]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ctree.c
Btrfs: fix blk_status_t/errno confusion
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.c
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/mm.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
37 struct extent_buffer *src, int empty);
38 static int balance_node_right(struct btrfs_trans_handle *trans,
39 struct btrfs_fs_info *fs_info,
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 struct extent_buffer *eb);
46
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 }
51
52 /*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68 }
69
70 /*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80 {
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113 }
114
115 /*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136 }
137
138 /*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was COWed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170 }
171
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189 }
190
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208 }
209
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
222 spin_lock(&fs_info->trans_lock);
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
227 &fs_info->dirty_cowonly_roots);
228 else
229 list_move(&root->dirty_list,
230 &fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&fs_info->trans_lock);
233 }
234
235 /*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 struct btrfs_fs_info *fs_info = root->fs_info;
246 struct extent_buffer *cow;
247 int ret = 0;
248 int level;
249 struct btrfs_disk_key disk_key;
250
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != fs_info->running_transaction->transid);
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
255
256 level = btrfs_header_level(buf);
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
261
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
264 if (IS_ERR(cow))
265 return PTR_ERR(cow);
266
267 copy_extent_buffer_full(cow, buf);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
277
278 write_extent_buffer_fsid(cow, fs_info->fsid);
279
280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 ret = btrfs_inc_ref(trans, root, cow, 1);
283 else
284 ret = btrfs_inc_ref(trans, root, cow, 0);
285
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292 }
293
294 enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307 };
308
309 struct tree_mod_root {
310 u64 logical;
311 u8 level;
312 };
313
314 struct tree_mod_elem {
315 struct rb_node node;
316 u64 logical;
317 u64 seq;
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335 };
336
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 read_lock(&fs_info->tree_mod_log_lock);
340 }
341
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 read_unlock(&fs_info->tree_mod_log_lock);
345 }
346
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 write_lock(&fs_info->tree_mod_log_lock);
350 }
351
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 write_unlock(&fs_info->tree_mod_log_lock);
355 }
356
357 /*
358 * Pull a new tree mod seq number for our operation.
359 */
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 {
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363 }
364
365 /*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
375 {
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383 tree_mod_log_write_unlock(fs_info);
384
385 return elem->seq;
386 }
387
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390 {
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
404 elem->seq = 0;
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 if (cur_elem->seq < min_seq) {
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
425 tree_mod_log_write_lock(fs_info);
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
429 tm = rb_entry(node, struct tree_mod_elem, node);
430 if (tm->seq > min_seq)
431 continue;
432 rb_erase(node, tm_root);
433 kfree(tm);
434 }
435 tree_mod_log_write_unlock(fs_info);
436 }
437
438 /*
439 * key order of the log:
440 * node/leaf start address -> sequence
441 *
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
447 */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
455
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = rb_entry(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->logical < tm->logical)
464 new = &((*new)->rb_left);
465 else if (cur->logical > tm->logical)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
478 }
479
480 /*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
500 return 0;
501 }
502
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506 {
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514 }
515
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
519 {
520 struct tree_mod_elem *tm;
521
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
525
526 tm->logical = eb->start;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
535
536 return tm;
537 }
538
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
543 {
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
563
564 return ret;
565 }
566
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items)
571 {
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
577
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
580
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
582 if (!tm_list)
583 return -ENOMEM;
584
585 tm = kzalloc(sizeof(*tm), GFP_NOFS);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
591 tm->logical = eb->start;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
619 }
620
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
626
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
638
639 return ret;
640 }
641
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
646 {
647 int i, j;
648 int ret;
649
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
658 }
659
660 return 0;
661 }
662
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root,
667 int log_removal)
668 {
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
674
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
677
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 GFP_NOFS);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
695
696 tm = kzalloc(sizeof(*tm), GFP_NOFS);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
701
702 tm->logical = new_root->start;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
732 }
733
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737 {
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742
743 tree_mod_log_read_lock(fs_info);
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
746 while (node) {
747 cur = rb_entry(node, struct tree_mod_elem, node);
748 if (cur->logical < start) {
749 node = node->rb_left;
750 } else if (cur->logical > start) {
751 node = node->rb_right;
752 } else if (cur->seq < min_seq) {
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
756 if (found)
757 BUG_ON(found->seq > cur->seq);
758 found = cur;
759 node = node->rb_left;
760 } else if (cur->seq > min_seq) {
761 /* we want the node with the smallest seq */
762 if (found)
763 BUG_ON(found->seq < cur->seq);
764 found = cur;
765 node = node->rb_right;
766 } else {
767 found = cur;
768 break;
769 }
770 }
771 tree_mod_log_read_unlock(fs_info);
772
773 return found;
774 }
775
776 /*
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
780 */
781 static struct tree_mod_elem *
782 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 u64 min_seq)
784 {
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
786 }
787
788 /*
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
792 */
793 static struct tree_mod_elem *
794 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795 {
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
797 }
798
799 static noinline int
800 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
802 unsigned long src_offset, int nr_items)
803 {
804 int ret = 0;
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
807 int i;
808 int locked = 0;
809
810 if (!tree_mod_need_log(fs_info, NULL))
811 return 0;
812
813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
814 return 0;
815
816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
817 GFP_NOFS);
818 if (!tm_list)
819 return -ENOMEM;
820
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
823 for (i = 0; i < nr_items; i++) {
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
827 ret = -ENOMEM;
828 goto free_tms;
829 }
830
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
834 ret = -ENOMEM;
835 goto free_tms;
836 }
837 }
838
839 if (tree_mod_dont_log(fs_info, NULL))
840 goto free_tms;
841 locked = 1;
842
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 if (ret)
846 goto free_tms;
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 if (ret)
849 goto free_tms;
850 }
851
852 tree_mod_log_write_unlock(fs_info);
853 kfree(tm_list);
854
855 return 0;
856
857 free_tms:
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 kfree(tm_list[i]);
862 }
863 if (locked)
864 tree_mod_log_write_unlock(fs_info);
865 kfree(tm_list);
866
867 return ret;
868 }
869
870 static inline void
871 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
873 {
874 int ret;
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
876 nr_items);
877 BUG_ON(ret < 0);
878 }
879
880 static noinline void
881 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
882 struct extent_buffer *eb, int slot, int atomic)
883 {
884 int ret;
885
886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
887 MOD_LOG_KEY_REPLACE,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
889 BUG_ON(ret < 0);
890 }
891
892 static noinline int
893 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
894 {
895 struct tree_mod_elem **tm_list = NULL;
896 int nritems = 0;
897 int i;
898 int ret = 0;
899
900 if (btrfs_header_level(eb) == 0)
901 return 0;
902
903 if (!tree_mod_need_log(fs_info, NULL))
904 return 0;
905
906 nritems = btrfs_header_nritems(eb);
907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
908 if (!tm_list)
909 return -ENOMEM;
910
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 if (!tm_list[i]) {
915 ret = -ENOMEM;
916 goto free_tms;
917 }
918 }
919
920 if (tree_mod_dont_log(fs_info, eb))
921 goto free_tms;
922
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
925 if (ret)
926 goto free_tms;
927 kfree(tm_list);
928
929 return 0;
930
931 free_tms:
932 for (i = 0; i < nritems; i++)
933 kfree(tm_list[i]);
934 kfree(tm_list);
935
936 return ret;
937 }
938
939 static noinline void
940 tree_mod_log_set_root_pointer(struct btrfs_root *root,
941 struct extent_buffer *new_root_node,
942 int log_removal)
943 {
944 int ret;
945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
946 new_root_node, log_removal);
947 BUG_ON(ret < 0);
948 }
949
950 /*
951 * check if the tree block can be shared by multiple trees
952 */
953 int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
955 {
956 /*
957 * Tree blocks not in reference counted trees and tree roots
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
961 */
962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 return 1;
968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 return 1;
972 #endif
973 return 0;
974 }
975
976 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
979 struct extent_buffer *cow,
980 int *last_ref)
981 {
982 struct btrfs_fs_info *fs_info = root->fs_info;
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_handle_fs_error(fs_info, ret, NULL);
1015 return ret;
1016 }
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1053 }
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1056
1057 ret = btrfs_set_disk_extent_flags(trans, fs_info,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1074 }
1075 clean_tree_block(fs_info, buf);
1076 *last_ref = 1;
1077 }
1078 return 0;
1079 }
1080
1081 /*
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1099 {
1100 struct btrfs_fs_info *fs_info = root->fs_info;
1101 struct btrfs_disk_key disk_key;
1102 struct extent_buffer *cow;
1103 int level, ret;
1104 int last_ref = 0;
1105 int unlock_orig = 0;
1106 u64 parent_start = 0;
1107
1108 if (*cow_ret == buf)
1109 unlock_orig = 1;
1110
1111 btrfs_assert_tree_locked(buf);
1112
1113 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1114 trans->transid != fs_info->running_transaction->transid);
1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 trans->transid != root->last_trans);
1117
1118 level = btrfs_header_level(buf);
1119
1120 if (level == 0)
1121 btrfs_item_key(buf, &disk_key, 0);
1122 else
1123 btrfs_node_key(buf, &disk_key, 0);
1124
1125 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1126 parent_start = parent->start;
1127
1128 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1129 root->root_key.objectid, &disk_key, level,
1130 search_start, empty_size);
1131 if (IS_ERR(cow))
1132 return PTR_ERR(cow);
1133
1134 /* cow is set to blocking by btrfs_init_new_buffer */
1135
1136 copy_extent_buffer_full(cow, buf);
1137 btrfs_set_header_bytenr(cow, cow->start);
1138 btrfs_set_header_generation(cow, trans->transid);
1139 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1140 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1141 BTRFS_HEADER_FLAG_RELOC);
1142 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1143 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1144 else
1145 btrfs_set_header_owner(cow, root->root_key.objectid);
1146
1147 write_extent_buffer_fsid(cow, fs_info->fsid);
1148
1149 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1150 if (ret) {
1151 btrfs_abort_transaction(trans, ret);
1152 return ret;
1153 }
1154
1155 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1156 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1157 if (ret) {
1158 btrfs_abort_transaction(trans, ret);
1159 return ret;
1160 }
1161 }
1162
1163 if (buf == root->node) {
1164 WARN_ON(parent && parent != buf);
1165 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1166 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1167 parent_start = buf->start;
1168
1169 extent_buffer_get(cow);
1170 tree_mod_log_set_root_pointer(root, cow, 1);
1171 rcu_assign_pointer(root->node, cow);
1172
1173 btrfs_free_tree_block(trans, root, buf, parent_start,
1174 last_ref);
1175 free_extent_buffer(buf);
1176 add_root_to_dirty_list(root);
1177 } else {
1178 WARN_ON(trans->transid != btrfs_header_generation(parent));
1179 tree_mod_log_insert_key(fs_info, parent, parent_slot,
1180 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1181 btrfs_set_node_blockptr(parent, parent_slot,
1182 cow->start);
1183 btrfs_set_node_ptr_generation(parent, parent_slot,
1184 trans->transid);
1185 btrfs_mark_buffer_dirty(parent);
1186 if (last_ref) {
1187 ret = tree_mod_log_free_eb(fs_info, buf);
1188 if (ret) {
1189 btrfs_abort_transaction(trans, ret);
1190 return ret;
1191 }
1192 }
1193 btrfs_free_tree_block(trans, root, buf, parent_start,
1194 last_ref);
1195 }
1196 if (unlock_orig)
1197 btrfs_tree_unlock(buf);
1198 free_extent_buffer_stale(buf);
1199 btrfs_mark_buffer_dirty(cow);
1200 *cow_ret = cow;
1201 return 0;
1202 }
1203
1204 /*
1205 * returns the logical address of the oldest predecessor of the given root.
