]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/compression.c
Merge tag 'nds32-for-linux-5.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / compression.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43 }
44
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 unsigned long disk_size)
49 {
50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51
52 return sizeof(struct compressed_bio) +
53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 struct compressed_bio *cb,
58 u64 disk_start)
59 {
60 int ret;
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
67 if (inode->flags & BTRFS_INODE_NODATASUM)
68 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
74 kaddr = kmap_atomic(page);
75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 btrfs_csum_final(csum, (u8 *)&csum);
77 kunmap_atomic(kaddr);
78
79 if (csum != *cb_sum) {
80 btrfs_print_data_csum_error(inode, disk_start, csum,
81 *cb_sum, cb->mirror_num);
82 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89 fail:
90 return ret;
91 }
92
93 /* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 int ret = 0;
111
112 if (bio->bi_status)
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
120
121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
136 inode = cb->inode;
137 ret = check_compressed_csum(BTRFS_I(inode), cb,
138 (u64)bio->bi_iter.bi_sector << 9);
139 if (ret)
140 goto csum_failed;
141
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
145 ret = btrfs_decompress_bio(cb);
146
147 csum_failed:
148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
156 put_page(page);
157 }
158
159 /* do io completion on the original bio */
160 if (cb->errors) {
161 bio_io_error(cb->orig_bio);
162 } else {
163 struct bio_vec *bvec;
164 struct bvec_iter_all iter_all;
165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
170 ASSERT(!bio_flagged(bio, BIO_CLONED));
171 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
172 SetPageChecked(bvec->bv_page);
173
174 bio_endio(cb->orig_bio);
175 }
176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180 out:
181 bio_put(bio);
182 }
183
184 /*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
190 {
191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
201 while (nr_pages > 0) {
202 ret = find_get_pages_contig(inode->i_mapping, index,
203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
211 if (cb->errors)
212 SetPageError(pages[i]);
213 end_page_writeback(pages[i]);
214 put_page(pages[i]);
215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
220 }
221
222 /*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 struct compressed_bio *cb = bio->bi_private;
233 struct inode *inode;
234 struct page *page;
235 unsigned long index;
236
237 if (bio->bi_status)
238 cb->errors = 1;
239
240 /* if there are more bios still pending for this compressed
241 * extent, just exit
242 */
243 if (!refcount_dec_and_test(&cb->pending_bios))
244 goto out;
245
246 /* ok, we're the last bio for this extent, step one is to
247 * call back into the FS and do all the end_io operations
248 */
249 inode = cb->inode;
250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
252 cb->start, cb->start + cb->len - 1,
253 bio->bi_status == BLK_STS_OK);
254 cb->compressed_pages[0]->mapping = NULL;
255
256 end_compressed_writeback(inode, cb);
257 /* note, our inode could be gone now */
258
259 /*
260 * release the compressed pages, these came from alloc_page and
261 * are not attached to the inode at all
262 */
263 index = 0;
264 for (index = 0; index < cb->nr_pages; index++) {
265 page = cb->compressed_pages[index];
266 page->mapping = NULL;
267 put_page(page);
268 }
269
270 /* finally free the cb struct */
271 kfree(cb->compressed_pages);
272 kfree(cb);
273 out:
274 bio_put(bio);
275 }
276
277 /*
278 * worker function to build and submit bios for previously compressed pages.
279 * The corresponding pages in the inode should be marked for writeback
280 * and the compressed pages should have a reference on them for dropping
281 * when the IO is complete.
282 *
283 * This also checksums the file bytes and gets things ready for
284 * the end io hooks.
285 */
286 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
287 unsigned long len, u64 disk_start,
288 unsigned long compressed_len,
289 struct page **compressed_pages,
290 unsigned long nr_pages,
291 unsigned int write_flags)
292 {
293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
294 struct bio *bio = NULL;
295 struct compressed_bio *cb;
296 unsigned long bytes_left;
297 int pg_index = 0;
298 struct page *page;
299 u64 first_byte = disk_start;
300 struct block_device *bdev;
301 blk_status_t ret;
302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
303
304 WARN_ON(!PAGE_ALIGNED(start));
305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
306 if (!cb)
307 return BLK_STS_RESOURCE;
308 refcount_set(&cb->pending_bios, 0);
309 cb->errors = 0;
310 cb->inode = inode;
311 cb->start = start;
312 cb->len = len;
313 cb->mirror_num = 0;
314 cb->compressed_pages = compressed_pages;
315 cb->compressed_len = compressed_len;
