]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ctree.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
31
32 static const struct btrfs_csums {
33 u16 size;
34 const char *name;
35 const char *driver;
36 } btrfs_csums[] = {
37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 .driver = "blake2b-256" },
42 };
43
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 u16 t = btrfs_super_csum_type(s);
47 /*
48 * csum type is validated at mount time
49 */
50 return btrfs_csums[t].size;
51 }
52
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 /* csum type is validated at mount time */
56 return btrfs_csums[csum_type].name;
57 }
58
59 /*
60 * Return driver name if defined, otherwise the name that's also a valid driver
61 * name
62 */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 /* csum type is validated at mount time */
66 return btrfs_csums[csum_type].driver ?:
67 btrfs_csums[csum_type].name;
68 }
69
70 size_t __const btrfs_get_num_csums(void)
71 {
72 return ARRAY_SIZE(btrfs_csums);
73 }
74
75 struct btrfs_path *btrfs_alloc_path(void)
76 {
77 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
78 }
79
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path *p)
82 {
83 if (!p)
84 return;
85 btrfs_release_path(p);
86 kmem_cache_free(btrfs_path_cachep, p);
87 }
88
89 /*
90 * path release drops references on the extent buffers in the path
91 * and it drops any locks held by this path
92 *
93 * It is safe to call this on paths that no locks or extent buffers held.
94 */
95 noinline void btrfs_release_path(struct btrfs_path *p)
96 {
97 int i;
98
99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100 p->slots[i] = 0;
101 if (!p->nodes[i])
102 continue;
103 if (p->locks[i]) {
104 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
105 p->locks[i] = 0;
106 }
107 free_extent_buffer(p->nodes[i]);
108 p->nodes[i] = NULL;
109 }
110 }
111
112 /*
113 * safely gets a reference on the root node of a tree. A lock
114 * is not taken, so a concurrent writer may put a different node
115 * at the root of the tree. See btrfs_lock_root_node for the
116 * looping required.
117 *
118 * The extent buffer returned by this has a reference taken, so
119 * it won't disappear. It may stop being the root of the tree
120 * at any time because there are no locks held.
121 */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124 struct extent_buffer *eb;
125
126 while (1) {
127 rcu_read_lock();
128 eb = rcu_dereference(root->node);
129
130 /*
131 * RCU really hurts here, we could free up the root node because
132 * it was COWed but we may not get the new root node yet so do
133 * the inc_not_zero dance and if it doesn't work then
134 * synchronize_rcu and try again.
135 */
136 if (atomic_inc_not_zero(&eb->refs)) {
137 rcu_read_unlock();
138 break;
139 }
140 rcu_read_unlock();
141 synchronize_rcu();
142 }
143 return eb;
144 }
145
146 /* loop around taking references on and locking the root node of the
147 * tree until you end up with a lock on the root. A locked buffer
148 * is returned, with a reference held.
149 */
150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
151 {
152 struct extent_buffer *eb;
153
154 while (1) {
155 eb = btrfs_root_node(root);
156 btrfs_tree_lock(eb);
157 if (eb == root->node)
158 break;
159 btrfs_tree_unlock(eb);
160 free_extent_buffer(eb);
161 }
162 return eb;
163 }
164
165 /* loop around taking references on and locking the root node of the
166 * tree until you end up with a lock on the root. A locked buffer
167 * is returned, with a reference held.
168 */
169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
170 {
171 struct extent_buffer *eb;
172
173 while (1) {
174 eb = btrfs_root_node(root);
175 btrfs_tree_read_lock(eb);
176 if (eb == root->node)
177 break;
178 btrfs_tree_read_unlock(eb);
179 free_extent_buffer(eb);
180 }
181 return eb;
182 }
183
184 /* cowonly root (everything not a reference counted cow subvolume), just get
185 * put onto a simple dirty list. transaction.c walks this to make sure they
186 * get properly updated on disk.
187 */
188 static void add_root_to_dirty_list(struct btrfs_root *root)
189 {
190 struct btrfs_fs_info *fs_info = root->fs_info;
191
192 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
193 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
194 return;
195
196 spin_lock(&fs_info->trans_lock);
197 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
198 /* Want the extent tree to be the last on the list */
199 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
200 list_move_tail(&root->dirty_list,
201 &fs_info->dirty_cowonly_roots);
202 else
203 list_move(&root->dirty_list,
204 &fs_info->dirty_cowonly_roots);
205 }
206 spin_unlock(&fs_info->trans_lock);
207 }
208
209 /*
210 * used by snapshot creation to make a copy of a root for a tree with
211 * a given objectid. The buffer with the new root node is returned in
212 * cow_ret, and this func returns zero on success or a negative error code.
213 */
214 int btrfs_copy_root(struct btrfs_trans_handle *trans,
215 struct btrfs_root *root,
216 struct extent_buffer *buf,
217 struct extent_buffer **cow_ret, u64 new_root_objectid)
218 {
219 struct btrfs_fs_info *fs_info = root->fs_info;
220 struct extent_buffer *cow;
221 int ret = 0;
222 int level;
223 struct btrfs_disk_key disk_key;
224
225 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
226 trans->transid != fs_info->running_transaction->transid);
227 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
228 trans->transid != root->last_trans);
229
230 level = btrfs_header_level(buf);
231 if (level == 0)
232 btrfs_item_key(buf, &disk_key, 0);
233 else
234 btrfs_node_key(buf, &disk_key, 0);
235
236 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
237 &disk_key, level, buf->start, 0);
238 if (IS_ERR(cow))
239 return PTR_ERR(cow);
240
241 copy_extent_buffer_full(cow, buf);
242 btrfs_set_header_bytenr(cow, cow->start);
243 btrfs_set_header_generation(cow, trans->transid);
244 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
245 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
246 BTRFS_HEADER_FLAG_RELOC);
247 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
248 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
249 else
250 btrfs_set_header_owner(cow, new_root_objectid);
251
252 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
253
254 WARN_ON(btrfs_header_generation(buf) > trans->transid);
255 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
256 ret = btrfs_inc_ref(trans, root, cow, 1);
257 else
258 ret = btrfs_inc_ref(trans, root, cow, 0);
259
260 if (ret)
261 return ret;
262
263 btrfs_mark_buffer_dirty(cow);
264 *cow_ret = cow;
265 return 0;
266 }
267
268 enum mod_log_op {
269 MOD_LOG_KEY_REPLACE,
270 MOD_LOG_KEY_ADD,
271 MOD_LOG_KEY_REMOVE,
272 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
273 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
274 MOD_LOG_MOVE_KEYS,
275 MOD_LOG_ROOT_REPLACE,
276 };
277
278 struct tree_mod_root {
279 u64 logical;
280 u8 level;
281 };
282
283 struct tree_mod_elem {
284 struct rb_node node;
285 u64 logical;
286 u64 seq;
287 enum mod_log_op op;
288
289 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
290 int slot;
291
292 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
293 u64 generation;
294
295 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
296 struct btrfs_disk_key key;
297 u64 blockptr;
298
299 /* this is used for op == MOD_LOG_MOVE_KEYS */
300 struct {
301 int dst_slot;
302 int nr_items;
303 } move;
304
305 /* this is used for op == MOD_LOG_ROOT_REPLACE */
306 struct tree_mod_root old_root;
307 };
308
309 /*
310 * Pull a new tree mod seq number for our operation.
311 */
312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
313 {
314 return atomic64_inc_return(&fs_info->tree_mod_seq);
315 }
316
317 /*
318 * This adds a new blocker to the tree mod log's blocker list if the @elem
319 * passed does not already have a sequence number set. So when a caller expects
320 * to record tree modifications, it should ensure to set elem->seq to zero
321 * before calling btrfs_get_tree_mod_seq.
322 * Returns a fresh, unused tree log modification sequence number, even if no new
323 * blocker was added.
324 */
325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
326 struct seq_list *elem)
327 {
328 write_lock(&fs_info->tree_mod_log_lock);
329 spin_lock(&fs_info->tree_mod_seq_lock);
330 if (!elem->seq) {
331 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
332 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
333 }
334 spin_unlock(&fs_info->tree_mod_seq_lock);
335 write_unlock(&fs_info->tree_mod_log_lock);
336
337 return elem->seq;
338 }
339
340 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
341 struct seq_list *elem)
342 {
343 struct rb_root *tm_root;
344 struct rb_node *node;
345 struct rb_node *next;
346 struct seq_list *cur_elem;
347 struct tree_mod_elem *tm;
348 u64 min_seq = (u64)-1;
349 u64 seq_putting = elem->seq;
350
351 if (!seq_putting)
352 return;
353
354 spin_lock(&fs_info->tree_mod_seq_lock);
355 list_del(&elem->list);
356 elem->seq = 0;
357
358 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
359 if (cur_elem->seq < min_seq) {
360 if (seq_putting > cur_elem->seq) {
361 /*
362 * blocker with lower sequence number exists, we
363 * cannot remove anything from the log
364 */
365 spin_unlock(&fs_info->tree_mod_seq_lock);
366 return;
367 }
368 min_seq = cur_elem->seq;
369 }
370 }
371 spin_unlock(&fs_info->tree_mod_seq_lock);
372
373 /*
374 * anything that's lower than the lowest existing (read: blocked)
375 * sequence number can be removed from the tree.
376 */
377 write_lock(&fs_info->tree_mod_log_lock);
378 tm_root = &fs_info->tree_mod_log;
379 for (node = rb_first(tm_root); node; node = next) {
380 next = rb_next(node);
381 tm = rb_entry(node, struct tree_mod_elem, node);
382 if (tm->seq >= min_seq)
383 continue;
384 rb_erase(node, tm_root);
385 kfree(tm);
386 }
387 write_unlock(&fs_info->tree_mod_log_lock);
388 }
389
390 /*
391 * key order of the log:
392 * node/leaf start address -> sequence
393 *
394 * The 'start address' is the logical address of the *new* root node
395 * for root replace operations, or the logical address of the affected
396 * block for all other operations.
397 */
398 static noinline int
399 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
400 {
401 struct rb_root *tm_root;
402 struct rb_node **new;
403 struct rb_node *parent = NULL;
404 struct tree_mod_elem *cur;
405
406 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
407
408 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
409
410 tm_root = &fs_info->tree_mod_log;
411 new = &tm_root->rb_node;
412 while (*new) {
413 cur = rb_entry(*new, struct tree_mod_elem, node);
414 parent = *new;
415 if (cur->logical < tm->logical)
416 new = &((*new)->rb_left);
417 else if (cur->logical > tm->logical)
418 new = &((*new)->rb_right);
419 else if (cur->seq < tm->seq)
420 new = &((*new)->rb_left);
421 else if (cur->seq > tm->seq)
422 new = &((*new)->rb_right);
423 else
424 return -EEXIST;
425 }
426
427 rb_link_node(&tm->node, parent, new);
428 rb_insert_color(&tm->node, tm_root);
429 return 0;
430 }
431
432 /*
433 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
434 * returns zero with the tree_mod_log_lock acquired. The caller must hold
435 * this until all tree mod log insertions are recorded in the rb tree and then
436 * write unlock fs_info::tree_mod_log_lock.
437 */
438 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
439 struct extent_buffer *eb) {
440 smp_mb();
441 if (list_empty(&(fs_info)->tree_mod_seq_list))
442 return 1;
443 if (eb && btrfs_header_level(eb) == 0)
444 return 1;
445
446 write_lock(&fs_info->tree_mod_log_lock);
447 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
448 write_unlock(&fs_info->tree_mod_log_lock);
449 return 1;
450 }
451
452 return 0;
453 }
454
455 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
456 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
457 struct extent_buffer *eb)
458 {
459 smp_mb();
460 if (list_empty(&(fs_info)->tree_mod_seq_list))
461 return 0;
462 if (eb && btrfs_header_level(eb) == 0)
463 return 0;
464
465 return 1;
466 }
467
468 static struct tree_mod_elem *
469 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
470 enum mod_log_op op, gfp_t flags)
471 {
472 struct tree_mod_elem *tm;
473
474 tm = kzalloc(sizeof(*tm), flags);
475 if (!tm)
476 return NULL;
477
478 tm->logical = eb->start;
479 if (op != MOD_LOG_KEY_ADD) {
480 btrfs_node_key(eb, &tm->key, slot);
481 tm->blockptr = btrfs_node_blockptr(eb, slot);
482 }
483 tm->op = op;
484 tm->slot = slot;
485 tm->generation = btrfs_node_ptr_generation(eb, slot);
486 RB_CLEAR_NODE(&tm->node);
487
488 return tm;
489 }
490
491 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
492 enum mod_log_op op, gfp_t flags)
493 {
494 struct tree_mod_elem *tm;
495 int ret;
496
497 if (!tree_mod_need_log(eb->fs_info, eb))
498 return 0;
499
500 tm = alloc_tree_mod_elem(eb, slot, op, flags);
501 if (!tm)
502 return -ENOMEM;
503
504 if (tree_mod_dont_log(eb->fs_info, eb)) {
505 kfree(tm);
506 return 0;
507 }
508
509 ret = __tree_mod_log_insert(eb->fs_info, tm);
510 write_unlock(&eb->fs_info->tree_mod_log_lock);
511 if (ret)
512 kfree(tm);
513
514 return ret;
515 }
516
517 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
518 int dst_slot, int src_slot, int nr_items)
519 {
520 struct tree_mod_elem *tm = NULL;
521 struct tree_mod_elem **tm_list = NULL;
522 int ret = 0;
523 int i;
524 int locked = 0;
525
526 if (!tree_mod_need_log(eb->fs_info, eb))
527 return 0;
528
529 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
530 if (!tm_list)
531 return -ENOMEM;
532
533 tm = kzalloc(sizeof(*tm), GFP_NOFS);
534 if (!tm) {
535 ret = -ENOMEM;
536 goto free_tms;
537 }
538
539 tm->logical = eb->start;
540 tm->slot = src_slot;
541 tm->move.dst_slot = dst_slot;
542 tm->move.nr_items = nr_items;
543 tm->op = MOD_LOG_MOVE_KEYS;
544
545 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
547 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
548 if (!tm_list[i]) {
549 ret = -ENOMEM;
550 goto free_tms;
551 }
552 }
553
554 if (tree_mod_dont_log(eb->fs_info, eb))
555 goto free_tms;
556 locked = 1;
557
558 /*
559 * When we override something during the move, we log these removals.
560 * This can only happen when we move towards the beginning of the
561 * buffer, i.e. dst_slot < src_slot.
562 */
563 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
564 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
565 if (ret)
566 goto free_tms;
567 }
568
569 ret = __tree_mod_log_insert(eb->fs_info, tm);
570 if (ret)
571 goto free_tms;
572 write_unlock(&eb->fs_info->tree_mod_log_lock);
573 kfree(tm_list);
574
575 return 0;
576 free_tms:
577 for (i = 0; i < nr_items; i++) {
578 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
579 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
580 kfree(tm_list[i]);
581 }
582 if (locked)
583 write_unlock(&eb->fs_info->tree_mod_log_lock);
584 kfree(tm_list);
585 kfree(tm);
586
587 return ret;
588 }
589
590 static inline int
591 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
592 struct tree_mod_elem **tm_list,
593 int nritems)
594 {
595 int i, j;
596 int ret;
597
598 for (i = nritems - 1; i >= 0; i--) {
599 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
600 if (ret) {
601 for (j = nritems - 1; j > i; j--)
602 rb_erase(&tm_list[j]->node,
603 &fs_info->tree_mod_log);
604 return ret;
605 }
606 }
607
608 return 0;
609 }
610
611 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
612 struct extent_buffer *new_root, int log_removal)
613 {
614 struct btrfs_fs_info *fs_info = old_root->fs_info;
615 struct tree_mod_elem *tm = NULL;
616 struct tree_mod_elem **tm_list = NULL;
617 int nritems = 0;
618 int ret = 0;
619 int i;
620
621 if (!tree_mod_need_log(fs_info, NULL))
622 return 0;
623
624 if (log_removal && btrfs_header_level(old_root) > 0) {
625 nritems = btrfs_header_nritems(old_root);
626 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
627 GFP_NOFS);
628 if (!tm_list) {
629 ret = -ENOMEM;
630 goto free_tms;
631 }
632 for (i = 0; i < nritems; i++) {
633 tm_list[i] = alloc_tree_mod_elem(old_root, i,
634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635 if (!tm_list[i]) {
636 ret = -ENOMEM;
637 goto free_tms;
638 }
639 }
640 }
641
642 tm = kzalloc(sizeof(*tm), GFP_NOFS);
643 if (!tm) {
644 ret = -ENOMEM;
645 goto free_tms;
646 }
647
648 tm->logical = new_root->start;
649 tm->old_root.logical = old_root->start;
650 tm->old_root.level = btrfs_header_level(old_root);
651 tm->generation = btrfs_header_generation(old_root);
652 tm->op = MOD_LOG_ROOT_REPLACE;
653
654 if (tree_mod_dont_log(fs_info, NULL))
655 goto free_tms;
656
657 if (tm_list)
658 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
659 if (!ret)
660 ret = __tree_mod_log_insert(fs_info, tm);
661
662 write_unlock(&fs_info->tree_mod_log_lock);
663 if (ret)
664 goto free_tms;
665 kfree(tm_list);
666
667 return ret;
668
669 free_tms:
670 if (tm_list) {
671 for (i = 0; i < nritems; i++)
672 kfree(tm_list[i]);
673 kfree(tm_list);
674 }
675 kfree(tm);
676
677 return ret;
678 }
679
680 static struct tree_mod_elem *
681 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
682 int smallest)
683 {
684 struct rb_root *tm_root;
685 struct rb_node *node;
686 struct tree_mod_elem *cur = NULL;
687 struct tree_mod_elem *found = NULL;
688
689 read_lock(&fs_info->tree_mod_log_lock);
690 tm_root = &fs_info->tree_mod_log;
691 node = tm_root->rb_node;
692 while (node) {
693 cur = rb_entry(node, struct tree_mod_elem, node);
694 if (cur->logical < start) {
695 node = node->rb_left;
696 } else if (cur->logical > start) {
697 node = node->rb_right;
698 } else if (cur->seq < min_seq) {
699 node = node->rb_left;
700 } else if (!smallest) {
701 /* we want the node with the highest seq */
702 if (found)
703 BUG_ON(found->seq > cur->seq);
704 found = cur;
705 node = node->rb_left;
706 } else if (cur->seq > min_seq) {
707 /* we want the node with the smallest seq */
708 if (found)
709 BUG_ON(found->seq < cur->seq);
710 found = cur;
711 node = node->rb_right;
712 } else {
713 found = cur;
714 break;
715 }
716 }
717 read_unlock(&fs_info->tree_mod_log_lock);
718
719 return found;
720 }
721
722 /*
723 * this returns the element from the log with the smallest time sequence
724 * value that's in the log (the oldest log item). any element with a time
725 * sequence lower than min_seq will be ignored.
726 */
727 static struct tree_mod_elem *
728 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
729 u64 min_seq)
730 {
731 return __tree_mod_log_search(fs_info, start, min_seq, 1);
732 }
733
734 /*
735 * this returns the element from the log with the largest time sequence
736 * value that's in the log (the most recent log item). any element with
737 * a time sequence lower than min_seq will be ignored.
