]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/compression.c
Merge tag 'armsoc-for-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44
45 struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
64 /* the compression algorithm for this bio */
65 int compress_type;
66
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
72 int mirror_num;
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
82 };
83
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
87
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90 {
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93 return sizeof(struct compressed_bio) +
94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99 {
100 int nr_vecs;
101
102 nr_vecs = bio_get_nr_vecs(bdev);
103 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 }
105
106 static int check_compressed_csum(struct inode *inode,
107 struct compressed_bio *cb,
108 u64 disk_start)
109 {
110 int ret;
111 struct page *page;
112 unsigned long i;
113 char *kaddr;
114 u32 csum;
115 u32 *cb_sum = &cb->sums;
116
117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118 return 0;
119
120 for (i = 0; i < cb->nr_pages; i++) {
121 page = cb->compressed_pages[i];
122 csum = ~(u32)0;
123
124 kaddr = kmap_atomic(page);
125 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126 btrfs_csum_final(csum, (char *)&csum);
127 kunmap_atomic(kaddr);
128
129 if (csum != *cb_sum) {
130 btrfs_info(BTRFS_I(inode)->root->fs_info,
131 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132 btrfs_ino(inode), disk_start, csum, *cb_sum,
133 cb->mirror_num);
134 ret = -EIO;
135 goto fail;
136 }
137 cb_sum++;
138
139 }
140 ret = 0;
141 fail:
142 return ret;
143 }
144
145 /* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
148 *
149 * This allows the checksumming and other IO error handling routines
150 * to work normally
151 *
152 * The compressed pages are freed here, and it must be run
153 * in process context
154 */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157 struct compressed_bio *cb = bio->bi_private;
158 struct inode *inode;
159 struct page *page;
160 unsigned long index;
161 int ret;
162
163 if (err)
164 cb->errors = 1;
165
166 /* if there are more bios still pending for this compressed
167 * extent, just exit
168 */
169 if (!atomic_dec_and_test(&cb->pending_bios))
170 goto out;
171
172 inode = cb->inode;
173 ret = check_compressed_csum(inode, cb,
174 (u64)bio->bi_iter.bi_sector << 9);
175 if (ret)
176 goto csum_failed;
177
178 /* ok, we're the last bio for this extent, lets start
179 * the decompression.
180 */
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
183 cb->start,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
186 cb->compressed_len);
187 csum_failed:
188 if (ret)
189 cb->errors = 1;
190
191 /* release the compressed pages */
192 index = 0;
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
197 }
198
199 /* do io completion on the original bio */
200 if (cb->errors) {
201 bio_io_error(cb->orig_bio);
202 } else {
203 int i;
204 struct bio_vec *bvec;
205
206 /*
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
209 */
210 bio_for_each_segment_all(bvec, cb->orig_bio, i)
211 SetPageChecked(bvec->bv_page);
212
213 bio_endio(cb->orig_bio, 0);
214 }
215
216 /* finally free the cb struct */
217 kfree(cb->compressed_pages);
218 kfree(cb);
219 out:
220 bio_put(bio);
221 }
222
223 /*
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
226 */
227 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
228 unsigned long ram_size)
229 {
230 unsigned long index = start >> PAGE_CACHE_SHIFT;
231 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232 struct page *pages[16];
233 unsigned long nr_pages = end_index - index + 1;
234 int i;
235 int ret;
236
237 while (nr_pages > 0) {
238 ret = find_get_pages_contig(inode->i_mapping, index,
239 min_t(unsigned long,
240 nr_pages, ARRAY_SIZE(pages)), pages);
241 if (ret == 0) {
242 nr_pages -= 1;
243 index += 1;
244 continue;
245 }
246 for (i = 0; i < ret; i++) {
247 end_page_writeback(pages[i]);
248 page_cache_release(pages[i]);
249 }
250 nr_pages -= ret;
251 index += ret;
252 }
253 /* the inode may be gone now */
254 }
255
256 /*
257 * do the cleanup once all the compressed pages hit the disk.