1206 * entries older than time_seq are ignored.
1207 */
1208 static struct tree_mod_elem *
1209 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1210 struct extent_buffer *eb_root, u64 time_seq)
1211 {
1212 struct tree_mod_elem *tm;
1213 struct tree_mod_elem *found = NULL;
1214 u64 root_logical = eb_root->start;
1215 int looped = 0;
1216
1217 if (!time_seq)
1218 return NULL;
1219
1220 /*
1221 * the very last operation that's logged for a root is the
1222 * replacement operation (if it is replaced at all). this has
1223 * the logical address of the *new* root, making it the very
1224 * first operation that's logged for this root.
1225 */
1226 while (1) {
1227 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1228 time_seq);
1229 if (!looped && !tm)
1230 return NULL;
1231 /*
1232 * if there are no tree operation for the oldest root, we simply
1233 * return it. this should only happen if that (old) root is at
1234 * level 0.
1235 */
1236 if (!tm)
1237 break;
1238
1239 /*
1240 * if there's an operation that's not a root replacement, we
1241 * found the oldest version of our root. normally, we'll find a
1242 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1243 */
1244 if (tm->op != MOD_LOG_ROOT_REPLACE)
1245 break;
1246
1247 found = tm;
1248 root_logical = tm->old_root.logical;
1249 looped = 1;
1250 }
1251
1252 /* if there's no old root to return, return what we found instead */
1253 if (!found)
1254 found = tm;
1255
1256 return found;
1257 }
1258
1259 /*
1260 * tm is a pointer to the first operation to rewind within eb. then, all
1261 * previous operations will be rewound (until we reach something older than
1262 * time_seq).
1263 */
1264 static void
1265 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1266 u64 time_seq, struct tree_mod_elem *first_tm)
1267 {
1268 u32 n;
1269 struct rb_node *next;
1270 struct tree_mod_elem *tm = first_tm;
1271 unsigned long o_dst;
1272 unsigned long o_src;
1273 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1274
1275 n = btrfs_header_nritems(eb);
1276 tree_mod_log_read_lock(fs_info);
1277 while (tm && tm->seq >= time_seq) {
1278 /*
1279 * all the operations are recorded with the operator used for
1280 * the modification. as we're going backwards, we do the
1281 * opposite of each operation here.
1282 */
1283 switch (tm->op) {
1284 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1285 BUG_ON(tm->slot < n);
1286 /* Fallthrough */
1287 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1288 case MOD_LOG_KEY_REMOVE:
1289 btrfs_set_node_key(eb, &tm->key, tm->slot);
1290 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1291 btrfs_set_node_ptr_generation(eb, tm->slot,
1292 tm->generation);
1293 n++;
1294 break;
1295 case MOD_LOG_KEY_REPLACE:
1296 BUG_ON(tm->slot >= n);
1297 btrfs_set_node_key(eb, &tm->key, tm->slot);
1298 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1299 btrfs_set_node_ptr_generation(eb, tm->slot,
1300 tm->generation);
1301 break;
1302 case MOD_LOG_KEY_ADD:
1303 /* if a move operation is needed it's in the log */
1304 n--;
1305 break;
1306 case MOD_LOG_MOVE_KEYS:
1307 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1308 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1309 memmove_extent_buffer(eb, o_dst, o_src,
1310 tm->move.nr_items * p_size);
1311 break;
1312 case MOD_LOG_ROOT_REPLACE:
1313 /*
1314 * this operation is special. for roots, this must be
1315 * handled explicitly before rewinding.
1316 * for non-roots, this operation may exist if the node
1317 * was a root: root A -> child B; then A gets empty and
1318 * B is promoted to the new root. in the mod log, we'll
1319 * have a root-replace operation for B, a tree block
1320 * that is no root. we simply ignore that operation.
1321 */
1322 break;
1323 }
1324 next = rb_next(&tm->node);
1325 if (!next)
1326 break;
1327 tm = rb_entry(next, struct tree_mod_elem, node);
1328 if (tm->logical != first_tm->logical)
1329 break;
1330 }
1331 tree_mod_log_read_unlock(fs_info);
1332 btrfs_set_header_nritems(eb, n);
1333 }
1334
1335 /*
1336 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1337 * is returned. If rewind operations happen, a fresh buffer is returned. The
1338 * returned buffer is always read-locked. If the returned buffer is not the
1339 * input buffer, the lock on the input buffer is released and the input buffer
1340 * is freed (its refcount is decremented).
1341 */
1342 static struct extent_buffer *
1343 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1344 struct extent_buffer *eb, u64 time_seq)
1345 {
1346 struct extent_buffer *eb_rewin;
1347 struct tree_mod_elem *tm;
1348
1349 if (!time_seq)
1350 return eb;
1351
1352 if (btrfs_header_level(eb) == 0)
1353 return eb;
1354
1355 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1356 if (!tm)
1357 return eb;
1358
1359 btrfs_set_path_blocking(path);
1360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1361
1362 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 BUG_ON(tm->slot != 0);
1364 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1365 if (!eb_rewin) {
1366 btrfs_tree_read_unlock_blocking(eb);
1367 free_extent_buffer(eb);
1368 return NULL;
1369 }
1370 btrfs_set_header_bytenr(eb_rewin, eb->start);
1371 btrfs_set_header_backref_rev(eb_rewin,
1372 btrfs_header_backref_rev(eb));
1373 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1374 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1375 } else {
1376 eb_rewin = btrfs_clone_extent_buffer(eb);
1377 if (!eb_rewin) {
1378 btrfs_tree_read_unlock_blocking(eb);
1379 free_extent_buffer(eb);
1380 return NULL;
1381 }
1382 }
1383
1384 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1385 btrfs_tree_read_unlock_blocking(eb);
1386 free_extent_buffer(eb);
1387
1388 extent_buffer_get(eb_rewin);
1389 btrfs_tree_read_lock(eb_rewin);
1390 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1391 WARN_ON(btrfs_header_nritems(eb_rewin) >
1392 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1393
1394 return eb_rewin;
1395 }
1396
1397 /*
1398 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1399 * value. If there are no changes, the current root->root_node is returned. If
1400 * anything changed in between, there's a fresh buffer allocated on which the
1401 * rewind operations are done. In any case, the returned buffer is read locked.
1402 * Returns NULL on error (with no locks held).
1403 */
1404 static inline struct extent_buffer *
1405 get_old_root(struct btrfs_root *root, u64 time_seq)
1406 {
1407 struct btrfs_fs_info *fs_info = root->fs_info;
1408 struct tree_mod_elem *tm;
1409 struct extent_buffer *eb = NULL;
1410 struct extent_buffer *eb_root;
1411 struct extent_buffer *old;
1412 struct tree_mod_root *old_root = NULL;
1413 u64 old_generation = 0;
1414 u64 logical;
1415
1416 eb_root = btrfs_read_lock_root_node(root);
1417 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1418 if (!tm)
1419 return eb_root;
1420
1421 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1422 old_root = &tm->old_root;
1423 old_generation = tm->generation;
1424 logical = old_root->logical;
1425 } else {
1426 logical = eb_root->start;
1427 }
1428
1429 tm = tree_mod_log_search(fs_info, logical, time_seq);
1430 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1431 btrfs_tree_read_unlock(eb_root);
1432 free_extent_buffer(eb_root);
1433 old = read_tree_block(fs_info, logical, 0);
1434 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1435 if (!IS_ERR(old))
1436 free_extent_buffer(old);
1437 btrfs_warn(fs_info,
1438 "failed to read tree block %llu from get_old_root",
1439 logical);
1440 } else {
1441 eb = btrfs_clone_extent_buffer(old);
1442 free_extent_buffer(old);
1443 }
1444 } else if (old_root) {
1445 btrfs_tree_read_unlock(eb_root);
1446 free_extent_buffer(eb_root);
1447 eb = alloc_dummy_extent_buffer(fs_info, logical);
1448 } else {
1449 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1450 eb = btrfs_clone_extent_buffer(eb_root);
1451 btrfs_tree_read_unlock_blocking(eb_root);
1452 free_extent_buffer(eb_root);
1453 }
1454
1455 if (!eb)
1456 return NULL;
1457 extent_buffer_get(eb);
1458 btrfs_tree_read_lock(eb);
1459 if (old_root) {
1460 btrfs_set_header_bytenr(eb, eb->start);
1461 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1462 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1463 btrfs_set_header_level(eb, old_root->level);
1464 btrfs_set_header_generation(eb, old_generation);
1465 }
1466 if (tm)
1467 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1468 else
1469 WARN_ON(btrfs_header_level(eb) != 0);
1470 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1471
1472 return eb;
1473 }
1474
1475 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1476 {
1477 struct tree_mod_elem *tm;
1478 int level;
1479 struct extent_buffer *eb_root = btrfs_root_node(root);
1480
1481 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1482 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1483 level = tm->old_root.level;
1484 } else {
1485 level = btrfs_header_level(eb_root);
1486 }
1487 free_extent_buffer(eb_root);
1488
1489 return level;
1490 }
1491
1492 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root,
1494 struct extent_buffer *buf)
1495 {
1496 if (btrfs_is_testing(root->fs_info))
1497 return 0;
1498
1499 /* ensure we can see the force_cow */
1500 smp_rmb();
1501
1502 /*
1503 * We do not need to cow a block if
1504 * 1) this block is not created or changed in this transaction;
1505 * 2) this block does not belong to TREE_RELOC tree;
1506 * 3) the root is not forced COW.
