed_bio *cb;
399 unsigned long bytes_left;
400 int pg_index = 0;
401 struct page *page;
402 u64 first_byte = disk_start;
403 blk_status_t ret;
404 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
405 const bool use_append = btrfs_use_zone_append(inode, disk_start);
406 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
407
408 WARN_ON(!PAGE_ALIGNED(start));
409 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
410 if (!cb)
411 return BLK_STS_RESOURCE;
412 refcount_set(&cb->pending_bios, 0);
413 cb->errors = 0;
414 cb->inode = &inode->vfs_inode;
415 cb->start = start;
416 cb->len = len;
417 cb->mirror_num = 0;
418 cb->compressed_pages = compressed_pages;
419 cb->compressed_len = compressed_len;
420 cb->orig_bio = NULL;
421 cb->nr_pages = nr_pages;
422
423 bio = btrfs_bio_alloc(first_byte);
424 bio->bi_opf = bio_op | write_flags;
425 bio->bi_private = cb;
426 bio->bi_end_io = end_compressed_bio_write;
427
428 if (use_append) {
429 struct btrfs_device *device;
430
431 device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
432 if (IS_ERR(device)) {
433 kfree(cb);
434 bio_put(bio);
435 return BLK_STS_NOTSUPP;
436 }
437
438 bio_set_dev(bio, device->bdev);
439 }
440
441 if (blkcg_css) {
442 bio->bi_opf |= REQ_CGROUP_PUNT;
443 kthread_associate_blkcg(blkcg_css);
444 }
445 refcount_set(&cb->pending_bios, 1);
446
447 /* create and submit bios for the compressed pages */
448 bytes_left = compressed_len;
449 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
450 int submit = 0;
451 int len = 0;
452
453 page = compressed_pages[pg_index];
454 page->mapping = inode->vfs_inode.i_mapping;
455 if (bio->bi_iter.bi_size)
456 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
457 0);
458
459 /*
460 * Page can only be added to bio if the current bio fits in
461 * stripe.
462 */
463 if (!submit) {
464 if (pg_index == 0 && use_append)
465 len = bio_add_zone_append_page(bio, page,
466 PAGE_SIZE, 0);
467 else
468 len = bio_add_page(bio, page, PAGE_SIZE, 0);
469 }
470
471 page->mapping = NULL;
472 if (submit || len < PAGE_SIZE) {
473 /*
474 * inc the count before we submit the bio so
475 * we know the end IO handler won't happen before
476 * we inc the count. Otherwise, the cb might get
477 * freed before we're done setting it up
478 */
479 refcount_inc(&cb->pending_bios);
480 ret = btrfs_bio_wq_end_io(fs_info, bio,
481 BTRFS_WQ_ENDIO_DATA);
482 BUG_ON(ret); /* -ENOMEM */
483
484 if (!skip_sum) {
485 ret = btrfs_csum_one_bio(inode, bio, start, 1);
486 BUG_ON(ret); /* -ENOMEM */
487 }
488
489 ret = btrfs_map_bio(fs_info, bio, 0);
490 if (ret) {
491 bio->bi_status = ret;
492 bio_endio(bio);
493 }
494
495 bio = btrfs_bio_alloc(first_byte);
496 bio->bi_opf = bio_op | write_flags;
497 bio->bi_private = cb;
498 bio->bi_end_io = end_compressed_bio_write;
499 if (blkcg_css)
500 bio->bi_opf |= REQ_CGROUP_PUNT;
501 /*
502 * Use bio_add_page() to ensure the bio has at least one
503 * page.
504 */
505 bio_add_page(bio, page, PAGE_SIZE, 0);
506 }
507 if (bytes_left < PAGE_SIZE) {
508 btrfs_info(fs_info,
509 "bytes left %lu compress len %u nr %u",
510 bytes_left, cb->compressed_len, cb->nr_pages);
511 }
512 bytes_left -= PAGE_SIZE;
513 first_byte += PAGE_SIZE;
514 cond_resched();
515 }
516
517 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
518 BUG_ON(ret); /* -ENOMEM */
519
520 if (!skip_sum) {
521 ret = btrfs_csum_one_bio(inode, bio, start, 1);
522 BUG_ON(ret); /* -ENOMEM */
523 }
524
525 ret = btrfs_map_bio(fs_info, bio, 0);
526 if (ret) {
527 bio->bi_status = ret;
528 bio_endio(bio);
529 }
530
531 if (blkcg_css)
532 kthread_associate_blkcg(NULL);
533
534 return 0;
535 }
536
537 static u64 bio_end_offset(struct bio *bio)
538 {
539 struct bio_vec *last = bio_last_bvec_all(bio);
540
541 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
542 }
543
544 static noinline int add_ra_bio_pages(struct inode *inode,
545 u64 compressed_end,
546 struct compressed_bio *cb)
547 {
548 unsigned long end_index;
549 unsigned long pg_index;
550 u64 last_offset;
551 u64 isize = i_size_read(inode);
552 int ret;
553 struct page *page;
554 unsigned long nr_pages = 0;
555 struct extent_map *em;
556 struct address_space *mapping = inode->i_mapping;
557 struct extent_map_tree *em_tree;
558 struct extent_io_tree *tree;
559 u64 end;
560 int misses = 0;
561
562 last_offset = bio_end_offset(cb->orig_bio);
563 em_tree = &BTRFS_I(inode)->extent_tree;
564 tree = &BTRFS_I(inode)->io_tree;
565
566 if (isize == 0)
567 return 0;
568
569 /*
570 * For current subpage support, we only support 64K page size,
571 * which means maximum compressed extent size (128K) is just 2x page
572 * size.
