2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
45 struct compressed_bio
{
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios
;
49 /* the pages with the compressed data on them */
50 struct page
**compressed_pages
;
52 /* inode that owns this data */
55 /* starting offset in the inode for our pages */
58 /* number of bytes in the inode we're working on */
61 /* number of bytes on disk */
62 unsigned long compressed_len
;
64 /* the compression algorithm for this bio */
67 /* number of compressed pages in the array */
68 unsigned long nr_pages
;
74 /* for reads, this is the bio we are copying the data into */
78 * the start of a variable length array of checksums only
84 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
85 u64 disk_start
, struct bio_vec
*bvec
,
86 int vcnt
, size_t srclen
);
88 static inline int compressed_bio_size(struct btrfs_root
*root
,
89 unsigned long disk_size
)
91 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
93 return sizeof(struct compressed_bio
) +
94 (DIV_ROUND_UP(disk_size
, root
->sectorsize
)) * csum_size
;
97 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
98 u64 first_byte
, gfp_t gfp_flags
)
100 return btrfs_bio_alloc(bdev
, first_byte
>> 9, BIO_MAX_PAGES
, gfp_flags
);
103 static int check_compressed_csum(struct inode
*inode
,
104 struct compressed_bio
*cb
,
112 u32
*cb_sum
= &cb
->sums
;
114 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
117 for (i
= 0; i
< cb
->nr_pages
; i
++) {
118 page
= cb
->compressed_pages
[i
];
121 kaddr
= kmap_atomic(page
);
122 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_SIZE
);
123 btrfs_csum_final(csum
, (char *)&csum
);
124 kunmap_atomic(kaddr
);
126 if (csum
!= *cb_sum
) {
127 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 btrfs_ino(inode
), disk_start
, csum
, *cb_sum
,
142 /* when we finish reading compressed pages from the disk, we
143 * decompress them and then run the bio end_io routines on the
144 * decompressed pages (in the inode address space).
146 * This allows the checksumming and other IO error handling routines
149 * The compressed pages are freed here, and it must be run
152 static void end_compressed_bio_read(struct bio
*bio
)
154 struct compressed_bio
*cb
= bio
->bi_private
;
163 /* if there are more bios still pending for this compressed
166 if (!atomic_dec_and_test(&cb
->pending_bios
))
170 ret
= check_compressed_csum(inode
, cb
,
171 (u64
)bio
->bi_iter
.bi_sector
<< 9);
175 /* ok, we're the last bio for this extent, lets start
178 ret
= btrfs_decompress_biovec(cb
->compress_type
,
179 cb
->compressed_pages
,
181 cb
->orig_bio
->bi_io_vec
,
182 cb
->orig_bio
->bi_vcnt
,
188 /* release the compressed pages */
190 for (index
= 0; index
< cb
->nr_pages
; index
++) {
191 page
= cb
->compressed_pages
[index
];
192 page
->mapping
= NULL
;
196 /* do io completion on the original bio */
198 bio_io_error(cb
->orig_bio
);
201 struct bio_vec
*bvec
;
204 * we have verified the checksum already, set page
205 * checked so the end_io handlers know about it
207 bio_for_each_segment_all(bvec
, cb
->orig_bio
, i
)
208 SetPageChecked(bvec
->bv_page
);
210 bio_endio(cb
->orig_bio
);
213 /* finally free the cb struct */
214 kfree(cb
->compressed_pages
);
221 * Clear the writeback bits on all of the file
222 * pages for a compressed write
224 static noinline
void end_compressed_writeback(struct inode
*inode
,
225 const struct compressed_bio
*cb
)
227 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
228 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
229 struct page
*pages
[16];
230 unsigned long nr_pages
= end_index
- index
+ 1;
235 mapping_set_error(inode
->i_mapping
, -EIO
);
237 while (nr_pages
> 0) {
238 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
240 nr_pages
, ARRAY_SIZE(pages
)), pages
);
246 for (i
= 0; i
< ret
; i
++) {
248 SetPageError(pages
[i
]);
249 end_page_writeback(pages
[i
]);
255 /* the inode may be gone now */
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
266 static void end_compressed_bio_write(struct bio
*bio
)
268 struct extent_io_tree
*tree
;
269 struct compressed_bio
*cb
= bio
->bi_private
;
277 /* if there are more bios still pending for this compressed
280 if (!atomic_dec_and_test(&cb
->pending_bios
))
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
287 tree
= &BTRFS_I(inode
)->io_tree
;
288 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
289 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
291 cb