1507 *
1508 * What is forced COW:
1509 * when we create snapshot during committing the transaction,
1510 * after we've finished coping src root, we must COW the shared
1511 * block to ensure the metadata consistency.
1512 */
1513 if (btrfs_header_generation(buf) == trans->transid &&
1514 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1515 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1516 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1517 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1518 return 0;
1519 return 1;
1520 }
1521
1522 /*
1523 * cows a single block, see __btrfs_cow_block for the real work.
1524 * This version of it has extra checks so that a block isn't COWed more than
1525 * once per transaction, as long as it hasn't been written yet
1526 */
1527 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1528 struct btrfs_root *root, struct extent_buffer *buf,
1529 struct extent_buffer *parent, int parent_slot,
1530 struct extent_buffer **cow_ret)
1531 {
1532 struct btrfs_fs_info *fs_info = root->fs_info;
1533 u64 search_start;
1534 int ret;
1535
1536 if (trans->transaction != fs_info->running_transaction)
1537 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1538 trans->transid,
1539 fs_info->running_transaction->transid);
1540
1541 if (trans->transid != fs_info->generation)
1542 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543 trans->transid, fs_info->generation);
1544
1545 if (!should_cow_block(trans, root, buf)) {
1546 trans->dirty = true;
1547 *cow_ret = buf;
1548 return 0;
1549 }
1550
1551 search_start = buf->start & ~((u64)SZ_1G - 1);
1552
1553 if (parent)
1554 btrfs_set_lock_blocking(parent);
1555 btrfs_set_lock_blocking(buf);
1556
1557 ret = __btrfs_cow_block(trans, root, buf, parent,
1558 parent_slot, cow_ret, search_start, 0);
1559
1560 trace_btrfs_cow_block(root, buf, *cow_ret);
1561
1562 return ret;
1563 }
1564
1565 /*
1566 * helper function for defrag to decide if two blocks pointed to by a
1567 * node are actually close by
1568 */
1569 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1570 {
1571 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1572 return 1;
1573 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1574 return 1;
1575 return 0;
1576 }
1577
1578 /*
1579 * compare two keys in a memcmp fashion
1580 */
1581 static int comp_keys(const struct btrfs_disk_key *disk,
1582 const struct btrfs_key *k2)
1583 {
1584 struct btrfs_key k1;
1585
1586 btrfs_disk_key_to_cpu(&k1, disk);
1587
1588 return btrfs_comp_cpu_keys(&k1, k2);
1589 }
1590
1591 /*
1592 * same as comp_keys only with two btrfs_key's
1593 */
1594 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1595 {
1596 if (k1->objectid > k2->objectid)
1597 return 1;
1598 if (k1->objectid < k2->objectid)
1599 return -1;
1600 if (k1->type > k2->type)
1601 return 1;
1602 if (k1->type < k2->type)
1603 return -1;
1604 if (k1->offset > k2->offset)
1605 return 1;
1606 if (k1->offset < k2->offset)
1607 return -1;
1608 return 0;
1609 }
1610
1611 /*
1612 * this is used by the defrag code to go through all the
1613 * leaves pointed to by a node and reallocate them so that
1614 * disk order is close to key order
1615 */
1616 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root, struct extent_buffer *parent,
1618 int start_slot, u64 *last_ret,
1619 struct btrfs_key *progress)
1620 {
1621 struct btrfs_fs_info *fs_info = root->fs_info;
1622 struct extent_buffer *cur;
1623 u64 blocknr;
1624 u64 gen;
1625 u64 search_start = *last_ret;
1626 u64 last_block = 0;
1627 u64 other;
1628 u32 parent_nritems;
1629 int end_slot;
1630 int i;
1631 int err = 0;
1632 int parent_level;
1633 int uptodate;
1634 u32 blocksize;
1635 int progress_passed = 0;
1636 struct btrfs_disk_key disk_key;
1637
1638 parent_level = btrfs_header_level(parent);
1639
1640 WARN_ON(trans->transaction != fs_info->running_transaction);
1641 WARN_ON(trans->transid != fs_info->generation);
1642
1643 parent_nritems = btrfs_header_nritems(parent);
1644 blocksize = fs_info->nodesize;
1645 end_slot = parent_nritems - 1;
1646
1647 if (parent_nritems <= 1)
1648 return 0;
1649
1650 btrfs_set_lock_blocking(parent);
1651
1652 for (i = start_slot; i <= end_slot; i++) {
1653 int close = 1;
1654
1655 btrfs_node_key(parent, &disk_key, i);
1656 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1657 continue;
1658
1659 progress_passed = 1;
1660 blocknr = btrfs_node_blockptr(parent, i);
1661 gen = btrfs_node_ptr_generation(parent, i);
1662 if (last_block == 0)
1663 last_block = blocknr;
1664
1665 if (i > 0) {
1666 other = btrfs_node_blockptr(parent, i - 1);
1667 close = close_blocks(blocknr, other, blocksize);
1668 }
1669 if (!close && i < end_slot) {
1670 other = btrfs_node_blockptr(parent, i + 1);
1671 close = close_blocks(blocknr, other, blocksize);
1672 }
1673 if (close) {
1674 last_block = blocknr;
1675 continue;
1676 }
1677
1678 cur = find_extent_buffer(fs_info, blocknr);
1679 if (cur)
1680 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1681 else
1682 uptodate = 0;
1683 if (!cur || !uptodate) {
1684 if (!cur) {
1685 cur = read_tree_block(fs_info, blocknr, gen);
1686 if (IS_ERR(cur)) {
1687 return PTR_ERR(cur);
1688 } else if (!extent_buffer_uptodate(cur)) {
1689 free_extent_buffer(cur);
1690 return -EIO;
1691 }
1692 } else if (!uptodate) {
1693 err = btrfs_read_buffer(cur, gen);
1694 if (err) {
1695 free_extent_buffer(cur);
1696 return err;
1697 }
1698 }
1699 }
1700 if (search_start == 0)
1701 search_start = last_block;
1702
1703 btrfs_tree_lock(cur);
1704 btrfs_set_lock_blocking(cur);
1705 err = __btrfs_cow_block(trans, root, cur, parent, i,
1706 &cur, search_start,
1707 min(16 * blocksize,
1708 (end_slot - i) * blocksize));
1709 if (err) {
1710 btrfs_tree_unlock(cur);
1711 free_extent_buffer(cur);
1712 break;
1713 }
1714 search_start = cur->start;
1715 last_block = cur->start;
1716 *last_ret = search_start;
1717 btrfs_tree_unlock(cur);
1718 free_extent_buffer(cur);
1719 }
1720 return err;
1721 }
1722
1723 /*
1724 * search for key in the extent_buffer. The items start at offset p,
1725 * and they are item_size apart. There are 'max' items in p.
1726 *
1727 * the slot in the array is returned via slot, and it points to
1728 * the place where you would insert key if it is not found in
1729 * the array.
1730 *
1731 * slot may point to max if the key is bigger than all of the keys
1732 */
1733 static noinline int generic_bin_search(struct extent_buffer *eb,
1734 unsigned long p, int item_size,
1735 const struct btrfs_key *key,
1736 int max, int *slot)
1737 {
1738 int low = 0;
1739 int high = max;
1740 int mid;
1741 int ret;
1742 struct btrfs_disk_key *tmp = NULL;
1743 struct btrfs_disk_key unaligned;
1744 unsigned long offset;
1745 char *kaddr = NULL;
1746 unsigned long map_start = 0;
1747 unsigned long map_len = 0;
1748 int err;
1749
1750 if (low > high) {
1751 btrfs_err(eb->fs_info,
1752 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1753 __func__, low, high, eb->start,
1754 btrfs_header_owner(eb), btrfs_header_level(eb));
1755 return -EINVAL;
1756 }
1757
1758 while (low < high) {
1759 mid = (low + high) / 2;
1760 offset = p + mid * item_size;
1761
1762 if (!kaddr || offset < map_start ||
1763 (offset + sizeof(struct btrfs_disk_key)) >
1764 map_start + map_len) {
1765
1766 err = map_private_extent_buffer(eb, offset,
1767 sizeof(struct btrfs_disk_key),
1768 &kaddr, &map_start, &map_len);
1769
1770 if (!err) {
1771 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1772 map_start);
1773 } else if (err == 1) {
1774 read_extent_buffer(eb, &unaligned,
1775 offset, sizeof(unaligned));
1776 tmp = &unaligned;
1777 } else {
1778 return err;
1779 }
1780
1781 } else {
1782 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1783 map_start);
1784 }
1785 ret = comp_keys(tmp, key);
1786
1787 if (ret < 0)
1788 low = mid + 1;
1789 else if (ret > 0)
1790 high = mid;
1791 else {
1792 *slot = mid;
1793 return 0;
1794 }
1795 }
1796 *slot = low;
1797 return 1;
1798 }
1799
1800 /*
1801 * simple bin_search frontend that does the right thing for
1802 * leaves vs nodes
1803 */
1804 static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1805 int level, int *slot)
1806 {
1807 if (level == 0)
1808 return generic_bin_search(eb,
1809 offsetof(struct btrfs_leaf, items),
1810 sizeof(struct btrfs_item),
1811 key, btrfs_header_nritems(eb),
1812 slot);
1813 else
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_node, ptrs),
1816 sizeof(struct btrfs_key_ptr),
1817 key, btrfs_header_nritems(eb),
1818 slot);
1819 }
1820
1821 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1822 int level, int *slot)
1823 {
1824 return bin_search(eb, key, level, slot);
1825 }
1826
1827 static void root_add_used(struct btrfs_root *root, u32 size)
1828 {
1829 spin_lock(&root->accounting_lock);
1830 btrfs_set_root_used(&root->root_item,
1831 btrfs_root_used(&root->root_item) + size);
1832 spin_unlock(&root->accounting_lock);
1833 }
1834
1835 static void root_sub_used(struct btrfs_root *root, u32 size)
1836 {
1837 spin_lock(&root->accounting_lock);
1838 btrfs_set_root_used(&root->root_item,
1839 btrfs_root_used(&root->root_item) - size);
1840 spin_unlock(&root->accounting_lock);
1841 }
1842
1843 /* given a node and slot number, this reads the blocks it points to. The
1844 * extent buffer is returned with a reference taken (but unlocked).