258 * This will clear writeback on the file pages and free the compressed
259 * pages.
260 *
261 * This also calls the writeback end hooks for the file pages so that
262 * metadata and checksums can be updated in the file.
263 */
264 static void end_compressed_bio_write(struct bio *bio, int err)
265 {
266 struct extent_io_tree *tree;
267 struct compressed_bio *cb = bio->bi_private;
268 struct inode *inode;
269 struct page *page;
270 unsigned long index;
271
272 if (err)
273 cb->errors = 1;
274
275 /* if there are more bios still pending for this compressed
276 * extent, just exit
277 */
278 if (!atomic_dec_and_test(&cb->pending_bios))
279 goto out;
280
281 /* ok, we're the last bio for this extent, step one is to
282 * call back into the FS and do all the end_io operations
283 */
284 inode = cb->inode;
285 tree = &BTRFS_I(inode)->io_tree;
286 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
287 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
288 cb->start,
289 cb->start + cb->len - 1,
290 NULL, 1);
291 cb->compressed_pages[0]->mapping = NULL;
292
293 end_compressed_writeback(inode, cb->start, cb->len);
294 /* note, our inode could be gone now */
295
296 /*
297 * release the compressed pages, these came from alloc_page and
298 * are not attached to the inode at all
299 */
300 index = 0;
301 for (index = 0; index < cb->nr_pages; index++) {
302 page = cb->compressed_pages[index];
303 page->mapping = NULL;
304 page_cache_release(page);
305 }
306
307 /* finally free the cb struct */
308 kfree(cb->compressed_pages);
309 kfree(cb);
310 out:
311 bio_put(bio);
312 }
313
314 /*
315 * worker function to build and submit bios for previously compressed pages.
316 * The corresponding pages in the inode should be marked for writeback
317 * and the compressed pages should have a reference on them for dropping
318 * when the IO is complete.
319 *
320 * This also checksums the file bytes and gets things ready for
321 * the end io hooks.
322 */
323 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
324 unsigned long len, u64 disk_start,
325 unsigned long compressed_len,
326 struct page **compressed_pages,
327 unsigned long nr_pages)
328 {
329 struct bio *bio = NULL;
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 struct compressed_bio *cb;
332 unsigned long bytes_left;
333 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
334 int pg_index = 0;
335 struct page *page;
336 u64 first_byte = disk_start;
337 struct block_device *bdev;
338 int ret;
339 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
340
341 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343 if (!cb)
344 return -ENOMEM;
345 atomic_set(&cb->pending_bios, 0);
346 cb->errors = 0;
347 cb->inode = inode;
348 cb->start = start;
349 cb->len = len;
350 cb->mirror_num = 0;
351 cb->compressed_pages = compressed_pages;
352 cb->compressed_len = compressed_len;
353 cb->orig_bio = NULL;
354 cb->nr_pages = nr_pages;
355
356 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
357
358 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 if (!bio) {
360 kfree(cb);
361 return -ENOMEM;
362 }
363 bio->bi_private = cb;
364 bio->bi_end_io = end_compressed_bio_write;
365 atomic_inc(&cb->pending_bios);
366
367 /* create and submit bios for the compressed pages */
368 bytes_left = compressed_len;
369 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