316 cb->orig_bio = NULL;
317 cb->nr_pages = nr_pages;
318
319 bdev = fs_info->fs_devices->latest_bdev;
320
321 bio = btrfs_bio_alloc(bdev, first_byte);
322 bio->bi_opf = REQ_OP_WRITE | write_flags;
323 bio->bi_private = cb;
324 bio->bi_end_io = end_compressed_bio_write;
325 refcount_set(&cb->pending_bios, 1);
326
327 /* create and submit bios for the compressed pages */
328 bytes_left = compressed_len;
329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
330 int submit = 0;
331
332 page = compressed_pages[pg_index];
333 page->mapping = inode->i_mapping;
334 if (bio->bi_iter.bi_size)
335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 0);
337
338 page->mapping = NULL;
339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
340 PAGE_SIZE) {
341 /*
342 * inc the count before we submit the bio so
343 * we know the end IO handler won't happen before
344 * we inc the count. Otherwise, the cb might get
345 * freed before we're done setting it up
346 */
347 refcount_inc(&cb->pending_bios);
348 ret = btrfs_bio_wq_end_io(fs_info, bio,
349 BTRFS_WQ_ENDIO_DATA);
350 BUG_ON(ret); /* -ENOMEM */
351
352 if (!skip_sum) {
353 ret = btrfs_csum_one_bio(inode, bio, start, 1);
354 BUG_ON(ret); /* -ENOMEM */
355 }
356
357 ret = btrfs_map_bio(fs_info, bio, 0, 1);
358 if (ret) {
359 bio->bi_status = ret;
360 bio_endio(bio);
361 }
362
363 bio = btrfs_bio_alloc(bdev, first_byte);
364 bio->bi_opf = REQ_OP_WRITE | write_flags;
365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
367 bio_add_page(bio, page, PAGE_SIZE, 0);
368 }
369 if (bytes_left < PAGE_SIZE) {
370 btrfs_info(fs_info,
371 "bytes left %lu compress len %lu nr %lu",
372 bytes_left, cb->compressed_len, cb->nr_pages);
373 }
374 bytes_left -= PAGE_SIZE;
375 first_byte += PAGE_SIZE;
376 cond_resched();
377 }
378
379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
380 BUG_ON(ret); /* -ENOMEM */
381
382 if (!skip_sum) {
383 ret = btrfs_csum_one_bio(inode, bio, start, 1);
384 BUG_ON(ret); /* -ENOMEM */
385 }
386
387 ret = btrfs_map_bio(fs_info, bio, 0, 1);
388 if (ret) {
389 bio->bi_status = ret;
390 bio_endio(bio);
391 }
392
393 return 0;
394 }
395
396 static u64 bio_end_offset(struct bio *bio)
397 {
398 struct bio_vec *last = bio_last_bvec_all(bio);
399
400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401 }
402
403 static noinline int add_ra_bio_pages(struct inode *inode,
404 u64 compressed_end,
405 struct compressed_bio *cb)
406 {
407 unsigned long end_index;
408 unsigned long pg_index;
409 u64 last_offset;
410 u64 isize = i_size_read(inode);
411 int ret;
412 struct page *page;
413 unsigned long nr_pages = 0;
414 struct extent_map *em;
415 struct address_space *mapping = inode->i_mapping;
416 struct extent_map_tree *em_tree;
417 struct extent_io_tree *tree;
418 u64 end;
419 int misses = 0;
420
421 last_offset = bio_end_offset(cb->orig_bio);
422 em_tree = &BTRFS_I(inode)->extent_tree;
423 tree = &BTRFS_I(inode)->io_tree;
424
425 if (isize == 0)
426 return 0;
427
428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
429
430 while (last_offset < compressed_end) {
431 pg_index = last_offset >> PAGE_SHIFT;
432
433 if (pg_index > end_index)
434 break;
435
436 page = xa_load(&mapping->i_pages, pg_index);
437 if (page && !xa_is_value(page)) {
438 misses++;
439 if (misses > 4)
440 break;
441 goto next;
442 }
443
444 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 ~__GFP_FS));
446 if (!page)
447 break;
448
449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
450 put_page(page);
451 goto next;
452 }
453
454 end = last_offset + PAGE_SIZE - 1;
455 /*
456 * at this point, we have a locked page in the page cache
457 * for these bytes in the file. But, we have to make
458 * sure they map to this compressed extent on disk.
459 */
460 set_page_extent_mapped(page);
461 lock_extent(tree, last_offset, end);
462 read_lock(&em_tree->lock);
463 em = lookup_extent_mapping(em_tree, last_offset,
464 PAGE_SIZE);
465 read_unlock(&em_tree->lock);
466
467 if (!em || last_offset < em->start ||
468 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
470 free_extent_map(em);
471 unlock_extent(tree, last_offset, end);
472 unlock_page(page);
473 put_page(page);
474 break;
475 }
476 free_extent_map(em);
477
478 if (page->index == end_index) {
479 char *userpage;
480 size_t zero_offset = offset_in_page(isize);
481
482 if (zero_offset) {
483 int zeros;
484 zeros = PAGE_SIZE - zero_offset;
485 userpage = kmap_atomic(page);
486 memset(userpage + zero_offset, 0, zeros);
487 flush_dcache_page(page);
488 kunmap_atomic(userpage);
489 }
490 }
491
492 ret = bio_add_page(cb->orig_bio, page,
493 PAGE_SIZE, 0);
494
495 if (ret == PAGE_SIZE) {
496 nr_pages++;
497 put_page(page);
498 } else {
499 unlock_extent(tree, last_offset, end);
500 unlock_page(page);
501 put_page(page);
502 break;
503 }
504 next:
505 last_offset += PAGE_SIZE;
506 }
507 return 0;
508 }
509
510 /*
511 * for a compressed read, the bio we get passed has all the inode pages
512 * in it. We don't actually do IO on those pages but allocate new ones
513 * to hold the compressed pages on disk.