1845 */
1846 static noinline struct extent_buffer *
1847 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1848 int slot)
1849 {
1850 int level = btrfs_header_level(parent);
1851 struct extent_buffer *eb;
1852
1853 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1854 return ERR_PTR(-ENOENT);
1855
1856 BUG_ON(level == 0);
1857
1858 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1859 btrfs_node_ptr_generation(parent, slot));
1860 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1861 free_extent_buffer(eb);
1862 eb = ERR_PTR(-EIO);
1863 }
1864
1865 return eb;
1866 }
1867
1868 /*
1869 * node level balancing, used to make sure nodes are in proper order for
1870 * item deletion. We balance from the top down, so we have to make sure
1871 * that a deletion won't leave an node completely empty later on.
1872 */
1873 static noinline int balance_level(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 struct btrfs_path *path, int level)
1876 {
1877 struct btrfs_fs_info *fs_info = root->fs_info;
1878 struct extent_buffer *right = NULL;
1879 struct extent_buffer *mid;
1880 struct extent_buffer *left = NULL;
1881 struct extent_buffer *parent = NULL;
1882 int ret = 0;
1883 int wret;
1884 int pslot;
1885 int orig_slot = path->slots[level];
1886 u64 orig_ptr;
1887
1888 if (level == 0)
1889 return 0;
1890
1891 mid = path->nodes[level];
1892
1893 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1894 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1895 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1896
1897 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1898
1899 if (level < BTRFS_MAX_LEVEL - 1) {
1900 parent = path->nodes[level + 1];
1901 pslot = path->slots[level + 1];
1902 }
1903
1904 /*
1905 * deal with the case where there is only one pointer in the root
1906 * by promoting the node below to a root
1907 */
1908 if (!parent) {
1909 struct extent_buffer *child;
1910
1911 if (btrfs_header_nritems(mid) != 1)
1912 return 0;
1913
1914 /* promote the child to a root */
1915 child = read_node_slot(fs_info, mid, 0);
1916 if (IS_ERR(child)) {
1917 ret = PTR_ERR(child);
1918 btrfs_handle_fs_error(fs_info, ret, NULL);
1919 goto enospc;
1920 }
1921
1922 btrfs_tree_lock(child);
1923 btrfs_set_lock_blocking(child);
1924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1925 if (ret) {
1926 btrfs_tree_unlock(child);
1927 free_extent_buffer(child);
1928 goto enospc;
1929 }
1930
1931 tree_mod_log_set_root_pointer(root, child, 1);
1932 rcu_assign_pointer(root->node, child);
1933
1934 add_root_to_dirty_list(root);
1935 btrfs_tree_unlock(child);
1936
1937 path->locks[level] = 0;
1938 path->nodes[level] = NULL;
1939 clean_tree_block(fs_info, mid);
1940 btrfs_tree_unlock(mid);
1941 /* once for the path */
1942 free_extent_buffer(mid);
1943
1944 root_sub_used(root, mid->len);
1945 btrfs_free_tree_block(trans, root, mid, 0, 1);
1946 /* once for the root ptr */
1947 free_extent_buffer_stale(mid);
1948 return 0;
1949 }
1950 if (btrfs_header_nritems(mid) >
1951 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1952 return 0;
1953
1954 left = read_node_slot(fs_info, parent, pslot - 1);
1955 if (IS_ERR(left))
1956 left = NULL;
1957
1958 if (left) {
1959 btrfs_tree_lock(left);
1960 btrfs_set_lock_blocking(left);
1961 wret = btrfs_cow_block(trans, root, left,
1962 parent, pslot - 1, &left);
1963 if (wret) {
1964 ret = wret;
1965 goto enospc;
1966 }
1967 }
1968
1969 right = read_node_slot(fs_info, parent, pslot + 1);
1970 if (IS_ERR(right))
1971 right = NULL;
1972
1973 if (right) {
1974 btrfs_tree_lock(right);
1975 btrfs_set_lock_blocking(right);
1976 wret = btrfs_cow_block(trans, root, right,
1977 parent, pslot + 1, &right);
1978 if (wret) {
1979 ret = wret;
1980 goto enospc;
1981 }
1982 }
1983
1984 /* first, try to make some room in the middle buffer */
1985 if (left) {
1986 orig_slot += btrfs_header_nritems(left);
1987 wret = push_node_left(trans, fs_info, left, mid, 1);
1988 if (wret < 0)
1989 ret = wret;
1990 }
1991
1992 /*
1993 * then try to empty the right most buffer into the middle
1994 */
1995 if (right) {
1996 wret = push_node_left(trans, fs_info, mid, right, 1);
1997 if (wret < 0 && wret != -ENOSPC)
1998 ret = wret;
1999 if (btrfs_header_nritems(right) == 0) {
2000 clean_tree_block(fs_info, right);
2001 btrfs_tree_unlock(right);
2002 del_ptr(root, path, level + 1, pslot + 1);
2003 root_sub_used(root, right->len);
2004 btrfs_free_tree_block(trans, root, right, 0, 1);
2005 free_extent_buffer_stale(right);
2006 right = NULL;
2007 } else {
2008 struct btrfs_disk_key right_key;
2009 btrfs_node_key(right, &right_key, 0);
2010 tree_mod_log_set_node_key(fs_info, parent,
2011 pslot + 1, 0);
2012 btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 btrfs_mark_buffer_dirty(parent);
2014 }
2015 }
2016 if (btrfs_header_nritems(mid) == 1) {
2017 /*
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2024 * right
2025 */
2026 if (!left) {
2027 ret = -EROFS;
2028 btrfs_handle_fs_error(fs_info, ret, NULL);
2029 goto enospc;
2030 }
2031 wret = balance_node_right(trans, fs_info, mid, left);
2032 if (wret < 0) {
2033 ret = wret;
2034 goto enospc;
2035 }
2036 if (wret == 1) {
2037 wret = push_node_left(trans, fs_info, left, mid, 1);
2038 if (wret < 0)
2039 ret = wret;
2040 }
2041 BUG_ON(wret == 1);
2042 }
2043 if (btrfs_header_nritems(mid) == 0) {
2044 clean_tree_block(fs_info, mid);
2045 btrfs_tree_unlock(mid);
2046 del_ptr(root, path, level + 1, pslot);
2047 root_sub_used(root, mid->len);
2048 btrfs_free_tree_block(trans, root, mid, 0, 1);
2049 free_extent_buffer_stale(mid);
2050 mid = NULL;
2051 } else {
2052 /* update the parent key to reflect our changes */
2053 struct btrfs_disk_key mid_key;
2054 btrfs_node_key(mid, &mid_key, 0);
2055 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2056 btrfs_set_node_key(parent, &mid_key, pslot);
2057 btrfs_mark_buffer_dirty(parent);
2058 }
2059
2060 /* update the path */
2061 if (left) {
2062 if (btrfs_header_nritems(left) > orig_slot) {
2063 extent_buffer_get(left);
2064 /* left was locked after cow */
2065 path->nodes[level] = left;
2066 path->slots[level + 1] -= 1;
2067 path->slots[level] = orig_slot;
2068 if (mid) {
2069 btrfs_tree_unlock(mid);
2070 free_extent_buffer(mid);
2071 }
2072 } else {
2073 orig_slot -= btrfs_header_nritems(left);
2074 path->slots[level] = orig_slot;
2075 }
2076 }
2077 /* double check we haven't messed things up */
2078 if (orig_ptr !=
2079 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080 BUG();
2081 enospc:
2082 if (right) {
2083 btrfs_tree_unlock(right);
2084 free_extent_buffer(right);
2085 }
2086 if (left) {
2087 if (path->nodes[level] != left)
2088 btrfs_tree_unlock(left);
2089 free_extent_buffer(left);
2090 }
2091 return ret;
2092 }
2093
2094 /* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2097 */
2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 struct btrfs_root *root,
2100 struct btrfs_path *path, int level)
2101 {
2102 struct btrfs_fs_info *fs_info = root->fs_info;
2103 struct extent_buffer *right = NULL;
2104 struct extent_buffer *mid;
2105 struct extent_buffer *left = NULL;
2106 struct extent_buffer *parent = NULL;
2107 int ret = 0;
2108 int wret;
2109 int pslot;
2110 int orig_slot = path->slots[level];
2111
2112 if (level == 0)
2113 return 1;
2114
2115 mid = path->nodes[level];
2116 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117
2118 if (level < BTRFS_MAX_LEVEL - 1) {
2119 parent = path->nodes[level + 1];
2120 pslot = path->slots[level + 1];
2121 }
2122
2123 if (!parent)
2124 return 1;
2125
2126 left = read_node_slot(fs_info, parent, pslot - 1);
2127 if (IS_ERR(left))
2128 left = NULL;
2129
2130 /* first, try to make some room in the middle buffer */
2131 if (left) {
2132 u32 left_nr;
2133
2134 btrfs_tree_lock(left);
2135 btrfs_set_lock_blocking(left);
2136
2137 left_nr = btrfs_header_nritems(left);
2138 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2139 wret = 1;
2140 } else {
2141 ret = btrfs_cow_block(trans, root, left, parent,
2142 pslot - 1, &left);
2143 if (ret)
2144 wret = 1;
2145 else {
2146 wret = push_node_left(trans, fs_info,
2147 left, mid, 0);
2148 }
2149 }
2150 if (wret < 0)
2151 ret = wret;
2152 if (wret == 0) {
2153 struct btrfs_disk_key disk_key;