738 */
739 static struct tree_mod_elem *
740 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
741 {
742 return __tree_mod_log_search(fs_info, start, min_seq, 0);
743 }
744
745 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
746 struct extent_buffer *src, unsigned long dst_offset,
747 unsigned long src_offset, int nr_items)
748 {
749 struct btrfs_fs_info *fs_info = dst->fs_info;
750 int ret = 0;
751 struct tree_mod_elem **tm_list = NULL;
752 struct tree_mod_elem **tm_list_add, **tm_list_rem;
753 int i;
754 int locked = 0;
755
756 if (!tree_mod_need_log(fs_info, NULL))
757 return 0;
758
759 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
760 return 0;
761
762 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
763 GFP_NOFS);
764 if (!tm_list)
765 return -ENOMEM;
766
767 tm_list_add = tm_list;
768 tm_list_rem = tm_list + nr_items;
769 for (i = 0; i < nr_items; i++) {
770 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
771 MOD_LOG_KEY_REMOVE, GFP_NOFS);
772 if (!tm_list_rem[i]) {
773 ret = -ENOMEM;
774 goto free_tms;
775 }
776
777 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
778 MOD_LOG_KEY_ADD, GFP_NOFS);
779 if (!tm_list_add[i]) {
780 ret = -ENOMEM;
781 goto free_tms;
782 }
783 }
784
785 if (tree_mod_dont_log(fs_info, NULL))
786 goto free_tms;
787 locked = 1;
788
789 for (i = 0; i < nr_items; i++) {
790 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
791 if (ret)
792 goto free_tms;
793 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
794 if (ret)
795 goto free_tms;
796 }
797
798 write_unlock(&fs_info->tree_mod_log_lock);
799 kfree(tm_list);
800
801 return 0;
802
803 free_tms:
804 for (i = 0; i < nr_items * 2; i++) {
805 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
806 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
807 kfree(tm_list[i]);
808 }
809 if (locked)
810 write_unlock(&fs_info->tree_mod_log_lock);
811 kfree(tm_list);
812
813 return ret;
814 }
815
816 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
817 {
818 struct tree_mod_elem **tm_list = NULL;
819 int nritems = 0;
820 int i;
821 int ret = 0;
822
823 if (btrfs_header_level(eb) == 0)
824 return 0;
825
826 if (!tree_mod_need_log(eb->fs_info, NULL))
827 return 0;
828
829 nritems = btrfs_header_nritems(eb);
830 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
831 if (!tm_list)
832 return -ENOMEM;
833
834 for (i = 0; i < nritems; i++) {
835 tm_list[i] = alloc_tree_mod_elem(eb, i,
836 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
837 if (!tm_list[i]) {
838 ret = -ENOMEM;
839 goto free_tms;
840 }
841 }
842
843 if (tree_mod_dont_log(eb->fs_info, eb))
844 goto free_tms;
845
846 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
847 write_unlock(&eb->fs_info->tree_mod_log_lock);
848 if (ret)
849 goto free_tms;
850 kfree(tm_list);
851
852 return 0;
853
854 free_tms:
855 for (i = 0; i < nritems; i++)
856 kfree(tm_list[i]);
857 kfree(tm_list);
858
859 return ret;
860 }
861
862 /*
863 * check if the tree block can be shared by multiple trees
864 */
865 int btrfs_block_can_be_shared(struct btrfs_root *root,
866 struct extent_buffer *buf)
867 {
868 /*
869 * Tree blocks not in reference counted trees and tree roots
870 * are never shared. If a block was allocated after the last
871 * snapshot and the block was not allocated by tree relocation,
872 * we know the block is not shared.
873 */
874 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
875 buf != root->node && buf != root->commit_root &&
876 (btrfs_header_generation(buf) <=
877 btrfs_root_last_snapshot(&root->root_item) ||
878 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
879 return 1;
880
881 return 0;
882 }
883
884 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
885 struct btrfs_root *root,
886 struct extent_buffer *buf,
887 struct extent_buffer *cow,
888 int *last_ref)
889 {
890 struct btrfs_fs_info *fs_info = root->fs_info;
891 u64 refs;
892 u64 owner;
893 u64 flags;
894 u64 new_flags = 0;
895 int ret;
896
897 /*
898 * Backrefs update rules:
899 *
900 * Always use full backrefs for extent pointers in tree block
901 * allocated by tree relocation.
902 *
903 * If a shared tree block is no longer referenced by its owner
904 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
905 * use full backrefs for extent pointers in tree block.
906 *
907 * If a tree block is been relocating
908 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
909 * use full backrefs for extent pointers in tree block.
910 * The reason for this is some operations (such as drop tree)
911 * are only allowed for blocks use full backrefs.
912 */
913
914 if (btrfs_block_can_be_shared(root, buf)) {
915 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
916 btrfs_header_level(buf), 1,
917 &refs, &flags);
918 if (ret)
919 return ret;
920 if (refs == 0) {
921 ret = -EROFS;
922 btrfs_handle_fs_error(fs_info, ret, NULL);
923 return ret;
924 }
925 } else {
926 refs = 1;
927 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
928 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
929 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
930 else
931 flags = 0;
932 }
933
934 owner = btrfs_header_owner(buf);
935 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
936 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
937
938 if (refs > 1) {
939 if ((owner == root->root_key.objectid ||
940 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
941 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
942 ret = btrfs_inc_ref(trans, root, buf, 1);
943 if (ret)
944 return ret;
945
946 if (root->root_key.objectid ==
947 BTRFS_TREE_RELOC_OBJECTID) {
948 ret = btrfs_dec_ref(trans, root, buf, 0);
949 if (ret)
950 return ret;
951 ret = btrfs_inc_ref(trans, root, cow, 1);
952 if (ret)
953 return ret;
954 }
955 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
956 } else {
957
958 if (root->root_key.objectid ==
959 BTRFS_TREE_RELOC_OBJECTID)
960 ret = btrfs_inc_ref(trans, root, cow, 1);
961 else
962 ret = btrfs_inc_ref(trans, root, cow, 0);
963 if (ret)
964 return ret;
965 }
966 if (new_flags != 0) {
967 int level = btrfs_header_level(buf);
968
969 ret = btrfs_set_disk_extent_flags(trans,
970 buf->start,
971 buf->len,
972 new_flags, level, 0);
973 if (ret)
974 return ret;
975 }
976 } else {
977 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
978 if (root->root_key.objectid ==
979 BTRFS_TREE_RELOC_OBJECTID)
980 ret = btrfs_inc_ref(trans, root, cow, 1);
981 else
982 ret = btrfs_inc_ref(trans, root, cow, 0);
983 if (ret)
984 return ret;
985 ret = btrfs_dec_ref(trans, root, buf, 1);
986 if (ret)
987 return ret;
988 }
989 btrfs_clean_tree_block(buf);
990 *last_ref = 1;
991 }
992 return 0;
993 }
994
995 static struct extent_buffer *alloc_tree_block_no_bg_flush(
996 struct btrfs_trans_handle *trans,
997 struct btrfs_root *root,
998 u64 parent_start,
999 const struct btrfs_disk_key *disk_key,
1000 int level,
1001 u64 hint,
1002 u64 empty_size)
1003 {
1004 struct btrfs_fs_info *fs_info = root->fs_info;
1005 struct extent_buffer *ret;
1006
1007 /*
1008 * If we are COWing a node/leaf from the extent, chunk, device or free
1009 * space trees, make sure that we do not finish block group creation of
1010 * pending block groups. We do this to avoid a deadlock.
1011 * COWing can result in allocation of a new chunk, and flushing pending
1012 * block groups (btrfs_create_pending_block_groups()) can be triggered
1013 * when finishing allocation of a new chunk. Creation of a pending block
1014 * group modifies the extent, chunk, device and free space trees,
1015 * therefore we could deadlock with ourselves since we are holding a
1016 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1017 * try to COW later.
1018 * For similar reasons, we also need to delay flushing pending block
1019 * groups when splitting a leaf or node, from one of those trees, since
1020 * we are holding a write lock on it and its parent or when inserting a
1021 * new root node for one of those trees.
1022 */
1023 if (root == fs_info->extent_root ||
1024 root == fs_info->chunk_root ||
1025 root == fs_info->dev_root ||
1026 root == fs_info->free_space_root)
1027 trans->can_flush_pending_bgs = false;
1028
1029 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1030 root->root_key.objectid, disk_key, level,
1031 hint, empty_size);
1032 trans->can_flush_pending_bgs = true;
1033
1034 return ret;
1035 }
1036
1037 /*
1038 * does the dirty work in cow of a single block. The parent block (if
1039 * supplied) is updated to point to the new cow copy. The new buffer is marked
1040 * dirty and returned locked. If you modify the block it needs to be marked
1041 * dirty again.
1042 *
1043 * search_start -- an allocation hint for the new block
1044 *
1045 * empty_size -- a hint that you plan on doing more cow. This is the size in
1046 * bytes the allocator should try to find free next to the block it returns.
1047 * This is just a hint and may be ignored by the allocator.
1048 */
1049 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1050 struct btrfs_root *root,
1051 struct extent_buffer *buf,
1052 struct extent_buffer *parent, int parent_slot,
1053 struct extent_buffer **cow_ret,
1054 u64 search_start, u64 empty_size)
1055 {
1056 struct btrfs_fs_info *fs_info = root->fs_info;
1057 struct btrfs_disk_key disk_key;
1058 struct extent_buffer *cow;
1059 int level, ret;
1060 int last_ref = 0;
1061 int unlock_orig = 0;
1062 u64 parent_start = 0;
1063
1064 if (*cow_ret == buf)
1065 unlock_orig = 1;
1066
1067 btrfs_assert_tree_locked(buf);
1068
1069 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1070 trans->transid != fs_info->running_transaction->transid);
1071 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1072 trans->transid != root->last_trans);
1073
1074 level = btrfs_header_level(buf);
1075
1076 if (level == 0)
1077 btrfs_item_key(buf, &disk_key, 0);
1078 else
1079 btrfs_node_key(buf, &disk_key, 0);
1080
1081 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1082 parent_start = parent->start;
1083
1084 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1085 level, search_start, empty_size);
1086 if (IS_ERR(cow))
1087 return PTR_ERR(cow);
1088
1089 /* cow is set to blocking by btrfs_init_new_buffer */
1090
1091 copy_extent_buffer_full(cow, buf);
1092 btrfs_set_header_bytenr(cow, cow->start);
1093 btrfs_set_header_generation(cow, trans->transid);
1094 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1095 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1096 BTRFS_HEADER_FLAG_RELOC);
1097 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1098 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1099 else
1100 btrfs_set_header_owner(cow, root->root_key.objectid);
1101
1102 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1103
1104 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1105 if (ret) {
1106 btrfs_abort_transaction(trans, ret);
1107 return ret;
1108 }
1109
1110 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1111 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1112 if (ret) {
1113 btrfs_abort_transaction(trans, ret);
1114 return ret;
1115 }
1116 }
1117
1118 if (buf == root->node) {
1119 WARN_ON(parent && parent != buf);
1120 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1121 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1122 parent_start = buf->start;
1123
1124 atomic_inc(&cow->refs);
1125 ret = tree_mod_log_insert_root(root->node, cow, 1);
1126 BUG_ON(ret < 0);
1127 rcu_assign_pointer(root->node, cow);
1128
1129 btrfs_free_tree_block(trans, root, buf, parent_start,
1130 last_ref);
1131 free_extent_buffer(buf);
1132 add_root_to_dirty_list(root);
1133 } else {
1134 WARN_ON(trans->transid != btrfs_header_generation(parent));
1135 tree_mod_log_insert_key(parent, parent_slot,
1136 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1137 btrfs_set_node_blockptr(parent, parent_slot,
1138 cow->start);
1139 btrfs_set_node_ptr_generation(parent, parent_slot,
1140 trans->transid);
1141 btrfs_mark_buffer_dirty(parent);
1142 if (last_ref) {
1143 ret = tree_mod_log_free_eb(buf);
1144 if (ret) {
1145 btrfs_abort_transaction(trans, ret);
1146 return ret;
1147 }
1148 }
1149 btrfs_free_tree_block(trans, root, buf, parent_start,
1150 last_ref);
1151 }
1152 if (unlock_orig)
1153 btrfs_tree_unlock(buf);
1154 free_extent_buffer_stale(buf);
1155 btrfs_mark_buffer_dirty(cow);
1156 *cow_ret = cow;
1157 return 0;
1158 }
1159
1160 /*
1161 * returns the logical address of the oldest predecessor of the given root.
1162 * entries older than time_seq are ignored.
1163 */
1164 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1165 struct extent_buffer *eb_root, u64 time_seq)
1166 {
1167 struct tree_mod_elem *tm;
1168 struct tree_mod_elem *found = NULL;
1169 u64 root_logical = eb_root->start;
1170 int looped = 0;
1171
1172 if (!time_seq)
1173 return NULL;
1174
1175 /*
1176 * the very last operation that's logged for a root is the
1177 * replacement operation (if it is replaced at all). this has
1178 * the logical address of the *new* root, making it the very
1179 * first operation that's logged for this root.
1180 */
1181 while (1) {
1182 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1183 time_seq);
1184 if (!looped && !tm)
1185 return NULL;
1186 /*
1187 * if there are no tree operation for the oldest root, we simply
1188 * return it. this should only happen if that (old) root is at
1189 * level 0.
1190 */
1191 if (!tm)
1192 break;
1193
1194 /*
1195 * if there's an operation that's not a root replacement, we
1196 * found the oldest version of our root. normally, we'll find a
1197 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1198 */
1199 if (tm->op != MOD_LOG_ROOT_REPLACE)
1200 break;
1201
1202 found = tm;
1203 root_logical = tm->old_root.logical;
1204 looped = 1;
1205 }
1206
1207 /* if there's no old root to return, return what we found instead */
1208 if (!found)
1209 found = tm;
1210
1211 return found;
1212 }
1213
1214 /*
1215 * tm is a pointer to the first operation to rewind within eb. then, all
1216 * previous operations will be rewound (until we reach something older than
1217 * time_seq).
1218 */
1219 static void
1220 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1221 u64 time_seq, struct tree_mod_elem *first_tm)
1222 {
1223 u32 n;
1224 struct rb_node *next;
1225 struct tree_mod_elem *tm = first_tm;
1226 unsigned long o_dst;
1227 unsigned long o_src;
1228 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1229
1230 n = btrfs_header_nritems(eb);
1231 read_lock(&fs_info->tree_mod_log_lock);
1232 while (tm && tm->seq >= time_seq) {
1233 /*
1234 * all the operations are recorded with the operator used for
1235 * the modification. as we're going backwards, we do the
1236 * opposite of each operation here.
1237 */
1238 switch (tm->op) {
1239 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1240 BUG_ON(tm->slot < n);
1241 /* Fallthrough */
1242 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1243 case MOD_LOG_KEY_REMOVE:
1244 btrfs_set_node_key(eb, &tm->key, tm->slot);
1245 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1246 btrfs_set_node_ptr_generation(eb, tm->slot,
1247 tm->generation);
1248 n++;
1249 break;
1250 case MOD_LOG_KEY_REPLACE:
1251 BUG_ON(tm->slot >= n);
1252 btrfs_set_node_key(eb, &tm->key, tm->slot);
1253 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1254 btrfs_set_node_ptr_generation(eb, tm->slot,
1255 tm->generation);
1256 break;
1257 case MOD_LOG_KEY_ADD:
1258 /* if a move operation is needed it's in the log */
1259 n--;
1260 break;
1261 case MOD_LOG_MOVE_KEYS:
1262 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1263 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1264 memmove_extent_buffer(eb, o_dst, o_src,
1265 tm->move.nr_items * p_size);
1266 break;
1267 case MOD_LOG_ROOT_REPLACE:
1268 /*
1269 * this operation is special. for roots, this must be
1270 * handled explicitly before rewinding.
1271 * for non-roots, this operation may exist if the node
1272 * was a root: root A -> child B; then A gets empty and
1273 * B is promoted to the new root. in the mod log, we'll
1274 * have a root-replace operation for B, a tree block
1275 * that is no root. we simply ignore that operation.
1276 */
1277 break;
1278 }
1279 next = rb_next(&tm->node);
1280 if (!next)
1281 break;
1282 tm = rb_entry(next, struct tree_mod_elem, node);
1283 if (tm->logical != first_tm->logical)
1284 break;
1285 }
1286 read_unlock(&fs_info->tree_mod_log_lock);
1287 btrfs_set_header_nritems(eb, n);
1288 }
1289
1290 /*
1291 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1292 * is returned. If rewind operations happen, a fresh buffer is returned. The
1293 * returned buffer is always read-locked. If the returned buffer is not the
1294 * input buffer, the lock on the input buffer is released and the input buffer
1295 * is freed (its refcount is decremented).
1296 */
1297 static struct extent_buffer *
1298 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1299 struct extent_buffer *eb, u64 time_seq)
1300 {
1301 struct extent_buffer *eb_rewin;
1302 struct tree_mod_elem *tm;
1303
1304 if (!time_seq)
1305 return eb;
1306
1307 if (btrfs_header_level(eb) == 0)
1308 return eb;
1309
1310 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1311 if (!tm)
1312 return eb;
1313
1314 btrfs_set_path_blocking(path);
1315 btrfs_set_lock_blocking_read(eb);
1316
1317 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318 BUG_ON(tm->slot != 0);
1319 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1320 if (!eb_rewin) {
1321 btrfs_tree_read_unlock_blocking(eb);
1322 free_extent_buffer(eb);
1323 return NULL;
1324 }
1325 btrfs_set_header_bytenr(eb_rewin, eb->start);
1326 btrfs_set_header_backref_rev(eb_rewin,
1327 btrfs_header_backref_rev(eb));
1328 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1329 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1330 } else {
1331 eb_rewin = btrfs_clone_extent_buffer(eb);
1332 if (!eb_rewin) {
1333 btrfs_tree_read_unlock_blocking(eb);
1334 free_extent_buffer(eb);
1335 return NULL;
1336 }
1337 }
1338
1339 btrfs_tree_read_unlock_blocking(eb);
1340 free_extent_buffer(eb);
1341
1342 btrfs_tree_read_lock(eb_rewin);
1343 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1344 WARN_ON(btrfs_header_nritems(eb_rewin) >
1345 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1346
1347 return eb_rewin;
1348 }
1349
1350 /*
1351 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1352 * value. If there are no changes, the current root->root_node is returned. If
1353 * anything changed in between, there's a fresh buffer allocated on which the
1354 * rewind operations are done. In any case, the returned buffer is read locked.
1355 * Returns NULL on error (with no locks held).
1356 */
1357 static inline struct extent_buffer *
1358 get_old_root(struct btrfs_root *root, u64 time_seq)
1359 {
1360 struct btrfs_fs_info *fs_info = root->fs_info;
1361 struct tree_mod_elem *tm;
1362 struct extent_buffer *eb = NULL;
1363 struct extent_buffer *eb_root;
1364 u64 eb_root_owner = 0;
1365 struct extent_buffer *old;
1366 struct tree_mod_root *old_root = NULL;
1367 u64 old_generation = 0;
1368 u64 logical;
1369 int level;
1370
1371 eb_root = btrfs_read_lock_root_node(root);
1372 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1373 if (!tm)
1374 return eb_root;
1375
1376 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1377 old_root = &tm->old_root;
1378 old_generation = tm->generation;
1379 logical = old_root->logical;
1380 level = old_root->level;
1381 } else {
1382 logical = eb_root->start;
1383 level = btrfs_header_level(eb_root);
1384 }
1385
1386 tm = tree_mod_log_search(fs_info, logical, time_seq);
1387 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1388 btrfs_tree_read_unlock(eb_root);
1389 free_extent_buffer(eb_root);
1390 old = read_tree_block(fs_info, logical, 0, level, NULL);
1391 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1392 if (!IS_ERR(old))
1393 free_extent_buffer(old);
1394 btrfs_warn(fs_info,
1395 "failed to read tree block %llu from get_old_root",
1396 logical);
1397 } else {
1398 eb = btrfs_clone_extent_buffer(old);
1399 free_extent_buffer(old);
1400 }
1401 } else if (old_root) {
1402 eb_root_owner = btrfs_header_owner(eb_root);
1403 btrfs_tree_read_unlock(eb_root);
1404 free_extent_buffer(eb_root);
1405 eb = alloc_dummy_extent_buffer(fs_info, logical);
1406 } else {
1407 btrfs_set_lock_blocking_read(eb_root);
1408 eb = btrfs_clone_extent_buffer(eb_root);
1409 btrfs_tree_read_unlock_blocking(eb_root);
1410 free_extent_buffer(eb_root);
1411 }
1412
1413 if (!eb)
1414 return NULL;
1415 btrfs_tree_read_lock(eb);
1416 if (old_root) {
1417 btrfs_set_header_bytenr(eb, eb->start);
1418 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1419 btrfs_set_header_owner(eb, eb_root_owner);
1420 btrfs_set_header_level(eb, old_root->level);
1421 btrfs_set_header_generation(eb, old_generation);
1422 }
1423 if (tm)
1424 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1425 else
1426 WARN_ON(btrfs_header_level(eb) != 0);
1427 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1428
1429 return eb;
1430 }
1431
1432 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1433 {
1434 struct tree_mod_elem *tm;
1435 int level;
1436 struct extent_buffer *eb_root = btrfs_root_node(root);
1437
1438 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1439 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1440 level = tm->old_root.level;
1441 } else {
1442 level = btrfs_header_level(eb_root);
1443 }
1444 free_extent_buffer(eb_root);
1445
1446 return level;
1447 }
1448
1449 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct extent_buffer *buf)
1452 {
1453 if (btrfs_is_testing(root->fs_info))
1454 return 0;
1455
1456 /* Ensure we can see the FORCE_COW bit */
1457 smp_mb__before_atomic();
1458
1459 /*
1460 * We do not need to cow a block if
1461 * 1) this block is not created or changed in this transaction;
1462 * 2) this block does not belong to TREE_RELOC tree;
1463 * 3) the root is not forced COW.
1464 *
1465 * What is forced COW:
1466 * when we create snapshot during committing the transaction,
1467 * after we've finished copying src root, we must COW the shared
1468 * block to ensure the metadata consistency.