370 page = compressed_pages[pg_index];
371 page->mapping = inode->i_mapping;
372 if (bio->bi_iter.bi_size)
373 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
374 PAGE_CACHE_SIZE,
375 bio, 0);
376 else
377 ret = 0;
378
379 page->mapping = NULL;
380 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
381 PAGE_CACHE_SIZE) {
382 bio_get(bio);
383
384 /*
385 * inc the count before we submit the bio so
386 * we know the end IO handler won't happen before
387 * we inc the count. Otherwise, the cb might get
388 * freed before we're done setting it up
389 */
390 atomic_inc(&cb->pending_bios);
391 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
392 BTRFS_WQ_ENDIO_DATA);
393 BUG_ON(ret); /* -ENOMEM */
394
395 if (!skip_sum) {
396 ret = btrfs_csum_one_bio(root, inode, bio,
397 start, 1);
398 BUG_ON(ret); /* -ENOMEM */
399 }
400
401 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
402 BUG_ON(ret); /* -ENOMEM */
403
404 bio_put(bio);
405
406 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
407 BUG_ON(!bio);
408 bio->bi_private = cb;
409 bio->bi_end_io = end_compressed_bio_write;
410 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411 }
412 if (bytes_left < PAGE_CACHE_SIZE) {
413 btrfs_info(BTRFS_I(inode)->root->fs_info,
414 "bytes left %lu compress len %lu nr %lu",
415 bytes_left, cb->compressed_len, cb->nr_pages);
416 }
417 bytes_left -= PAGE_CACHE_SIZE;
418 first_byte += PAGE_CACHE_SIZE;
419 cond_resched();
420 }
421 bio_get(bio);
422
423 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
424 BUG_ON(ret); /* -ENOMEM */
425
426 if (!skip_sum) {
427 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 BUG_ON(ret); /* -ENOMEM */
429 }
430
431 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 BUG_ON(ret); /* -ENOMEM */
433
434 bio_put(bio);
435 return 0;
436 }
437
438 static noinline int add_ra_bio_pages(struct inode *inode,
439 u64 compressed_end,
440 struct compressed_bio *cb)
441 {
442 unsigned long end_index;
443 unsigned long pg_index;
444 u64 last_offset;
445 u64 isize = i_size_read(inode);
446 int ret;
447 struct page *page;
448 unsigned long nr_pages = 0;
449 struct extent_map *em;
450 struct address_space *mapping = inode->i_mapping;
451 struct extent_map_tree *em_tree;
452 struct extent_io_tree *tree;
453 u64 end;
454 int misses = 0;
455
456 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 em_tree = &BTRFS_I(inode)->extent_tree;
459 tree = &BTRFS_I(inode)->io_tree;
460
461 if (isize == 0)
462 return 0;
463
464 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
465
466 while (last_offset < compressed_end) {
467 pg_index = last_offset >> PAGE_CACHE_SHIFT;
468
469 if (pg_index > end_index)
470 break;
471
472 rcu_read_lock();
473 page = radix_tree_lookup(&mapping->page_tree, pg_index);
474 rcu_read_unlock();
475 if (page && !radix_tree_exceptional_entry(page)) {
476 misses++;
477 if (misses > 4)
478 break;
479 goto next;
480 }
481
482 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 ~__GFP_FS);
484 if (!page)
485 break;
486
487 if (add_to_page_cache_lru(page, mapping, pg_index,
488 GFP_NOFS)) {
489 page_cache_release(page);
490 goto next;
491 }
492
493 end = last_offset + PAGE_CACHE_SIZE - 1;
494 /*
495 * at this point, we have a locked page in the page cache
496 * for these bytes in the file. But, we have to make
497 * sure they map to this compressed extent on disk.