2154 orig_slot += left_nr;
2155 btrfs_node_key(mid, &disk_key, 0);
2156 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2157 btrfs_set_node_key(parent, &disk_key, pslot);
2158 btrfs_mark_buffer_dirty(parent);
2159 if (btrfs_header_nritems(left) > orig_slot) {
2160 path->nodes[level] = left;
2161 path->slots[level + 1] -= 1;
2162 path->slots[level] = orig_slot;
2163 btrfs_tree_unlock(mid);
2164 free_extent_buffer(mid);
2165 } else {
2166 orig_slot -=
2167 btrfs_header_nritems(left);
2168 path->slots[level] = orig_slot;
2169 btrfs_tree_unlock(left);
2170 free_extent_buffer(left);
2171 }
2172 return 0;
2173 }
2174 btrfs_tree_unlock(left);
2175 free_extent_buffer(left);
2176 }
2177 right = read_node_slot(fs_info, parent, pslot + 1);
2178 if (IS_ERR(right))
2179 right = NULL;
2180
2181 /*
2182 * then try to empty the right most buffer into the middle
2183 */
2184 if (right) {
2185 u32 right_nr;
2186
2187 btrfs_tree_lock(right);
2188 btrfs_set_lock_blocking(right);
2189
2190 right_nr = btrfs_header_nritems(right);
2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2192 wret = 1;
2193 } else {
2194 ret = btrfs_cow_block(trans, root, right,
2195 parent, pslot + 1,
2196 &right);
2197 if (ret)
2198 wret = 1;
2199 else {
2200 wret = balance_node_right(trans, fs_info,
2201 right, mid);
2202 }
2203 }
2204 if (wret < 0)
2205 ret = wret;
2206 if (wret == 0) {
2207 struct btrfs_disk_key disk_key;
2208
2209 btrfs_node_key(right, &disk_key, 0);
2210 tree_mod_log_set_node_key(fs_info, parent,
2211 pslot + 1, 0);
2212 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 btrfs_mark_buffer_dirty(parent);
2214
2215 if (btrfs_header_nritems(mid) <= orig_slot) {
2216 path->nodes[level] = right;
2217 path->slots[level + 1] += 1;
2218 path->slots[level] = orig_slot -
2219 btrfs_header_nritems(mid);
2220 btrfs_tree_unlock(mid);
2221 free_extent_buffer(mid);
2222 } else {
2223 btrfs_tree_unlock(right);
2224 free_extent_buffer(right);
2225 }
2226 return 0;
2227 }
2228 btrfs_tree_unlock(right);
2229 free_extent_buffer(right);
2230 }
2231 return 1;
2232 }
2233
2234 /*
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
2237 */
2238 static void reada_for_search(struct btrfs_fs_info *fs_info,
2239 struct btrfs_path *path,
2240 int level, int slot, u64 objectid)
2241 {
2242 struct extent_buffer *node;
2243 struct btrfs_disk_key disk_key;
2244 u32 nritems;
2245 u64 search;
2246 u64 target;
2247 u64 nread = 0;
2248 struct extent_buffer *eb;
2249 u32 nr;
2250 u32 blocksize;
2251 u32 nscan = 0;
2252
2253 if (level != 1)
2254 return;
2255
2256 if (!path->nodes[level])
2257 return;
2258
2259 node = path->nodes[level];
2260
2261 search = btrfs_node_blockptr(node, slot);
2262 blocksize = fs_info->nodesize;
2263 eb = find_extent_buffer(fs_info, search);
2264 if (eb) {
2265 free_extent_buffer(eb);
2266 return;
2267 }
2268
2269 target = search;
2270
2271 nritems = btrfs_header_nritems(node);
2272 nr = slot;
2273
2274 while (1) {
2275 if (path->reada == READA_BACK) {
2276 if (nr == 0)
2277 break;
2278 nr--;
2279 } else if (path->reada == READA_FORWARD) {
2280 nr++;
2281 if (nr >= nritems)
2282 break;
2283 }
2284 if (path->reada == READA_BACK && objectid) {
2285 btrfs_node_key(node, &disk_key, nr);
2286 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287 break;
2288 }
2289 search = btrfs_node_blockptr(node, nr);
2290 if ((search <= target && target - search <= 65536) ||
2291 (search > target && search - target <= 65536)) {
2292 readahead_tree_block(fs_info, search);
2293 nread += blocksize;
2294 }
2295 nscan++;
2296 if ((nread > 65536 || nscan > 32))
2297 break;
2298 }
2299 }
2300
2301 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2302 struct btrfs_path *path, int level)
2303 {
2304 int slot;
2305 int nritems;
2306 struct extent_buffer *parent;
2307 struct extent_buffer *eb;
2308 u64 gen;
2309 u64 block1 = 0;
2310 u64 block2 = 0;
2311
2312 parent = path->nodes[level + 1];
2313 if (!parent)
2314 return;
2315
2316 nritems = btrfs_header_nritems(parent);
2317 slot = path->slots[level + 1];
2318
2319 if (slot > 0) {
2320 block1 = btrfs_node_blockptr(parent, slot - 1);
2321 gen = btrfs_node_ptr_generation(parent, slot - 1);
2322 eb = find_extent_buffer(fs_info, block1);
2323 /*
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2326 * forever
2327 */
2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329 block1 = 0;
2330 free_extent_buffer(eb);
2331 }
2332 if (slot + 1 < nritems) {
2333 block2 = btrfs_node_blockptr(parent, slot + 1);
2334 gen = btrfs_node_ptr_generation(parent, slot + 1);
2335 eb = find_extent_buffer(fs_info, block2);
2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 block2 = 0;
2338 free_extent_buffer(eb);
2339 }
2340
2341 if (block1)
2342 readahead_tree_block(fs_info, block1);
2343 if (block2)
2344 readahead_tree_block(fs_info, block2);
2345 }
2346
2347
2348 /*
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
2353 *
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
2357 *
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
2360 */
2361 static noinline void unlock_up(struct btrfs_path *path, int level,
2362 int lowest_unlock, int min_write_lock_level,
2363 int *write_lock_level)
2364 {
2365 int i;
2366 int skip_level = level;
2367 int no_skips = 0;
2368 struct extent_buffer *t;
2369
2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 if (!path->nodes[i])
2372 break;
2373 if (!path->locks[i])
2374 break;
2375 if (!no_skips && path->slots[i] == 0) {
2376 skip_level = i + 1;
2377 continue;
2378 }
2379 if (!no_skips && path->keep_locks) {
2380 u32 nritems;
2381 t = path->nodes[i];
2382 nritems = btrfs_header_nritems(t);
2383 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384 skip_level = i + 1;
2385 continue;
2386 }
2387 }
2388 if (skip_level < i && i >= lowest_unlock)
2389 no_skips = 1;
2390
2391 t = path->nodes[i];
2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393 btrfs_tree_unlock_rw(t, path->locks[i]);
2394 path->locks[i] = 0;
2395 if (write_lock_level &&
2396 i > min_write_lock_level &&
2397 i <= *write_lock_level) {
2398 *write_lock_level = i - 1;
2399 }
2400 }
2401 }
2402 }
2403
2404 /*
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2407 *
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2412 */
2413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414 {
2415 int i;
2416
2417 if (path->keep_locks)
2418 return;
2419
2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 if (!path->nodes[i])
2422 continue;
2423 if (!path->locks[i])
2424 continue;
2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426 path->locks[i] = 0;
2427 }
2428 }
2429
2430 /*
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2434 *
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2437 */
2438 static int
2439 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2440 struct extent_buffer **eb_ret, int level, int slot,
2441 const struct btrfs_key *key)
2442 {
2443 struct btrfs_fs_info *fs_info = root->fs_info;
2444 u64 blocknr;
2445 u64 gen;
2446 struct extent_buffer *b = *eb_ret;
2447 struct extent_buffer *tmp;
2448 int ret;
2449
2450 blocknr = btrfs_node_blockptr(b, slot);
2451 gen = btrfs_node_ptr_generation(b, slot);
2452
2453 tmp = find_extent_buffer(fs_info, blocknr);
2454 if (tmp) {
2455 /* first we do an atomic uptodate check */
2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 *eb_ret = tmp;
2458 return 0;
2459 }
2460
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2466 */
2467 btrfs_set_path_blocking(p);
2468
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret = btrfs_read_buffer(tmp, gen);
2471 if (!ret) {
2472 *eb_ret = tmp;
2473 return 0;
2474 }
2475 free_extent_buffer(tmp);
2476 btrfs_release_path(p);
2477 return -EIO;
2478 }
2479
2480 /*
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
2486 */
2487 btrfs_unlock_up_safe(p, level + 1);
2488 btrfs_set_path_blocking(p);
2489
2490 free_extent_buffer(tmp);
2491 if (p->reada != READA_NONE)
2492 reada_for_search(fs_info, p, level, slot, key->objectid);
2493
2494 btrfs_release_path(p);
2495
2496 ret = -EAGAIN;
2497 tmp = read_tree_block(fs_info, blocknr, 0);
2498 if (!IS_ERR(tmp)) {
2499 /*
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2503 * on our EAGAINs.