1469 */
1470 if (btrfs_header_generation(buf) == trans->transid &&
1471 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1472 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1473 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1474 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1475 return 0;
1476 return 1;
1477 }
1478
1479 /*
1480 * cows a single block, see __btrfs_cow_block for the real work.
1481 * This version of it has extra checks so that a block isn't COWed more than
1482 * once per transaction, as long as it hasn't been written yet
1483 */
1484 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1485 struct btrfs_root *root, struct extent_buffer *buf,
1486 struct extent_buffer *parent, int parent_slot,
1487 struct extent_buffer **cow_ret)
1488 {
1489 struct btrfs_fs_info *fs_info = root->fs_info;
1490 u64 search_start;
1491 int ret;
1492
1493 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1494 btrfs_err(fs_info,
1495 "COW'ing blocks on a fs root that's being dropped");
1496
1497 if (trans->transaction != fs_info->running_transaction)
1498 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1499 trans->transid,
1500 fs_info->running_transaction->transid);
1501
1502 if (trans->transid != fs_info->generation)
1503 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1504 trans->transid, fs_info->generation);
1505
1506 if (!should_cow_block(trans, root, buf)) {
1507 trans->dirty = true;
1508 *cow_ret = buf;
1509 return 0;
1510 }
1511
1512 search_start = buf->start & ~((u64)SZ_1G - 1);
1513
1514 if (parent)
1515 btrfs_set_lock_blocking_write(parent);
1516 btrfs_set_lock_blocking_write(buf);
1517
1518 /*
1519 * Before CoWing this block for later modification, check if it's
1520 * the subtree root and do the delayed subtree trace if needed.
1521 *
1522 * Also We don't care about the error, as it's handled internally.
1523 */
1524 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1525 ret = __btrfs_cow_block(trans, root, buf, parent,
1526 parent_slot, cow_ret, search_start, 0);
1527
1528 trace_btrfs_cow_block(root, buf, *cow_ret);
1529
1530 return ret;
1531 }
1532
1533 /*
1534 * helper function for defrag to decide if two blocks pointed to by a
1535 * node are actually close by
1536 */
1537 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1538 {
1539 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1540 return 1;
1541 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1542 return 1;
1543 return 0;
1544 }
1545
1546 /*
1547 * compare two keys in a memcmp fashion
1548 */
1549 static int comp_keys(const struct btrfs_disk_key *disk,
1550 const struct btrfs_key *k2)
1551 {
1552 struct btrfs_key k1;
1553
1554 btrfs_disk_key_to_cpu(&k1, disk);
1555
1556 return btrfs_comp_cpu_keys(&k1, k2);
1557 }
1558
1559 /*
1560 * same as comp_keys only with two btrfs_key's
1561 */
1562 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1563 {
1564 if (k1->objectid > k2->objectid)
1565 return 1;
1566 if (k1->objectid < k2->objectid)
1567 return -1;
1568 if (k1->type > k2->type)
1569 return 1;
1570 if (k1->type < k2->type)
1571 return -1;
1572 if (k1->offset > k2->offset)
1573 return 1;
1574 if (k1->offset < k2->offset)
1575 return -1;
1576 return 0;
1577 }
1578
1579 /*
1580 * this is used by the defrag code to go through all the
1581 * leaves pointed to by a node and reallocate them so that
1582 * disk order is close to key order
1583 */
1584 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root, struct extent_buffer *parent,
1586 int start_slot, u64 *last_ret,
1587 struct btrfs_key *progress)
1588 {
1589 struct btrfs_fs_info *fs_info = root->fs_info;
1590 struct extent_buffer *cur;
1591 u64 blocknr;
1592 u64 gen;
1593 u64 search_start = *last_ret;
1594 u64 last_block = 0;
1595 u64 other;
1596 u32 parent_nritems;
1597 int end_slot;
1598 int i;
1599 int err = 0;
1600 int parent_level;
1601 int uptodate;
1602 u32 blocksize;
1603 int progress_passed = 0;
1604 struct btrfs_disk_key disk_key;
1605
1606 parent_level = btrfs_header_level(parent);
1607
1608 WARN_ON(trans->transaction != fs_info->running_transaction);
1609 WARN_ON(trans->transid != fs_info->generation);
1610
1611 parent_nritems = btrfs_header_nritems(parent);
1612 blocksize = fs_info->nodesize;
1613 end_slot = parent_nritems - 1;
1614
1615 if (parent_nritems <= 1)
1616 return 0;
1617
1618 btrfs_set_lock_blocking_write(parent);
1619
1620 for (i = start_slot; i <= end_slot; i++) {
1621 struct btrfs_key first_key;
1622 int close = 1;
1623
1624 btrfs_node_key(parent, &disk_key, i);
1625 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1626 continue;
1627
1628 progress_passed = 1;
1629 blocknr = btrfs_node_blockptr(parent, i);
1630 gen = btrfs_node_ptr_generation(parent, i);
1631 btrfs_node_key_to_cpu(parent, &first_key, i);
1632 if (last_block == 0)
1633 last_block = blocknr;
1634
1635 if (i > 0) {
1636 other = btrfs_node_blockptr(parent, i - 1);
1637 close = close_blocks(blocknr, other, blocksize);
1638 }
1639 if (!close && i < end_slot) {
1640 other = btrfs_node_blockptr(parent, i + 1);
1641 close = close_blocks(blocknr, other, blocksize);
1642 }
1643 if (close) {
1644 last_block = blocknr;
1645 continue;
1646 }
1647
1648 cur = find_extent_buffer(fs_info, blocknr);
1649 if (cur)
1650 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1651 else
1652 uptodate = 0;
1653 if (!cur || !uptodate) {
1654 if (!cur) {
1655 cur = read_tree_block(fs_info, blocknr, gen,
1656 parent_level - 1,
1657 &first_key);
1658 if (IS_ERR(cur)) {
1659 return PTR_ERR(cur);
1660 } else if (!extent_buffer_uptodate(cur)) {
1661 free_extent_buffer(cur);
1662 return -EIO;
1663 }
1664 } else if (!uptodate) {
1665 err = btrfs_read_buffer(cur, gen,
1666 parent_level - 1,&first_key);
1667 if (err) {
1668 free_extent_buffer(cur);
1669 return err;
1670 }
1671 }
1672 }
1673 if (search_start == 0)
1674 search_start = last_block;
1675
1676 btrfs_tree_lock(cur);
1677 btrfs_set_lock_blocking_write(cur);
1678 err = __btrfs_cow_block(trans, root, cur, parent, i,
1679 &cur, search_start,
1680 min(16 * blocksize,
1681 (end_slot - i) * blocksize));
1682 if (err) {
1683 btrfs_tree_unlock(cur);
1684 free_extent_buffer(cur);
1685 break;
1686 }
1687 search_start = cur->start;
1688 last_block = cur->start;
1689 *last_ret = search_start;
1690 btrfs_tree_unlock(cur);
1691 free_extent_buffer(cur);
1692 }
1693 return err;
1694 }
1695
1696 /*
1697 * search for key in the extent_buffer. The items start at offset p,
1698 * and they are item_size apart. There are 'max' items in p.
1699 *
1700 * the slot in the array is returned via slot, and it points to
1701 * the place where you would insert key if it is not found in
1702 * the array.
1703 *
1704 * slot may point to max if the key is bigger than all of the keys
1705 */
1706 static noinline int generic_bin_search(struct extent_buffer *eb,
1707 unsigned long p, int item_size,
1708 const struct btrfs_key *key,
1709 int max, int *slot)
1710 {
1711 int low = 0;
1712 int high = max;
1713 int mid;
1714 int ret;
1715 struct btrfs_disk_key *tmp = NULL;
1716 struct btrfs_disk_key unaligned;
1717 unsigned long offset;
1718 char *kaddr = NULL;
1719 unsigned long map_start = 0;
1720 unsigned long map_len = 0;
1721 int err;
1722
1723 if (low > high) {
1724 btrfs_err(eb->fs_info,
1725 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1726 __func__, low, high, eb->start,
1727 btrfs_header_owner(eb), btrfs_header_level(eb));
1728 return -EINVAL;
1729 }
1730
1731 while (low < high) {
1732 mid = (low + high) / 2;
1733 offset = p + mid * item_size;
1734
1735 if (!kaddr || offset < map_start ||
1736 (offset + sizeof(struct btrfs_disk_key)) >
1737 map_start + map_len) {
1738
1739 err = map_private_extent_buffer(eb, offset,
1740 sizeof(struct btrfs_disk_key),
1741 &kaddr, &map_start, &map_len);
1742
1743 if (!err) {
1744 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1745 map_start);
1746 } else if (err == 1) {
1747 read_extent_buffer(eb, &unaligned,
1748 offset, sizeof(unaligned));
1749 tmp = &unaligned;
1750 } else {
1751 return err;
1752 }
1753
1754 } else {
1755 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1756 map_start);
1757 }
1758 ret = comp_keys(tmp, key);
1759
1760 if (ret < 0)
1761 low = mid + 1;
1762 else if (ret > 0)
1763 high = mid;
1764 else {
1765 *slot = mid;
1766 return 0;
1767 }
1768 }
1769 *slot = low;
1770 return 1;
1771 }
1772
1773 /*
1774 * simple bin_search frontend that does the right thing for
1775 * leaves vs nodes
1776 */
1777 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1778 int level, int *slot)
1779 {
1780 if (level == 0)
1781 return generic_bin_search(eb,
1782 offsetof(struct btrfs_leaf, items),
1783 sizeof(struct btrfs_item),
1784 key, btrfs_header_nritems(eb),
1785 slot);
1786 else
1787 return generic_bin_search(eb,
1788 offsetof(struct btrfs_node, ptrs),
1789 sizeof(struct btrfs_key_ptr),
1790 key, btrfs_header_nritems(eb),
1791 slot);
1792 }
1793
1794 static void root_add_used(struct btrfs_root *root, u32 size)
1795 {
1796 spin_lock(&root->accounting_lock);
1797 btrfs_set_root_used(&root->root_item,
1798 btrfs_root_used(&root->root_item) + size);
1799 spin_unlock(&root->accounting_lock);
1800 }
1801
1802 static void root_sub_used(struct btrfs_root *root, u32 size)
1803 {
1804 spin_lock(&root->accounting_lock);
1805 btrfs_set_root_used(&root->root_item,
1806 btrfs_root_used(&root->root_item) - size);
1807 spin_unlock(&root->accounting_lock);
1808 }
1809
1810 /* given a node and slot number, this reads the blocks it points to. The
1811 * extent buffer is returned with a reference taken (but unlocked).
1812 */
1813 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1814 int slot)
1815 {
1816 int level = btrfs_header_level(parent);
1817 struct extent_buffer *eb;
1818 struct btrfs_key first_key;
1819
1820 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1821 return ERR_PTR(-ENOENT);
1822
1823 BUG_ON(level == 0);
1824
1825 btrfs_node_key_to_cpu(parent, &first_key, slot);
1826 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1827 btrfs_node_ptr_generation(parent, slot),
1828 level - 1, &first_key);
1829 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1830 free_extent_buffer(eb);
1831 eb = ERR_PTR(-EIO);
1832 }
1833
1834 return eb;
1835 }
1836
1837 /*
1838 * node level balancing, used to make sure nodes are in proper order for
1839 * item deletion. We balance from the top down, so we have to make sure
1840 * that a deletion won't leave an node completely empty later on.
1841 */
1842 static noinline int balance_level(struct btrfs_trans_handle *trans,
1843 struct btrfs_root *root,
1844 struct btrfs_path *path, int level)
1845 {
1846 struct btrfs_fs_info *fs_info = root->fs_info;
1847 struct extent_buffer *right = NULL;
1848 struct extent_buffer *mid;
1849 struct extent_buffer *left = NULL;
1850 struct extent_buffer *parent = NULL;
1851 int ret = 0;
1852 int wret;
1853 int pslot;
1854 int orig_slot = path->slots[level];
1855 u64 orig_ptr;
1856
1857 ASSERT(level > 0);
1858
1859 mid = path->nodes[level];
1860
1861 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1862 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1863 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1864
1865 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1866
1867 if (level < BTRFS_MAX_LEVEL - 1) {
1868 parent = path->nodes[level + 1];
1869 pslot = path->slots[level + 1];
1870 }
1871
1872 /*
1873 * deal with the case where there is only one pointer in the root
1874 * by promoting the node below to a root
1875 */
1876 if (!parent) {
1877 struct extent_buffer *child;
1878
1879 if (btrfs_header_nritems(mid) != 1)
1880 return 0;
1881
1882 /* promote the child to a root */
1883 child = btrfs_read_node_slot(mid, 0);
1884 if (IS_ERR(child)) {
1885 ret = PTR_ERR(child);
1886 btrfs_handle_fs_error(fs_info, ret, NULL);
1887 goto enospc;
1888 }
1889
1890 btrfs_tree_lock(child);
1891 btrfs_set_lock_blocking_write(child);
1892 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1893 if (ret) {
1894 btrfs_tree_unlock(child);
1895 free_extent_buffer(child);
1896 goto enospc;
1897 }
1898
1899 ret = tree_mod_log_insert_root(root->node, child, 1);
1900 BUG_ON(ret < 0);
1901 rcu_assign_pointer(root->node, child);
1902
1903 add_root_to_dirty_list(root);
1904 btrfs_tree_unlock(child);
1905
1906 path->locks[level] = 0;
1907 path->nodes[level] = NULL;
1908 btrfs_clean_tree_block(mid);
1909 btrfs_tree_unlock(mid);
1910 /* once for the path */
1911 free_extent_buffer(mid);
1912
1913 root_sub_used(root, mid->len);
1914 btrfs_free_tree_block(trans, root, mid, 0, 1);
1915 /* once for the root ptr */
1916 free_extent_buffer_stale(mid);
1917 return 0;
1918 }
1919 if (btrfs_header_nritems(mid) >
1920 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1921 return 0;
1922
1923 left = btrfs_read_node_slot(parent, pslot - 1);
1924 if (IS_ERR(left))
1925 left = NULL;
1926
1927 if (left) {
1928 btrfs_tree_lock(left);
1929 btrfs_set_lock_blocking_write(left);
1930 wret = btrfs_cow_block(trans, root, left,
1931 parent, pslot - 1, &left);
1932 if (wret) {
1933 ret = wret;
1934 goto enospc;
1935 }
1936 }
1937
1938 right = btrfs_read_node_slot(parent, pslot + 1);
1939 if (IS_ERR(right))
1940 right = NULL;
1941
1942 if (right) {
1943 btrfs_tree_lock(right);
1944 btrfs_set_lock_blocking_write(right);
1945 wret = btrfs_cow_block(trans, root, right,
1946 parent, pslot + 1, &right);
1947 if (wret) {
1948 ret = wret;
1949 goto enospc;
1950 }
1951 }
1952
1953 /* first, try to make some room in the middle buffer */
1954 if (left) {
1955 orig_slot += btrfs_header_nritems(left);
1956 wret = push_node_left(trans, left, mid, 1);
1957 if (wret < 0)
1958 ret = wret;
1959 }
1960
1961 /*
1962 * then try to empty the right most buffer into the middle
1963 */
1964 if (right) {
1965 wret = push_node_left(trans, mid, right, 1);
1966 if (wret < 0 && wret != -ENOSPC)
1967 ret = wret;
1968 if (btrfs_header_nritems(right) == 0) {
1969 btrfs_clean_tree_block(right);
1970 btrfs_tree_unlock(right);
1971 del_ptr(root, path, level + 1, pslot + 1);
1972 root_sub_used(root, right->len);
1973 btrfs_free_tree_block(trans, root, right, 0, 1);
1974 free_extent_buffer_stale(right);
1975 right = NULL;
1976 } else {
1977 struct btrfs_disk_key right_key;
1978 btrfs_node_key(right, &right_key, 0);
1979 ret = tree_mod_log_insert_key(parent, pslot + 1,
1980 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1981 BUG_ON(ret < 0);
1982 btrfs_set_node_key(parent, &right_key, pslot + 1);
1983 btrfs_mark_buffer_dirty(parent);
1984 }
1985 }
1986 if (btrfs_header_nritems(mid) == 1) {
1987 /*
1988 * we're not allowed to leave a node with one item in the
1989 * tree during a delete. A deletion from lower in the tree
1990 * could try to delete the only pointer in this node.
1991 * So, pull some keys from the left.
1992 * There has to be a left pointer at this point because
1993 * otherwise we would have pulled some pointers from the
1994 * right
1995 */
1996 if (!left) {
1997 ret = -EROFS;
1998 btrfs_handle_fs_error(fs_info, ret, NULL);
1999 goto enospc;
2000 }
2001 wret = balance_node_right(trans, mid, left);
2002 if (wret < 0) {
2003 ret = wret;
2004 goto enospc;
2005 }
2006 if (wret == 1) {
2007 wret = push_node_left(trans, left, mid, 1);
2008 if (wret < 0)
2009 ret = wret;
2010 }
2011 BUG_ON(wret == 1);
2012 }
2013 if (btrfs_header_nritems(mid) == 0) {
2014 btrfs_clean_tree_block(mid);
2015 btrfs_tree_unlock(mid);
2016 del_ptr(root, path, level + 1, pslot);
2017 root_sub_used(root, mid->len);
2018 btrfs_free_tree_block(trans, root, mid, 0, 1);
2019 free_extent_buffer_stale(mid);
2020 mid = NULL;
2021 } else {
2022 /* update the parent key to reflect our changes */
2023 struct btrfs_disk_key mid_key;
2024 btrfs_node_key(mid, &mid_key, 0);
2025 ret = tree_mod_log_insert_key(parent, pslot,
2026 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2027 BUG_ON(ret < 0);
2028 btrfs_set_node_key(parent, &mid_key, pslot);
2029 btrfs_mark_buffer_dirty(parent);
2030 }
2031
2032 /* update the path */
2033 if (left) {
2034 if (btrfs_header_nritems(left) > orig_slot) {
2035 atomic_inc(&left->refs);
2036 /* left was locked after cow */
2037 path->nodes[level] = left;
2038 path->slots[level + 1] -= 1;
2039 path->slots[level] = orig_slot;
2040 if (mid) {
2041 btrfs_tree_unlock(mid);
2042 free_extent_buffer(mid);
2043 }
2044 } else {
2045 orig_slot -= btrfs_header_nritems(left);
2046 path->slots[level] = orig_slot;
2047 }
2048 }
2049 /* double check we haven't messed things up */
2050 if (orig_ptr !=
2051 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2052 BUG();
2053 enospc:
2054 if (right) {
2055 btrfs_tree_unlock(right);
2056 free_extent_buffer(right);
2057 }
2058 if (left) {
2059 if (path->nodes[level] != left)
2060 btrfs_tree_unlock(left);
2061 free_extent_buffer(left);
2062 }
2063 return ret;
2064 }
2065
2066 /* Node balancing for insertion. Here we only split or push nodes around
2067 * when they are completely full. This is also done top down, so we
2068 * have to be pessimistic.