498 */
499 set_page_extent_mapped(page);
500 lock_extent(tree, last_offset, end);
501 read_lock(&em_tree->lock);
502 em = lookup_extent_mapping(em_tree, last_offset,
503 PAGE_CACHE_SIZE);
504 read_unlock(&em_tree->lock);
505
506 if (!em || last_offset < em->start ||
507 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
509 free_extent_map(em);
510 unlock_extent(tree, last_offset, end);
511 unlock_page(page);
512 page_cache_release(page);
513 break;
514 }
515 free_extent_map(em);
516
517 if (page->index == end_index) {
518 char *userpage;
519 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
520
521 if (zero_offset) {
522 int zeros;
523 zeros = PAGE_CACHE_SIZE - zero_offset;
524 userpage = kmap_atomic(page);
525 memset(userpage + zero_offset, 0, zeros);
526 flush_dcache_page(page);
527 kunmap_atomic(userpage);
528 }
529 }
530
531 ret = bio_add_page(cb->orig_bio, page,
532 PAGE_CACHE_SIZE, 0);
533
534 if (ret == PAGE_CACHE_SIZE) {
535 nr_pages++;
536 page_cache_release(page);
537 } else {
538 unlock_extent(tree, last_offset, end);
539 unlock_page(page);
540 page_cache_release(page);
541 break;
542 }
543 next:
544 last_offset += PAGE_CACHE_SIZE;
545 }
546 return 0;
547 }
548
549 /*
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it. We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
553 *
554 * bio->bi_iter.bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 * bio->bi_vcnt is a count of pages
557 *
558 * After the compressed pages are read, we copy the bytes into the
559 * bio we were passed and then call the bio end_io calls
560 */
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 int mirror_num, unsigned long bio_flags)
563 {
564 struct extent_io_tree *tree;
565 struct extent_map_tree *em_tree;
566 struct compressed_bio *cb;
567 struct btrfs_root *root = BTRFS_I(inode)->root;
568 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 unsigned long compressed_len;
570 unsigned long nr_pages;
571 unsigned long pg_index;
572 struct page *page;
573 struct block_device *bdev;
574 struct bio *comp_bio;
575 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
576 u64 em_len;
577 u64 em_start;
578 struct extent_map *em;
579 int ret = -ENOMEM;
580 int faili = 0;
581 u32 *sums;
582
583 tree = &BTRFS_I(inode)->io_tree;
584 em_tree = &BTRFS_I(inode)->extent_tree;
585
586 /* we need the actual starting offset of this extent in the file */
587 read_lock(&em_tree->lock);
588 em = lookup_extent_mapping(em_tree,
589 page_offset(bio->bi_io_vec->bv_page),
590 PAGE_CACHE_SIZE);
591 read_unlock(&em_tree->lock);
592 if (!em)
593 return -EIO;
594
595 compressed_len = em->block_len;
596 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
597 if (!cb)
598 goto out;
599
600 atomic_set(&cb->pending_bios, 0);
601 cb->errors = 0;
602 cb->inode = inode;
603 cb->mirror_num = mirror_num;
604 sums = &cb->sums;
605
606 cb->start = em->orig_start;
607 em_len = em->len;
608 em_start = em->start;
609
610 free_extent_map(em);
611 em = NULL;
612
613 cb->len = uncompressed_len;
614 cb->compressed_len = compressed_len;
615 cb->compress_type = extent_compress_type(bio_flags);
616 cb->orig_bio = bio;
617
618 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
619 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
620 GFP_NOFS);
621 if (!cb->compressed_pages)
622 goto fail1;
623
624 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
625
626 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
628 __GFP_HIGHMEM);
629 if (!cb->compressed_pages[pg_index]) {
630 faili = pg_index - 1;
631 ret = -ENOMEM;
632 goto fail2;
633 }
634 }
635 faili = nr_pages - 1;
636 cb->nr_pages = nr_pages;
637