573 * This makes readahead less effective, so here disable readahead for
574 * subpage for now, until full compressed write is supported.
575 */
576 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
577 return 0;
578
579 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
580
581 while (last_offset < compressed_end) {
582 pg_index = last_offset >> PAGE_SHIFT;
583
584 if (pg_index > end_index)
585 break;
586
587 page = xa_load(&mapping->i_pages, pg_index);
588 if (page && !xa_is_value(page)) {
589 misses++;
590 if (misses > 4)
591 break;
592 goto next;
593 }
594
595 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
596 ~__GFP_FS));
597 if (!page)
598 break;
599
600 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
601 put_page(page);
602 goto next;
603 }
604
605 /*
606 * at this point, we have a locked page in the page cache
607 * for these bytes in the file. But, we have to make
608 * sure they map to this compressed extent on disk.
609 */
610 ret = set_page_extent_mapped(page);
611 if (ret < 0) {
612 unlock_page(page);
613 put_page(page);
614 break;
615 }
616
617 end = last_offset + PAGE_SIZE - 1;
618 lock_extent(tree, last_offset, end);
619 read_lock(&em_tree->lock);
620 em = lookup_extent_mapping(em_tree, last_offset,
621 PAGE_SIZE);
622 read_unlock(&em_tree->lock);
623
624 if (!em || last_offset < em->start ||
625 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
626 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
627 free_extent_map(em);
628 unlock_extent(tree, last_offset, end);
629 unlock_page(page);
630 put_page(page);
631 break;
632 }
633 free_extent_map(em);
634
635 if (page->index == end_index) {
636 size_t zero_offset = offset_in_page(isize);
637
638 if (zero_offset) {
639 int zeros;
640 zeros = PAGE_SIZE - zero_offset;
641 memzero_page(page, zero_offset, zeros);
642 flush_dcache_page(page);
643 }
644 }
645
646 ret = bio_add_page(cb->orig_bio, page,
647 PAGE_SIZE, 0);
648
649 if (ret == PAGE_SIZE) {
650 nr_pages++;
651 put_page(page);
652 } else {
653 unlock_extent(tree, last_offset, end);
654 unlock_page(page);
655 put_page(page);
656 break;
657 }
658 next:
659 last_offset += PAGE_SIZE;
660 }
661 return 0;
662 }
663
664 /*
665 * for a compressed read, the bio we get passed has all the inode pages
666 * in it. We don't actually do IO on those pages but allocate new ones
667 * to hold the compressed pages on disk.
668 *
669 * bio->bi_iter.bi_sector points to the compressed extent on disk
670 * bio->bi_io_vec points to all of the inode pages
671 *
672 * After the compressed pages are read, we copy the bytes into the
673 * bio we were passed and then call the bio end_io calls
674 */
675 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
676 int mirror_num, unsigned long bio_flags)
677 {
678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
679 struct extent_map_tree *em_tree;
680 struct compressed_bio *cb;
681 unsigned int compressed_len;
682 unsigned int nr_pages;
683 unsigned int pg_index;
684 struct page *page;
685 struct bio *comp_bio;
686 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
687 u64 file_offset;
688 u64 em_len;
689 u64 em_start;
690 struct extent_map *em;
691 blk_status_t ret = BLK_STS_RESOURCE;
692 int faili = 0;
693 u8 *sums;
694
695 em_tree = &BTRFS_I(inode)->extent_tree;
696
697 file_offset = bio_first_bvec_all(bio)->bv_offset +
698 page_offset(bio_first_page_all(bio));
699
700 /* we need the actual starting offset of this extent in the file */
701 read_lock(&em_tree->lock);
702 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
703 read_unlock(&em_tree->lock);
704 if (!em)
705 return BLK_STS_IOERR;
706
707 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
708 compressed_len = em->block_len;
709 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
710 if (!cb)
711 goto out;
712
713 refcount_set(&cb->pending_bios, 0);
714 cb->errors = 0;
715 cb->inode = inode;
716 cb->mirror_num = mirror_num;
717 sums = cb->sums;
718
719 cb->start = em->orig_start;
720 em_len = em->len;
721 em_start = em->start;
722
723 free_extent_map(em);
724 em = NULL;
725
726 cb->len = bio->bi_iter.bi_size;
727 cb->compressed_len = compressed_len;
728 cb->compress_type = extent_compress_type(bio_flags);
729 cb->orig_bio = bio;
730
731 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
732 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
733 GFP_NOFS);
734 if (!cb->compressed_pages)
735 goto fail1;
736
737 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
738 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
739 if (!cb->compressed_pages[pg_index]) {
740 faili = pg_index - 1;
741 ret = BLK_STS_RESOURCE;
742 goto fail2;
743 }
744 }
745 faili = nr_pages - 1;
746 cb->nr_pages = nr_pages;
747
748 add_ra_bio_pages(inode, em_start + em_len, cb);
749
750 /* include any pages we added in add_ra-bio_pages */
751 cb->len = bio->bi_iter.bi_size;
752
753 comp_bio = btrfs_bio_alloc(cur_disk_byte);
754 comp_bio->bi_opf = REQ_OP_READ;
755 comp_bio->bi_private = cb;
756 comp_bio->bi_end_io = end_compressed_bio_read;
757 refcount_set(&cb->pending_bios, 1);
758
759 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
760 u32 pg_len = PAGE_SIZE;
761 int submit = 0;
762
763 /*
764 * To handle subpage case, we need to make sure the bio only
765 * covers the range we need.