2069 */
2070 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2071 struct btrfs_root *root,
2072 struct btrfs_path *path, int level)
2073 {
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct extent_buffer *right = NULL;
2076 struct extent_buffer *mid;
2077 struct extent_buffer *left = NULL;
2078 struct extent_buffer *parent = NULL;
2079 int ret = 0;
2080 int wret;
2081 int pslot;
2082 int orig_slot = path->slots[level];
2083
2084 if (level == 0)
2085 return 1;
2086
2087 mid = path->nodes[level];
2088 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2089
2090 if (level < BTRFS_MAX_LEVEL - 1) {
2091 parent = path->nodes[level + 1];
2092 pslot = path->slots[level + 1];
2093 }
2094
2095 if (!parent)
2096 return 1;
2097
2098 left = btrfs_read_node_slot(parent, pslot - 1);
2099 if (IS_ERR(left))
2100 left = NULL;
2101
2102 /* first, try to make some room in the middle buffer */
2103 if (left) {
2104 u32 left_nr;
2105
2106 btrfs_tree_lock(left);
2107 btrfs_set_lock_blocking_write(left);
2108
2109 left_nr = btrfs_header_nritems(left);
2110 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2111 wret = 1;
2112 } else {
2113 ret = btrfs_cow_block(trans, root, left, parent,
2114 pslot - 1, &left);
2115 if (ret)
2116 wret = 1;
2117 else {
2118 wret = push_node_left(trans, left, mid, 0);
2119 }
2120 }
2121 if (wret < 0)
2122 ret = wret;
2123 if (wret == 0) {
2124 struct btrfs_disk_key disk_key;
2125 orig_slot += left_nr;
2126 btrfs_node_key(mid, &disk_key, 0);
2127 ret = tree_mod_log_insert_key(parent, pslot,
2128 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2129 BUG_ON(ret < 0);
2130 btrfs_set_node_key(parent, &disk_key, pslot);
2131 btrfs_mark_buffer_dirty(parent);
2132 if (btrfs_header_nritems(left) > orig_slot) {
2133 path->nodes[level] = left;
2134 path->slots[level + 1] -= 1;
2135 path->slots[level] = orig_slot;
2136 btrfs_tree_unlock(mid);
2137 free_extent_buffer(mid);
2138 } else {
2139 orig_slot -=
2140 btrfs_header_nritems(left);
2141 path->slots[level] = orig_slot;
2142 btrfs_tree_unlock(left);
2143 free_extent_buffer(left);
2144 }
2145 return 0;
2146 }
2147 btrfs_tree_unlock(left);
2148 free_extent_buffer(left);
2149 }
2150 right = btrfs_read_node_slot(parent, pslot + 1);
2151 if (IS_ERR(right))
2152 right = NULL;
2153
2154 /*
2155 * then try to empty the right most buffer into the middle
2156 */
2157 if (right) {
2158 u32 right_nr;
2159
2160 btrfs_tree_lock(right);
2161 btrfs_set_lock_blocking_write(right);
2162
2163 right_nr = btrfs_header_nritems(right);
2164 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2165 wret = 1;
2166 } else {
2167 ret = btrfs_cow_block(trans, root, right,
2168 parent, pslot + 1,
2169 &right);
2170 if (ret)
2171 wret = 1;
2172 else {
2173 wret = balance_node_right(trans, right, mid);
2174 }
2175 }
2176 if (wret < 0)
2177 ret = wret;
2178 if (wret == 0) {
2179 struct btrfs_disk_key disk_key;
2180
2181 btrfs_node_key(right, &disk_key, 0);
2182 ret = tree_mod_log_insert_key(parent, pslot + 1,
2183 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2184 BUG_ON(ret < 0);
2185 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2186 btrfs_mark_buffer_dirty(parent);
2187
2188 if (btrfs_header_nritems(mid) <= orig_slot) {
2189 path->nodes[level] = right;
2190 path->slots[level + 1] += 1;
2191 path->slots[level] = orig_slot -
2192 btrfs_header_nritems(mid);
2193 btrfs_tree_unlock(mid);
2194 free_extent_buffer(mid);
2195 } else {
2196 btrfs_tree_unlock(right);
2197 free_extent_buffer(right);
2198 }
2199 return 0;
2200 }
2201 btrfs_tree_unlock(right);
2202 free_extent_buffer(right);
2203 }
2204 return 1;
2205 }
2206
2207 /*
2208 * readahead one full node of leaves, finding things that are close
2209 * to the block in 'slot', and triggering ra on them.
2210 */
2211 static void reada_for_search(struct btrfs_fs_info *fs_info,
2212 struct btrfs_path *path,
2213 int level, int slot, u64 objectid)
2214 {
2215 struct extent_buffer *node;
2216 struct btrfs_disk_key disk_key;
2217 u32 nritems;
2218 u64 search;
2219 u64 target;
2220 u64 nread = 0;
2221 struct extent_buffer *eb;
2222 u32 nr;
2223 u32 blocksize;
2224 u32 nscan = 0;
2225
2226 if (level != 1)
2227 return;
2228
2229 if (!path->nodes[level])
2230 return;
2231
2232 node = path->nodes[level];
2233
2234 search = btrfs_node_blockptr(node, slot);
2235 blocksize = fs_info->nodesize;
2236 eb = find_extent_buffer(fs_info, search);
2237 if (eb) {
2238 free_extent_buffer(eb);
2239 return;
2240 }
2241
2242 target = search;
2243
2244 nritems = btrfs_header_nritems(node);
2245 nr = slot;
2246
2247 while (1) {
2248 if (path->reada == READA_BACK) {
2249 if (nr == 0)
2250 break;
2251 nr--;
2252 } else if (path->reada == READA_FORWARD) {
2253 nr++;
2254 if (nr >= nritems)
2255 break;
2256 }
2257 if (path->reada == READA_BACK && objectid) {
2258 btrfs_node_key(node, &disk_key, nr);
2259 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2260 break;
2261 }
2262 search = btrfs_node_blockptr(node, nr);
2263 if ((search <= target && target - search <= 65536) ||
2264 (search > target && search - target <= 65536)) {
2265 readahead_tree_block(fs_info, search);
2266 nread += blocksize;
2267 }
2268 nscan++;
2269 if ((nread > 65536 || nscan > 32))
2270 break;
2271 }
2272 }
2273
2274 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2275 struct btrfs_path *path, int level)
2276 {
2277 int slot;
2278 int nritems;
2279 struct extent_buffer *parent;
2280 struct extent_buffer *eb;
2281 u64 gen;
2282 u64 block1 = 0;
2283 u64 block2 = 0;
2284
2285 parent = path->nodes[level + 1];
2286 if (!parent)
2287 return;
2288
2289 nritems = btrfs_header_nritems(parent);
2290 slot = path->slots[level + 1];
2291
2292 if (slot > 0) {
2293 block1 = btrfs_node_blockptr(parent, slot - 1);
2294 gen = btrfs_node_ptr_generation(parent, slot - 1);
2295 eb = find_extent_buffer(fs_info, block1);
2296 /*
2297 * if we get -eagain from btrfs_buffer_uptodate, we
2298 * don't want to return eagain here. That will loop
2299 * forever
2300 */
2301 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2302 block1 = 0;
2303 free_extent_buffer(eb);
2304 }
2305 if (slot + 1 < nritems) {
2306 block2 = btrfs_node_blockptr(parent, slot + 1);
2307 gen = btrfs_node_ptr_generation(parent, slot + 1);
2308 eb = find_extent_buffer(fs_info, block2);
2309 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2310 block2 = 0;
2311 free_extent_buffer(eb);
2312 }
2313
2314 if (block1)
2315 readahead_tree_block(fs_info, block1);
2316 if (block2)
2317 readahead_tree_block(fs_info, block2);
2318 }
2319
2320
2321 /*
2322 * when we walk down the tree, it is usually safe to unlock the higher layers
2323 * in the tree. The exceptions are when our path goes through slot 0, because
2324 * operations on the tree might require changing key pointers higher up in the
2325 * tree.
2326 *
2327 * callers might also have set path->keep_locks, which tells this code to keep
2328 * the lock if the path points to the last slot in the block. This is part of
2329 * walking through the tree, and selecting the next slot in the higher block.
2330 *
2331 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2332 * if lowest_unlock is 1, level 0 won't be unlocked
2333 */
2334 static noinline void unlock_up(struct btrfs_path *path, int level,
2335 int lowest_unlock, int min_write_lock_level,
2336 int *write_lock_level)
2337 {
2338 int i;
2339 int skip_level = level;
2340 int no_skips = 0;
2341 struct extent_buffer *t;
2342
2343 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2344 if (!path->nodes[i])
2345 break;
2346 if (!path->locks[i])
2347 break;
2348 if (!no_skips && path->slots[i] == 0) {
2349 skip_level = i + 1;
2350 continue;
2351 }
2352 if (!no_skips && path->keep_locks) {
2353 u32 nritems;
2354 t = path->nodes[i];
2355 nritems = btrfs_header_nritems(t);
2356 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2357 skip_level = i + 1;
2358 continue;
2359 }
2360 }
2361 if (skip_level < i && i >= lowest_unlock)
2362 no_skips = 1;
2363
2364 t = path->nodes[i];
2365 if (i >= lowest_unlock && i > skip_level) {
2366 btrfs_tree_unlock_rw(t, path->locks[i]);
2367 path->locks[i] = 0;
2368 if (write_lock_level &&
2369 i > min_write_lock_level &&
2370 i <= *write_lock_level) {
2371 *write_lock_level = i - 1;
2372 }
2373 }
2374 }
2375 }
2376
2377 /*
2378 * helper function for btrfs_search_slot. The goal is to find a block
2379 * in cache without setting the path to blocking. If we find the block
2380 * we return zero and the path is unchanged.
2381 *
2382 * If we can't find the block, we set the path blocking and do some
2383 * reada. -EAGAIN is returned and the search must be repeated.
2384 */
2385 static int
2386 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2387 struct extent_buffer **eb_ret, int level, int slot,
2388 const struct btrfs_key *key)
2389 {
2390 struct btrfs_fs_info *fs_info = root->fs_info;
2391 u64 blocknr;
2392 u64 gen;
2393 struct extent_buffer *b = *eb_ret;
2394 struct extent_buffer *tmp;
2395 struct btrfs_key first_key;
2396 int ret;
2397 int parent_level;
2398
2399 blocknr = btrfs_node_blockptr(b, slot);
2400 gen = btrfs_node_ptr_generation(b, slot);
2401 parent_level = btrfs_header_level(b);
2402 btrfs_node_key_to_cpu(b, &first_key, slot);
2403
2404 tmp = find_extent_buffer(fs_info, blocknr);
2405 if (tmp) {
2406 /* first we do an atomic uptodate check */
2407 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2408 /*
2409 * Do extra check for first_key, eb can be stale due to
2410 * being cached, read from scrub, or have multiple
2411 * parents (shared tree blocks).
2412 */
2413 if (btrfs_verify_level_key(tmp,
2414 parent_level - 1, &first_key, gen)) {
2415 free_extent_buffer(tmp);
2416 return -EUCLEAN;
2417 }
2418 *eb_ret = tmp;
2419 return 0;
2420 }
2421
2422 /* the pages were up to date, but we failed
2423 * the generation number check. Do a full
2424 * read for the generation number that is correct.
2425 * We must do this without dropping locks so
2426 * we can trust our generation number
2427 */
2428 btrfs_set_path_blocking(p);
2429
2430 /* now we're allowed to do a blocking uptodate check */
2431 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2432 if (!ret) {
2433 *eb_ret = tmp;
2434 return 0;
2435 }
2436 free_extent_buffer(tmp);
2437 btrfs_release_path(p);
2438 return -EIO;
2439 }
2440
2441 /*
2442 * reduce lock contention at high levels
2443 * of the btree by dropping locks before
2444 * we read. Don't release the lock on the current
2445 * level because we need to walk this node to figure
2446 * out which blocks to read.
2447 */
2448 btrfs_unlock_up_safe(p, level + 1);
2449 btrfs_set_path_blocking(p);
2450
2451 if (p->reada != READA_NONE)
2452 reada_for_search(fs_info, p, level, slot, key->objectid);
2453
2454 ret = -EAGAIN;
2455 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2456 &first_key);
2457 if (!IS_ERR(tmp)) {
2458 /*
2459 * If the read above didn't mark this buffer up to date,
2460 * it will never end up being up to date. Set ret to EIO now
2461 * and give up so that our caller doesn't loop forever
2462 * on our EAGAINs.
2463 */
2464 if (!extent_buffer_uptodate(tmp))
2465 ret = -EIO;
2466 free_extent_buffer(tmp);
2467 } else {
2468 ret = PTR_ERR(tmp);
2469 }
2470
2471 btrfs_release_path(p);
2472 return ret;
2473 }
2474
2475 /*
2476 * helper function for btrfs_search_slot. This does all of the checks
2477 * for node-level blocks and does any balancing required based on
2478 * the ins_len.
2479 *
2480 * If no extra work was required, zero is returned. If we had to
2481 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2482 * start over
2483 */
2484 static int
2485 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2486 struct btrfs_root *root, struct btrfs_path *p,
2487 struct extent_buffer *b, int level, int ins_len,
2488 int *write_lock_level)
2489 {
2490 struct btrfs_fs_info *fs_info = root->fs_info;
2491 int ret;
2492
2493 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2494 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2495 int sret;
2496
2497 if (*write_lock_level < level + 1) {
2498 *write_lock_level = level + 1;
2499 btrfs_release_path(p);
2500 goto again;
2501 }
2502
2503 btrfs_set_path_blocking(p);
2504 reada_for_balance(fs_info, p, level);
2505 sret = split_node(trans, root, p, level);
2506
2507 BUG_ON(sret > 0);
2508 if (sret) {
2509 ret = sret;
2510 goto done;
2511 }
2512 b = p->nodes[level];
2513 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2514 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2515 int sret;
2516
2517 if (*write_lock_level < level + 1) {
2518 *write_lock_level = level + 1;
2519 btrfs_release_path(p);
2520 goto again;
2521 }
2522
2523 btrfs_set_path_blocking(p);
2524 reada_for_balance(fs_info, p, level);
2525 sret = balance_level(trans, root, p, level);
2526
2527 if (sret) {
2528 ret = sret;
2529 goto done;
2530 }
2531 b = p->nodes[level];
2532 if (!b) {
2533 btrfs_release_path(p);
2534 goto again;
2535 }
2536 BUG_ON(btrfs_header_nritems(b) == 1);
2537 }
2538 return 0;
2539
2540 again:
2541 ret = -EAGAIN;
2542 done:
2543 return ret;
2544 }
2545
2546 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2547 int level, int *prev_cmp, int *slot)
2548 {
2549 if (*prev_cmp != 0) {
2550 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2551 return *prev_cmp;
2552 }
2553
2554 *slot = 0;
2555
2556 return 0;
2557 }
2558
2559 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2560 u64 iobjectid, u64 ioff, u8 key_type,
2561 struct btrfs_key *found_key)
2562 {
2563 int ret;
2564 struct btrfs_key key;
2565 struct extent_buffer *eb;
2566
2567 ASSERT(path);
2568 ASSERT(found_key);
2569
2570 key.type = key_type;
2571 key.objectid = iobjectid;
2572 key.offset = ioff;
2573
2574 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2575 if (ret < 0)
2576 return ret;
2577
2578 eb = path->nodes[0];
2579 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2580 ret = btrfs_next_leaf(fs_root, path);
2581 if (ret)
2582 return ret;
2583 eb = path->nodes[0];
2584 }
2585
2586 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2587 if (found_key->type != key.type ||
2588 found_key->objectid != key.objectid)
2589 return 1;
2590
2591 return 0;
2592 }
2593
2594 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2595 struct btrfs_path *p,
2596 int write_lock_level)
2597 {
2598 struct btrfs_fs_info *fs_info = root->fs_info;
2599 struct extent_buffer *b;
2600 int root_lock;
2601 int level = 0;
2602
2603 /* We try very hard to do read locks on the root */
2604 root_lock = BTRFS_READ_LOCK;
2605
2606 if (p->search_commit_root) {
2607 /*
2608 * The commit roots are read only so we always do read locks,
2609 * and we always must hold the commit_root_sem when doing
2610 * searches on them, the only exception is send where we don't
2611 * want to block transaction commits for a long time, so
2612 * we need to clone the commit root in order to avoid races
2613 * with transaction commits that create a snapshot of one of
2614 * the roots used by a send operation.
2615 */
2616 if (p->need_commit_sem) {
2617 down_read(&fs_info->commit_root_sem);
2618 b = btrfs_clone_extent_buffer(root->commit_root);
2619 up_read(&fs_info->commit_root_sem);
2620 if (!b)
2621 return ERR_PTR(-ENOMEM);
2622
2623 } else {
2624 b = root->commit_root;
2625 atomic_inc(&b->refs);
2626 }
2627 level = btrfs_header_level(b);
2628 /*
2629 * Ensure that all callers have set skip_locking when
2630 * p->search_commit_root = 1.
2631 */
2632 ASSERT(p->skip_locking == 1);
2633
2634 goto out;
2635 }
2636
2637 if (p->skip_locking) {
2638 b = btrfs_root_node(root);
2639 level = btrfs_header_level(b);
2640 goto out;
2641 }
2642
2643 /*
2644 * If the level is set to maximum, we can skip trying to get the read
2645 * lock.
2646 */
2647 if (write_lock_level < BTRFS_MAX_LEVEL) {
2648 /*
2649 * We don't know the level of the root node until we actually
2650 * have it read locked
2651 */
2652 b = btrfs_read_lock_root_node(root);
2653 level = btrfs_header_level(b);
2654 if (level > write_lock_level)
2655 goto out;
2656
2657 /* Whoops, must trade for write lock */
2658 btrfs_tree_read_unlock(b);
2659 free_extent_buffer(b);
2660 }
2661
2662 b = btrfs_lock_root_node(root);
2663 root_lock = BTRFS_WRITE_LOCK;
2664
2665 /* The level might have changed, check again */
2666 level = btrfs_header_level(b);
2667
2668 out:
2669 p->nodes[level] = b;
2670 if (!p->skip_locking)
2671 p->locks[level] = root_lock;
2672 /*
2673 * Callers are responsible for dropping b's references.
2674 */
2675 return b;
2676 }
2677
2678
2679 /*
2680 * btrfs_search_slot - look for a key in a tree and perform necessary
2681 * modifications to preserve tree invariants.
2682 *
2683 * @trans: Handle of transaction, used when modifying the tree
2684 * @p: Holds all btree nodes along the search path
2685 * @root: The root node of the tree
2686 * @key: The key we are looking for
2687 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2688 * deletions it's -1. 0 for plain searches
2689 * @cow: boolean should CoW operations be performed. Must always be 1
2690 * when modifying the tree.
2691 *
2692 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2693 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2694 *
2695 * If @key is found, 0 is returned and you can find the item in the leaf level
2696 * of the path (level 0)
2697 *
2698 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2699 * points to the slot where it should be inserted
2700 *
2701 * If an error is encountered while searching the tree a negative error number
2702 * is returned
2703 */
2704 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2705 const struct btrfs_key *key, struct btrfs_path *p,
2706 int ins_len, int cow)
2707 {
2708 struct extent_buffer *b;
2709 int slot;
2710 int ret;
2711 int err;
2712 int level;
2713 int lowest_unlock = 1;
2714 /* everything at write_lock_level or lower must be write locked */
2715 int write_lock_level = 0;
2716 u8 lowest_level = 0;
2717 int min_write_lock_level;
2718 int prev_cmp;
2719
2720 lowest_level = p->lowest_level;
2721 WARN_ON(lowest_level && ins_len > 0);
2722 WARN_ON(p->nodes[0] != NULL);
2723 BUG_ON(!cow && ins_len);
2724
2725 if (ins_len < 0) {
2726 lowest_unlock = 2;
2727
2728 /* when we are removing items, we might have to go up to level
2729 * two as we update tree pointers Make sure we keep write
2730 * for those levels as well
2731 */
2732 write_lock_level = 2;
2733 } else if (ins_len > 0) {
2734 /*
2735 * for inserting items, make sure we have a write lock on
2736 * level 1 so we can update keys
2737 */
2738 write_lock_level = 1;
2739 }
2740
2741 if (!cow)
2742 write_lock_level = -1;
2743
2744 if (cow && (p->keep_locks || p->lowest_level))
2745 write_lock_level = BTRFS_MAX_LEVEL;
2746
2747 min_write_lock_level = write_lock_level;
2748
2749 again:
2750 prev_cmp = -1;
2751 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2752 if (IS_ERR(b)) {
2753 ret = PTR_ERR(b);
2754 goto done;
2755 }
2756
2757 while (b) {
2758 int dec = 0;
2759
2760 level = btrfs_header_level(b);
2761
2762 if (cow) {
2763 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2764
2765 /*
2766 * if we don't really need to cow this block
2767 * then we don't want to set the path blocking,
2768 * so we test it here
2769 */
2770 if (!should_cow_block(trans, root, b)) {
2771 trans->dirty = true;
2772 goto cow_done;
2773 }
2774
2775 /*
2776 * must have write locks on this node and the
2777 * parent
2778 */
2779 if (level > write_lock_level ||
2780 (level + 1 > write_lock_level &&
2781 level + 1 < BTRFS_MAX_LEVEL &&
2782 p->nodes[level + 1])) {
2783 write_lock_level = level + 1;
2784 btrfs_release_path(p);
2785 goto again;
2786 }
2787
2788 btrfs_set_path_blocking(p);
2789 if (last_level)
2790 err = btrfs_cow_block(trans, root, b, NULL, 0,
2791 &b);
2792 else
2793 err = btrfs_cow_block(trans, root, b,
2794 p->nodes[level + 1],
2795 p->slots[level + 1], &b);
2796 if (err) {
2797 ret = err;
2798 goto done;
2799 }
2800 }
2801 cow_done:
2802 p->nodes[level] = b;
2803 /*
2804 * Leave path with blocking locks to avoid massive
2805 * lock context switch, this is made on purpose.
2806 */
2807
2808 /*
2809 * we have a lock on b and as long as we aren't changing
2810 * the tree, there is no way to for the items in b to change.
2811 * It is safe to drop the lock on our parent before we
2812 * go through the expensive btree search on b.
2813 *
2814 * If we're inserting or deleting (ins_len != 0), then we might
2815 * be changing slot zero, which may require changing the parent.
2816 * So, we can't drop the lock until after we know which slot
2817 * we're operating on.