514 *
515 * bio->bi_iter.bi_sector points to the compressed extent on disk
516 * bio->bi_io_vec points to all of the inode pages
517 *
518 * After the compressed pages are read, we copy the bytes into the
519 * bio we were passed and then call the bio end_io calls
520 */
521 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
522 int mirror_num, unsigned long bio_flags)
523 {
524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
525 struct extent_map_tree *em_tree;
526 struct compressed_bio *cb;
527 unsigned long compressed_len;
528 unsigned long nr_pages;
529 unsigned long pg_index;
530 struct page *page;
531 struct block_device *bdev;
532 struct bio *comp_bio;
533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
534 u64 em_len;
535 u64 em_start;
536 struct extent_map *em;
537 blk_status_t ret = BLK_STS_RESOURCE;
538 int faili = 0;
539 u32 *sums;
540
541 em_tree = &BTRFS_I(inode)->extent_tree;
542
543 /* we need the actual starting offset of this extent in the file */
544 read_lock(&em_tree->lock);
545 em = lookup_extent_mapping(em_tree,
546 page_offset(bio_first_page_all(bio)),
547 PAGE_SIZE);
548 read_unlock(&em_tree->lock);
549 if (!em)
550 return BLK_STS_IOERR;
551
552 compressed_len = em->block_len;
553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 if (!cb)
555 goto out;
556
557 refcount_set(&cb->pending_bios, 0);
558 cb->errors = 0;
559 cb->inode = inode;
560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
562
563 cb->start = em->orig_start;
564 em_len = em->len;
565 em_start = em->start;
566
567 free_extent_map(em);
568 em = NULL;
569
570 cb->len = bio->bi_iter.bi_size;
571 cb->compressed_len = compressed_len;
572 cb->compress_type = extent_compress_type(bio_flags);
573 cb->orig_bio = bio;
574
575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 GFP_NOFS);
578 if (!cb->compressed_pages)
579 goto fail1;
580
581 bdev = fs_info->fs_devices->latest_bdev;
582
583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 __GFP_HIGHMEM);
586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
588 ret = BLK_STS_RESOURCE;
589 goto fail2;
590 }
591 }
592 faili = nr_pages - 1;
593 cb->nr_pages = nr_pages;
594
595 add_ra_bio_pages(inode, em_start + em_len, cb);
596
597 /* include any pages we added in add_ra-bio_pages */
598 cb->len = bio->bi_iter.bi_size;
599
600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 comp_bio->bi_opf = REQ_OP_READ;
602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
604 refcount_set(&cb->pending_bios, 1);
605
606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 int submit = 0;
608
609 page = cb->compressed_pages[pg_index];
610 page->mapping = inode->i_mapping;
611 page->index = em_start >> PAGE_SHIFT;
612
613 if (comp_bio->bi_iter.bi_size)
614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 comp_bio, 0);
616
617 page->mapping = NULL;
618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 PAGE_SIZE) {
620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 BTRFS_WQ_ENDIO_DATA);
622 BUG_ON(ret); /* -ENOMEM */
623
624 /*
625 * inc the count before we submit the bio so
626 * we know the end IO handler won't happen before
627 * we inc the count. Otherwise, the cb might get
628 * freed before we're done setting it up
629 */
630 refcount_inc(&cb->pending_bios);
631
632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
633 ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 sums);
635 BUG_ON(ret); /* -ENOMEM */
636 }
637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
638 fs_info->sectorsize);
639
640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
641 if (ret) {
642 comp_bio->bi_status = ret;
643 bio_endio(comp_bio);
644 }
645
646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
647 comp_bio->bi_opf = REQ_OP_READ;
648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650
651 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
652 }
653 cur_disk_byte += PAGE_SIZE;
654 }
655
656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
657 BUG_ON(ret); /* -ENOMEM */
658
659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
661 BUG_ON(ret); /* -ENOMEM */
662 }
663
664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665 if (ret) {
666 comp_bio->bi_status = ret;
667 bio_endio(comp_bio);
668 }
669
670 return 0;
671
672 fail2:
673 while (faili >= 0) {
674 __free_page(cb->compressed_pages[faili]);
675 faili--;
676 }
677
678 kfree(cb->compressed_pages);
679 fail1:
680 kfree(cb);
681 out:
682 free_extent_map(em);
683 return ret;
684 }
685
686 /*
687 * Heuristic uses systematic sampling to collect data from the input data
688 * range, the logic can be tuned by the following constants:
689 *
690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
692 */
693 #define SAMPLING_READ_SIZE (16)
694 #define SAMPLING_INTERVAL (256)
695
696 /*
697 * For statistical analysis of the input data we consider bytes that form a
698 * Galois Field of 256 objects. Each object has an attribute count, ie. how
699 * many times the object appeared in the sample.
700 */
701 #define BUCKET_SIZE (256)
702
703 /*
704 * The size of the sample is based on a statistical sampling rule of thumb.
705 * The common way is to perform sampling tests as long as the number of
706 * elements in each cell is at least 5.
707 *
708 * Instead of 5, we choose 32 to obtain more accurate results.
709 * If the data contain the maximum number of symbols, which is 256, we obtain a
710 * sample size bound by 8192.
711 *
712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713 * from up to 512 locations.