766 *
767 * If we're at the last page, truncate the length to only cover
768 * the remaining part.
769 */
770 if (pg_index == nr_pages - 1)
771 pg_len = min_t(u32, PAGE_SIZE,
772 compressed_len - pg_index * PAGE_SIZE);
773
774 page = cb->compressed_pages[pg_index];
775 page->mapping = inode->i_mapping;
776 page->index = em_start >> PAGE_SHIFT;
777
778 if (comp_bio->bi_iter.bi_size)
779 submit = btrfs_bio_fits_in_stripe(page, pg_len,
780 comp_bio, 0);
781
782 page->mapping = NULL;
783 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
784 unsigned int nr_sectors;
785
786 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
787 BTRFS_WQ_ENDIO_DATA);
788 BUG_ON(ret); /* -ENOMEM */
789
790 /*
791 * inc the count before we submit the bio so
792 * we know the end IO handler won't happen before
793 * we inc the count. Otherwise, the cb might get
794 * freed before we're done setting it up
795 */
796 refcount_inc(&cb->pending_bios);
797
798 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
799 BUG_ON(ret); /* -ENOMEM */
800
801 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
802 fs_info->sectorsize);
803 sums += fs_info->csum_size * nr_sectors;
804
805 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
806 if (ret) {
807 comp_bio->bi_status = ret;
808 bio_endio(comp_bio);
809 }
810
811 comp_bio = btrfs_bio_alloc(cur_disk_byte);
812 comp_bio->bi_opf = REQ_OP_READ;
813 comp_bio->bi_private = cb;
814 comp_bio->bi_end_io = end_compressed_bio_read;
815
816 bio_add_page(comp_bio, page, pg_len, 0);
817 }
818 cur_disk_byte += pg_len;
819 }
820
821 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
822 BUG_ON(ret); /* -ENOMEM */
823
824 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
825 BUG_ON(ret); /* -ENOMEM */
826
827 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
828 if (ret) {
829 comp_bio->bi_status = ret;
830 bio_endio(comp_bio);
831 }
832
833 return 0;
834
835 fail2:
836 while (faili >= 0) {
837 __free_page(cb->compressed_pages[faili]);
838 faili--;
839 }
840
841 kfree(cb->compressed_pages);
842 fail1:
843 kfree(cb);
844 out:
845 free_extent_map(em);
846 return ret;
847 }
848
849 /*
850 * Heuristic uses systematic sampling to collect data from the input data
851 * range, the logic can be tuned by the following constants:
852 *
853 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
854 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
855 */
856 #define SAMPLING_READ_SIZE (16)
857 #define SAMPLING_INTERVAL (256)
858
859 /*
860 * For statistical analysis of the input data we consider bytes that form a
861 * Galois Field of 256 objects. Each object has an attribute count, ie. how
862 * many times the object appeared in the sample.
863 */
864 #define BUCKET_SIZE (256)
865
866 /*
867 * The size of the sample is based on a statistical sampling rule of thumb.
868 * The common way is to perform sampling tests as long as the number of
869 * elements in each cell is at least 5.
870 *
871 * Instead of 5, we choose 32 to obtain more accurate results.
872 * If the data contain the maximum number of symbols, which is 256, we obtain a
873 * sample size bound by 8192.
874 *
875 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
876 * from up to 512 locations.