->start
+ cb
->len
- 1,
293 bio
->bi_error
? 0 : 1);
294 cb
->compressed_pages
[0]->mapping
= NULL
;
296 end_compressed_writeback(inode
, cb
);
297 /* note, our inode could be gone now */
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
304 for (index
= 0; index
< cb
->nr_pages
; index
++) {
305 page
= cb
->compressed_pages
[index
];
306 page
->mapping
= NULL
;
310 /* finally free the cb struct */
311 kfree(cb
->compressed_pages
);
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
323 * This also checksums the file bytes and gets things ready for
326 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
327 unsigned long len
, u64 disk_start
,
328 unsigned long compressed_len
,
329 struct page
**compressed_pages
,
330 unsigned long nr_pages
)
332 struct bio
*bio
= NULL
;
333 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
334 struct compressed_bio
*cb
;
335 unsigned long bytes_left
;
336 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
339 u64 first_byte
= disk_start
;
340 struct block_device
*bdev
;
342 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
344 WARN_ON(start
& ((u64
)PAGE_SIZE
- 1));
345 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
348 atomic_set(&cb
->pending_bios
, 0);
354 cb
->compressed_pages
= compressed_pages
;
355 cb
->compressed_len
= compressed_len
;
357 cb
->nr_pages
= nr_pages
;
359 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
361 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
366 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
367 bio
->bi_private
= cb
;
368 bio
->bi_end_io
= end_compressed_bio_write
;
369 atomic_inc(&cb
->pending_bios
);
371 /* create and submit bios for the compressed pages */
372 bytes_left
= compressed_len
;
373 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
374 page
= compressed_pages
[pg_index
];
375 page
->mapping
= inode
->i_mapping
;
376 if (bio
->bi_iter
.bi_size
)
377 ret
= io_tree
->ops
->merge_bio_hook(page
, 0,
383 page
->mapping
= NULL
;
384 if (ret
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
389 * inc the count before we submit the bio so
390 * we know the end IO handler won't happen before
391 * we inc the count. Otherwise, the cb might get
392 * freed before we're done setting it up
394 atomic_inc(&cb
->pending_bios
);
395 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
396 BTRFS_WQ_ENDIO_DATA
);
397 BUG_ON(ret
); /* -ENOMEM */
400 ret
= btrfs_csum_one_bio(root
, inode
, bio
,
402 BUG_ON(ret
); /* -ENOMEM */
405 ret
= btrfs_map_bio(root
, bio
, 0, 1);
413 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
415 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
416 bio
->bi_private
= cb
;
417 bio
->bi_end_io
= end_compressed_bio_write
;
418 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
420 if (bytes_left
< PAGE_SIZE
) {
421 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
422 "bytes left %lu compress len %lu nr %lu",
423 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
425 bytes_left
-= PAGE_SIZE
;
426 first_byte
+= PAGE_SIZE
;
431 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
432 BUG_ON(ret
); /* -ENOMEM */
435 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
436 BUG_ON(ret
); /* -ENOMEM */
439 ret
= btrfs_map_bio(root
, bio
, 0, 1);
449 static noinline
int add_ra_bio_pages(struct inode
*inode
,
451 struct compressed_bio
*cb
)
453 unsigned long end_index
;
454 unsigned long pg_index
;
456 u64 isize
= i_size_read(inode
);
459 unsigned long nr_pages
= 0;
460 struct extent_map
*em
;
461 struct address_space
*mapping
= inode
->i_mapping
;
462 struct extent_map_tree
*em_tree
;
463 struct extent_io_tree
*tree
;
467 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
468 last_offset
= (page_offset(page
) + PAGE_SIZE
);
469 em_tree
= &BTRFS_I(inode
)->extent_tree
;
470 tree
= &BTRFS_I(inode
)->io_tree
;
475 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
477 while (last_offset
< compressed_end
) {
478 pg_index
= last_offset
>> PAGE_SHIFT
;
480 if (pg_index
> end_index
)
484 page
= radix_tree_lookup(&mapping
->page_tree
, pg_index
);
486 if (page
&& !radix_tree_exceptional_entry(page
)) {
493 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
498 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
503 end
= last_offset
+ PAGE_SIZE
- 1;
505 * at this point, we have a locked page in the page cache
506 * for these bytes in the file. But, we have to make
507 * sure they map to this compressed extent on disk.