638 /* In the parent-locked case, we only locked the range we are
639 * interested in. In all other cases, we can opportunistically
640 * cache decompressed data that goes beyond the requested range. */
641 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
642 add_ra_bio_pages(inode, em_start + em_len, cb);
643
644 /* include any pages we added in add_ra-bio_pages */
645 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
646 cb->len = uncompressed_len;
647
648 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
649 if (!comp_bio)
650 goto fail2;
651 comp_bio->bi_private = cb;
652 comp_bio->bi_end_io = end_compressed_bio_read;
653 atomic_inc(&cb->pending_bios);
654
655 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
656 page = cb->compressed_pages[pg_index];
657 page->mapping = inode->i_mapping;
658 page->index = em_start >> PAGE_CACHE_SHIFT;
659
660 if (comp_bio->bi_iter.bi_size)
661 ret = tree->ops->merge_bio_hook(READ, page, 0,
662 PAGE_CACHE_SIZE,
663 comp_bio, 0);
664 else
665 ret = 0;
666
667 page->mapping = NULL;
668 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
669 PAGE_CACHE_SIZE) {
670 bio_get(comp_bio);
671
672 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
673 BTRFS_WQ_ENDIO_DATA);
674 BUG_ON(ret); /* -ENOMEM */
675
676 /*
677 * inc the count before we submit the bio so
678 * we know the end IO handler won't happen before
679 * we inc the count. Otherwise, the cb might get
680 * freed before we're done setting it up
681 */
682 atomic_inc(&cb->pending_bios);
683
684 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
685 ret = btrfs_lookup_bio_sums(root, inode,
686 comp_bio, sums);
687 BUG_ON(ret); /* -ENOMEM */
688 }
689 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
690 root->sectorsize);
691
692 ret = btrfs_map_bio(root, READ, comp_bio,
693 mirror_num, 0);
694 if (ret)
695 bio_endio(comp_bio, ret);
696
697 bio_put(comp_bio);
698
699 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
700 GFP_NOFS);
701 BUG_ON(!comp_bio);
702 comp_bio->bi_private = cb;
703 comp_bio->bi_end_io = end_compressed_bio_read;
704
705 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
706 }
707 cur_disk_byte += PAGE_CACHE_SIZE;
708 }
709 bio_get(comp_bio);
710
711 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
712 BTRFS_WQ_ENDIO_DATA);
713 BUG_ON(ret); /* -ENOMEM */
714
715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717 BUG_ON(ret); /* -ENOMEM */
718 }
719
720 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721 if (ret)
722 bio_endio(comp_bio, ret);
723
724 bio_put(comp_bio);
725 return 0;
726
727 fail2:
728 while (faili >= 0) {
729 __free_page(cb->compressed_pages[faili]);
730 faili--;
731 }
732
733 kfree(cb->compressed_pages);
734 fail1:
735 kfree(cb);
736 out:
737 free_extent_map(em);
738 return ret;
739 }
740
741 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
742 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
743 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
744 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
745 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
746
747 static struct btrfs_compress_op *btrfs_compress_op[] = {
748 &btrfs_zlib_compress,
749 &btrfs_lzo_compress,
750 };
751
752 void __init btrfs_init_compress(void)
753 {
754 int i;
755
756 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
757 INIT_LIST_HEAD(&comp_idle_workspace[i]);
758 spin_lock_init(&comp_workspace_lock[i]);
759 atomic_set(&comp_alloc_workspace[i], 0);
760 init_waitqueue_head(&comp_workspace_wait[i]);
761 }
762 }
763
764 /*
765 * this finds an available workspace or allocates a new one
766 * ERR_PTR is returned if things go bad.