877 */
878 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
879 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
880
881 struct bucket_item {
882 u32 count;
883 };
884
885 struct heuristic_ws {
886 /* Partial copy of input data */
887 u8 *sample;
888 u32 sample_size;
889 /* Buckets store counters for each byte value */
890 struct bucket_item *bucket;
891 /* Sorting buffer */
892 struct bucket_item *bucket_b;
893 struct list_head list;
894 };
895
896 static struct workspace_manager heuristic_wsm;
897
898 static void free_heuristic_ws(struct list_head *ws)
899 {
900 struct heuristic_ws *workspace;
901
902 workspace = list_entry(ws, struct heuristic_ws, list);
903
904 kvfree(workspace->sample);
905 kfree(workspace->bucket);
906 kfree(workspace->bucket_b);
907 kfree(workspace);
908 }
909
910 static struct list_head *alloc_heuristic_ws(unsigned int level)
911 {
912 struct heuristic_ws *ws;
913
914 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
915 if (!ws)
916 return ERR_PTR(-ENOMEM);
917
918 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
919 if (!ws->sample)
920 goto fail;
921
922 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
923 if (!ws->bucket)
924 goto fail;
925
926 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
927 if (!ws->bucket_b)
928 goto fail;
929
930 INIT_LIST_HEAD(&ws->list);
931 return &ws->list;
932 fail:
933 free_heuristic_ws(&ws->list);
934 return ERR_PTR(-ENOMEM);
935 }
936
937 const struct btrfs_compress_op btrfs_heuristic_compress = {
938 .workspace_manager = &heuristic_wsm,
939 };
940
941 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
942 /* The heuristic is represented as compression type 0 */
943 &btrfs_heuristic_compress,
944 &btrfs_zlib_compress,
945 &btrfs_lzo_compress,
946 &btrfs_zstd_compress,
947 };
948
949 static struct list_head *alloc_workspace(int type, unsigned int level)
950 {
951 switch (type) {
952 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
953 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
954 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
955 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
956 default:
957 /*
958 * This can't happen, the type is validated several times
959 * before we get here.
960 */
961 BUG();
962 }
963 }
964
965 static void free_workspace(int type, struct list_head *ws)
966 {
967 switch (type) {
968 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
969 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
970 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
971 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
972 default:
973 /*
974 * This can't happen, the type is validated several times
975 * before we get here.
976 */
977 BUG();
978 }
979 }
980
981 static void btrfs_init_workspace_manager(int type)
982 {
983 struct workspace_manager *wsm;
984 struct list_head *workspace;
985
986 wsm = btrfs_compress_op[type]->workspace_manager;
987 INIT_LIST_HEAD(&wsm->idle_ws);
988 spin_lock_init(&wsm->ws_lock);
989 atomic_set(&wsm->total_ws, 0);
990 init_waitqueue_head(&wsm->ws_wait);
991
992 /*
993 * Preallocate one workspace for each compression type so we can
994 * guarantee forward progress in the worst case
995 */
996 workspace = alloc_workspace(type, 0);
997 if (IS_ERR(workspace)) {
998 pr_warn(
999 "BTRFS: cannot preallocate compression workspace, will try later\n");
1000 } else {
1001 atomic_set(&wsm->total_ws, 1);
1002 wsm->free_ws = 1;
1003 list_add(workspace, &wsm->idle_ws);
1004 }
1005 }
1006
1007 static void btrfs_cleanup_workspace_manager(int type)
1008 {
1009 struct workspace_manager *wsman;
1010 struct list_head *ws;
1011
1012 wsman = btrfs_compress_op[type]->workspace_manager;
1013 while (!list_empty(&wsman->idle_ws)) {
1014 ws = wsman->idle_ws.next;
1015 list_del(ws);
1016 free_workspace(type, ws);
1017 atomic_dec(&wsman->total_ws);
1018 }
1019 }
1020
1021 /*
1022 * This finds an available workspace or allocates a new one.
1023 * If it's not possible to allocate a new one, waits until there's one.
1024 * Preallocation makes a forward progress guarantees and we do not return
1025 * errors.
1026 */
1027 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1028 {
1029 struct workspace_manager *wsm;
1030 struct list_head *workspace;
1031 int cpus = num_online_cpus();
1032 unsigned nofs_flag;
1033 struct list_head *idle_ws;
1034 spinlock_t *ws_lock;
1035 atomic_t *total_ws;
1036 wait_queue_head_t *ws_wait;
1037 int *free_ws;
1038
1039 wsm = btrfs_compress_op[type]->workspace_manager;
1040 idle_ws = &wsm->idle_ws;
1041 ws_lock = &wsm->ws_lock;
1042 total_ws = &wsm->total_ws;
1043 ws_wait = &wsm->ws_wait;
1044 free_ws = &wsm->free_ws;
1045
1046 again:
1047 spin_lock(ws_lock);
1048 if (!list_empty(idle_ws)) {
1049 workspace = idle_ws->next;
1050 list_del(workspace);
1051 (*free_ws)--;
1052 spin_unlock(ws_lock);
1053 return workspace;
1054
1055 }
1056 if (atomic_read(total_ws) > cpus) {
1057 DEFINE_WAIT(wait);
1058
1059 spin_unlock(ws_lock);
1060 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1061 if (atomic_read(total_ws) > cpus && !*free_ws)
1062 schedule();
1063 finish_wait(ws_wait, &wait);
1064 goto again;
1065 }
1066 atomic_inc(total_ws);
1067 spin_unlock(ws_lock);
1068
1069 /*
1070 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1071 * to turn it off here because we might get called from the restricted
1072 * context of btrfs_compress_bio/btrfs_compress_pages
1073 */
1074 nofs_flag = memalloc_nofs_save();
1075 workspace = alloc_workspace(type, level);
1076 memalloc_nofs_restore(nofs_flag);
1077
1078 if (IS_ERR(workspace)) {
1079 atomic_dec(total_ws);
1080 wake_up(ws_wait);
1081
1082 /*
1083 * Do not return the error but go back to waiting. There's a
1084 * workspace preallocated for each type and the compression
1085 * time is bounded so we get to a workspace eventually. This
1086 * makes our caller's life easier.