509 set_page_extent_mapped(page
);
510 lock_extent(tree
, last_offset
, end
);
511 read_lock(&em_tree
->lock
);
512 em
= lookup_extent_mapping(em_tree
, last_offset
,
514 read_unlock(&em_tree
->lock
);
516 if (!em
|| last_offset
< em
->start
||
517 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
518 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
520 unlock_extent(tree
, last_offset
, end
);
527 if (page
->index
== end_index
) {
529 size_t zero_offset
= isize
& (PAGE_SIZE
- 1);
533 zeros
= PAGE_SIZE
- zero_offset
;
534 userpage
= kmap_atomic(page
);
535 memset(userpage
+ zero_offset
, 0, zeros
);
536 flush_dcache_page(page
);
537 kunmap_atomic(userpage
);
541 ret
= bio_add_page(cb
->orig_bio
, page
,
544 if (ret
== PAGE_SIZE
) {
548 unlock_extent(tree
, last_offset
, end
);
554 last_offset
+= PAGE_SIZE
;
560 * for a compressed read, the bio we get passed has all the inode pages
561 * in it. We don't actually do IO on those pages but allocate new ones
562 * to hold the compressed pages on disk.
564 * bio->bi_iter.bi_sector points to the compressed extent on disk
565 * bio->bi_io_vec points to all of the inode pages
566 * bio->bi_vcnt is a count of pages
568 * After the compressed pages are read, we copy the bytes into the
569 * bio we were passed and then call the bio end_io calls
571 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
572 int mirror_num
, unsigned long bio_flags
)
574 struct extent_io_tree
*tree
;
575 struct extent_map_tree
*em_tree
;
576 struct compressed_bio
*cb
;
577 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
578 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_SIZE
;
579 unsigned long compressed_len
;
580 unsigned long nr_pages
;
581 unsigned long pg_index
;
583 struct block_device
*bdev
;
584 struct bio
*comp_bio
;
585 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
588 struct extent_map
*em
;
593 tree
= &BTRFS_I(inode
)->io_tree
;
594 em_tree
= &BTRFS_I(inode
)->extent_tree
;
596 /* we need the actual starting offset of this extent in the file */
597 read_lock(&em_tree
->lock
);
598 em
= lookup_extent_mapping(em_tree
,
599 page_offset(bio
->bi_io_vec
->bv_page
),
601 read_unlock(&em_tree
->lock
);
605 compressed_len
= em
->block_len
;
606 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
610 atomic_set(&cb
->pending_bios
, 0);
613 cb
->mirror_num
= mirror_num
;
616 cb
->start
= em
->orig_start
;
618 em_start
= em
->start
;
623 cb
->len
= uncompressed_len
;
624 cb
->compressed_len
= compressed_len
;
625 cb
->compress_type
= extent_compress_type(bio_flags
);
628 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
629 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
631 if (!cb
->compressed_pages
)
634 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
636 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
637 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
639 if (!cb
->compressed_pages
[pg_index
]) {
640 faili
= pg_index
- 1;
645 faili
= nr_pages
- 1;
646 cb
->nr_pages
= nr_pages
;
648 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
650 /* include any pages we added in add_ra-bio_pages */
651 uncompressed_len
= bio
->bi_vcnt
* PAGE_SIZE
;
652 cb
->len
= uncompressed_len