767 */
768 static struct list_head *find_workspace(int type)
769 {
770 struct list_head *workspace;
771 int cpus = num_online_cpus();
772 int idx = type - 1;
773
774 struct list_head *idle_workspace = &comp_idle_workspace[idx];
775 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
776 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
777 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
778 int *num_workspace = &comp_num_workspace[idx];
779 again:
780 spin_lock(workspace_lock);
781 if (!list_empty(idle_workspace)) {
782 workspace = idle_workspace->next;
783 list_del(workspace);
784 (*num_workspace)--;
785 spin_unlock(workspace_lock);
786 return workspace;
787
788 }
789 if (atomic_read(alloc_workspace) > cpus) {
790 DEFINE_WAIT(wait);
791
792 spin_unlock(workspace_lock);
793 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
794 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
795 schedule();
796 finish_wait(workspace_wait, &wait);
797 goto again;
798 }
799 atomic_inc(alloc_workspace);
800 spin_unlock(workspace_lock);
801
802 workspace = btrfs_compress_op[idx]->alloc_workspace();
803 if (IS_ERR(workspace)) {
804 atomic_dec(alloc_workspace);
805 wake_up(workspace_wait);
806 }
807 return workspace;
808 }
809
810 /*
811 * put a workspace struct back on the list or free it if we have enough
812 * idle ones sitting around
813 */
814 static void free_workspace(int type, struct list_head *workspace)
815 {
816 int idx = type - 1;
817 struct list_head *idle_workspace = &comp_idle_workspace[idx];
818 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
819 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
820 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
821 int *num_workspace = &comp_num_workspace[idx];
822
823 spin_lock(workspace_lock);
824 if (*num_workspace < num_online_cpus()) {
825 list_add(workspace, idle_workspace);
826 (*num_workspace)++;
827 spin_unlock(workspace_lock);
828 goto wake;
829 }
830 spin_unlock(workspace_lock);
831
832 btrfs_compress_op[idx]->free_workspace(workspace);
833 atomic_dec(alloc_workspace);
834 wake:
835 smp_mb();
836 if (waitqueue_active(workspace_wait))
837 wake_up(workspace_wait);
838 }
839
840 /*
841 * cleanup function for module exit
842 */
843 static void free_workspaces(void)
844 {
845 struct list_head *workspace;
846 int i;
847
848 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
849 while (!list_empty(&comp_idle_workspace[i])) {
850 workspace = comp_idle_workspace[i].next;
851 list_del(workspace);
852 btrfs_compress_op[i]->free_workspace(workspace);
853 atomic_dec(&comp_alloc_workspace[i]);
854 }
855 }
856 }
857
858 /*
859 * given an address space and start/len, compress the bytes.
860 *
861 * pages are allocated to hold the compressed result and stored
862 * in 'pages'
863 *
864 * out_pages is used to return the number of pages allocated. There
865 * may be pages allocated even if we return an error
866 *
867 * total_in is used to return the number of bytes actually read. It
868 * may be smaller then len if we had to exit early because we
869 * ran out of room in the pages array or because we cross the
870 * max_out threshold.
871 *
872 * total_out is used to return the total number of compressed bytes
873 *
874 * max_out tells us the max number of bytes that we're allowed to
875 * stuff into pages
876 */
877 int btrfs_compress_pages(int type, struct address_space *mapping,
878 u64 start, unsigned long len,
879 struct page **pages,
880 unsigned long nr_dest_pages,
881 unsigned long *out_pages,
882 unsigned long *total_in,
883 unsigned long *total_out,
884 unsigned long max_out)
885 {
886 struct list_head *workspace;
887 int ret;
888
889 workspace = find_workspace(type);
890 if (IS_ERR(workspace))
891 return PTR_ERR(workspace);
892
893 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 start, len, pages,
895 nr_dest_pages, out_pages,
896 total_in, total_out,
897 max_out);
898 free_workspace(type, workspace);
899 return ret;
900 }
901
902 /*
903 * pages_in is an array of pages with compressed data.
904 *
905 * disk_start is the starting logical offset of this array in the file
906 *
907 * bvec is a bio_vec of pages from the file that we want to decompress into
908 *
909 * vcnt is the count of pages in the biovec
910 *
911 * srclen is the number of bytes in pages_in
912 *
913 * The basic idea is that we have a bio that was created by readpages.
914 * The pages in the bio are for the uncompressed data, and they may not
915 * be contiguous. They all correspond to the range of bytes covered by
916 * the compressed extent.