1087 *
1088 * To prevent silent and low-probability deadlocks (when the
1089 * initial preallocation fails), check if there are any
1090 * workspaces at all.
1091 */
1092 if (atomic_read(total_ws) == 0) {
1093 static DEFINE_RATELIMIT_STATE(_rs,
1094 /* once per minute */ 60 * HZ,
1095 /* no burst */ 1);
1096
1097 if (__ratelimit(&_rs)) {
1098 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1099 }
1100 }
1101 goto again;
1102 }
1103 return workspace;
1104 }
1105
1106 static struct list_head *get_workspace(int type, int level)
1107 {
1108 switch (type) {
1109 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1110 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1111 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1112 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1113 default:
1114 /*
1115 * This can't happen, the type is validated several times
1116 * before we get here.
1117 */
1118 BUG();
1119 }
1120 }
1121
1122 /*
1123 * put a workspace struct back on the list or free it if we have enough
1124 * idle ones sitting around
1125 */
1126 void btrfs_put_workspace(int type, struct list_head *ws)
1127 {
1128 struct workspace_manager *wsm;
1129 struct list_head *idle_ws;
1130 spinlock_t *ws_lock;
1131 atomic_t *total_ws;
1132 wait_queue_head_t *ws_wait;
1133 int *free_ws;
1134
1135 wsm = btrfs_compress_op[type]->workspace_manager;
1136 idle_ws = &wsm->idle_ws;
1137 ws_lock = &wsm->ws_lock;
1138 total_ws = &wsm->total_ws;
1139 ws_wait = &wsm->ws_wait;
1140 free_ws = &wsm->free_ws;
1141
1142 spin_lock(ws_lock);
1143 if (*free_ws <= num_online_cpus()) {
1144 list_add(ws, idle_ws);
1145 (*free_ws)++;
1146 spin_unlock(ws_lock);
1147 goto wake;
1148 }
1149 spin_unlock(ws_lock);
1150
1151 free_workspace(type, ws);
1152 atomic_dec(total_ws);
1153 wake:
1154 cond_wake_up(ws_wait);
1155 }
1156
1157 static void put_workspace(int type, struct list_head *ws)
1158 {
1159 switch (type) {
1160 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1161 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1162 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1163 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1164 default:
1165 /*
1166 * This can't happen, the type is validated several times
1167 * before we get here.
1168 */
1169 BUG();
1170 }
1171 }
1172
1173 /*
1174 * Adjust @level according to the limits of the compression algorithm or
1175 * fallback to default
1176 */
1177 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1178 {
1179 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1180
1181 if (level == 0)
1182 level = ops->default_level;
1183 else
1184 level = min(level, ops->max_level);
1185
1186 return level;
1187 }
1188
1189 /*
1190 * Given an address space and start and length, compress the bytes into @pages
1191 * that are allocated on demand.
1192 *
1193 * @type_level is encoded algorithm and level, where level 0 means whatever
1194 * default the algorithm chooses and is opaque here;
1195 * - compression algo are 0-3
1196 * - the level are bits 4-7
1197 *
1198 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1199 * and returns number of actually allocated pages
1200 *
1201 * @total_in is used to return the number of bytes actually read. It
1202 * may be smaller than the input length if we had to exit early because we
1203 * ran out of room in the pages array or because we cross the
1204 * max_out threshold.
1205 *
1206 * @total_out is an in/out parameter, must be set to the input length and will
1207 * be also used to return the total number of compressed bytes
1208 */
1209 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1210 u64 start, struct page **pages,
1211 unsigned long *out_pages,
1212 unsigned long *total_in,
1213 unsigned long *total_out)
1214 {
1215 int type = btrfs_compress_type(type_level);
1216 int level = btrfs_compress_level(type_level);
1217 struct list_head *workspace;
1218 int ret;
1219
1220 level = btrfs_compress_set_level(type, level);
1221 workspace = get_workspace(type, level);
1222 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1223 out_pages, total_in, total_out);
1224 put_workspace(type, workspace);
1225 return ret;
1226 }
1227
1228 static int btrfs_decompress_bio(struct compressed_bio *cb)
1229 {
1230 struct list_head *workspace;
1231 int ret;
1232 int type = cb->compress_type;
1233
1234 workspace = get_workspace(type, 0);
1235 ret = compression_decompress_bio(type, workspace, cb);
1236 put_workspace(type, workspace);
1237
1238 return ret;
1239 }
1240
1241 /*
1242 * a less complex decompression routine. Our compressed data fits in a
1243 * single page, and we want to read a single page out of it.