;
654 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
657 bio_set_op_attrs (comp_bio
, REQ_OP_READ
, 0);
658 comp_bio
->bi_private
= cb
;
659 comp_bio
->bi_end_io
= end_compressed_bio_read
;
660 atomic_inc(&cb
->pending_bios
);
662 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
663 page
= cb
->compressed_pages
[pg_index
];
664 page
->mapping
= inode
->i_mapping
;
665 page
->index
= em_start
>> PAGE_SHIFT
;
667 if (comp_bio
->bi_iter
.bi_size
)
668 ret
= tree
->ops
->merge_bio_hook(page
, 0,
674 page
->mapping
= NULL
;
675 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
679 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
,
680 BTRFS_WQ_ENDIO_DATA
);
681 BUG_ON(ret
); /* -ENOMEM */
684 * inc the count before we submit the bio so
685 * we know the end IO handler won't happen before
686 * we inc the count. Otherwise, the cb might get
687 * freed before we're done setting it up
689 atomic_inc(&cb
->pending_bios
);
691 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
692 ret
= btrfs_lookup_bio_sums(root
, inode
,
694 BUG_ON(ret
); /* -ENOMEM */
696 sums
+= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
699 ret
= btrfs_map_bio(root
, comp_bio
, mirror_num
, 0);
701 comp_bio
->bi_error
= ret
;
707 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
710 bio_set_op_attrs(comp_bio
, REQ_OP_READ
, 0);
711 comp_bio
->bi_private
= cb
;
712 comp_bio
->bi_end_io
= end_compressed_bio_read
;
714 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
716 cur_disk_byte
+= PAGE_SIZE
;
720 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
,
721 BTRFS_WQ_ENDIO_DATA
);
722 BUG_ON(ret
); /* -ENOMEM */
724 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
725 ret
= btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
726 BUG_ON(ret
); /* -ENOMEM */
729 ret
= btrfs_map_bio(root
, comp_bio
, mirror_num
, 0);
731 comp_bio
->bi_error
= ret
;
740 __free_page(cb
->compressed_pages
[faili
]);
744 kfree(cb
->compressed_pages
);
753 struct list_head idle_ws
;
755 /* Number of free workspaces */
757 /* Total number of allocated workspaces */
759 /* Waiters for a free workspace */
760 wait_queue_head_t ws_wait
;
761 } btrfs_comp_ws
[BTRFS_COMPRESS_TYPES
];
763 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
764 &btrfs_zlib_compress
,
768 void __init
btrfs_init_compress(void)
772 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
773 struct list_head
*workspace
;
775 INIT_LIST_HEAD(&btrfs_comp_ws
[i
].idle_ws
);
776 spin_lock_init(&btrfs_comp_ws
[i
].ws_lock
);
777 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 0);
778 init_waitqueue_head(&btrfs_comp_ws
[i
].ws_wait
);
781 * Preallocate one workspace for each compression type so
782 * we can guarantee forward progress in the worst case
784 workspace
= btrfs_compress_op
[i
]->alloc_workspace();
785 if (IS_ERR(workspace
)) {
786 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
788 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 1);
789 btrfs_comp_ws
[i
].free_ws
= 1;
790 list_add(workspace
, &btrfs_comp_ws
[i
].idle_ws
);
796 * This finds an available workspace or allocates a new one.
797 * If it's not possible to allocate a new one, waits until there's one.