917 */
918 static int btrfs_decompress_biovec(int type, struct page **pages_in,
919 u64 disk_start, struct bio_vec *bvec,
920 int vcnt, size_t srclen)
921 {
922 struct list_head *workspace;
923 int ret;
924
925 workspace = find_workspace(type);
926 if (IS_ERR(workspace))
927 return PTR_ERR(workspace);
928
929 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
930 disk_start,
931 bvec, vcnt, srclen);
932 free_workspace(type, workspace);
933 return ret;
934 }
935
936 /*
937 * a less complex decompression routine. Our compressed data fits in a
938 * single page, and we want to read a single page out of it.
939 * start_byte tells us the offset into the compressed data we're interested in
940 */
941 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
942 unsigned long start_byte, size_t srclen, size_t destlen)
943 {
944 struct list_head *workspace;
945 int ret;
946
947 workspace = find_workspace(type);
948 if (IS_ERR(workspace))
949 return PTR_ERR(workspace);
950
951 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
952 dest_page, start_byte,
953 srclen, destlen);
954
955 free_workspace(type, workspace);
956 return ret;
957 }
958
959 void btrfs_exit_compress(void)
960 {
961 free_workspaces();
962 }
963
964 /*
965 * Copy uncompressed data from working buffer to pages.
966 *
967 * buf_start is the byte offset we're of the start of our workspace buffer.
968 *
969 * total_out is the last byte of the buffer
970 */
971 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
972 unsigned long total_out, u64 disk_start,
973 struct bio_vec *bvec, int vcnt,
974 unsigned long *pg_index,
975 unsigned long *pg_offset)
976 {
977 unsigned long buf_offset;
978 unsigned long current_buf_start;
979 unsigned long start_byte;
980 unsigned long working_bytes = total_out - buf_start;
981 unsigned long bytes;
982 char *kaddr;
983 struct page *page_out = bvec[*pg_index].bv_page;
984
985 /*
986 * start byte is the first byte of the page we're currently
987 * copying into relative to the start of the compressed data.
988 */
989 start_byte = page_offset(page_out) - disk_start;
990
991 /* we haven't yet hit data corresponding to this page */
992 if (total_out <= start_byte)
993 return 1;
994
995 /*
996 * the start of the data we care about is offset into
997 * the middle of our working buffer
998 */
999 if (total_out > start_byte && buf_start < start_byte) {
1000 buf_offset = start_byte - buf_start;
1001 working_bytes -= buf_offset;
1002 } else {
1003 buf_offset = 0;
1004 }
1005 current_buf_start = buf_start;
1006
1007 /* copy bytes from the working buffer into the pages */
1008 while (working_bytes > 0) {
1009 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1010 PAGE_CACHE_SIZE - buf_offset);
1011 bytes = min(bytes, working_bytes);
1012 kaddr = kmap_atomic(page_out);
1013 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1014 if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1015 memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1016 kunmap_atomic(kaddr);
1017 flush_dcache_page(page_out);
1018
1019 *pg_offset += bytes;
1020 buf_offset += bytes;
1021 working_bytes -= bytes;
1022 current_buf_start += bytes;
1023
1024 /* check if we need to pick another page */
1025 if (*pg_offset == PAGE_CACHE_SIZE) {
1026 (*pg_index)++;
1027 if (*pg_index >= vcnt)
1028 return 0;
1029
1030 page_out = bvec[*pg_index].bv_page;
1031 *pg_offset = 0;
1032 start_byte = page_offset(page_out) - disk_start;
1033
1034 /*
1035 * make sure our new page is covered by this
1036 * working buffer
1037 */
1038 if (total_out <= start_byte)
1039 return 1;
1040
1041 /*
1042 * the next page in the biovec might not be adjacent
1043 * to the last page, but it might still be found
1044 * inside this working buffer. bump our offset pointer
1045 */
1046 if (total_out > start_byte &&
1047 current_buf_start < start_byte) {
1048 buf_offset = start_byte - buf_start;
1049 working_bytes = total_out - start_byte;
1050 current_buf_start = buf_start + buf_offset;
1051 }
1052 }
1053 }
1054
1055 return 1;
1056 }