2818 */
2819 if (!ins_len && !p->keep_locks) {
2820 int u = level + 1;
2821
2822 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2823 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2824 p->locks[u] = 0;
2825 }
2826 }
2827
2828 ret = key_search(b, key, level, &prev_cmp, &slot);
2829 if (ret < 0)
2830 goto done;
2831
2832 if (level == 0) {
2833 p->slots[level] = slot;
2834 if (ins_len > 0 &&
2835 btrfs_leaf_free_space(b) < ins_len) {
2836 if (write_lock_level < 1) {
2837 write_lock_level = 1;
2838 btrfs_release_path(p);
2839 goto again;
2840 }
2841
2842 btrfs_set_path_blocking(p);
2843 err = split_leaf(trans, root, key,
2844 p, ins_len, ret == 0);
2845
2846 BUG_ON(err > 0);
2847 if (err) {
2848 ret = err;
2849 goto done;
2850 }
2851 }
2852 if (!p->search_for_split)
2853 unlock_up(p, level, lowest_unlock,
2854 min_write_lock_level, NULL);
2855 goto done;
2856 }
2857 if (ret && slot > 0) {
2858 dec = 1;
2859 slot--;
2860 }
2861 p->slots[level] = slot;
2862 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2863 &write_lock_level);
2864 if (err == -EAGAIN)
2865 goto again;
2866 if (err) {
2867 ret = err;
2868 goto done;
2869 }
2870 b = p->nodes[level];
2871 slot = p->slots[level];
2872
2873 /*
2874 * Slot 0 is special, if we change the key we have to update
2875 * the parent pointer which means we must have a write lock on
2876 * the parent
2877 */
2878 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2879 write_lock_level = level + 1;
2880 btrfs_release_path(p);
2881 goto again;
2882 }
2883
2884 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2885 &write_lock_level);
2886
2887 if (level == lowest_level) {
2888 if (dec)
2889 p->slots[level]++;
2890 goto done;
2891 }
2892
2893 err = read_block_for_search(root, p, &b, level, slot, key);
2894 if (err == -EAGAIN)
2895 goto again;
2896 if (err) {
2897 ret = err;
2898 goto done;
2899 }
2900
2901 if (!p->skip_locking) {
2902 level = btrfs_header_level(b);
2903 if (level <= write_lock_level) {
2904 if (!btrfs_try_tree_write_lock(b)) {
2905 btrfs_set_path_blocking(p);
2906 btrfs_tree_lock(b);
2907 }
2908 p->locks[level] = BTRFS_WRITE_LOCK;
2909 } else {
2910 if (!btrfs_tree_read_lock_atomic(b)) {
2911 btrfs_set_path_blocking(p);
2912 btrfs_tree_read_lock(b);
2913 }
2914 p->locks[level] = BTRFS_READ_LOCK;
2915 }
2916 p->nodes[level] = b;
2917 }
2918 }
2919 ret = 1;
2920 done:
2921 /*
2922 * we don't really know what they plan on doing with the path
2923 * from here on, so for now just mark it as blocking
2924 */
2925 if (!p->leave_spinning)
2926 btrfs_set_path_blocking(p);
2927 if (ret < 0 && !p->skip_release_on_error)
2928 btrfs_release_path(p);
2929 return ret;
2930 }
2931
2932 /*
2933 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2934 * current state of the tree together with the operations recorded in the tree
2935 * modification log to search for the key in a previous version of this tree, as
2936 * denoted by the time_seq parameter.
2937 *
2938 * Naturally, there is no support for insert, delete or cow operations.
2939 *
2940 * The resulting path and return value will be set up as if we called
2941 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2942 */
2943 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2944 struct btrfs_path *p, u64 time_seq)
2945 {
2946 struct btrfs_fs_info *fs_info = root->fs_info;
2947 struct extent_buffer *b;
2948 int slot;
2949 int ret;
2950 int err;
2951 int level;
2952 int lowest_unlock = 1;
2953 u8 lowest_level = 0;
2954 int prev_cmp = -1;
2955
2956 lowest_level = p->lowest_level;
2957 WARN_ON(p->nodes[0] != NULL);
2958
2959 if (p->search_commit_root) {
2960 BUG_ON(time_seq);
2961 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962 }
2963
2964 again:
2965 b = get_old_root(root, time_seq);
2966 if (!b) {
2967 ret = -EIO;
2968 goto done;
2969 }
2970 level = btrfs_header_level(b);
2971 p->locks[level] = BTRFS_READ_LOCK;
2972
2973 while (b) {
2974 int dec = 0;
2975
2976 level = btrfs_header_level(b);
2977 p->nodes[level] = b;
2978
2979 /*
2980 * we have a lock on b and as long as we aren't changing
2981 * the tree, there is no way to for the items in b to change.
2982 * It is safe to drop the lock on our parent before we
2983 * go through the expensive btree search on b.
2984 */
2985 btrfs_unlock_up_safe(p, level + 1);
2986
2987 /*
2988 * Since we can unwind ebs we want to do a real search every
2989 * time.
2990 */
2991 prev_cmp = -1;
2992 ret = key_search(b, key, level, &prev_cmp, &slot);
2993 if (ret < 0)
2994 goto done;
2995
2996 if (level == 0) {
2997 p->slots[level] = slot;
2998 unlock_up(p, level, lowest_unlock, 0, NULL);
2999 goto done;
3000 }
3001
3002 if (ret && slot > 0) {
3003 dec = 1;
3004 slot--;
3005 }
3006 p->slots[level] = slot;
3007 unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009 if (level == lowest_level) {
3010 if (dec)
3011 p->slots[level]++;
3012 goto done;
3013 }
3014
3015 err = read_block_for_search(root, p, &b, level, slot, key);
3016 if (err == -EAGAIN)
3017 goto again;
3018 if (err) {
3019 ret = err;
3020 goto done;
3021 }
3022
3023 level = btrfs_header_level(b);
3024 if (!btrfs_tree_read_lock_atomic(b)) {
3025 btrfs_set_path_blocking(p);
3026 btrfs_tree_read_lock(b);
3027 }
3028 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3029 if (!b) {
3030 ret = -ENOMEM;
3031 goto done;
3032 }
3033 p->locks[level] = BTRFS_READ_LOCK;
3034 p->nodes[level] = b;
3035 }
3036 ret = 1;
3037 done:
3038 if (!p->leave_spinning)
3039 btrfs_set_path_blocking(p);
3040 if (ret < 0)
3041 btrfs_release_path(p);
3042
3043 return ret;
3044 }
3045
3046 /*
3047 * helper to use instead of search slot if no exact match is needed but
3048 * instead the next or previous item should be returned.
3049 * When find_higher is true, the next higher item is returned, the next lower
3050 * otherwise.
3051 * When return_any and find_higher are both true, and no higher item is found,
3052 * return the next lower instead.
3053 * When return_any is true and find_higher is false, and no lower item is found,
3054 * return the next higher instead.
3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056 * < 0 on error
3057 */
3058 int btrfs_search_slot_for_read(struct btrfs_root *root,
3059 const struct btrfs_key *key,
3060 struct btrfs_path *p, int find_higher,
3061 int return_any)
3062 {
3063 int ret;
3064 struct extent_buffer *leaf;
3065
3066 again:
3067 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068 if (ret <= 0)
3069 return ret;
3070 /*
3071 * a return value of 1 means the path is at the position where the
3072 * item should be inserted. Normally this is the next bigger item,
3073 * but in case the previous item is the last in a leaf, path points
3074 * to the first free slot in the previous leaf, i.e. at an invalid
3075 * item.
3076 */
3077 leaf = p->nodes[0];
3078
3079 if (find_higher) {
3080 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081 ret = btrfs_next_leaf(root, p);
3082 if (ret <= 0)
3083 return ret;
3084 if (!return_any)
3085 return 1;
3086 /*
3087 * no higher item found, return the next
3088 * lower instead
3089 */
3090 return_any = 0;
3091 find_higher = 0;
3092 btrfs_release_path(p);
3093 goto again;
3094 }
3095 } else {
3096 if (p->slots[0] == 0) {
3097 ret = btrfs_prev_leaf(root, p);
3098 if (ret < 0)
3099 return ret;
3100 if (!ret) {
3101 leaf = p->nodes[0];
3102 if (p->slots[0] == btrfs_header_nritems(leaf))
3103 p->slots[0]--;
3104 return 0;
3105 }
3106 if (!return_any)
3107 return 1;
3108 /*
3109 * no lower item found, return the next
3110 * higher instead
3111 */
3112 return_any = 0;
3113 find_higher = 1;
3114 btrfs_release_path(p);
3115 goto again;
3116 } else {
3117 --p->slots[0];
3118 }
3119 }
3120 return 0;
3121 }
3122
3123 /*
3124 * adjust the pointers going up the tree, starting at level
3125 * making sure the right key of each node is points to 'key'.
3126 * This is used after shifting pointers to the left, so it stops
3127 * fixing up pointers when a given leaf/node is not in slot 0 of the
3128 * higher levels
3129 *
3130 */
3131 static void fixup_low_keys(struct btrfs_path *path,
3132 struct btrfs_disk_key *key, int level)
3133 {
3134 int i;
3135 struct extent_buffer *t;
3136 int ret;
3137
3138 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3139 int tslot = path->slots[i];
3140
3141 if (!path->nodes[i])
3142 break;
3143 t = path->nodes[i];
3144 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3145 GFP_ATOMIC);
3146 BUG_ON(ret < 0);
3147 btrfs_set_node_key(t, key, tslot);
3148 btrfs_mark_buffer_dirty(path->nodes[i]);
3149 if (tslot != 0)
3150 break;
3151 }
3152 }
3153
3154 /*
3155 * update item key.
3156 *
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3159 */
3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161 struct btrfs_path *path,
3162 const struct btrfs_key *new_key)
3163 {
3164 struct btrfs_disk_key disk_key;
3165 struct extent_buffer *eb;
3166 int slot;
3167
3168 eb = path->nodes[0];
3169 slot = path->slots[0];
3170 if (slot > 0) {
3171 btrfs_item_key(eb, &disk_key, slot - 1);
3172 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3173 btrfs_crit(fs_info,
3174 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3175 slot, btrfs_disk_key_objectid(&disk_key),
3176 btrfs_disk_key_type(&disk_key),
3177 btrfs_disk_key_offset(&disk_key),
3178 new_key->objectid, new_key->type,
3179 new_key->offset);
3180 btrfs_print_leaf(eb);
3181 BUG();
3182 }
3183 }
3184 if (slot < btrfs_header_nritems(eb) - 1) {
3185 btrfs_item_key(eb, &disk_key, slot + 1);
3186 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3187 btrfs_crit(fs_info,
3188 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3189 slot, btrfs_disk_key_objectid(&disk_key),
3190 btrfs_disk_key_type(&disk_key),
3191 btrfs_disk_key_offset(&disk_key),
3192 new_key->objectid, new_key->type,
3193 new_key->offset);
3194 btrfs_print_leaf(eb);
3195 BUG();
3196 }
3197 }
3198
3199 btrfs_cpu_key_to_disk(&disk_key, new_key);
3200 btrfs_set_item_key(eb, &disk_key, slot);
3201 btrfs_mark_buffer_dirty(eb);
3202 if (slot == 0)
3203 fixup_low_keys(path, &disk_key, 1);
3204 }
3205
3206 /*
3207 * try to push data from one node into the next node left in the
3208 * tree.
3209 *
3210 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3211 * error, and > 0 if there was no room in the left hand block.
3212 */
3213 static int push_node_left(struct btrfs_trans_handle *trans,
3214 struct extent_buffer *dst,
3215 struct extent_buffer *src, int empty)
3216 {
3217 struct btrfs_fs_info *fs_info = trans->fs_info;
3218 int push_items = 0;
3219 int src_nritems;
3220 int dst_nritems;
3221 int ret = 0;
3222
3223 src_nritems = btrfs_header_nritems(src);
3224 dst_nritems = btrfs_header_nritems(dst);
3225 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3226 WARN_ON(btrfs_header_generation(src) != trans->transid);
3227 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3228
3229 if (!empty && src_nritems <= 8)
3230 return 1;
3231
3232 if (push_items <= 0)
3233 return 1;
3234
3235 if (empty) {
3236 push_items = min(src_nritems, push_items);
3237 if (push_items < src_nritems) {
3238 /* leave at least 8 pointers in the node if
3239 * we aren't going to empty it
3240 */
3241 if (src_nritems - push_items < 8) {
3242 if (push_items <= 8)
3243 return 1;
3244 push_items -= 8;
3245 }
3246 }
3247 } else
3248 push_items = min(src_nritems - 8, push_items);
3249
3250 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3251 if (ret) {
3252 btrfs_abort_transaction(trans, ret);
3253 return ret;
3254 }
3255 copy_extent_buffer(dst, src,
3256 btrfs_node_key_ptr_offset(dst_nritems),
3257 btrfs_node_key_ptr_offset(0),
3258 push_items * sizeof(struct btrfs_key_ptr));
3259
3260 if (push_items < src_nritems) {
3261 /*
3262 * Don't call tree_mod_log_insert_move here, key removal was
3263 * already fully logged by tree_mod_log_eb_copy above.
3264 */
3265 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3266 btrfs_node_key_ptr_offset(push_items),
3267 (src_nritems - push_items) *
3268 sizeof(struct btrfs_key_ptr));
3269 }
3270 btrfs_set_header_nritems(src, src_nritems - push_items);
3271 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3272 btrfs_mark_buffer_dirty(src);
3273 btrfs_mark_buffer_dirty(dst);
3274
3275 return ret;
3276 }
3277
3278 /*
3279 * try to push data from one node into the next node right in the
3280 * tree.
3281 *
3282 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3283 * error, and > 0 if there was no room in the right hand block.
3284 *
3285 * this will only push up to 1/2 the contents of the left node over
3286 */
3287 static int balance_node_right(struct btrfs_trans_handle *trans,
3288 struct extent_buffer *dst,
3289 struct extent_buffer *src)
3290 {
3291 struct btrfs_fs_info *fs_info = trans->fs_info;
3292 int push_items = 0;
3293 int max_push;
3294 int src_nritems;
3295 int dst_nritems;
3296 int ret = 0;
3297
3298 WARN_ON(btrfs_header_generation(src) != trans->transid);
3299 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3300
3301 src_nritems = btrfs_header_nritems(src);
3302 dst_nritems = btrfs_header_nritems(dst);
3303 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3304 if (push_items <= 0)
3305 return 1;
3306
3307 if (src_nritems < 4)
3308 return 1;
3309
3310 max_push = src_nritems / 2 + 1;
3311 /* don't try to empty the node */
3312 if (max_push >= src_nritems)
3313 return 1;
3314
3315 if (max_push < push_items)
3316 push_items = max_push;
3317
3318 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3319 BUG_ON(ret < 0);
3320 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3321 btrfs_node_key_ptr_offset(0),
3322 (dst_nritems) *
3323 sizeof(struct btrfs_key_ptr));
3324
3325 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3326 push_items);
3327 if (ret) {
3328 btrfs_abort_transaction(trans, ret);
3329 return ret;
3330 }
3331 copy_extent_buffer(dst, src,
3332 btrfs_node_key_ptr_offset(0),
3333 btrfs_node_key_ptr_offset(src_nritems - push_items),
3334 push_items * sizeof(struct btrfs_key_ptr));
3335
3336 btrfs_set_header_nritems(src, src_nritems - push_items);
3337 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3338
3339 btrfs_mark_buffer_dirty(src);
3340 btrfs_mark_buffer_dirty(dst);
3341
3342 return ret;
3343 }
3344
3345 /*
3346 * helper function to insert a new root level in the tree.
3347 * A new node is allocated, and a single item is inserted to
3348 * point to the existing root
3349 *
3350 * returns zero on success or < 0 on failure.
3351 */
3352 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3353 struct btrfs_root *root,
3354 struct btrfs_path *path, int level)
3355 {
3356 struct btrfs_fs_info *fs_info = root->fs_info;
3357 u64 lower_gen;
3358 struct extent_buffer *lower;
3359 struct extent_buffer *c;
3360 struct extent_buffer *old;
3361 struct btrfs_disk_key lower_key;
3362 int ret;
3363
3364 BUG_ON(path->nodes[level]);
3365 BUG_ON(path->nodes[level-1] != root->node);
3366
3367 lower = path->nodes[level-1];
3368 if (level == 1)
3369 btrfs_item_key(lower, &lower_key, 0);
3370 else
3371 btrfs_node_key(lower, &lower_key, 0);
3372
3373 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3374 root->node->start, 0);
3375 if (IS_ERR(c))
3376 return PTR_ERR(c);
3377
3378 root_add_used(root, fs_info->nodesize);
3379
3380 btrfs_set_header_nritems(c, 1);
3381 btrfs_set_node_key(c, &lower_key, 0);
3382 btrfs_set_node_blockptr(c, 0, lower->start);
3383 lower_gen = btrfs_header_generation(lower);
3384 WARN_ON(lower_gen != trans->transid);
3385
3386 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3387
3388 btrfs_mark_buffer_dirty(c);
3389
3390 old = root->node;
3391 ret = tree_mod_log_insert_root(root->node, c, 0);
3392 BUG_ON(ret < 0);
3393 rcu_assign_pointer(root->node, c);
3394
3395 /* the super has an extra ref to root->node */
3396 free_extent_buffer(old);
3397
3398 add_root_to_dirty_list(root);
3399 atomic_inc(&c->refs);
3400 path->nodes[level] = c;
3401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3402 path->slots[level] = 0;
3403 return 0;
3404 }
3405
3406 /*
3407 * worker function to insert a single pointer in a node.
3408 * the node should have enough room for the pointer already
3409 *
3410 * slot and level indicate where you want the key to go, and
3411 * blocknr is the block the key points to.
3412 */
3413 static void insert_ptr(struct btrfs_trans_handle *trans,
3414 struct btrfs_path *path,
3415 struct btrfs_disk_key *key, u64 bytenr,
3416 int slot, int level)
3417 {
3418 struct extent_buffer *lower;
3419 int nritems;
3420 int ret;
3421
3422 BUG_ON(!path->nodes[level]);
3423 btrfs_assert_tree_locked(path->nodes[level]);
3424 lower = path->nodes[level];
3425 nritems = btrfs_header_nritems(lower);
3426 BUG_ON(slot > nritems);
3427 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3428 if (slot != nritems) {
3429 if (level) {
3430 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3431 nritems - slot);
3432 BUG_ON(ret < 0);
3433 }
3434 memmove_extent_buffer(lower,
3435 btrfs_node_key_ptr_offset(slot + 1),
3436 btrfs_node_key_ptr_offset(slot),
3437 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3438 }
3439 if (level) {
3440 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3441 GFP_NOFS);
3442 BUG_ON(ret < 0);
3443 }
3444 btrfs_set_node_key(lower, key, slot);
3445 btrfs_set_node_blockptr(lower, slot, bytenr);
3446 WARN_ON(trans->transid == 0);
3447 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3448 btrfs_set_header_nritems(lower, nritems + 1);
3449 btrfs_mark_buffer_dirty(lower);
3450 }
3451
3452 /*
3453 * split the node at the specified level in path in two.
3454 * The path is corrected to point to the appropriate node after the split
3455 *
3456 * Before splitting this tries to make some room in the node by pushing
3457 * left and right, if either one works, it returns right away.
3458 *
3459 * returns 0 on success and < 0 on failure
3460 */
3461 static noinline int split_node(struct btrfs_trans_handle *trans,
3462 struct btrfs_root *root,
3463 struct btrfs_path *path, int level)
3464 {
3465 struct btrfs_fs_info *fs_info = root->fs_info;
3466 struct extent_buffer *c;
3467 struct extent_buffer *split;
3468 struct btrfs_disk_key disk_key;
3469 int mid;
3470 int ret;
3471 u32 c_nritems;
3472
3473 c = path->nodes[level];
3474 WARN_ON(btrfs_header_generation(c) != trans->transid);
3475 if (c == root->node) {
3476 /*
3477 * trying to split the root, lets make a new one
3478 *
3479 * tree mod log: We don't log_removal old root in
3480 * insert_new_root, because that root buffer will be kept as a
3481 * normal node. We are going to log removal of half of the
3482 * elements below with tree_mod_log_eb_copy. We're holding a
3483 * tree lock on the buffer, which is why we cannot race with
3484 * other tree_mod_log users.