798 * Preallocation makes a forward progress guarantees and we do not return
801 static struct list_head
*find_workspace(int type
)
803 struct list_head
*workspace
;
804 int cpus
= num_online_cpus();
807 struct list_head
*idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
808 spinlock_t
*ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
809 atomic_t
*total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
810 wait_queue_head_t
*ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
811 int *free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
814 if (!list_empty(idle_ws
)) {
815 workspace
= idle_ws
->next
;
818 spin_unlock(ws_lock
);
822 if (atomic_read(total_ws
) > cpus
) {
825 spin_unlock(ws_lock
);
826 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
827 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
829 finish_wait(ws_wait
, &wait
);
832 atomic_inc(total_ws
);
833 spin_unlock(ws_lock
);
835 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
836 if (IS_ERR(workspace
)) {
837 atomic_dec(total_ws
);
841 * Do not return the error but go back to waiting. There's a
842 * workspace preallocated for each type and the compression
843 * time is bounded so we get to a workspace eventually. This
844 * makes our caller's life easier.
846 * To prevent silent and low-probability deadlocks (when the
847 * initial preallocation fails), check if there are any
850 if (atomic_read(total_ws
) == 0) {
851 static DEFINE_RATELIMIT_STATE(_rs
,
852 /* once per minute */ 60 * HZ
,
855 if (__ratelimit(&_rs
)) {
856 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
865 * put a workspace struct back on the list or free it if we have enough
866 * idle ones sitting around
868 static void free_workspace(int type
, struct list_head
*workspace
)
871 struct list_head
*idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
872 spinlock_t
*ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
873 atomic_t
*total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
874 wait_queue_head_t
*ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
875 int *free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
878 if (*free_ws
< num_online_cpus()) {
879 list_add(workspace
, idle_ws
);
881 spin_unlock(ws_lock
);
884 spin_unlock(ws_lock
);
886 btrfs_compress_op
[idx
]->free_workspace(workspace
);
887 atomic_dec(total_ws
);
890 * Make sure counter is updated before we wake up waiters.
893 if (waitqueue_active(ws_wait
))
898 * cleanup function for module exit
900 static void free_workspaces(void)
902 struct list_head
*workspace
;
905 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
906 while (!list_empty(&btrfs_comp_ws
[i
].idle_ws
)) {
907 workspace
= btrfs_comp_ws
[i
].idle_ws
.next
;
909 btrfs_compress_op
[i
]->free_workspace(workspace
);
910 atomic_dec(&btrfs_comp_ws
[i
].total_ws
);
916 * given an address space and start/len, compress the bytes.
918 * pages are allocated to hold the compressed result and stored
921 * out_pages is used to return the number of pages allocated. There
922 * may be pages allocated even if we return an error
924 * total_in is used to return the number of bytes actually read. It
925 * may be smaller then len if we had to exit early because we
926 * ran out of room in the pages array or because we cross the
929 * total_out is used to return the total number of compressed bytes
931 * max_out tells us the max number of bytes that we're allowed to
934 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
935 u64 start
, unsigned long len
,
937 unsigned long nr_dest_pages
,
938 unsigned long *out_pages
,
939 unsigned long *total_in
,
940 unsigned long *total_out
,
941 unsigned long max_out
)
943 struct list_head
*workspace
;
946 workspace
= find_workspace(type
);
948 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
950 nr_dest_pages
, out_pages
,
953 free_workspace(type
, workspace
);
958 * pages_in is an array of pages with compressed data.
960 * disk_start is the starting logical offset of this array in the file
962 * bvec is a bio_vec of pages from the file that we want to decompress into
964 * vcnt is the count of pages in the biovec
966 * srclen is the number of bytes in pages_in
968 * The basic idea is that we have a bio that was created by readpages.
969 * The pages in the bio are for the uncompressed data, and they may not
970 * be contiguous. They all correspond to the range of bytes covered by
971 * the compressed extent.
973 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
974 u64 disk_start
, struct bio_vec
*bvec
,
975 int vcnt
, size_t srclen
)
977 struct list_head
*workspace
;
980 workspace
= find_workspace(type
);
982 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
985 free_workspace(type
, workspace
);
990 * a less complex decompression routine. Our compressed data fits in a
991 * single page, and we want to read a single page out of it.