1244 * start_byte tells us the offset into the compressed data we're interested in
1245 */
1246 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1247 unsigned long start_byte, size_t srclen, size_t destlen)
1248 {
1249 struct list_head *workspace;
1250 int ret;
1251
1252 workspace = get_workspace(type, 0);
1253 ret = compression_decompress(type, workspace, data_in, dest_page,
1254 start_byte, srclen, destlen);
1255 put_workspace(type, workspace);
1256
1257 return ret;
1258 }
1259
1260 void __init btrfs_init_compress(void)
1261 {
1262 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1263 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1264 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1265 zstd_init_workspace_manager();
1266 }
1267
1268 void __cold btrfs_exit_compress(void)
1269 {
1270 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1271 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1272 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1273 zstd_cleanup_workspace_manager();
1274 }
1275
1276 /*
1277 * Copy decompressed data from working buffer to pages.
1278 *
1279 * @buf: The decompressed data buffer
1280 * @buf_len: The decompressed data length
1281 * @decompressed: Number of bytes that are already decompressed inside the
1282 * compressed extent
1283 * @cb: The compressed extent descriptor
1284 * @orig_bio: The original bio that the caller wants to read for
1285 *
1286 * An easier to understand graph is like below:
1287 *
1288 * |<- orig_bio ->| |<- orig_bio->|
1289 * |<------- full decompressed extent ----->|
1290 * |<----------- @cb range ---->|
1291 * | |<-- @buf_len -->|
1292 * |<--- @decompressed --->|
1293 *
1294 * Note that, @cb can be a subpage of the full decompressed extent, but
1295 * @cb->start always has the same as the orig_file_offset value of the full
1296 * decompressed extent.
1297 *
1298 * When reading compressed extent, we have to read the full compressed extent,
1299 * while @orig_bio may only want part of the range.
1300 * Thus this function will ensure only data covered by @orig_bio will be copied
1301 * to.
1302 *
1303 * Return 0 if we have copied all needed contents for @orig_bio.
1304 * Return >0 if we need continue decompress.
1305 */
1306 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1307 struct compressed_bio *cb, u32 decompressed)
1308 {
1309 struct bio *orig_bio = cb->orig_bio;
1310 /* Offset inside the full decompressed extent */
1311 u32 cur_offset;
1312
1313 cur_offset = decompressed;
1314 /* The main loop to do the copy */
1315 while (cur_offset < decompressed + buf_len) {
1316 struct bio_vec bvec;
1317 size_t copy_len;
1318 u32 copy_start;
1319 /* Offset inside the full decompressed extent */
1320 u32 bvec_offset;
1321
1322 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1323 /*
1324 * cb->start may underflow, but subtracting that value can still
1325 * give us correct offset inside the full decompressed extent.
1326 */
1327 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1328
1329 /* Haven't reached the bvec range, exit */
1330 if (decompressed + buf_len <= bvec_offset)
1331 return 1;
1332
1333 copy_start = max(cur_offset, bvec_offset);
1334 copy_len = min(bvec_offset + bvec.bv_len,
1335 decompressed + buf_len) - copy_start;
1336 ASSERT(copy_len);
1337
1338 /*
1339 * Extra range check to ensure we didn't go beyond
1340 * @buf + @buf_len.
1341 */
1342 ASSERT(copy_start - decompressed < buf_len);
1343 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1344 buf + copy_start - decompressed, copy_len);
1345 flush_dcache_page(bvec.bv_page);
1346 cur_offset += copy_len;
1347
1348 bio_advance(orig_bio, copy_len);
1349 /* Finished the bio */
1350 if (!orig_bio->bi_iter.bi_size)
1351 return 0;
1352 }
1353 return 1;
1354 }
1355
1356 /*
1357 * Shannon Entropy calculation
1358 *
1359 * Pure byte distribution analysis fails to determine compressibility of data.
1360 * Try calculating entropy to estimate the average minimum number of bits
1361 * needed to encode the sampled data.
1362 *
1363 * For convenience, return the percentage of needed bits, instead of amount of
1364 * bits directly.
1365 *
1366 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367 * and can be compressible with high probability
1368 *
1369 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370 *
1371 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372 */
1373 #define ENTROPY_LVL_ACEPTABLE (65)
1374 #define ENTROPY_LVL_HIGH (80)
1375
1376 /*
1377 * For increasead precision in shannon_entropy calculation,
1378 * let's do pow(n, M) to save more digits after comma:
1379 *
1380 * - maximum int bit length is 64
1381 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1382 * - 13 * 4 = 52 < 64 -> M = 4
1383 *
1384 * So use pow(n, 4).