3485 */
3486 ret = insert_new_root(trans, root, path, level + 1);
3487 if (ret)
3488 return ret;
3489 } else {
3490 ret = push_nodes_for_insert(trans, root, path, level);
3491 c = path->nodes[level];
3492 if (!ret && btrfs_header_nritems(c) <
3493 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3494 return 0;
3495 if (ret < 0)
3496 return ret;
3497 }
3498
3499 c_nritems = btrfs_header_nritems(c);
3500 mid = (c_nritems + 1) / 2;
3501 btrfs_node_key(c, &disk_key, mid);
3502
3503 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3504 c->start, 0);
3505 if (IS_ERR(split))
3506 return PTR_ERR(split);
3507
3508 root_add_used(root, fs_info->nodesize);
3509 ASSERT(btrfs_header_level(c) == level);
3510
3511 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3512 if (ret) {
3513 btrfs_abort_transaction(trans, ret);
3514 return ret;
3515 }
3516 copy_extent_buffer(split, c,
3517 btrfs_node_key_ptr_offset(0),
3518 btrfs_node_key_ptr_offset(mid),
3519 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520 btrfs_set_header_nritems(split, c_nritems - mid);
3521 btrfs_set_header_nritems(c, mid);
3522 ret = 0;
3523
3524 btrfs_mark_buffer_dirty(c);
3525 btrfs_mark_buffer_dirty(split);
3526
3527 insert_ptr(trans, path, &disk_key, split->start,
3528 path->slots[level + 1] + 1, level + 1);
3529
3530 if (path->slots[level] >= mid) {
3531 path->slots[level] -= mid;
3532 btrfs_tree_unlock(c);
3533 free_extent_buffer(c);
3534 path->nodes[level] = split;
3535 path->slots[level + 1] += 1;
3536 } else {
3537 btrfs_tree_unlock(split);
3538 free_extent_buffer(split);
3539 }
3540 return ret;
3541 }
3542
3543 /*
3544 * how many bytes are required to store the items in a leaf. start
3545 * and nr indicate which items in the leaf to check. This totals up the
3546 * space used both by the item structs and the item data
3547 */
3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549 {
3550 struct btrfs_item *start_item;
3551 struct btrfs_item *end_item;
3552 struct btrfs_map_token token;
3553 int data_len;
3554 int nritems = btrfs_header_nritems(l);
3555 int end = min(nritems, start + nr) - 1;
3556
3557 if (!nr)
3558 return 0;
3559 btrfs_init_map_token(&token, l);
3560 start_item = btrfs_item_nr(start);
3561 end_item = btrfs_item_nr(end);
3562 data_len = btrfs_token_item_offset(l, start_item, &token) +
3563 btrfs_token_item_size(l, start_item, &token);
3564 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565 data_len += sizeof(struct btrfs_item) * nr;
3566 WARN_ON(data_len < 0);
3567 return data_len;
3568 }
3569
3570 /*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data. IOW, how much room
3573 * the leaf has left for both items and data
3574 */
3575 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3576 {
3577 struct btrfs_fs_info *fs_info = leaf->fs_info;
3578 int nritems = btrfs_header_nritems(leaf);
3579 int ret;
3580
3581 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582 if (ret < 0) {
3583 btrfs_crit(fs_info,
3584 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585 ret,
3586 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587 leaf_space_used(leaf, 0, nritems), nritems);
3588 }
3589 return ret;
3590 }
3591
3592 /*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right. We'll push up to and including min_slot, but no lower
3595 */
3596 static noinline int __push_leaf_right(struct btrfs_path *path,
3597 int data_size, int empty,
3598 struct extent_buffer *right,
3599 int free_space, u32 left_nritems,
3600 u32 min_slot)
3601 {
3602 struct btrfs_fs_info *fs_info = right->fs_info;
3603 struct extent_buffer *left = path->nodes[0];
3604 struct extent_buffer *upper = path->nodes[1];
3605 struct btrfs_map_token token;
3606 struct btrfs_disk_key disk_key;
3607 int slot;
3608 u32 i;
3609 int push_space = 0;
3610 int push_items = 0;
3611 struct btrfs_item *item;
3612 u32 nr;
3613 u32 right_nritems;
3614 u32 data_end;
3615 u32 this_item_size;
3616
3617 if (empty)
3618 nr = 0;
3619 else
3620 nr = max_t(u32, 1, min_slot);
3621
3622 if (path->slots[0] >= left_nritems)
3623 push_space += data_size;
3624
3625 slot = path->slots[1];
3626 i = left_nritems - 1;
3627 while (i >= nr) {
3628 item = btrfs_item_nr(i);
3629
3630 if (!empty && push_items > 0) {
3631 if (path->slots[0] > i)
3632 break;
3633 if (path->slots[0] == i) {
3634 int space = btrfs_leaf_free_space(left);
3635
3636 if (space + push_space * 2 > free_space)
3637 break;
3638 }
3639 }
3640
3641 if (path->slots[0] == i)
3642 push_space += data_size;
3643
3644 this_item_size = btrfs_item_size(left, item);
3645 if (this_item_size + sizeof(*item) + push_space > free_space)
3646 break;
3647
3648 push_items++;
3649 push_space += this_item_size + sizeof(*item);
3650 if (i == 0)
3651 break;
3652 i--;
3653 }
3654
3655 if (push_items == 0)
3656 goto out_unlock;
3657
3658 WARN_ON(!empty && push_items == left_nritems);
3659
3660 /* push left to right */
3661 right_nritems = btrfs_header_nritems(right);
3662
3663 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3664 push_space -= leaf_data_end(left);
3665
3666 /* make room in the right data area */
3667 data_end = leaf_data_end(right);
3668 memmove_extent_buffer(right,
3669 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3670 BTRFS_LEAF_DATA_OFFSET + data_end,
3671 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3672
3673 /* copy from the left data area */
3674 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3675 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3676 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3677 push_space);
3678
3679 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3680 btrfs_item_nr_offset(0),
3681 right_nritems * sizeof(struct btrfs_item));
3682
3683 /* copy the items from left to right */
3684 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3685 btrfs_item_nr_offset(left_nritems - push_items),
3686 push_items * sizeof(struct btrfs_item));
3687
3688 /* update the item pointers */
3689 btrfs_init_map_token(&token, right);
3690 right_nritems += push_items;
3691 btrfs_set_header_nritems(right, right_nritems);
3692 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693 for (i = 0; i < right_nritems; i++) {
3694 item = btrfs_item_nr(i);
3695 push_space -= btrfs_token_item_size(right, item, &token);
3696 btrfs_set_token_item_offset(right, item, push_space, &token);
3697 }
3698
3699 left_nritems -= push_items;
3700 btrfs_set_header_nritems(left, left_nritems);
3701
3702 if (left_nritems)
3703 btrfs_mark_buffer_dirty(left);
3704 else
3705 btrfs_clean_tree_block(left);
3706
3707 btrfs_mark_buffer_dirty(right);
3708
3709 btrfs_item_key(right, &disk_key, 0);
3710 btrfs_set_node_key(upper, &disk_key, slot + 1);
3711 btrfs_mark_buffer_dirty(upper);
3712
3713 /* then fixup the leaf pointer in the path */
3714 if (path->slots[0] >= left_nritems) {
3715 path->slots[0] -= left_nritems;
3716 if (btrfs_header_nritems(path->nodes[0]) == 0)
3717 btrfs_clean_tree_block(path->nodes[0]);
3718 btrfs_tree_unlock(path->nodes[0]);
3719 free_extent_buffer(path->nodes[0]);
3720 path->nodes[0] = right;
3721 path->slots[1] += 1;
3722 } else {
3723 btrfs_tree_unlock(right);
3724 free_extent_buffer(right);
3725 }
3726 return 0;
3727
3728 out_unlock:
3729 btrfs_tree_unlock(right);
3730 free_extent_buffer(right);
3731 return 1;
3732 }
3733
3734 /*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3740 *
3741 * this will push starting from min_slot to the end of the leaf. It won't
3742 * push any slot lower than min_slot
3743 */
3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745 *root, struct btrfs_path *path,
3746 int min_data_size, int data_size,
3747 int empty, u32 min_slot)
3748 {
3749 struct extent_buffer *left = path->nodes[0];
3750 struct extent_buffer *right;
3751 struct extent_buffer *upper;
3752 int slot;
3753 int free_space;
3754 u32 left_nritems;
3755 int ret;
3756
3757 if (!path->nodes[1])
3758 return 1;
3759
3760 slot = path->slots[1];
3761 upper = path->nodes[1];
3762 if (slot >= btrfs_header_nritems(upper) - 1)
3763 return 1;
3764
3765 btrfs_assert_tree_locked(path->nodes[1]);
3766
3767 right = btrfs_read_node_slot(upper, slot + 1);
3768 /*
3769 * slot + 1 is not valid or we fail to read the right node,
3770 * no big deal, just return.
3771 */
3772 if (IS_ERR(right))
3773 return 1;
3774
3775 btrfs_tree_lock(right);
3776 btrfs_set_lock_blocking_write(right);
3777
3778 free_space = btrfs_leaf_free_space(right);
3779 if (free_space < data_size)
3780 goto out_unlock;
3781
3782 /* cow and double check */
3783 ret = btrfs_cow_block(trans, root, right, upper,
3784 slot + 1, &right);
3785 if (ret)
3786 goto out_unlock;
3787
3788 free_space = btrfs_leaf_free_space(right);
3789 if (free_space < data_size)
3790 goto out_unlock;
3791
3792 left_nritems = btrfs_header_nritems(left);
3793 if (left_nritems == 0)
3794 goto out_unlock;
3795
3796 if (path->slots[0] == left_nritems && !empty) {
3797 /* Key greater than all keys in the leaf, right neighbor has
3798 * enough room for it and we're not emptying our leaf to delete
3799 * it, therefore use right neighbor to insert the new item and
3800 * no need to touch/dirty our left leaf. */
3801 btrfs_tree_unlock(left);
3802 free_extent_buffer(left);
3803 path->nodes[0] = right;
3804 path->slots[0] = 0;
3805 path->slots[1]++;
3806 return 0;
3807 }
3808
3809 return __push_leaf_right(path, min_data_size, empty,
3810 right, free_space, left_nritems, min_slot);
3811 out_unlock:
3812 btrfs_tree_unlock(right);
3813 free_extent_buffer(right);
3814 return 1;
3815 }
3816
3817 /*
3818 * push some data in the path leaf to the left, trying to free up at
3819 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3820 *
3821 * max_slot can put a limit on how far into the leaf we'll push items. The
3822 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3823 * items
3824 */
3825 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3826 int empty, struct extent_buffer *left,
3827 int free_space, u32 right_nritems,
3828 u32 max_slot)
3829 {
3830 struct btrfs_fs_info *fs_info = left->fs_info;
3831 struct btrfs_disk_key disk_key;
3832 struct extent_buffer *right = path->nodes[0];
3833 int i;
3834 int push_space = 0;
3835 int push_items = 0;
3836 struct btrfs_item *item;
3837 u32 old_left_nritems;
3838 u32 nr;
3839 int ret = 0;
3840 u32 this_item_size;
3841 u32 old_left_item_size;
3842 struct btrfs_map_token token;
3843
3844 if (empty)
3845 nr = min(right_nritems, max_slot);
3846 else
3847 nr = min(right_nritems - 1, max_slot);
3848
3849 for (i = 0; i < nr; i++) {
3850 item = btrfs_item_nr(i);
3851
3852 if (!empty && push_items > 0) {
3853 if (path->slots[0] < i)
3854 break;
3855 if (path->slots[0] == i) {
3856 int space = btrfs_leaf_free_space(right);
3857
3858 if (space + push_space * 2 > free_space)
3859 break;
3860 }
3861 }
3862
3863 if (path->slots[0] == i)
3864 push_space += data_size;
3865
3866 this_item_size = btrfs_item_size(right, item);
3867 if (this_item_size + sizeof(*item) + push_space > free_space)
3868 break;
3869
3870 push_items++;
3871 push_space += this_item_size + sizeof(*item);
3872 }
3873
3874 if (push_items == 0) {
3875 ret = 1;
3876 goto out;
3877 }
3878 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3879
3880 /* push data from right to left */
3881 copy_extent_buffer(left, right,
3882 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3883 btrfs_item_nr_offset(0),
3884 push_items * sizeof(struct btrfs_item));
3885
3886 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3887 btrfs_item_offset_nr(right, push_items - 1);
3888
3889 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3890 leaf_data_end(left) - push_space,
3891 BTRFS_LEAF_DATA_OFFSET +
3892 btrfs_item_offset_nr(right, push_items - 1),
3893 push_space);
3894 old_left_nritems = btrfs_header_nritems(left);
3895 BUG_ON(old_left_nritems <= 0);
3896
3897 btrfs_init_map_token(&token, left);
3898 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3899 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3900 u32 ioff;
3901
3902 item = btrfs_item_nr(i);
3903
3904 ioff = btrfs_token_item_offset(left, item, &token);
3905 btrfs_set_token_item_offset(left, item,
3906 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3907 &token);
3908 }
3909 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3910
3911 /* fixup right node */
3912 if (push_items > right_nritems)
3913 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3914 right_nritems);
3915
3916 if (push_items < right_nritems) {
3917 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3918 leaf_data_end(right);
3919 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3920 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3921 BTRFS_LEAF_DATA_OFFSET +
3922 leaf_data_end(right), push_space);
3923
3924 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3925 btrfs_item_nr_offset(push_items),
3926 (btrfs_header_nritems(right) - push_items) *
3927 sizeof(struct btrfs_item));
3928 }
3929
3930 btrfs_init_map_token(&token, right);
3931 right_nritems -= push_items;
3932 btrfs_set_header_nritems(right, right_nritems);
3933 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3934 for (i = 0; i < right_nritems; i++) {
3935 item = btrfs_item_nr(i);
3936
3937 push_space = push_space - btrfs_token_item_size(right,
3938 item, &token);
3939 btrfs_set_token_item_offset(right, item, push_space, &token);
3940 }
3941
3942 btrfs_mark_buffer_dirty(left);
3943 if (right_nritems)
3944 btrfs_mark_buffer_dirty(right);
3945 else
3946 btrfs_clean_tree_block(right);
3947
3948 btrfs_item_key(right, &disk_key, 0);
3949 fixup_low_keys(path, &disk_key, 1);
3950
3951 /* then fixup the leaf pointer in the path */
3952 if (path->slots[0] < push_items) {
3953 path->slots[0] += old_left_nritems;
3954 btrfs_tree_unlock(path->nodes[0]);
3955 free_extent_buffer(path->nodes[0]);
3956 path->nodes[0] = left;
3957 path->slots[1] -= 1;
3958 } else {
3959 btrfs_tree_unlock(left);
3960 free_extent_buffer(left);
3961 path->slots[0] -= push_items;
3962 }
3963 BUG_ON(path->slots[0] < 0);
3964 return ret;
3965 out:
3966 btrfs_tree_unlock(left);
3967 free_extent_buffer(left);
3968 return ret;
3969 }
3970
3971 /*
3972 * push some data in the path leaf to the left, trying to free up at
3973 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3974 *
3975 * max_slot can put a limit on how far into the leaf we'll push items. The
3976 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3977 * items
3978 */
3979 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3980 *root, struct btrfs_path *path, int min_data_size,
3981 int data_size, int empty, u32 max_slot)
3982 {
3983 struct extent_buffer *right = path->nodes[0];
3984 struct extent_buffer *left;
3985 int slot;
3986 int free_space;
3987 u32 right_nritems;
3988 int ret = 0;
3989
3990 slot = path->slots[1];
3991 if (slot == 0)
3992 return 1;
3993 if (!path->nodes[1])
3994 return 1;
3995
3996 right_nritems = btrfs_header_nritems(right);
3997 if (right_nritems == 0)
3998 return 1;
3999
4000 btrfs_assert_tree_locked(path->nodes[1]);
4001
4002 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4003 /*
4004 * slot - 1 is not valid or we fail to read the left node,
4005 * no big deal, just return.
4006 */
4007 if (IS_ERR(left))
4008 return 1;
4009
4010 btrfs_tree_lock(left);
4011 btrfs_set_lock_blocking_write(left);
4012
4013 free_space = btrfs_leaf_free_space(left);
4014 if (free_space < data_size) {
4015 ret = 1;
4016 goto out;
4017 }
4018
4019 /* cow and double check */
4020 ret = btrfs_cow_block(trans, root, left,
4021 path->nodes[1], slot - 1, &left);
4022 if (ret) {
4023 /* we hit -ENOSPC, but it isn't fatal here */
4024 if (ret == -ENOSPC)
4025 ret = 1;
4026 goto out;
4027 }
4028
4029 free_space = btrfs_leaf_free_space(left);
4030 if (free_space < data_size) {
4031 ret = 1;
4032 goto out;
4033 }
4034
4035 return __push_leaf_left(path, min_data_size,
4036 empty, left, free_space, right_nritems,
4037 max_slot);
4038 out:
4039 btrfs_tree_unlock(left);
4040 free_extent_buffer(left);
4041 return ret;
4042 }
4043
4044 /*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4047 */
4048 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049 struct btrfs_path *path,
4050 struct extent_buffer *l,
4051 struct extent_buffer *right,
4052 int slot, int mid, int nritems)
4053 {
4054 struct btrfs_fs_info *fs_info = trans->fs_info;
4055 int data_copy_size;
4056 int rt_data_off;
4057 int i;
4058 struct btrfs_disk_key disk_key;
4059 struct btrfs_map_token token;
4060
4061 nritems = nritems - mid;
4062 btrfs_set_header_nritems(right, nritems);
4063 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4064
4065 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4066 btrfs_item_nr_offset(mid),
4067 nritems * sizeof(struct btrfs_item));
4068
4069 copy_extent_buffer(right, l,
4070 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4071 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4072 leaf_data_end(l), data_copy_size);
4073
4074 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4075
4076 btrfs_init_map_token(&token, right);
4077 for (i = 0; i < nritems; i++) {
4078 struct btrfs_item *item = btrfs_item_nr(i);
4079 u32 ioff;
4080
4081 ioff = btrfs_token_item_offset(right, item, &token);
4082 btrfs_set_token_item_offset(right, item,
4083 ioff + rt_data_off, &token);
4084 }
4085
4086 btrfs_set_header_nritems(l, mid);
4087 btrfs_item_key(right, &disk_key, 0);
4088 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4089
4090 btrfs_mark_buffer_dirty(right);
4091 btrfs_mark_buffer_dirty(l);
4092 BUG_ON(path->slots[0] != slot);
4093
4094 if (mid <= slot) {
4095 btrfs_tree_unlock(path->nodes[0]);
4096 free_extent_buffer(path->nodes[0]);
4097 path->nodes[0] = right;
4098 path->slots[0] -= mid;
4099 path->slots[1] += 1;
4100 } else {
4101 btrfs_tree_unlock(right);
4102 free_extent_buffer(right);
4103 }
4104
4105 BUG_ON(path->slots[0] < 0);
4106 }
4107
4108 /*
4109 * double splits happen when we need to insert a big item in the middle
4110 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4111 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4112 * A B C
4113 *
4114 * We avoid this by trying to push the items on either side of our target
4115 * into the adjacent leaves. If all goes well we can avoid the double split
4116 * completely.
4117 */
4118 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4119 struct btrfs_root *root,
4120 struct btrfs_path *path,
4121 int data_size)
4122 {
4123 int ret;
4124 int progress = 0;
4125 int slot;
4126 u32 nritems;
4127 int space_needed = data_size;
4128
4129 slot = path->slots[0];
4130 if (slot < btrfs_header_nritems(path->nodes[0]))
4131 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4132
4133 /*
4134 * try to push all the items after our slot into the
4135 * right leaf
4136 */
4137 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4138 if (ret < 0)
4139 return ret;
4140
4141 if (ret == 0)
4142 progress++;
4143
4144 nritems = btrfs_header_nritems(path->nodes[0]);
4145 /*
4146 * our goal is to get our slot at the start or end of a leaf. If
4147 * we've done so we're done
4148 */
4149 if (path->slots[0] == 0 || path->slots[0] == nritems)
4150 return 0;
4151
4152 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4153 return 0;
4154
4155 /* try to push all the items before our slot into the next leaf */
4156 slot = path->slots[0];
4157 space_needed = data_size;
4158 if (slot > 0)
4159 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4160 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4161 if (ret < 0)
4162 return ret;
4163
4164 if (ret == 0)
4165 progress++;
4166
4167 if (progress)
4168 return 0;
4169 return 1;
4170 }
4171
4172 /*
4173 * split the path's leaf in two, making sure there is at least data_size
4174 * available for the resulting leaf level of the path.
4175 *
4176 * returns 0 if all went well and < 0 on failure.