714 */
715 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717
718 struct bucket_item {
719 u32 count;
720 };
721
722 struct heuristic_ws {
723 /* Partial copy of input data */
724 u8 *sample;
725 u32 sample_size;
726 /* Buckets store counters for each byte value */
727 struct bucket_item *bucket;
728 /* Sorting buffer */
729 struct bucket_item *bucket_b;
730 struct list_head list;
731 };
732
733 static struct workspace_manager heuristic_wsm;
734
735 static void heuristic_init_workspace_manager(void)
736 {
737 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
738 }
739
740 static void heuristic_cleanup_workspace_manager(void)
741 {
742 btrfs_cleanup_workspace_manager(&heuristic_wsm);
743 }
744
745 static struct list_head *heuristic_get_workspace(unsigned int level)
746 {
747 return btrfs_get_workspace(&heuristic_wsm, level);
748 }
749
750 static void heuristic_put_workspace(struct list_head *ws)
751 {
752 btrfs_put_workspace(&heuristic_wsm, ws);
753 }
754
755 static void free_heuristic_ws(struct list_head *ws)
756 {
757 struct heuristic_ws *workspace;
758
759 workspace = list_entry(ws, struct heuristic_ws, list);
760
761 kvfree(workspace->sample);
762 kfree(workspace->bucket);
763 kfree(workspace->bucket_b);
764 kfree(workspace);
765 }
766
767 static struct list_head *alloc_heuristic_ws(unsigned int level)
768 {
769 struct heuristic_ws *ws;
770
771 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
772 if (!ws)
773 return ERR_PTR(-ENOMEM);
774
775 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
776 if (!ws->sample)
777 goto fail;
778
779 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
780 if (!ws->bucket)
781 goto fail;
782
783 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
784 if (!ws->bucket_b)
785 goto fail;
786
787 INIT_LIST_HEAD(&ws->list);
788 return &ws->list;
789 fail:
790 free_heuristic_ws(&ws->list);
791 return ERR_PTR(-ENOMEM);
792 }
793
794 const struct btrfs_compress_op btrfs_heuristic_compress = {
795 .init_workspace_manager = heuristic_init_workspace_manager,
796 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
797 .get_workspace = heuristic_get_workspace,
798 .put_workspace = heuristic_put_workspace,
799 .alloc_workspace = alloc_heuristic_ws,
800 .free_workspace = free_heuristic_ws,
801 };
802
803 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
804 /* The heuristic is represented as compression type 0 */
805 &btrfs_heuristic_compress,
806 &btrfs_zlib_compress,
807 &btrfs_lzo_compress,
808 &btrfs_zstd_compress,
809 };
810
811 void btrfs_init_workspace_manager(struct workspace_manager *wsm,
812 const struct btrfs_compress_op *ops)
813 {
814 struct list_head *workspace;
815
816 wsm->ops = ops;
817
818 INIT_LIST_HEAD(&wsm->idle_ws);
819 spin_lock_init(&wsm->ws_lock);
820 atomic_set(&wsm->total_ws, 0);
821 init_waitqueue_head(&wsm->ws_wait);
822
823 /*
824 * Preallocate one workspace for each compression type so we can
825 * guarantee forward progress in the worst case
826 */
827 workspace = wsm->ops->alloc_workspace(0);
828 if (IS_ERR(workspace)) {
829 pr_warn(
830 "BTRFS: cannot preallocate compression workspace, will try later\n");
831 } else {
832 atomic_set(&wsm->total_ws, 1);
833 wsm->free_ws = 1;
834 list_add(workspace, &wsm->idle_ws);
835 }
836 }
837
838 void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
839 {
840 struct list_head *ws;
841
842 while (!list_empty(&wsman->idle_ws)) {
843 ws = wsman->idle_ws.next;
844 list_del(ws);
845 wsman->ops->free_workspace(ws);
846 atomic_dec(&wsman->total_ws);
847 }
848 }
849
850 /*
851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
854 * errors.
855 */
856 struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
857 unsigned int level)
858 {
859 struct list_head *workspace;
860 int cpus = num_online_cpus();
861 unsigned nofs_flag;
862 struct list_head *idle_ws;
863 spinlock_t *ws_lock;
864 atomic_t *total_ws;
865 wait_queue_head_t *ws_wait;
866 int *free_ws;
867
868 idle_ws = &wsm->idle_ws;
869 ws_lock = &wsm->ws_lock;
870 total_ws = &wsm->total_ws;
871 ws_wait = &wsm->ws_wait;
872 free_ws = &wsm->free_ws;
873
874 again:
875 spin_lock(ws_lock);
876 if (!list_empty(idle_ws)) {
877 workspace = idle_ws->next;
878 list_del(workspace);
879 (*free_ws)--;
880 spin_unlock(ws_lock);
881 return workspace;
882
883 }
884 if (atomic_read(total_ws) > cpus) {
885 DEFINE_WAIT(wait);
886
887 spin_unlock(ws_lock);
888 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
889 if (atomic_read(total_ws) > cpus && !*free_ws)
890 schedule();
891 finish_wait(ws_wait, &wait);
892 goto again;
893 }
894 atomic_inc(total_ws);
895 spin_unlock(ws_lock);
896
897 /*
898 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
899 * to turn it off here because we might get called from the restricted
900 * context of btrfs_compress_bio/btrfs_compress_pages
901 */
902 nofs_flag = memalloc_nofs_save();
903 workspace = wsm->ops->alloc_workspace(level);
904 memalloc_nofs_restore(nofs_flag);
905
906 if (IS_ERR(workspace)) {
907 atomic_dec(total_ws);
908 wake_up(ws_wait);
909
910 /*
911 * Do not return the error but go back to waiting. There's a
912 * workspace preallocated for each type and the compression
913 * time is bounded so we get to a workspace eventually. This
914 * makes our caller's life easier.