2504 */
2505 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506 ret = -EIO;
2507 free_extent_buffer(tmp);
2508 } else {
2509 ret = PTR_ERR(tmp);
2510 }
2511 return ret;
2512 }
2513
2514 /*
2515 * helper function for btrfs_search_slot. This does all of the checks
2516 * for node-level blocks and does any balancing required based on
2517 * the ins_len.
2518 *
2519 * If no extra work was required, zero is returned. If we had to
2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2521 * start over
2522 */
2523 static int
2524 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2525 struct btrfs_root *root, struct btrfs_path *p,
2526 struct extent_buffer *b, int level, int ins_len,
2527 int *write_lock_level)
2528 {
2529 struct btrfs_fs_info *fs_info = root->fs_info;
2530 int ret;
2531
2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2533 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2534 int sret;
2535
2536 if (*write_lock_level < level + 1) {
2537 *write_lock_level = level + 1;
2538 btrfs_release_path(p);
2539 goto again;
2540 }
2541
2542 btrfs_set_path_blocking(p);
2543 reada_for_balance(fs_info, p, level);
2544 sret = split_node(trans, root, p, level);
2545 btrfs_clear_path_blocking(p, NULL, 0);
2546
2547 BUG_ON(sret > 0);
2548 if (sret) {
2549 ret = sret;
2550 goto done;
2551 }
2552 b = p->nodes[level];
2553 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2554 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2555 int sret;
2556
2557 if (*write_lock_level < level + 1) {
2558 *write_lock_level = level + 1;
2559 btrfs_release_path(p);
2560 goto again;
2561 }
2562
2563 btrfs_set_path_blocking(p);
2564 reada_for_balance(fs_info, p, level);
2565 sret = balance_level(trans, root, p, level);
2566 btrfs_clear_path_blocking(p, NULL, 0);
2567
2568 if (sret) {
2569 ret = sret;
2570 goto done;
2571 }
2572 b = p->nodes[level];
2573 if (!b) {
2574 btrfs_release_path(p);
2575 goto again;
2576 }
2577 BUG_ON(btrfs_header_nritems(b) == 1);
2578 }
2579 return 0;
2580
2581 again:
2582 ret = -EAGAIN;
2583 done:
2584 return ret;
2585 }
2586
2587 static void key_search_validate(struct extent_buffer *b,
2588 const struct btrfs_key *key,
2589 int level)
2590 {
2591 #ifdef CONFIG_BTRFS_ASSERT
2592 struct btrfs_disk_key disk_key;
2593
2594 btrfs_cpu_key_to_disk(&disk_key, key);
2595
2596 if (level == 0)
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_leaf, items[0].key),
2599 sizeof(disk_key)));
2600 else
2601 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602 offsetof(struct btrfs_node, ptrs[0].key),
2603 sizeof(disk_key)));
2604 #endif
2605 }
2606
2607 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2608 int level, int *prev_cmp, int *slot)
2609 {
2610 if (*prev_cmp != 0) {
2611 *prev_cmp = bin_search(b, key, level, slot);
2612 return *prev_cmp;
2613 }
2614
2615 key_search_validate(b, key, level);
2616 *slot = 0;
2617
2618 return 0;
2619 }
2620
2621 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2622 u64 iobjectid, u64 ioff, u8 key_type,
2623 struct btrfs_key *found_key)
2624 {
2625 int ret;
2626 struct btrfs_key key;
2627 struct extent_buffer *eb;
2628
2629 ASSERT(path);
2630 ASSERT(found_key);
2631
2632 key.type = key_type;
2633 key.objectid = iobjectid;
2634 key.offset = ioff;
2635
2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2637 if (ret < 0)
2638 return ret;
2639
2640 eb = path->nodes[0];
2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642 ret = btrfs_next_leaf(fs_root, path);
2643 if (ret)
2644 return ret;
2645 eb = path->nodes[0];
2646 }
2647
2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649 if (found_key->type != key.type ||
2650 found_key->objectid != key.objectid)
2651 return 1;
2652
2653 return 0;
2654 }
2655
2656 /*
2657 * look for key in the tree. path is filled in with nodes along the way
2658 * if key is found, we return zero and you can find the item in the leaf
2659 * level of the path (level 0)
2660 *
2661 * If the key isn't found, the path points to the slot where it should
2662 * be inserted, and 1 is returned. If there are other errors during the
2663 * search a negative error number is returned.
2664 *
2665 * if ins_len > 0, nodes and leaves will be split as we walk down the
2666 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2667 * possible)
2668 */
2669 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2670 const struct btrfs_key *key, struct btrfs_path *p,
2671 int ins_len, int cow)
2672 {
2673 struct btrfs_fs_info *fs_info = root->fs_info;
2674 struct extent_buffer *b;
2675 int slot;
2676 int ret;
2677 int err;
2678 int level;
2679 int lowest_unlock = 1;
2680 int root_lock;
2681 /* everything at write_lock_level or lower must be write locked */
2682 int write_lock_level = 0;
2683 u8 lowest_level = 0;
2684 int min_write_lock_level;
2685 int prev_cmp;
2686
2687 lowest_level = p->lowest_level;
2688 WARN_ON(lowest_level && ins_len > 0);
2689 WARN_ON(p->nodes[0] != NULL);
2690 BUG_ON(!cow && ins_len);
2691
2692 if (ins_len < 0) {
2693 lowest_unlock = 2;
2694
2695 /* when we are removing items, we might have to go up to level
2696 * two as we update tree pointers Make sure we keep write
2697 * for those levels as well
2698 */
2699 write_lock_level = 2;
2700 } else if (ins_len > 0) {
2701 /*
2702 * for inserting items, make sure we have a write lock on
2703 * level 1 so we can update keys
2704 */
2705 write_lock_level = 1;
2706 }
2707
2708 if (!cow)
2709 write_lock_level = -1;
2710
2711 if (cow && (p->keep_locks || p->lowest_level))
2712 write_lock_level = BTRFS_MAX_LEVEL;
2713
2714 min_write_lock_level = write_lock_level;
2715
2716 again:
2717 prev_cmp = -1;
2718 /*
2719 * we try very hard to do read locks on the root
2720 */
2721 root_lock = BTRFS_READ_LOCK;
2722 level = 0;
2723 if (p->search_commit_root) {
2724 /*
2725 * the commit roots are read only
2726 * so we always do read locks
2727 */
2728 if (p->need_commit_sem)
2729 down_read(&fs_info->commit_root_sem);
2730 b = root->commit_root;
2731 extent_buffer_get(b);
2732 level = btrfs_header_level(b);
2733 if (p->need_commit_sem)
2734 up_read(&fs_info->commit_root_sem);
2735 if (!p->skip_locking)
2736 btrfs_tree_read_lock(b);
2737 } else {
2738 if (p->skip_locking) {
2739 b = btrfs_root_node(root);
2740 level = btrfs_header_level(b);
2741 } else {
2742 /* we don't know the level of the root node
2743 * until we actually have it read locked
2744 */
2745 b = btrfs_read_lock_root_node(root);
2746 level = btrfs_header_level(b);
2747 if (level <= write_lock_level) {
2748 /* whoops, must trade for write lock */
2749 btrfs_tree_read_unlock(b);
2750 free_extent_buffer(b);
2751 b = btrfs_lock_root_node(root);
2752 root_lock = BTRFS_WRITE_LOCK;
2753
2754 /* the level might have changed, check again */
2755 level = btrfs_header_level(b);
2756 }
2757 }
2758 }
2759 p->nodes[level] = b;
2760 if (!p->skip_locking)
2761 p->locks[level] = root_lock;
2762
2763 while (b) {
2764 level = btrfs_header_level(b);
2765
2766 /*
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2769 */
2770 if (cow) {
2771 /*
2772 * if we don't really need to cow this block
2773 * then we don't want to set the path blocking,
2774 * so we test it here
2775 */
2776 if (!should_cow_block(trans, root, b)) {
2777 trans->dirty = true;
2778 goto cow_done;
2779 }
2780
2781 /*
2782 * must have write locks on this node and the
2783 * parent
2784 */
2785 if (level > write_lock_level ||
2786 (level + 1 > write_lock_level &&
2787 level + 1 < BTRFS_MAX_LEVEL &&
2788 p->nodes[level + 1])) {
2789 write_lock_level = level + 1;
2790 btrfs_release_path(p);
2791 goto again;
2792 }
2793
2794 btrfs_set_path_blocking(p);
2795 err = btrfs_cow_block(trans, root, b,
2796 p->nodes[level + 1],
2797 p->slots[level + 1], &b);
2798 if (err) {
2799 ret = err;
2800 goto done;
2801 }
2802 }
2803 cow_done:
2804 p->nodes[level] = b;
2805 btrfs_clear_path_blocking(p, NULL, 0);
2806
2807 /*
2808 * we have a lock on b and as long as we aren't changing
2809 * the tree, there is no way to for the items in b to change.
2810 * It is safe to drop the lock on our parent before we
2811 * go through the expensive btree search on b.
2812 *
2813 * If we're inserting or deleting (ins_len != 0), then we might
2814 * be changing slot zero, which may require changing the parent.
2815 * So, we can't drop the lock until after we know which slot
2816 * we're operating on.