992 * start_byte tells us the offset into the compressed data we're interested in
994 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
995 unsigned long start_byte
, size_t srclen
, size_t destlen
)
997 struct list_head
*workspace
;
1000 workspace
= find_workspace(type
);
1002 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
1003 dest_page
, start_byte
,
1006 free_workspace(type
, workspace
);
1010 void btrfs_exit_compress(void)
1016 * Copy uncompressed data from working buffer to pages.
1018 * buf_start is the byte offset we're of the start of our workspace buffer.
1020 * total_out is the last byte of the buffer
1022 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
1023 unsigned long total_out
, u64 disk_start
,
1024 struct bio_vec
*bvec
, int vcnt
,
1025 unsigned long *pg_index
,
1026 unsigned long *pg_offset
)
1028 unsigned long buf_offset
;
1029 unsigned long current_buf_start
;
1030 unsigned long start_byte
;
1031 unsigned long working_bytes
= total_out
- buf_start
;
1032 unsigned long bytes
;
1034 struct page
*page_out
= bvec
[*pg_index
].bv_page
;
1037 * start byte is the first byte of the page we're currently
1038 * copying into relative to the start of the compressed data.
1040 start_byte
= page_offset(page_out
) - disk_start
;
1042 /* we haven't yet hit data corresponding to this page */
1043 if (total_out
<= start_byte
)
1047 * the start of the data we care about is offset into
1048 * the middle of our working buffer
1050 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1051 buf_offset
= start_byte
- buf_start
;
1052 working_bytes
-= buf_offset
;
1056 current_buf_start
= buf_start
;
1058 /* copy bytes from the working buffer into the pages */
1059 while (working_bytes
> 0) {
1060 bytes
= min(PAGE_SIZE
- *pg_offset
,
1061 PAGE_SIZE
- buf_offset
);
1062 bytes
= min(bytes
, working_bytes
);
1063 kaddr
= kmap_atomic(page_out
);
1064 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
1065 kunmap_atomic(kaddr
);
1066 flush_dcache_page(page_out
);
1068 *pg_offset
+= bytes
;
1069 buf_offset
+= bytes
;
1070 working_bytes
-= bytes
;
1071 current_buf_start
+= bytes
;
1073 /* check if we need to pick another page */
1074 if (*pg_offset
== PAGE_SIZE
) {
1076 if (*pg_index
>= vcnt
)
1079 page_out
= bvec
[*pg_index
].bv_page
;
1081 start_byte
= page_offset(page_out
) - disk_start
;
1084 * make sure our new page is covered by this
1087 if (total_out
<= start_byte
)
1091 * the next page in the biovec might not be adjacent
1092 * to the last page, but it might still be found
1093 * inside this working buffer. bump our offset pointer
1095 if (total_out
> start_byte
&&
1096 current_buf_start
< start_byte
) {
1097 buf_offset
= start_byte
- buf_start
;
1098 working_bytes
= total_out
- start_byte
;
1099 current_buf_start
= buf_start
+ buf_offset
;
1108 * When uncompressing data, we need to make sure and zero any parts of
1109 * the biovec that were not filled in by the decompression code. pg_index
1110 * and pg_offset indicate the last page and the last offset of that page
1111 * that have been filled in. This will zero everything remaining in the
1114 void btrfs_clear_biovec_end(struct bio_vec
*bvec
, int vcnt
,
1115 unsigned long pg_index
,
1116 unsigned long pg_offset
)
1118 while (pg_index
< vcnt
) {
1119 struct page
*page
= bvec
[pg_index
].bv_page
;
1120 unsigned long off
= bvec
[pg_index
].bv_offset
;
1121 unsigned long len
= bvec
[pg_index
].bv_len
;
1123 if (pg_offset
< off
)
1125 if (pg_offset
< off
+ len
) {
1126 unsigned long bytes
= off
+ len
- pg_offset
;
1129 kaddr
= kmap_atomic(page
);
1130 memset(kaddr
+ pg_offset
, 0, bytes
);
1131 kunmap_atomic(kaddr
);