915 *
916 * To prevent silent and low-probability deadlocks (when the
917 * initial preallocation fails), check if there are any
918 * workspaces at all.
919 */
920 if (atomic_read(total_ws) == 0) {
921 static DEFINE_RATELIMIT_STATE(_rs,
922 /* once per minute */ 60 * HZ,
923 /* no burst */ 1);
924
925 if (__ratelimit(&_rs)) {
926 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
927 }
928 }
929 goto again;
930 }
931 return workspace;
932 }
933
934 static struct list_head *get_workspace(int type, int level)
935 {
936 return btrfs_compress_op[type]->get_workspace(level);
937 }
938
939 /*
940 * put a workspace struct back on the list or free it if we have enough
941 * idle ones sitting around
942 */
943 void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
944 {
945 struct list_head *idle_ws;
946 spinlock_t *ws_lock;
947 atomic_t *total_ws;
948 wait_queue_head_t *ws_wait;
949 int *free_ws;
950
951 idle_ws = &wsm->idle_ws;
952 ws_lock = &wsm->ws_lock;
953 total_ws = &wsm->total_ws;
954 ws_wait = &wsm->ws_wait;
955 free_ws = &wsm->free_ws;
956
957 spin_lock(ws_lock);
958 if (*free_ws <= num_online_cpus()) {
959 list_add(ws, idle_ws);
960 (*free_ws)++;
961 spin_unlock(ws_lock);
962 goto wake;
963 }
964 spin_unlock(ws_lock);
965
966 wsm->ops->free_workspace(ws);
967 atomic_dec(total_ws);
968 wake:
969 cond_wake_up(ws_wait);
970 }
971
972 static void put_workspace(int type, struct list_head *ws)
973 {
974 return btrfs_compress_op[type]->put_workspace(ws);
975 }
976
977 /*
978 * Given an address space and start and length, compress the bytes into @pages
979 * that are allocated on demand.
980 *
981 * @type_level is encoded algorithm and level, where level 0 means whatever
982 * default the algorithm chooses and is opaque here;
983 * - compression algo are 0-3
984 * - the level are bits 4-7
985 *
986 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
987 * and returns number of actually allocated pages
988 *
989 * @total_in is used to return the number of bytes actually read. It
990 * may be smaller than the input length if we had to exit early because we
991 * ran out of room in the pages array or because we cross the
992 * max_out threshold.
993 *
994 * @total_out is an in/out parameter, must be set to the input length and will
995 * be also used to return the total number of compressed bytes
996 *
997 * @max_out tells us the max number of bytes that we're allowed to
998 * stuff into pages
999 */
1000 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1001 u64 start, struct page **pages,
1002 unsigned long *out_pages,
1003 unsigned long *total_in,
1004 unsigned long *total_out)
1005 {
1006 int type = btrfs_compress_type(type_level);
1007 int level = btrfs_compress_level(type_level);
1008 struct list_head *workspace;
1009 int ret;
1010
1011 level = btrfs_compress_op[type]->set_level(level);
1012 workspace = get_workspace(type, level);
1013 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1014 start, pages,
1015 out_pages,
1016 total_in, total_out);
1017 put_workspace(type, workspace);
1018 return ret;
1019 }
1020
1021 /*
1022 * pages_in is an array of pages with compressed data.
1023 *
1024 * disk_start is the starting logical offset of this array in the file
1025 *
1026 * orig_bio contains the pages from the file that we want to decompress into
1027 *
1028 * srclen is the number of bytes in pages_in
1029 *
1030 * The basic idea is that we have a bio that was created by readpages.
1031 * The pages in the bio are for the uncompressed data, and they may not
1032 * be contiguous. They all correspond to the range of bytes covered by
1033 * the compressed extent.
1034 */
1035 static int btrfs_decompress_bio(struct compressed_bio *cb)
1036 {
1037 struct list_head *workspace;
1038 int ret;
1039 int type = cb->compress_type;
1040
1041 workspace = get_workspace(type, 0);
1042 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1043 put_workspace(type, workspace);
1044
1045 return ret;
1046 }
1047
1048 /*
1049 * a less complex decompression routine. Our compressed data fits in a
1050 * single page, and we want to read a single page out of it.