1385 */
1386 static inline u32 ilog2_w(u64 n)
1387 {
1388 return ilog2(n * n * n * n);
1389 }
1390
1391 static u32 shannon_entropy(struct heuristic_ws *ws)
1392 {
1393 const u32 entropy_max = 8 * ilog2_w(2);
1394 u32 entropy_sum = 0;
1395 u32 p, p_base, sz_base;
1396 u32 i;
1397
1398 sz_base = ilog2_w(ws->sample_size);
1399 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400 p = ws->bucket[i].count;
1401 p_base = ilog2_w(p);
1402 entropy_sum += p * (sz_base - p_base);
1403 }
1404
1405 entropy_sum /= ws->sample_size;
1406 return entropy_sum * 100 / entropy_max;
1407 }
1408
1409 #define RADIX_BASE 4U
1410 #define COUNTERS_SIZE (1U << RADIX_BASE)
1411
1412 static u8 get4bits(u64 num, int shift) {
1413 u8 low4bits;
1414
1415 num >>= shift;
1416 /* Reverse order */
1417 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418 return low4bits;
1419 }
1420
1421 /*
1422 * Use 4 bits as radix base
1423 * Use 16 u32 counters for calculating new position in buf array
1424 *
1425 * @array - array that will be sorted
1426 * @array_buf - buffer array to store sorting results
1427 * must be equal in size to @array
1428 * @num - array size
1429 */
1430 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431 int num)
1432 {
1433 u64 max_num;
1434 u64 buf_num;
1435 u32 counters[COUNTERS_SIZE];
1436 u32 new_addr;
1437 u32 addr;
1438 int bitlen;
1439 int shift;
1440 int i;
1441
1442 /*
1443 * Try avoid useless loop iterations for small numbers stored in big
1444 * counters. Example: 48 33 4 ... in 64bit array
1445 */
1446 max_num = array[0].count;
1447 for (i = 1; i < num; i++) {
1448 buf_num = array[i].count;
1449 if (buf_num > max_num)
1450 max_num = buf_num;
1451 }
1452
1453 buf_num = ilog2(max_num);
1454 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455
1456 shift = 0;
1457 while (shift < bitlen) {
1458 memset(counters, 0, sizeof(counters));
1459
1460 for (i = 0; i < num; i++) {
1461 buf_num = array[i].count;
1462 addr = get4bits(buf_num, shift);
1463 counters[addr]++;
1464 }
1465
1466 for (i = 1; i < COUNTERS_SIZE; i++)
1467 counters[i] += counters[i - 1];
1468
1469 for (i = num - 1; i >= 0; i--) {
1470 buf_num = array[i].count;
1471 addr = get4bits(buf_num, shift);
1472 counters[addr]--;
1473 new_addr = counters[addr];
1474 array_buf[new_addr] = array[i];
1475 }
1476
1477 shift += RADIX_BASE;
1478
1479 /*
1480 * Normal radix expects to move data from a temporary array, to
1481 * the main one. But that requires some CPU time. Avoid that
1482 * by doing another sort iteration to original array instead of
1483 * memcpy()
1484 */
1485 memset(counters, 0, sizeof(counters));
1486
1487 for (i = 0; i < num; i ++) {
1488 buf_num = array_buf[i].count;
1489 addr = get4bits(buf_num, shift);
1490 counters[addr]++;
1491 }
1492
1493 for (i = 1; i < COUNTERS_SIZE; i++)
1494 counters[i] += counters[i - 1];
1495
1496 for (i = num - 1; i >= 0; i--) {
1497 buf_num = array_buf[i].count;
1498 addr = get4bits(buf_num, shift);
1499 counters[addr]--;
1500 new_addr = counters[addr];
1501 array[new_addr] = array_buf[i];
1502 }
1503
1504 shift += RADIX_BASE;
1505 }
1506 }
1507
1508 /*
1509 * Size of the core byte set - how many bytes cover 90% of the sample
1510 *
1511 * There are several types of structured binary data that use nearly all byte
1512 * values. The distribution can be uniform and counts in all buckets will be
1513 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514 *
1515 * Other possibility is normal (Gaussian) distribution, where the data could
1516 * be potentially compressible, but we have to take a few more steps to decide
1517 * how much.
1518 *
1519 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1520 * compression algo can easy fix that
1521 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522 * probability is not compressible
1523 */
1524 #define BYTE_CORE_SET_LOW (64)
1525 #define BYTE_CORE_SET_HIGH (200)
1526
1527 static int byte_core_set_size(struct heuristic_ws *ws)
1528 {
1529 u32 i;
1530 u32 coreset_sum = 0;
1531 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532 struct bucket_item *bucket = ws->bucket;
1533
1534 /* Sort in reverse order */
1535 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536
1537 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538 coreset_sum += bucket[i].count;
1539
1540 if (coreset_sum > core_set_threshold)
1541 return i;
1542
1543 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544 coreset_sum += bucket[i].count;
1545 if (coreset_sum > core_set_threshold)
1546 break;
1547 }
1548
1549 return i;
1550 }
1551
1552 /*
1553 * Count byte values in buckets.
1554 * This heuristic can detect textual data (configs, xml, json, html, etc).
1555 * Because in most text-like data byte set is restricted to limited number of
1556 * possible characters, and that restriction in most cases makes data easy to
1557 * compress.
1558 *
1559 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560 * less - compressible
1561 * more - need additional analysis
1562 */
1563 #define BYTE_SET_THRESHOLD (64)
1564
1565 static u32 byte_set_size(const struct heuristic_ws *ws)
1566 {
1567 u32 i;
1568 u32 byte_set_size = 0;
1569
1570 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571 if (ws->bucket[i].count > 0)
1572 byte_set_size++;
1573 }
1574
1575 /*
1576 * Continue collecting count of byte values in buckets. If the byte
1577 * set size is bigger then the threshold, it's pointless to continue,
1578 * the detection technique would fail for this type of data.