2817 */
2818 if (!ins_len && !p->keep_locks) {
2819 int u = level + 1;
2820
2821 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2822 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2823 p->locks[u] = 0;
2824 }
2825 }
2826
2827 ret = key_search(b, key, level, &prev_cmp, &slot);
2828 if (ret < 0)
2829 goto done;
2830
2831 if (level != 0) {
2832 int dec = 0;
2833 if (ret && slot > 0) {
2834 dec = 1;
2835 slot -= 1;
2836 }
2837 p->slots[level] = slot;
2838 err = setup_nodes_for_search(trans, root, p, b, level,
2839 ins_len, &write_lock_level);
2840 if (err == -EAGAIN)
2841 goto again;
2842 if (err) {
2843 ret = err;
2844 goto done;
2845 }
2846 b = p->nodes[level];
2847 slot = p->slots[level];
2848
2849 /*
2850 * slot 0 is special, if we change the key
2851 * we have to update the parent pointer
2852 * which means we must have a write lock
2853 * on the parent
2854 */
2855 if (slot == 0 && ins_len &&
2856 write_lock_level < level + 1) {
2857 write_lock_level = level + 1;
2858 btrfs_release_path(p);
2859 goto again;
2860 }
2861
2862 unlock_up(p, level, lowest_unlock,
2863 min_write_lock_level, &write_lock_level);
2864
2865 if (level == lowest_level) {
2866 if (dec)
2867 p->slots[level]++;
2868 goto done;
2869 }
2870
2871 err = read_block_for_search(root, p, &b, level,
2872 slot, key);
2873 if (err == -EAGAIN)
2874 goto again;
2875 if (err) {
2876 ret = err;
2877 goto done;
2878 }
2879
2880 if (!p->skip_locking) {
2881 level = btrfs_header_level(b);
2882 if (level <= write_lock_level) {
2883 err = btrfs_try_tree_write_lock(b);
2884 if (!err) {
2885 btrfs_set_path_blocking(p);
2886 btrfs_tree_lock(b);
2887 btrfs_clear_path_blocking(p, b,
2888 BTRFS_WRITE_LOCK);
2889 }
2890 p->locks[level] = BTRFS_WRITE_LOCK;
2891 } else {
2892 err = btrfs_tree_read_lock_atomic(b);
2893 if (!err) {
2894 btrfs_set_path_blocking(p);
2895 btrfs_tree_read_lock(b);
2896 btrfs_clear_path_blocking(p, b,
2897 BTRFS_READ_LOCK);
2898 }
2899 p->locks[level] = BTRFS_READ_LOCK;
2900 }
2901 p->nodes[level] = b;
2902 }
2903 } else {
2904 p->slots[level] = slot;
2905 if (ins_len > 0 &&
2906 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2907 if (write_lock_level < 1) {
2908 write_lock_level = 1;
2909 btrfs_release_path(p);
2910 goto again;
2911 }
2912
2913 btrfs_set_path_blocking(p);
2914 err = split_leaf(trans, root, key,
2915 p, ins_len, ret == 0);
2916 btrfs_clear_path_blocking(p, NULL, 0);
2917
2918 BUG_ON(err > 0);
2919 if (err) {
2920 ret = err;
2921 goto done;
2922 }
2923 }
2924 if (!p->search_for_split)
2925 unlock_up(p, level, lowest_unlock,
2926 min_write_lock_level, &write_lock_level);
2927 goto done;
2928 }
2929 }
2930 ret = 1;
2931 done:
2932 /*
2933 * we don't really know what they plan on doing with the path
2934 * from here on, so for now just mark it as blocking
2935 */
2936 if (!p->leave_spinning)
2937 btrfs_set_path_blocking(p);
2938 if (ret < 0 && !p->skip_release_on_error)
2939 btrfs_release_path(p);
2940 return ret;
2941 }
2942
2943 /*
2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945 * current state of the tree together with the operations recorded in the tree
2946 * modification log to search for the key in a previous version of this tree, as
2947 * denoted by the time_seq parameter.
2948 *
2949 * Naturally, there is no support for insert, delete or cow operations.
2950 *
2951 * The resulting path and return value will be set up as if we called
2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953 */
2954 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2955 struct btrfs_path *p, u64 time_seq)
2956 {
2957 struct btrfs_fs_info *fs_info = root->fs_info;
2958 struct extent_buffer *b;
2959 int slot;
2960 int ret;
2961 int err;
2962 int level;
2963 int lowest_unlock = 1;
2964 u8 lowest_level = 0;
2965 int prev_cmp = -1;
2966
2967 lowest_level = p->lowest_level;
2968 WARN_ON(p->nodes[0] != NULL);
2969
2970 if (p->search_commit_root) {
2971 BUG_ON(time_seq);
2972 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2973 }
2974
2975 again:
2976 b = get_old_root(root, time_seq);
2977 level = btrfs_header_level(b);
2978 p->locks[level] = BTRFS_READ_LOCK;
2979
2980 while (b) {
2981 level = btrfs_header_level(b);
2982 p->nodes[level] = b;
2983 btrfs_clear_path_blocking(p, NULL, 0);
2984
2985 /*
2986 * we have a lock on b and as long as we aren't changing
2987 * the tree, there is no way to for the items in b to change.
2988 * It is safe to drop the lock on our parent before we
2989 * go through the expensive btree search on b.
2990 */
2991 btrfs_unlock_up_safe(p, level + 1);
2992
2993 /*
2994 * Since we can unwind ebs we want to do a real search every
2995 * time.
2996 */
2997 prev_cmp = -1;
2998 ret = key_search(b, key, level, &prev_cmp, &slot);
2999
3000 if (level != 0) {
3001 int dec = 0;
3002 if (ret && slot > 0) {
3003 dec = 1;
3004 slot -= 1;
3005 }
3006 p->slots[level] = slot;
3007 unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009 if (level == lowest_level) {
3010 if (dec)
3011 p->slots[level]++;
3012 goto done;
3013 }
3014
3015 err = read_block_for_search(root, p, &b, level,
3016 slot, key);
3017 if (err == -EAGAIN)
3018 goto again;
3019 if (err) {
3020 ret = err;
3021 goto done;
3022 }
3023
3024 level = btrfs_header_level(b);
3025 err = btrfs_tree_read_lock_atomic(b);
3026 if (!err) {
3027 btrfs_set_path_blocking(p);
3028 btrfs_tree_read_lock(b);
3029 btrfs_clear_path_blocking(p, b,
3030 BTRFS_READ_LOCK);
3031 }
3032 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3033 if (!b) {
3034 ret = -ENOMEM;
3035 goto done;
3036 }
3037 p->locks[level] = BTRFS_READ_LOCK;
3038 p->nodes[level] = b;
3039 } else {
3040 p->slots[level] = slot;
3041 unlock_up(p, level, lowest_unlock, 0, NULL);
3042 goto done;
3043 }
3044 }
3045 ret = 1;
3046 done:
3047 if (!p->leave_spinning)
3048 btrfs_set_path_blocking(p);
3049 if (ret < 0)
3050 btrfs_release_path(p);
3051
3052 return ret;
3053 }
3054
3055 /*
3056 * helper to use instead of search slot if no exact match is needed but
3057 * instead the next or previous item should be returned.
3058 * When find_higher is true, the next higher item is returned, the next lower
3059 * otherwise.
3060 * When return_any and find_higher are both true, and no higher item is found,
3061 * return the next lower instead.
3062 * When return_any is true and find_higher is false, and no lower item is found,
3063 * return the next higher instead.
3064 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3065 * < 0 on error
3066 */
3067 int btrfs_search_slot_for_read(struct btrfs_root *root,
3068 const struct btrfs_key *key,
3069 struct btrfs_path *p, int find_higher,
3070 int return_any)
3071 {
3072 int ret;
3073 struct extent_buffer *leaf;
3074
3075 again:
3076 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3077 if (ret <= 0)
3078 return ret;
3079 /*
3080 * a return value of 1 means the path is at the position where the
3081 * item should be inserted. Normally this is the next bigger item,
3082 * but in case the previous item is the last in a leaf, path points
3083 * to the first free slot in the previous leaf, i.e. at an invalid
3084 * item.
3085 */
3086 leaf = p->nodes[0];
3087
3088 if (find_higher) {
3089 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3090 ret = btrfs_next_leaf(root, p);
3091 if (ret <= 0)
3092 return ret;
3093 if (!return_any)
3094 return 1;
3095 /*
3096 * no higher item found, return the next
3097 * lower instead
3098 */
3099 return_any = 0;
3100 find_higher = 0;
3101 btrfs_release_path(p);
3102 goto again;
3103 }
3104 } else {
3105 if (p->slots[0] == 0) {
3106 ret = btrfs_prev_leaf(root, p);
3107 if (ret < 0)
3108 return ret;
3109 if (!ret) {
3110 leaf = p->nodes[0];
3111 if (p->slots[0] == btrfs_header_nritems(leaf))
3112 p->slots[0]--;
3113 return 0;
3114 }
3115 if (!return_any)
3116 return 1;
3117 /*
3118 * no lower item found, return the next
3119 * higher instead
3120 */
3121 return_any = 0;
3122 find_higher = 1;
3123 btrfs_release_path(p);
3124 goto again;
3125 } else {
3126 --p->slots[0];
3127 }
3128 }
3129 return 0;
3130 }
3131
3132 /*
3133 * adjust the pointers going up the tree, starting at level
3134 * making sure the right key of each node is points to 'key'.
3135 * This is used after shifting pointers to the left, so it stops
3136 * fixing up pointers when a given leaf/node is not in slot 0 of the
3137 * higher levels
3138 *
3139 */
3140 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3141 struct btrfs_path *path,
3142 struct btrfs_disk_key *key, int level)
3143 {
3144 int i;
3145 struct extent_buffer *t;
3146
3147 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3148 int tslot = path->slots[i];
3149 if (!path->nodes[i])
3150 break;
3151 t = path->nodes[i];
3152 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3153 btrfs_set_node_key(t, key, tslot);
3154 btrfs_mark_buffer_dirty(path->nodes[i]);
3155 if (tslot != 0)
3156 break;
3157 }
3158 }
3159
3160 /*
3161 * update item key.
3162 *
3163 * This function isn't completely safe. It's the caller's responsibility
3164 * that the new key won't break the order
3165 */
3166 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3167 struct btrfs_path *path,
3168 const struct btrfs_key *new_key)
3169 {
3170 struct btrfs_disk_key disk_key;
3171 struct extent_buffer *eb;
3172 int slot;
3173
3174 eb = path->nodes[0];
3175 slot = path->slots[0];
3176 if (slot > 0) {
3177 btrfs_item_key(eb, &disk_key, slot - 1);
3178 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3179 }
3180 if (slot < btrfs_header_nritems(eb) - 1) {
3181 btrfs_item_key(eb, &disk_key, slot + 1);
3182 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3183 }
3184
3185 btrfs_cpu_key_to_disk(&disk_key, new_key);
3186 btrfs_set_item_key(eb, &disk_key, slot);
3187 btrfs_mark_buffer_dirty(eb);
3188 if (slot == 0)
3189 fixup_low_keys(fs_info, path, &disk_key, 1);
3190 }
3191
3192 /*
3193 * try to push data from one node into the next node left in the
3194 * tree.