1051 * start_byte tells us the offset into the compressed data we're interested in
1052 */
1053 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1054 unsigned long start_byte, size_t srclen, size_t destlen)
1055 {
1056 struct list_head *workspace;
1057 int ret;
1058
1059 workspace = get_workspace(type, 0);
1060 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1061 dest_page, start_byte,
1062 srclen, destlen);
1063 put_workspace(type, workspace);
1064
1065 return ret;
1066 }
1067
1068 void __init btrfs_init_compress(void)
1069 {
1070 int i;
1071
1072 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1073 btrfs_compress_op[i]->init_workspace_manager();
1074 }
1075
1076 void __cold btrfs_exit_compress(void)
1077 {
1078 int i;
1079
1080 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1081 btrfs_compress_op[i]->cleanup_workspace_manager();
1082 }
1083
1084 /*
1085 * Copy uncompressed data from working buffer to pages.
1086 *
1087 * buf_start is the byte offset we're of the start of our workspace buffer.
1088 *
1089 * total_out is the last byte of the buffer
1090 */
1091 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1092 unsigned long total_out, u64 disk_start,
1093 struct bio *bio)
1094 {
1095 unsigned long buf_offset;
1096 unsigned long current_buf_start;
1097 unsigned long start_byte;
1098 unsigned long prev_start_byte;
1099 unsigned long working_bytes = total_out - buf_start;
1100 unsigned long bytes;
1101 char *kaddr;
1102 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1103
1104 /*
1105 * start byte is the first byte of the page we're currently
1106 * copying into relative to the start of the compressed data.
1107 */
1108 start_byte = page_offset(bvec.bv_page) - disk_start;
1109
1110 /* we haven't yet hit data corresponding to this page */
1111 if (total_out <= start_byte)
1112 return 1;
1113
1114 /*
1115 * the start of the data we care about is offset into
1116 * the middle of our working buffer
1117 */
1118 if (total_out > start_byte && buf_start < start_byte) {
1119 buf_offset = start_byte - buf_start;
1120 working_bytes -= buf_offset;
1121 } else {
1122 buf_offset = 0;
1123 }
1124 current_buf_start = buf_start;
1125
1126 /* copy bytes from the working buffer into the pages */
1127 while (working_bytes > 0) {
1128 bytes = min_t(unsigned long, bvec.bv_len,
1129 PAGE_SIZE - buf_offset);
1130 bytes = min(bytes, working_bytes);
1131
1132 kaddr = kmap_atomic(bvec.bv_page);
1133 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1134 kunmap_atomic(kaddr);
1135 flush_dcache_page(bvec.bv_page);
1136
1137 buf_offset += bytes;
1138 working_bytes -= bytes;
1139 current_buf_start += bytes;
1140
1141 /* check if we need to pick another page */
1142 bio_advance(bio, bytes);
1143 if (!bio->bi_iter.bi_size)
1144 return 0;
1145 bvec = bio_iter_iovec(bio, bio->bi_iter);
1146 prev_start_byte = start_byte;
1147 start_byte = page_offset(bvec.bv_page) - disk_start;
1148
1149 /*
1150 * We need to make sure we're only adjusting
1151 * our offset into compression working buffer when
1152 * we're switching pages. Otherwise we can incorrectly
1153 * keep copying when we were actually done.
1154 */
1155 if (start_byte != prev_start_byte) {
1156 /*
1157 * make sure our new page is covered by this
1158 * working buffer
1159 */
1160 if (total_out <= start_byte)
1161 return 1;
1162
1163 /*
1164 * the next page in the biovec might not be adjacent
1165 * to the last page, but it might still be found
1166 * inside this working buffer. bump our offset pointer
1167 */
1168 if (total_out > start_byte &&
1169 current_buf_start < start_byte) {
1170 buf_offset = start_byte - buf_start;
1171 working_bytes = total_out - start_byte;
1172 current_buf_start = buf_start + buf_offset;
1173 }
1174 }
1175 }
1176
1177 return 1;
1178 }
1179
1180 /*
1181 * Shannon Entropy calculation
1182 *
1183 * Pure byte distribution analysis fails to determine compressibility of data.
1184 * Try calculating entropy to estimate the average minimum number of bits
1185 * needed to encode the sampled data.
1186 *
1187 * For convenience, return the percentage of needed bits, instead of amount of
1188 * bits directly.
1189 *
1190 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1191 * and can be compressible with high probability
1192 *
1193 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1194 *
1195 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1196 */
1197 #define ENTROPY_LVL_ACEPTABLE (65)
1198 #define ENTROPY_LVL_HIGH (80)
1199
1200 /*
1201 * For increasead precision in shannon_entropy calculation,
1202 * let's do pow(n, M) to save more digits after comma:
1203 *
1204 * - maximum int bit length is 64
1205 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1206 * - 13 * 4 = 52 < 64 -> M = 4
1207 *
1208 * So use pow(n, 4).