4177 */
4178 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4179 struct btrfs_root *root,
4180 const struct btrfs_key *ins_key,
4181 struct btrfs_path *path, int data_size,
4182 int extend)
4183 {
4184 struct btrfs_disk_key disk_key;
4185 struct extent_buffer *l;
4186 u32 nritems;
4187 int mid;
4188 int slot;
4189 struct extent_buffer *right;
4190 struct btrfs_fs_info *fs_info = root->fs_info;
4191 int ret = 0;
4192 int wret;
4193 int split;
4194 int num_doubles = 0;
4195 int tried_avoid_double = 0;
4196
4197 l = path->nodes[0];
4198 slot = path->slots[0];
4199 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4201 return -EOVERFLOW;
4202
4203 /* first try to make some room by pushing left and right */
4204 if (data_size && path->nodes[1]) {
4205 int space_needed = data_size;
4206
4207 if (slot < btrfs_header_nritems(l))
4208 space_needed -= btrfs_leaf_free_space(l);
4209
4210 wret = push_leaf_right(trans, root, path, space_needed,
4211 space_needed, 0, 0);
4212 if (wret < 0)
4213 return wret;
4214 if (wret) {
4215 space_needed = data_size;
4216 if (slot > 0)
4217 space_needed -= btrfs_leaf_free_space(l);
4218 wret = push_leaf_left(trans, root, path, space_needed,
4219 space_needed, 0, (u32)-1);
4220 if (wret < 0)
4221 return wret;
4222 }
4223 l = path->nodes[0];
4224
4225 /* did the pushes work? */
4226 if (btrfs_leaf_free_space(l) >= data_size)
4227 return 0;
4228 }
4229
4230 if (!path->nodes[1]) {
4231 ret = insert_new_root(trans, root, path, 1);
4232 if (ret)
4233 return ret;
4234 }
4235 again:
4236 split = 1;
4237 l = path->nodes[0];
4238 slot = path->slots[0];
4239 nritems = btrfs_header_nritems(l);
4240 mid = (nritems + 1) / 2;
4241
4242 if (mid <= slot) {
4243 if (nritems == 1 ||
4244 leaf_space_used(l, mid, nritems - mid) + data_size >
4245 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246 if (slot >= nritems) {
4247 split = 0;
4248 } else {
4249 mid = slot;
4250 if (mid != nritems &&
4251 leaf_space_used(l, mid, nritems - mid) +
4252 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253 if (data_size && !tried_avoid_double)
4254 goto push_for_double;
4255 split = 2;
4256 }
4257 }
4258 }
4259 } else {
4260 if (leaf_space_used(l, 0, mid) + data_size >
4261 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262 if (!extend && data_size && slot == 0) {
4263 split = 0;
4264 } else if ((extend || !data_size) && slot == 0) {
4265 mid = 1;
4266 } else {
4267 mid = slot;
4268 if (mid != nritems &&
4269 leaf_space_used(l, mid, nritems - mid) +
4270 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271 if (data_size && !tried_avoid_double)
4272 goto push_for_double;
4273 split = 2;
4274 }
4275 }
4276 }
4277 }
4278
4279 if (split == 0)
4280 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281 else
4282 btrfs_item_key(l, &disk_key, mid);
4283
4284 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4285 l->start, 0);
4286 if (IS_ERR(right))
4287 return PTR_ERR(right);
4288
4289 root_add_used(root, fs_info->nodesize);
4290
4291 if (split == 0) {
4292 if (mid <= slot) {
4293 btrfs_set_header_nritems(right, 0);
4294 insert_ptr(trans, path, &disk_key,
4295 right->start, path->slots[1] + 1, 1);
4296 btrfs_tree_unlock(path->nodes[0]);
4297 free_extent_buffer(path->nodes[0]);
4298 path->nodes[0] = right;
4299 path->slots[0] = 0;
4300 path->slots[1] += 1;
4301 } else {
4302 btrfs_set_header_nritems(right, 0);
4303 insert_ptr(trans, path, &disk_key,
4304 right->start, path->slots[1], 1);
4305 btrfs_tree_unlock(path->nodes[0]);
4306 free_extent_buffer(path->nodes[0]);
4307 path->nodes[0] = right;
4308 path->slots[0] = 0;
4309 if (path->slots[1] == 0)
4310 fixup_low_keys(path, &disk_key, 1);
4311 }
4312 /*
4313 * We create a new leaf 'right' for the required ins_len and
4314 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4315 * the content of ins_len to 'right'.
4316 */
4317 return ret;
4318 }
4319
4320 copy_for_split(trans, path, l, right, slot, mid, nritems);
4321
4322 if (split == 2) {
4323 BUG_ON(num_doubles != 0);
4324 num_doubles++;
4325 goto again;
4326 }
4327
4328 return 0;
4329
4330 push_for_double:
4331 push_for_double_split(trans, root, path, data_size);
4332 tried_avoid_double = 1;
4333 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4334 return 0;
4335 goto again;
4336 }
4337
4338 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4339 struct btrfs_root *root,
4340 struct btrfs_path *path, int ins_len)
4341 {
4342 struct btrfs_key key;
4343 struct extent_buffer *leaf;
4344 struct btrfs_file_extent_item *fi;
4345 u64 extent_len = 0;
4346 u32 item_size;
4347 int ret;
4348
4349 leaf = path->nodes[0];
4350 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4351
4352 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4353 key.type != BTRFS_EXTENT_CSUM_KEY);
4354
4355 if (btrfs_leaf_free_space(leaf) >= ins_len)
4356 return 0;
4357
4358 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4359 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4360 fi = btrfs_item_ptr(leaf, path->slots[0],
4361 struct btrfs_file_extent_item);
4362 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4363 }
4364 btrfs_release_path(path);
4365
4366 path->keep_locks = 1;
4367 path->search_for_split = 1;
4368 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4369 path->search_for_split = 0;
4370 if (ret > 0)
4371 ret = -EAGAIN;
4372 if (ret < 0)
4373 goto err;
4374
4375 ret = -EAGAIN;
4376 leaf = path->nodes[0];
4377 /* if our item isn't there, return now */
4378 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4379 goto err;
4380
4381 /* the leaf has changed, it now has room. return now */
4382 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4383 goto err;
4384
4385 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386 fi = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_file_extent_item);
4388 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4389 goto err;
4390 }
4391
4392 btrfs_set_path_blocking(path);
4393 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4394 if (ret)
4395 goto err;
4396
4397 path->keep_locks = 0;
4398 btrfs_unlock_up_safe(path, 1);
4399 return 0;
4400 err:
4401 path->keep_locks = 0;
4402 return ret;
4403 }
4404
4405 static noinline int split_item(struct btrfs_path *path,
4406 const struct btrfs_key *new_key,
4407 unsigned long split_offset)
4408 {
4409 struct extent_buffer *leaf;
4410 struct btrfs_item *item;
4411 struct btrfs_item *new_item;
4412 int slot;
4413 char *buf;
4414 u32 nritems;
4415 u32 item_size;
4416 u32 orig_offset;
4417 struct btrfs_disk_key disk_key;
4418
4419 leaf = path->nodes[0];
4420 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4421
4422 btrfs_set_path_blocking(path);
4423
4424 item = btrfs_item_nr(path->slots[0]);
4425 orig_offset = btrfs_item_offset(leaf, item);
4426 item_size = btrfs_item_size(leaf, item);
4427
4428 buf = kmalloc(item_size, GFP_NOFS);
4429 if (!buf)
4430 return -ENOMEM;
4431
4432 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433 path->slots[0]), item_size);
4434
4435 slot = path->slots[0] + 1;
4436 nritems = btrfs_header_nritems(leaf);
4437 if (slot != nritems) {
4438 /* shift the items */
4439 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440 btrfs_item_nr_offset(slot),
4441 (nritems - slot) * sizeof(struct btrfs_item));
4442 }
4443
4444 btrfs_cpu_key_to_disk(&disk_key, new_key);
4445 btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447 new_item = btrfs_item_nr(slot);
4448
4449 btrfs_set_item_offset(leaf, new_item, orig_offset);
4450 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452 btrfs_set_item_offset(leaf, item,
4453 orig_offset + item_size - split_offset);
4454 btrfs_set_item_size(leaf, item, split_offset);
4455
4456 btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458 /* write the data for the start of the original item */
4459 write_extent_buffer(leaf, buf,
4460 btrfs_item_ptr_offset(leaf, path->slots[0]),
4461 split_offset);
4462
4463 /* write the data for the new item */
4464 write_extent_buffer(leaf, buf + split_offset,
4465 btrfs_item_ptr_offset(leaf, slot),
4466 item_size - split_offset);
4467 btrfs_mark_buffer_dirty(leaf);
4468
4469 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4470 kfree(buf);
4471 return 0;
4472 }
4473
4474 /*
4475 * This function splits a single item into two items,
4476 * giving 'new_key' to the new item and splitting the
4477 * old one at split_offset (from the start of the item).
4478 *
4479 * The path may be released by this operation. After
4480 * the split, the path is pointing to the old item. The
4481 * new item is going to be in the same node as the old one.
4482 *
4483 * Note, the item being split must be smaller enough to live alone on
4484 * a tree block with room for one extra struct btrfs_item
4485 *
4486 * This allows us to split the item in place, keeping a lock on the
4487 * leaf the entire time.
4488 */
4489 int btrfs_split_item(struct btrfs_trans_handle *trans,
4490 struct btrfs_root *root,
4491 struct btrfs_path *path,
4492 const struct btrfs_key *new_key,
4493 unsigned long split_offset)
4494 {
4495 int ret;
4496 ret = setup_leaf_for_split(trans, root, path,
4497 sizeof(struct btrfs_item));
4498 if (ret)
4499 return ret;
4500
4501 ret = split_item(path, new_key, split_offset);
4502 return ret;
4503 }
4504
4505 /*
4506 * This function duplicate a item, giving 'new_key' to the new item.
4507 * It guarantees both items live in the same tree leaf and the new item
4508 * is contiguous with the original item.
4509 *
4510 * This allows us to split file extent in place, keeping a lock on the
4511 * leaf the entire time.
4512 */
4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514 struct btrfs_root *root,
4515 struct btrfs_path *path,
4516 const struct btrfs_key *new_key)
4517 {
4518 struct extent_buffer *leaf;
4519 int ret;
4520 u32 item_size;
4521
4522 leaf = path->nodes[0];
4523 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524 ret = setup_leaf_for_split(trans, root, path,
4525 item_size + sizeof(struct btrfs_item));
4526 if (ret)
4527 return ret;
4528
4529 path->slots[0]++;
4530 setup_items_for_insert(root, path, new_key, &item_size,
4531 item_size, item_size +
4532 sizeof(struct btrfs_item), 1);
4533 leaf = path->nodes[0];
4534 memcpy_extent_buffer(leaf,
4535 btrfs_item_ptr_offset(leaf, path->slots[0]),
4536 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537 item_size);
4538 return 0;
4539 }
4540
4541 /*
4542 * make the item pointed to by the path smaller. new_size indicates
4543 * how small to make it, and from_end tells us if we just chop bytes
4544 * off the end of the item or if we shift the item to chop bytes off
4545 * the front.
4546 */
4547 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4548 {
4549 int slot;
4550 struct extent_buffer *leaf;
4551 struct btrfs_item *item;
4552 u32 nritems;
4553 unsigned int data_end;
4554 unsigned int old_data_start;
4555 unsigned int old_size;
4556 unsigned int size_diff;
4557 int i;
4558 struct btrfs_map_token token;
4559
4560 leaf = path->nodes[0];
4561 slot = path->slots[0];
4562
4563 old_size = btrfs_item_size_nr(leaf, slot);
4564 if (old_size == new_size)
4565 return;
4566
4567 nritems = btrfs_header_nritems(leaf);
4568 data_end = leaf_data_end(leaf);
4569
4570 old_data_start = btrfs_item_offset_nr(leaf, slot);
4571
4572 size_diff = old_size - new_size;
4573
4574 BUG_ON(slot < 0);
4575 BUG_ON(slot >= nritems);
4576
4577 /*
4578 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4579 */
4580 /* first correct the data pointers */
4581 btrfs_init_map_token(&token, leaf);
4582 for (i = slot; i < nritems; i++) {
4583 u32 ioff;
4584 item = btrfs_item_nr(i);
4585
4586 ioff = btrfs_token_item_offset(leaf, item, &token);
4587 btrfs_set_token_item_offset(leaf, item,
4588 ioff + size_diff, &token);
4589 }
4590
4591 /* shift the data */
4592 if (from_end) {
4593 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4594 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4595 data_end, old_data_start + new_size - data_end);
4596 } else {
4597 struct btrfs_disk_key disk_key;
4598 u64 offset;
4599
4600 btrfs_item_key(leaf, &disk_key, slot);
4601
4602 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4603 unsigned long ptr;
4604 struct btrfs_file_extent_item *fi;
4605
4606 fi = btrfs_item_ptr(leaf, slot,
4607 struct btrfs_file_extent_item);
4608 fi = (struct btrfs_file_extent_item *)(
4609 (unsigned long)fi - size_diff);
4610
4611 if (btrfs_file_extent_type(leaf, fi) ==
4612 BTRFS_FILE_EXTENT_INLINE) {
4613 ptr = btrfs_item_ptr_offset(leaf, slot);
4614 memmove_extent_buffer(leaf, ptr,
4615 (unsigned long)fi,
4616 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4617 }
4618 }
4619
4620 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4621 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4622 data_end, old_data_start - data_end);
4623
4624 offset = btrfs_disk_key_offset(&disk_key);
4625 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4626 btrfs_set_item_key(leaf, &disk_key, slot);
4627 if (slot == 0)
4628 fixup_low_keys(path, &disk_key, 1);
4629 }
4630
4631 item = btrfs_item_nr(slot);
4632 btrfs_set_item_size(leaf, item, new_size);
4633 btrfs_mark_buffer_dirty(leaf);
4634
4635 if (btrfs_leaf_free_space(leaf) < 0) {
4636 btrfs_print_leaf(leaf);
4637 BUG();
4638 }
4639 }
4640
4641 /*
4642 * make the item pointed to by the path bigger, data_size is the added size.
4643 */
4644 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4645 {
4646 int slot;
4647 struct extent_buffer *leaf;
4648 struct btrfs_item *item;
4649 u32 nritems;
4650 unsigned int data_end;
4651 unsigned int old_data;
4652 unsigned int old_size;
4653 int i;
4654 struct btrfs_map_token token;
4655
4656 leaf = path->nodes[0];
4657
4658 nritems = btrfs_header_nritems(leaf);
4659 data_end = leaf_data_end(leaf);
4660
4661 if (btrfs_leaf_free_space(leaf) < data_size) {
4662 btrfs_print_leaf(leaf);
4663 BUG();
4664 }
4665 slot = path->slots[0];
4666 old_data = btrfs_item_end_nr(leaf, slot);
4667
4668 BUG_ON(slot < 0);
4669 if (slot >= nritems) {
4670 btrfs_print_leaf(leaf);
4671 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4672 slot, nritems);
4673 BUG();
4674 }
4675
4676 /*
4677 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4678 */
4679 /* first correct the data pointers */
4680 btrfs_init_map_token(&token, leaf);
4681 for (i = slot; i < nritems; i++) {
4682 u32 ioff;
4683 item = btrfs_item_nr(i);
4684
4685 ioff = btrfs_token_item_offset(leaf, item, &token);
4686 btrfs_set_token_item_offset(leaf, item,
4687 ioff - data_size, &token);
4688 }
4689
4690 /* shift the data */
4691 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4692 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4693 data_end, old_data - data_end);
4694
4695 data_end = old_data;
4696 old_size = btrfs_item_size_nr(leaf, slot);
4697 item = btrfs_item_nr(slot);
4698 btrfs_set_item_size(leaf, item, old_size + data_size);
4699 btrfs_mark_buffer_dirty(leaf);
4700
4701 if (btrfs_leaf_free_space(leaf) < 0) {
4702 btrfs_print_leaf(leaf);
4703 BUG();
4704 }
4705 }
4706
4707 /*
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4711 */
4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713 const struct btrfs_key *cpu_key, u32 *data_size,
4714 u32 total_data, u32 total_size, int nr)
4715 {
4716 struct btrfs_fs_info *fs_info = root->fs_info;
4717 struct btrfs_item *item;
4718 int i;
4719 u32 nritems;
4720 unsigned int data_end;
4721 struct btrfs_disk_key disk_key;
4722 struct extent_buffer *leaf;
4723 int slot;
4724 struct btrfs_map_token token;
4725
4726 if (path->slots[0] == 0) {
4727 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4728 fixup_low_keys(path, &disk_key, 1);
4729 }
4730 btrfs_unlock_up_safe(path, 1);
4731
4732 leaf = path->nodes[0];
4733 slot = path->slots[0];
4734
4735 nritems = btrfs_header_nritems(leaf);
4736 data_end = leaf_data_end(leaf);
4737
4738 if (btrfs_leaf_free_space(leaf) < total_size) {
4739 btrfs_print_leaf(leaf);
4740 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4741 total_size, btrfs_leaf_free_space(leaf));
4742 BUG();
4743 }
4744
4745 btrfs_init_map_token(&token, leaf);
4746 if (slot != nritems) {
4747 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749 if (old_data < data_end) {
4750 btrfs_print_leaf(leaf);
4751 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4752 slot, old_data, data_end);
4753 BUG();
4754 }
4755 /*
4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757 */
4758 /* first correct the data pointers */
4759 for (i = slot; i < nritems; i++) {
4760 u32 ioff;
4761
4762 item = btrfs_item_nr(i);
4763 ioff = btrfs_token_item_offset(leaf, item, &token);
4764 btrfs_set_token_item_offset(leaf, item,
4765 ioff - total_data, &token);
4766 }
4767 /* shift the items */
4768 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769 btrfs_item_nr_offset(slot),
4770 (nritems - slot) * sizeof(struct btrfs_item));
4771
4772 /* shift the data */
4773 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4774 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4775 data_end, old_data - data_end);
4776 data_end = old_data;
4777 }
4778
4779 /* setup the item for the new data */
4780 for (i = 0; i < nr; i++) {
4781 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782 btrfs_set_item_key(leaf, &disk_key, slot + i);
4783 item = btrfs_item_nr(slot + i);
4784 btrfs_set_token_item_offset(leaf, item,
4785 data_end - data_size[i], &token);
4786 data_end -= data_size[i];
4787 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788 }
4789
4790 btrfs_set_header_nritems(leaf, nritems + nr);
4791 btrfs_mark_buffer_dirty(leaf);
4792
4793 if (btrfs_leaf_free_space(leaf) < 0) {
4794 btrfs_print_leaf(leaf);
4795 BUG();
4796 }
4797 }
4798
4799 /*
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4802 */
4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804 struct btrfs_root *root,
4805 struct btrfs_path *path,
4806 const struct btrfs_key *cpu_key, u32 *data_size,
4807 int nr)
4808 {
4809 int ret = 0;
4810 int slot;
4811 int i;
4812 u32 total_size = 0;
4813 u32 total_data = 0;
4814
4815 for (i = 0; i < nr; i++)
4816 total_data += data_size[i];
4817
4818 total_size = total_data + (nr * sizeof(struct btrfs_item));
4819 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820 if (ret == 0)
4821 return -EEXIST;
4822 if (ret < 0)
4823 return ret;
4824
4825 slot = path->slots[0];
4826 BUG_ON(slot < 0);
4827
4828 setup_items_for_insert(root, path, cpu_key, data_size,
4829 total_data, total_size, nr);
4830 return 0;
4831 }
4832
4833 /*
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4838 const struct btrfs_key *cpu_key, void *data,
4839 u32 data_size)
4840 {
4841 int ret = 0;
4842 struct btrfs_path *path;
4843 struct extent_buffer *leaf;
4844 unsigned long ptr;
4845
4846 path = btrfs_alloc_path();
4847 if (!path)
4848 return -ENOMEM;
4849 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850 if (!ret) {
4851 leaf = path->nodes[0];
4852 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853 write_extent_buffer(leaf, data, ptr, data_size);
4854 btrfs_mark_buffer_dirty(leaf);
4855 }
4856 btrfs_free_path(path);
4857 return ret;
4858 }
4859
4860 /*
4861 * delete the pointer from a given node.
4862 *
4863 * the tree should have been previously balanced so the deletion does not
4864 * empty a node.
4865 */
4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867 int level, int slot)
4868 {
4869 struct extent_buffer *parent = path->nodes[level];
4870 u32 nritems;
4871 int ret;
4872
4873 nritems = btrfs_header_nritems(parent);
4874 if (slot != nritems - 1) {
4875 if (level) {
4876 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4877 nritems - slot - 1);
4878 BUG_ON(ret < 0);
4879 }
4880 memmove_extent_buffer(parent,
4881 btrfs_node_key_ptr_offset(slot),
4882 btrfs_node_key_ptr_offset(slot + 1),
4883 sizeof(struct btrfs_key_ptr) *
4884 (nritems - slot - 1));
4885 } else if (level) {
4886 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4887 GFP_NOFS);
4888 BUG_ON(ret < 0);
4889 }
4890
4891 nritems--;
4892 btrfs_set_header_nritems(parent, nritems);
4893 if (nritems == 0 && parent == root->node) {
4894 BUG_ON(btrfs_header_level(root->node) != 1);
4895 /* just turn the root into a leaf and break */
4896 btrfs_set_header_level(root->node, 0);
4897 } else if (slot == 0) {
4898 struct btrfs_disk_key disk_key;
4899
4900 btrfs_node_key(parent, &disk_key, 0);
4901 fixup_low_keys(path, &disk_key, level + 1);
4902 }
4903 btrfs_mark_buffer_dirty(parent);
4904 }
4905
4906 /*
4907 * a helper function to delete the leaf pointed to by path->slots[1] and
4908 * path->nodes[1].