1579 */
1580 for (; i < BUCKET_SIZE; i++) {
1581 if (ws->bucket[i].count > 0) {
1582 byte_set_size++;
1583 if (byte_set_size > BYTE_SET_THRESHOLD)
1584 return byte_set_size;
1585 }
1586 }
1587
1588 return byte_set_size;
1589 }
1590
1591 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592 {
1593 const u32 half_of_sample = ws->sample_size / 2;
1594 const u8 *data = ws->sample;
1595
1596 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597 }
1598
1599 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600 struct heuristic_ws *ws)
1601 {
1602 struct page *page;
1603 u64 index, index_end;
1604 u32 i, curr_sample_pos;
1605 u8 *in_data;
1606
1607 /*
1608 * Compression handles the input data by chunks of 128KiB
1609 * (defined by BTRFS_MAX_UNCOMPRESSED)
1610 *
1611 * We do the same for the heuristic and loop over the whole range.
1612 *
1613 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615 */
1616 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617 end = start + BTRFS_MAX_UNCOMPRESSED;
1618
1619 index = start >> PAGE_SHIFT;
1620 index_end = end >> PAGE_SHIFT;
1621
1622 /* Don't miss unaligned end */
1623 if (!IS_ALIGNED(end, PAGE_SIZE))
1624 index_end++;
1625
1626 curr_sample_pos = 0;
1627 while (index < index_end) {
1628 page = find_get_page(inode->i_mapping, index);
1629 in_data = kmap_local_page(page);
1630 /* Handle case where the start is not aligned to PAGE_SIZE */
1631 i = start % PAGE_SIZE;
1632 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633 /* Don't sample any garbage from the last page */
1634 if (start > end - SAMPLING_READ_SIZE)
1635 break;
1636 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637 SAMPLING_READ_SIZE);
1638 i += SAMPLING_INTERVAL;
1639 start += SAMPLING_INTERVAL;
1640 curr_sample_pos += SAMPLING_READ_SIZE;
1641 }
1642 kunmap_local(in_data);
1643 put_page(page);
1644
1645 index++;
1646 }
1647
1648 ws->sample_size = curr_sample_pos;
1649 }
1650
1651 /*
1652 * Compression heuristic.
1653 *
1654 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655 * quickly (compared to direct compression) detect data characteristics
1656 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657 * data.
1658 *
1659 * The following types of analysis can be performed:
1660 * - detect mostly zero data
1661 * - detect data with low "byte set" size (text, etc)
1662 * - detect data with low/high "core byte" set
1663 *
1664 * Return non-zero if the compression should be done, 0 otherwise.
1665 */
1666 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667 {
1668 struct list_head *ws_list = get_workspace(0, 0);
1669 struct heuristic_ws *ws;
1670 u32 i;
1671 u8 byte;
1672 int ret = 0;
1673
1674 ws = list_entry(ws_list, struct heuristic_ws, list);
1675
1676 heuristic_collect_sample(inode, start, end, ws);
1677
1678 if (sample_repeated_patterns(ws)) {
1679 ret = 1;
1680 goto out;
1681 }
1682
1683 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684
1685 for (i = 0; i < ws->sample_size; i++) {
1686 byte = ws->sample[i];
1687 ws->bucket[byte].count++;
1688 }
1689
1690 i = byte_set_size(ws);
1691 if (i < BYTE_SET_THRESHOLD) {
1692 ret = 2;
1693 goto out;
1694 }
1695
1696 i = byte_core_set_size(ws);
1697 if (i <= BYTE_CORE_SET_LOW) {
1698 ret = 3;
1699 goto out;
1700 }
1701
1702 if (i >= BYTE_CORE_SET_HIGH) {
1703 ret = 0;
1704 goto out;
1705 }
1706
1707 i = shannon_entropy(ws);
1708 if (i <= ENTROPY_LVL_ACEPTABLE) {
1709 ret = 4;
1710 goto out;
1711 }
1712
1713 /*
1714 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715 * needed to give green light to compression.
1716 *
1717 * For now just assume that compression at that level is not worth the
1718 * resources because:
1719 *
1720 * 1. it is possible to defrag the data later
1721 *
1722 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723 * values, every bucket has counter at level ~54. The heuristic would
1724 * be confused. This can happen when data have some internal repeated
1725 * patterns like "abbacbbc...". This can be detected by analyzing
1726 * pairs of bytes, which is too costly.
1727 */
1728 if (i < ENTROPY_LVL_HIGH) {
1729 ret = 5;
1730 goto out;
1731 } else {
1732 ret = 0;
1733 goto out;
1734 }
1735
1736 out:
1737 put_workspace(0, ws_list);
1738 return ret;
1739 }
1740
1741 /*
1742 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743 * level, unrecognized string will set the default level
1744 */
1745 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746 {
1747 unsigned int level = 0;
1748 int ret;
1749
1750 if (!type)
1751 return 0;
1752
1753 if (str[0] == ':') {
1754 ret = kstrtouint(str + 1, 10, &level);
1755 if (ret)
1756 level = 0;
1757 }
1758
1759 level = btrfs_compress_set_level(type, level);
1760
1761 return level;
1762 }