1209 */
1210 static inline u32 ilog2_w(u64 n)
1211 {
1212 return ilog2(n * n * n * n);
1213 }
1214
1215 static u32 shannon_entropy(struct heuristic_ws *ws)
1216 {
1217 const u32 entropy_max = 8 * ilog2_w(2);
1218 u32 entropy_sum = 0;
1219 u32 p, p_base, sz_base;
1220 u32 i;
1221
1222 sz_base = ilog2_w(ws->sample_size);
1223 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1224 p = ws->bucket[i].count;
1225 p_base = ilog2_w(p);
1226 entropy_sum += p * (sz_base - p_base);
1227 }
1228
1229 entropy_sum /= ws->sample_size;
1230 return entropy_sum * 100 / entropy_max;
1231 }
1232
1233 #define RADIX_BASE 4U
1234 #define COUNTERS_SIZE (1U << RADIX_BASE)
1235
1236 static u8 get4bits(u64 num, int shift) {
1237 u8 low4bits;
1238
1239 num >>= shift;
1240 /* Reverse order */
1241 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1242 return low4bits;
1243 }
1244
1245 /*
1246 * Use 4 bits as radix base
1247 * Use 16 u32 counters for calculating new position in buf array
1248 *
1249 * @array - array that will be sorted
1250 * @array_buf - buffer array to store sorting results
1251 * must be equal in size to @array
1252 * @num - array size
1253 */
1254 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1255 int num)
1256 {
1257 u64 max_num;
1258 u64 buf_num;
1259 u32 counters[COUNTERS_SIZE];
1260 u32 new_addr;
1261 u32 addr;
1262 int bitlen;
1263 int shift;
1264 int i;
1265
1266 /*
1267 * Try avoid useless loop iterations for small numbers stored in big
1268 * counters. Example: 48 33 4 ... in 64bit array
1269 */
1270 max_num = array[0].count;
1271 for (i = 1; i < num; i++) {
1272 buf_num = array[i].count;
1273 if (buf_num > max_num)
1274 max_num = buf_num;
1275 }
1276
1277 buf_num = ilog2(max_num);
1278 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1279
1280 shift = 0;
1281 while (shift < bitlen) {
1282 memset(counters, 0, sizeof(counters));
1283
1284 for (i = 0; i < num; i++) {
1285 buf_num = array[i].count;
1286 addr = get4bits(buf_num, shift);
1287 counters[addr]++;
1288 }
1289
1290 for (i = 1; i < COUNTERS_SIZE; i++)
1291 counters[i] += counters[i - 1];
1292
1293 for (i = num - 1; i >= 0; i--) {
1294 buf_num = array[i].count;
1295 addr = get4bits(buf_num, shift);
1296 counters[addr]--;
1297 new_addr = counters[addr];
1298 array_buf[new_addr] = array[i];
1299 }
1300
1301 shift += RADIX_BASE;
1302
1303 /*
1304 * Normal radix expects to move data from a temporary array, to
1305 * the main one. But that requires some CPU time. Avoid that
1306 * by doing another sort iteration to original array instead of
1307 * memcpy()
1308 */
1309 memset(counters, 0, sizeof(counters));
1310
1311 for (i = 0; i < num; i ++) {
1312 buf_num = array_buf[i].count;
1313 addr = get4bits(buf_num, shift);
1314 counters[addr]++;
1315 }
1316
1317 for (i = 1; i < COUNTERS_SIZE; i++)
1318 counters[i] += counters[i - 1];
1319
1320 for (i = num - 1; i >= 0; i--) {
1321 buf_num = array_buf[i].count;
1322 addr = get4bits(buf_num, shift);
1323 counters[addr]--;
1324 new_addr = counters[addr];
1325 array[new_addr] = array_buf[i];
1326 }
1327
1328 shift += RADIX_BASE;
1329 }
1330 }
1331
1332 /*
1333 * Size of the core byte set - how many bytes cover 90% of the sample
1334 *
1335 * There are several types of structured binary data that use nearly all byte
1336 * values. The distribution can be uniform and counts in all buckets will be
1337 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1338 *
1339 * Other possibility is normal (Gaussian) distribution, where the data could
1340 * be potentially compressible, but we have to take a few more steps to decide
1341 * how much.
1342 *
1343 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1344 * compression algo can easy fix that
1345 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1346 * probability is not compressible
1347 */
1348 #define BYTE_CORE_SET_LOW (64)
1349 #define BYTE_CORE_SET_HIGH (200)
1350
1351 static int byte_core_set_size(struct heuristic_ws *ws)
1352 {
1353 u32 i;
1354 u32 coreset_sum = 0;
1355 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1356 struct bucket_item *bucket = ws->bucket;
1357
1358 /* Sort in reverse order */
1359 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1360
1361 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1362 coreset_sum += bucket[i].count;
1363
1364 if (coreset_sum > core_set_threshold)
1365 return i;
1366
1367 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1368 coreset_sum += bucket[i].count;
1369 if (coreset_sum > core_set_threshold)
1370 break;
1371 }
1372
1373 return i;
1374 }
1375
1376 /*
1377 * Count byte values in buckets.
1378 * This heuristic can detect textual data (configs, xml, json, html, etc).
1379 * Because in most text-like data byte set is restricted to limited number of
1380 * possible characters, and that restriction in most cases makes data easy to
1381 * compress.
1382 *
1383 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1384 * less - compressible
1385 * more - need additional analysis
1386 */
1387 #define BYTE_SET_THRESHOLD (64)
1388
1389 static u32 byte_set_size(const struct heuristic_ws *ws)
1390 {
1391 u32 i;
1392 u32 byte_set_size = 0;
1393
1394 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1395 if (ws->bucket[i].count > 0)
1396 byte_set_size++;
1397 }
1398
1399 /*
1400 * Continue collecting count of byte values in buckets. If the byte
1401 * set size is bigger then the threshold, it's pointless to continue,
1402 * the detection technique would fail for this type of data.