4909 *
4910 * This deletes the pointer in path->nodes[1] and frees the leaf
4911 * block extent. zero is returned if it all worked out, < 0 otherwise.
4912 *
4913 * The path must have already been setup for deleting the leaf, including
4914 * all the proper balancing. path->nodes[1] must be locked.
4915 */
4916 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4917 struct btrfs_root *root,
4918 struct btrfs_path *path,
4919 struct extent_buffer *leaf)
4920 {
4921 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4922 del_ptr(root, path, 1, path->slots[1]);
4923
4924 /*
4925 * btrfs_free_extent is expensive, we want to make sure we
4926 * aren't holding any locks when we call it
4927 */
4928 btrfs_unlock_up_safe(path, 0);
4929
4930 root_sub_used(root, leaf->len);
4931
4932 atomic_inc(&leaf->refs);
4933 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4934 free_extent_buffer_stale(leaf);
4935 }
4936 /*
4937 * delete the item at the leaf level in path. If that empties
4938 * the leaf, remove it from the tree
4939 */
4940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4941 struct btrfs_path *path, int slot, int nr)
4942 {
4943 struct btrfs_fs_info *fs_info = root->fs_info;
4944 struct extent_buffer *leaf;
4945 struct btrfs_item *item;
4946 u32 last_off;
4947 u32 dsize = 0;
4948 int ret = 0;
4949 int wret;
4950 int i;
4951 u32 nritems;
4952
4953 leaf = path->nodes[0];
4954 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956 for (i = 0; i < nr; i++)
4957 dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959 nritems = btrfs_header_nritems(leaf);
4960
4961 if (slot + nr != nritems) {
4962 int data_end = leaf_data_end(leaf);
4963 struct btrfs_map_token token;
4964
4965 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4966 data_end + dsize,
4967 BTRFS_LEAF_DATA_OFFSET + data_end,
4968 last_off - data_end);
4969
4970 btrfs_init_map_token(&token, leaf);
4971 for (i = slot + nr; i < nritems; i++) {
4972 u32 ioff;
4973
4974 item = btrfs_item_nr(i);
4975 ioff = btrfs_token_item_offset(leaf, item, &token);
4976 btrfs_set_token_item_offset(leaf, item,
4977 ioff + dsize, &token);
4978 }
4979
4980 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4981 btrfs_item_nr_offset(slot + nr),
4982 sizeof(struct btrfs_item) *
4983 (nritems - slot - nr));
4984 }
4985 btrfs_set_header_nritems(leaf, nritems - nr);
4986 nritems -= nr;
4987
4988 /* delete the leaf if we've emptied it */
4989 if (nritems == 0) {
4990 if (leaf == root->node) {
4991 btrfs_set_header_level(leaf, 0);
4992 } else {
4993 btrfs_set_path_blocking(path);
4994 btrfs_clean_tree_block(leaf);
4995 btrfs_del_leaf(trans, root, path, leaf);
4996 }
4997 } else {
4998 int used = leaf_space_used(leaf, 0, nritems);
4999 if (slot == 0) {
5000 struct btrfs_disk_key disk_key;
5001
5002 btrfs_item_key(leaf, &disk_key, 0);
5003 fixup_low_keys(path, &disk_key, 1);
5004 }
5005
5006 /* delete the leaf if it is mostly empty */
5007 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5008 /* push_leaf_left fixes the path.
5009 * make sure the path still points to our leaf
5010 * for possible call to del_ptr below
5011 */
5012 slot = path->slots[1];
5013 atomic_inc(&leaf->refs);
5014
5015 btrfs_set_path_blocking(path);
5016 wret = push_leaf_left(trans, root, path, 1, 1,
5017 1, (u32)-1);
5018 if (wret < 0 && wret != -ENOSPC)
5019 ret = wret;
5020
5021 if (path->nodes[0] == leaf &&
5022 btrfs_header_nritems(leaf)) {
5023 wret = push_leaf_right(trans, root, path, 1,
5024 1, 1, 0);
5025 if (wret < 0 && wret != -ENOSPC)
5026 ret = wret;
5027 }
5028
5029 if (btrfs_header_nritems(leaf) == 0) {
5030 path->slots[1] = slot;
5031 btrfs_del_leaf(trans, root, path, leaf);
5032 free_extent_buffer(leaf);
5033 ret = 0;
5034 } else {
5035 /* if we're still in the path, make sure
5036 * we're dirty. Otherwise, one of the
5037 * push_leaf functions must have already
5038 * dirtied this buffer
5039 */
5040 if (path->nodes[0] == leaf)
5041 btrfs_mark_buffer_dirty(leaf);
5042 free_extent_buffer(leaf);
5043 }
5044 } else {
5045 btrfs_mark_buffer_dirty(leaf);
5046 }
5047 }
5048 return ret;
5049 }
5050
5051 /*
5052 * search the tree again to find a leaf with lesser keys
5053 * returns 0 if it found something or 1 if there are no lesser leaves.
5054 * returns < 0 on io errors.
5055 *
5056 * This may release the path, and so you may lose any locks held at the
5057 * time you call it.
5058 */
5059 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5060 {
5061 struct btrfs_key key;
5062 struct btrfs_disk_key found_key;
5063 int ret;
5064
5065 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5066
5067 if (key.offset > 0) {
5068 key.offset--;
5069 } else if (key.type > 0) {
5070 key.type--;
5071 key.offset = (u64)-1;
5072 } else if (key.objectid > 0) {
5073 key.objectid--;
5074 key.type = (u8)-1;
5075 key.offset = (u64)-1;
5076 } else {
5077 return 1;
5078 }
5079
5080 btrfs_release_path(path);
5081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5082 if (ret < 0)
5083 return ret;
5084 btrfs_item_key(path->nodes[0], &found_key, 0);
5085 ret = comp_keys(&found_key, &key);
5086 /*
5087 * We might have had an item with the previous key in the tree right
5088 * before we released our path. And after we released our path, that
5089 * item might have been pushed to the first slot (0) of the leaf we
5090 * were holding due to a tree balance. Alternatively, an item with the
5091 * previous key can exist as the only element of a leaf (big fat item).
5092 * Therefore account for these 2 cases, so that our callers (like
5093 * btrfs_previous_item) don't miss an existing item with a key matching
5094 * the previous key we computed above.
5095 */
5096 if (ret <= 0)
5097 return 0;
5098 return 1;
5099 }
5100
5101 /*
5102 * A helper function to walk down the tree starting at min_key, and looking
5103 * for nodes or leaves that are have a minimum transaction id.
5104 * This is used by the btree defrag code, and tree logging
5105 *
5106 * This does not cow, but it does stuff the starting key it finds back
5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108 * key and get a writable path.
5109 *
5110 * This honors path->lowest_level to prevent descent past a given level
5111 * of the tree.
5112 *
5113 * min_trans indicates the oldest transaction that you are interested
5114 * in walking through. Any nodes or leaves older than min_trans are
5115 * skipped over (without reading them).
5116 *
5117 * returns zero if something useful was found, < 0 on error and 1 if there
5118 * was nothing in the tree that matched the search criteria.
5119 */
5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5121 struct btrfs_path *path,
5122 u64 min_trans)
5123 {
5124 struct extent_buffer *cur;
5125 struct btrfs_key found_key;
5126 int slot;
5127 int sret;
5128 u32 nritems;
5129 int level;
5130 int ret = 1;
5131 int keep_locks = path->keep_locks;
5132
5133 path->keep_locks = 1;
5134 again:
5135 cur = btrfs_read_lock_root_node(root);
5136 level = btrfs_header_level(cur);
5137 WARN_ON(path->nodes[level]);
5138 path->nodes[level] = cur;
5139 path->locks[level] = BTRFS_READ_LOCK;
5140
5141 if (btrfs_header_generation(cur) < min_trans) {
5142 ret = 1;
5143 goto out;
5144 }
5145 while (1) {
5146 nritems = btrfs_header_nritems(cur);
5147 level = btrfs_header_level(cur);
5148 sret = btrfs_bin_search(cur, min_key, level, &slot);
5149 if (sret < 0) {
5150 ret = sret;
5151 goto out;
5152 }
5153
5154 /* at the lowest level, we're done, setup the path and exit */
5155 if (level == path->lowest_level) {
5156 if (slot >= nritems)
5157 goto find_next_key;
5158 ret = 0;
5159 path->slots[level] = slot;
5160 btrfs_item_key_to_cpu(cur, &found_key, slot);
5161 goto out;
5162 }
5163 if (sret && slot > 0)
5164 slot--;
5165 /*
5166 * check this node pointer against the min_trans parameters.
5167 * If it is too old, old, skip to the next one.
5168 */
5169 while (slot < nritems) {
5170 u64 gen;
5171
5172 gen = btrfs_node_ptr_generation(cur, slot);
5173 if (gen < min_trans) {
5174 slot++;
5175 continue;
5176 }
5177 break;
5178 }
5179 find_next_key:
5180 /*
5181 * we didn't find a candidate key in this node, walk forward
5182 * and find another one
5183 */
5184 if (slot >= nritems) {
5185 path->slots[level] = slot;
5186 btrfs_set_path_blocking(path);
5187 sret = btrfs_find_next_key(root, path, min_key, level,
5188 min_trans);
5189 if (sret == 0) {
5190 btrfs_release_path(path);
5191 goto again;
5192 } else {
5193 goto out;
5194 }
5195 }
5196 /* save our key for returning back */
5197 btrfs_node_key_to_cpu(cur, &found_key, slot);
5198 path->slots[level] = slot;
5199 if (level == path->lowest_level) {
5200 ret = 0;
5201 goto out;
5202 }
5203 btrfs_set_path_blocking(path);
5204 cur = btrfs_read_node_slot(cur, slot);
5205 if (IS_ERR(cur)) {
5206 ret = PTR_ERR(cur);
5207 goto out;
5208 }
5209
5210 btrfs_tree_read_lock(cur);
5211
5212 path->locks[level - 1] = BTRFS_READ_LOCK;
5213 path->nodes[level - 1] = cur;
5214 unlock_up(path, level, 1, 0, NULL);
5215 }
5216 out:
5217 path->keep_locks = keep_locks;
5218 if (ret == 0) {
5219 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5220 btrfs_set_path_blocking(path);
5221 memcpy(min_key, &found_key, sizeof(found_key));
5222 }
5223 return ret;
5224 }
5225
5226 /*
5227 * this is similar to btrfs_next_leaf, but does not try to preserve
5228 * and fixup the path. It looks for and returns the next key in the
5229 * tree based on the current path and the min_trans parameters.
5230 *
5231 * 0 is returned if another key is found, < 0 if there are any errors
5232 * and 1 is returned if there are no higher keys in the tree
5233 *
5234 * path->keep_locks should be set to 1 on the search made before
5235 * calling this function.
5236 */
5237 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5238 struct btrfs_key *key, int level, u64 min_trans)
5239 {
5240 int slot;
5241 struct extent_buffer *c;
5242
5243 WARN_ON(!path->keep_locks && !path->skip_locking);
5244 while (level < BTRFS_MAX_LEVEL) {
5245 if (!path->nodes[level])
5246 return 1;
5247
5248 slot = path->slots[level] + 1;
5249 c = path->nodes[level];
5250 next:
5251 if (slot >= btrfs_header_nritems(c)) {
5252 int ret;
5253 int orig_lowest;
5254 struct btrfs_key cur_key;
5255 if (level + 1 >= BTRFS_MAX_LEVEL ||
5256 !path->nodes[level + 1])
5257 return 1;
5258
5259 if (path->locks[level + 1] || path->skip_locking) {
5260 level++;
5261 continue;
5262 }
5263
5264 slot = btrfs_header_nritems(c) - 1;
5265 if (level == 0)
5266 btrfs_item_key_to_cpu(c, &cur_key, slot);
5267 else
5268 btrfs_node_key_to_cpu(c, &cur_key, slot);
5269
5270 orig_lowest = path->lowest_level;
5271 btrfs_release_path(path);
5272 path->lowest_level = level;
5273 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5274 0, 0);
5275 path->lowest_level = orig_lowest;
5276 if (ret < 0)
5277 return ret;
5278
5279 c = path->nodes[level];
5280 slot = path->slots[level];
5281 if (ret == 0)
5282 slot++;
5283 goto next;
5284 }
5285
5286 if (level == 0)
5287 btrfs_item_key_to_cpu(c, key, slot);
5288 else {
5289 u64 gen = btrfs_node_ptr_generation(c, slot);
5290
5291 if (gen < min_trans) {
5292 slot++;
5293 goto next;
5294 }
5295 btrfs_node_key_to_cpu(c, key, slot);
5296 }
5297 return 0;
5298 }
5299 return 1;
5300 }
5301
5302 /*
5303 * search the tree again to find a leaf with greater keys
5304 * returns 0 if it found something or 1 if there are no greater leaves.
5305 * returns < 0 on io errors.
5306 */
5307 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5308 {
5309 return btrfs_next_old_leaf(root, path, 0);
5310 }
5311
5312 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5313 u64 time_seq)
5314 {
5315 int slot;
5316 int level;
5317 struct extent_buffer *c;
5318 struct extent_buffer *next;
5319 struct btrfs_key key;
5320 u32 nritems;
5321 int ret;
5322 int old_spinning = path->leave_spinning;
5323 int next_rw_lock = 0;
5324
5325 nritems = btrfs_header_nritems(path->nodes[0]);
5326 if (nritems == 0)
5327 return 1;
5328
5329 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5330 again:
5331 level = 1;
5332 next = NULL;
5333 next_rw_lock = 0;
5334 btrfs_release_path(path);
5335
5336 path->keep_locks = 1;
5337 path->leave_spinning = 1;
5338
5339 if (time_seq)
5340 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5341 else
5342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5343 path->keep_locks = 0;
5344
5345 if (ret < 0)
5346 return ret;
5347
5348 nritems = btrfs_header_nritems(path->nodes[0]);
5349 /*
5350 * by releasing the path above we dropped all our locks. A balance
5351 * could have added more items next to the key that used to be
5352 * at the very end of the block. So, check again here and
5353 * advance the path if there are now more items available.
5354 */
5355 if (nritems > 0 && path->slots[0] < nritems - 1) {
5356 if (ret == 0)
5357 path->slots[0]++;
5358 ret = 0;
5359 goto done;
5360 }
5361 /*
5362 * So the above check misses one case:
5363 * - after releasing the path above, someone has removed the item that
5364 * used to be at the very end of the block, and balance between leafs
5365 * gets another one with bigger key.offset to replace it.
5366 *
5367 * This one should be returned as well, or we can get leaf corruption
5368 * later(esp. in __btrfs_drop_extents()).
5369 *
5370 * And a bit more explanation about this check,
5371 * with ret > 0, the key isn't found, the path points to the slot
5372 * where it should be inserted, so the path->slots[0] item must be the
5373 * bigger one.
5374 */
5375 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5376 ret = 0;
5377 goto done;
5378 }
5379
5380 while (level < BTRFS_MAX_LEVEL) {
5381 if (!path->nodes[level]) {
5382 ret = 1;
5383 goto done;
5384 }
5385
5386 slot = path->slots[level] + 1;
5387 c = path->nodes[level];
5388 if (slot >= btrfs_header_nritems(c)) {
5389 level++;
5390 if (level == BTRFS_MAX_LEVEL) {
5391 ret = 1;
5392 goto done;
5393 }
5394 continue;
5395 }
5396
5397 if (next) {
5398 btrfs_tree_unlock_rw(next, next_rw_lock);
5399 free_extent_buffer(next);
5400 }
5401
5402 next = c;
5403 next_rw_lock = path->locks[level];
5404 ret = read_block_for_search(root, path, &next, level,
5405 slot, &key);
5406 if (ret == -EAGAIN)
5407 goto again;
5408
5409 if (ret < 0) {
5410 btrfs_release_path(path);
5411 goto done;
5412 }
5413
5414 if (!path->skip_locking) {
5415 ret = btrfs_try_tree_read_lock(next);
5416 if (!ret && time_seq) {
5417 /*
5418 * If we don't get the lock, we may be racing
5419 * with push_leaf_left, holding that lock while
5420 * itself waiting for the leaf we've currently
5421 * locked. To solve this situation, we give up
5422 * on our lock and cycle.
5423 */
5424 free_extent_buffer(next);
5425 btrfs_release_path(path);
5426 cond_resched();
5427 goto again;
5428 }
5429 if (!ret) {
5430 btrfs_set_path_blocking(path);
5431 btrfs_tree_read_lock(next);
5432 }
5433 next_rw_lock = BTRFS_READ_LOCK;
5434 }
5435 break;
5436 }
5437 path->slots[level] = slot;
5438 while (1) {
5439 level--;
5440 c = path->nodes[level];
5441 if (path->locks[level])
5442 btrfs_tree_unlock_rw(c, path->locks[level]);
5443
5444 free_extent_buffer(c);
5445 path->nodes[level] = next;
5446 path->slots[level] = 0;
5447 if (!path->skip_locking)
5448 path->locks[level] = next_rw_lock;
5449 if (!level)
5450 break;
5451
5452 ret = read_block_for_search(root, path, &next, level,
5453 0, &key);
5454 if (ret == -EAGAIN)
5455 goto again;
5456
5457 if (ret < 0) {
5458 btrfs_release_path(path);
5459 goto done;
5460 }
5461
5462 if (!path->skip_locking) {
5463 ret = btrfs_try_tree_read_lock(next);
5464 if (!ret) {
5465 btrfs_set_path_blocking(path);
5466 btrfs_tree_read_lock(next);
5467 }
5468 next_rw_lock = BTRFS_READ_LOCK;
5469 }
5470 }
5471 ret = 0;
5472 done:
5473 unlock_up(path, 0, 1, 0, NULL);
5474 path->leave_spinning = old_spinning;
5475 if (!old_spinning)
5476 btrfs_set_path_blocking(path);
5477
5478 return ret;
5479 }
5480
5481 /*
5482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5483 * searching until it gets past min_objectid or finds an item of 'type'
5484 *
5485 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5486 */
5487 int btrfs_previous_item(struct btrfs_root *root,
5488 struct btrfs_path *path, u64 min_objectid,
5489 int type)
5490 {
5491 struct btrfs_key found_key;
5492 struct extent_buffer *leaf;
5493 u32 nritems;
5494 int ret;
5495
5496 while (1) {
5497 if (path->slots[0] == 0) {
5498 btrfs_set_path_blocking(path);
5499 ret = btrfs_prev_leaf(root, path);
5500 if (ret != 0)
5501 return ret;
5502 } else {
5503 path->slots[0]--;
5504 }
5505 leaf = path->nodes[0];
5506 nritems = btrfs_header_nritems(leaf);
5507 if (nritems == 0)
5508 return 1;
5509 if (path->slots[0] == nritems)
5510 path->slots[0]--;
5511
5512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5513 if (found_key.objectid < min_objectid)
5514 break;
5515 if (found_key.type == type)
5516 return 0;
5517 if (found_key.objectid == min_objectid &&
5518 found_key.type < type)
5519 break;
5520 }
5521 return 1;
5522 }
5523
5524 /*
5525 * search in extent tree to find a previous Metadata/Data extent item with
5526 * min objecitd.
5527 *
5528 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5529 */
5530 int btrfs_previous_extent_item(struct btrfs_root *root,
5531 struct btrfs_path *path, u64 min_objectid)
5532 {
5533 struct btrfs_key found_key;
5534 struct extent_buffer *leaf;
5535 u32 nritems;
5536 int ret;
5537
5538 while (1) {
5539 if (path->slots[0] == 0) {
5540 btrfs_set_path_blocking(path);
5541 ret = btrfs_prev_leaf(root, path);
5542 if (ret != 0)
5543 return ret;
5544 } else {
5545 path->slots[0]--;
5546 }
5547 leaf = path->nodes[0];
5548 nritems = btrfs_header_nritems(leaf);
5549 if (nritems == 0)
5550 return 1;
5551 if (path->slots[0] == nritems)
5552 path->slots[0]--;
5553
5554 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5555 if (found_key.objectid < min_objectid)
5556 break;
5557 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5558 found_key.type == BTRFS_METADATA_ITEM_KEY)
5559 return 0;
5560 if (found_key.objectid == min_objectid &&
5561 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5562 break;
5563 }
5564 return 1;
5565 }