1403 */
1404 for (; i < BUCKET_SIZE; i++) {
1405 if (ws->bucket[i].count > 0) {
1406 byte_set_size++;
1407 if (byte_set_size > BYTE_SET_THRESHOLD)
1408 return byte_set_size;
1409 }
1410 }
1411
1412 return byte_set_size;
1413 }
1414
1415 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1416 {
1417 const u32 half_of_sample = ws->sample_size / 2;
1418 const u8 *data = ws->sample;
1419
1420 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1421 }
1422
1423 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1424 struct heuristic_ws *ws)
1425 {
1426 struct page *page;
1427 u64 index, index_end;
1428 u32 i, curr_sample_pos;
1429 u8 *in_data;
1430
1431 /*
1432 * Compression handles the input data by chunks of 128KiB
1433 * (defined by BTRFS_MAX_UNCOMPRESSED)
1434 *
1435 * We do the same for the heuristic and loop over the whole range.
1436 *
1437 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1438 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1439 */
1440 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1441 end = start + BTRFS_MAX_UNCOMPRESSED;
1442
1443 index = start >> PAGE_SHIFT;
1444 index_end = end >> PAGE_SHIFT;
1445
1446 /* Don't miss unaligned end */
1447 if (!IS_ALIGNED(end, PAGE_SIZE))
1448 index_end++;
1449
1450 curr_sample_pos = 0;
1451 while (index < index_end) {
1452 page = find_get_page(inode->i_mapping, index);
1453 in_data = kmap(page);
1454 /* Handle case where the start is not aligned to PAGE_SIZE */
1455 i = start % PAGE_SIZE;
1456 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1457 /* Don't sample any garbage from the last page */
1458 if (start > end - SAMPLING_READ_SIZE)
1459 break;
1460 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1461 SAMPLING_READ_SIZE);
1462 i += SAMPLING_INTERVAL;
1463 start += SAMPLING_INTERVAL;
1464 curr_sample_pos += SAMPLING_READ_SIZE;
1465 }
1466 kunmap(page);
1467 put_page(page);
1468
1469 index++;
1470 }
1471
1472 ws->sample_size = curr_sample_pos;
1473 }
1474
1475 /*
1476 * Compression heuristic.
1477 *
1478 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1479 * quickly (compared to direct compression) detect data characteristics
1480 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1481 * data.
1482 *
1483 * The following types of analysis can be performed:
1484 * - detect mostly zero data
1485 * - detect data with low "byte set" size (text, etc)
1486 * - detect data with low/high "core byte" set
1487 *
1488 * Return non-zero if the compression should be done, 0 otherwise.
1489 */
1490 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1491 {
1492 struct list_head *ws_list = get_workspace(0, 0);
1493 struct heuristic_ws *ws;
1494 u32 i;
1495 u8 byte;
1496 int ret = 0;
1497
1498 ws = list_entry(ws_list, struct heuristic_ws, list);
1499
1500 heuristic_collect_sample(inode, start, end, ws);
1501
1502 if (sample_repeated_patterns(ws)) {
1503 ret = 1;
1504 goto out;
1505 }
1506
1507 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1508
1509 for (i = 0; i < ws->sample_size; i++) {
1510 byte = ws->sample[i];
1511 ws->bucket[byte].count++;
1512 }
1513
1514 i = byte_set_size(ws);
1515 if (i < BYTE_SET_THRESHOLD) {
1516 ret = 2;
1517 goto out;
1518 }
1519
1520 i = byte_core_set_size(ws);
1521 if (i <= BYTE_CORE_SET_LOW) {
1522 ret = 3;
1523 goto out;
1524 }
1525
1526 if (i >= BYTE_CORE_SET_HIGH) {
1527 ret = 0;
1528 goto out;
1529 }
1530
1531 i = shannon_entropy(ws);
1532 if (i <= ENTROPY_LVL_ACEPTABLE) {
1533 ret = 4;
1534 goto out;
1535 }
1536
1537 /*
1538 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1539 * needed to give green light to compression.
1540 *
1541 * For now just assume that compression at that level is not worth the
1542 * resources because:
1543 *
1544 * 1. it is possible to defrag the data later
1545 *
1546 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1547 * values, every bucket has counter at level ~54. The heuristic would
1548 * be confused. This can happen when data have some internal repeated
1549 * patterns like "abbacbbc...". This can be detected by analyzing
1550 * pairs of bytes, which is too costly.
1551 */
1552 if (i < ENTROPY_LVL_HIGH) {
1553 ret = 5;
1554 goto out;
1555 } else {
1556 ret = 0;
1557 goto out;
1558 }
1559
1560 out:
1561 put_workspace(0, ws_list);
1562 return ret;
1563 }
1564
1565 /*
1566 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1567 * level, unrecognized string will set the default level
1568 */
1569 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1570 {
1571 unsigned int level = 0;
1572 int ret;
1573
1574 if (!type)
1575 return 0;
1576
1577 if (str[0] == ':') {
1578 ret = kstrtouint(str + 1, 10, &level);
1579 if (ret)
1580 level = 0;
1581 }
1582
1583 level = btrfs_compress_op[type]->set_level(level);
1584
1585 return level;
1586 }