3195 *
3196 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3197 * error, and > 0 if there was no room in the left hand block.
3198 */
3199 static int push_node_left(struct btrfs_trans_handle *trans,
3200 struct btrfs_fs_info *fs_info,
3201 struct extent_buffer *dst,
3202 struct extent_buffer *src, int empty)
3203 {
3204 int push_items = 0;
3205 int src_nritems;
3206 int dst_nritems;
3207 int ret = 0;
3208
3209 src_nritems = btrfs_header_nritems(src);
3210 dst_nritems = btrfs_header_nritems(dst);
3211 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3212 WARN_ON(btrfs_header_generation(src) != trans->transid);
3213 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3214
3215 if (!empty && src_nritems <= 8)
3216 return 1;
3217
3218 if (push_items <= 0)
3219 return 1;
3220
3221 if (empty) {
3222 push_items = min(src_nritems, push_items);
3223 if (push_items < src_nritems) {
3224 /* leave at least 8 pointers in the node if
3225 * we aren't going to empty it
3226 */
3227 if (src_nritems - push_items < 8) {
3228 if (push_items <= 8)
3229 return 1;
3230 push_items -= 8;
3231 }
3232 }
3233 } else
3234 push_items = min(src_nritems - 8, push_items);
3235
3236 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3237 push_items);
3238 if (ret) {
3239 btrfs_abort_transaction(trans, ret);
3240 return ret;
3241 }
3242 copy_extent_buffer(dst, src,
3243 btrfs_node_key_ptr_offset(dst_nritems),
3244 btrfs_node_key_ptr_offset(0),
3245 push_items * sizeof(struct btrfs_key_ptr));
3246
3247 if (push_items < src_nritems) {
3248 /*
3249 * don't call tree_mod_log_eb_move here, key removal was already
3250 * fully logged by tree_mod_log_eb_copy above.
3251 */
3252 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253 btrfs_node_key_ptr_offset(push_items),
3254 (src_nritems - push_items) *
3255 sizeof(struct btrfs_key_ptr));
3256 }
3257 btrfs_set_header_nritems(src, src_nritems - push_items);
3258 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259 btrfs_mark_buffer_dirty(src);
3260 btrfs_mark_buffer_dirty(dst);
3261
3262 return ret;
3263 }
3264
3265 /*
3266 * try to push data from one node into the next node right in the
3267 * tree.
3268 *
3269 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270 * error, and > 0 if there was no room in the right hand block.
3271 *
3272 * this will only push up to 1/2 the contents of the left node over
3273 */
3274 static int balance_node_right(struct btrfs_trans_handle *trans,
3275 struct btrfs_fs_info *fs_info,
3276 struct extent_buffer *dst,
3277 struct extent_buffer *src)
3278 {
3279 int push_items = 0;
3280 int max_push;
3281 int src_nritems;
3282 int dst_nritems;
3283 int ret = 0;
3284
3285 WARN_ON(btrfs_header_generation(src) != trans->transid);
3286 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3287
3288 src_nritems = btrfs_header_nritems(src);
3289 dst_nritems = btrfs_header_nritems(dst);
3290 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3291 if (push_items <= 0)
3292 return 1;
3293
3294 if (src_nritems < 4)
3295 return 1;
3296
3297 max_push = src_nritems / 2 + 1;
3298 /* don't try to empty the node */
3299 if (max_push >= src_nritems)
3300 return 1;
3301
3302 if (max_push < push_items)
3303 push_items = max_push;
3304
3305 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3306 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307 btrfs_node_key_ptr_offset(0),
3308 (dst_nritems) *
3309 sizeof(struct btrfs_key_ptr));
3310
3311 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3312 src_nritems - push_items, push_items);
3313 if (ret) {
3314 btrfs_abort_transaction(trans, ret);
3315 return ret;
3316 }
3317 copy_extent_buffer(dst, src,
3318 btrfs_node_key_ptr_offset(0),
3319 btrfs_node_key_ptr_offset(src_nritems - push_items),
3320 push_items * sizeof(struct btrfs_key_ptr));
3321
3322 btrfs_set_header_nritems(src, src_nritems - push_items);
3323 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3324
3325 btrfs_mark_buffer_dirty(src);
3326 btrfs_mark_buffer_dirty(dst);
3327
3328 return ret;
3329 }
3330
3331 /*
3332 * helper function to insert a new root level in the tree.
3333 * A new node is allocated, and a single item is inserted to
3334 * point to the existing root
3335 *
3336 * returns zero on success or < 0 on failure.
3337 */
3338 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3339 struct btrfs_root *root,
3340 struct btrfs_path *path, int level)
3341 {
3342 struct btrfs_fs_info *fs_info = root->fs_info;
3343 u64 lower_gen;
3344 struct extent_buffer *lower;
3345 struct extent_buffer *c;
3346 struct extent_buffer *old;
3347 struct btrfs_disk_key lower_key;
3348
3349 BUG_ON(path->nodes[level]);
3350 BUG_ON(path->nodes[level-1] != root->node);
3351
3352 lower = path->nodes[level-1];
3353 if (level == 1)
3354 btrfs_item_key(lower, &lower_key, 0);
3355 else
3356 btrfs_node_key(lower, &lower_key, 0);
3357
3358 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3359 &lower_key, level, root->node->start, 0);
3360 if (IS_ERR(c))
3361 return PTR_ERR(c);
3362
3363 root_add_used(root, fs_info->nodesize);
3364
3365 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3366 btrfs_set_header_nritems(c, 1);
3367 btrfs_set_header_level(c, level);
3368 btrfs_set_header_bytenr(c, c->start);
3369 btrfs_set_header_generation(c, trans->transid);
3370 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3371 btrfs_set_header_owner(c, root->root_key.objectid);
3372
3373 write_extent_buffer_fsid(c, fs_info->fsid);
3374 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3375
3376 btrfs_set_node_key(c, &lower_key, 0);
3377 btrfs_set_node_blockptr(c, 0, lower->start);
3378 lower_gen = btrfs_header_generation(lower);
3379 WARN_ON(lower_gen != trans->transid);
3380
3381 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3382
3383 btrfs_mark_buffer_dirty(c);
3384
3385 old = root->node;
3386 tree_mod_log_set_root_pointer(root, c, 0);
3387 rcu_assign_pointer(root->node, c);
3388
3389 /* the super has an extra ref to root->node */
3390 free_extent_buffer(old);
3391
3392 add_root_to_dirty_list(root);
3393 extent_buffer_get(c);
3394 path->nodes[level] = c;
3395 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3396 path->slots[level] = 0;
3397 return 0;
3398 }
3399
3400 /*
3401 * worker function to insert a single pointer in a node.
3402 * the node should have enough room for the pointer already
3403 *
3404 * slot and level indicate where you want the key to go, and
3405 * blocknr is the block the key points to.
3406 */
3407 static void insert_ptr(struct btrfs_trans_handle *trans,
3408 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3409 struct btrfs_disk_key *key, u64 bytenr,
3410 int slot, int level)
3411 {
3412 struct extent_buffer *lower;
3413 int nritems;
3414 int ret;
3415
3416 BUG_ON(!path->nodes[level]);
3417 btrfs_assert_tree_locked(path->nodes[level]);
3418 lower = path->nodes[level];
3419 nritems = btrfs_header_nritems(lower);
3420 BUG_ON(slot > nritems);
3421 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3422 if (slot != nritems) {
3423 if (level)
3424 tree_mod_log_eb_move(fs_info, lower, slot + 1,
3425 slot, nritems - slot);
3426 memmove_extent_buffer(lower,
3427 btrfs_node_key_ptr_offset(slot + 1),
3428 btrfs_node_key_ptr_offset(slot),
3429 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3430 }
3431 if (level) {
3432 ret = tree_mod_log_insert_key(fs_info, lower, slot,
3433 MOD_LOG_KEY_ADD, GFP_NOFS);
3434 BUG_ON(ret < 0);
3435 }
3436 btrfs_set_node_key(lower, key, slot);
3437 btrfs_set_node_blockptr(lower, slot, bytenr);
3438 WARN_ON(trans->transid == 0);
3439 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3440 btrfs_set_header_nritems(lower, nritems + 1);
3441 btrfs_mark_buffer_dirty(lower);
3442 }
3443
3444 /*
3445 * split the node at the specified level in path in two.
3446 * The path is corrected to point to the appropriate node after the split
3447 *
3448 * Before splitting this tries to make some room in the node by pushing
3449 * left and right, if either one works, it returns right away.
3450 *
3451 * returns 0 on success and < 0 on failure
3452 */
3453 static noinline int split_node(struct btrfs_trans_handle *trans,
3454 struct btrfs_root *root,
3455 struct btrfs_path *path, int level)
3456 {
3457 struct btrfs_fs_info *fs_info = root->fs_info;
3458 struct extent_buffer *c;
3459 struct extent_buffer *split;
3460 struct btrfs_disk_key disk_key;
3461 int mid;
3462 int ret;
3463 u32 c_nritems;
3464
3465 c = path->nodes[level];
3466 WARN_ON(btrfs_header_generation(c) != trans->transid);
3467 if (c == root->node) {
3468 /*
3469 * trying to split the root, lets make a new one
3470 *
3471 * tree mod log: We don't log_removal old root in
3472 * insert_new_root, because that root buffer will be kept as a
3473 * normal node. We are going to log removal of half of the
3474 * elements below with tree_mod_log_eb_copy. We're holding a
3475 * tree lock on the buffer, which is why we cannot race with
3476 * other tree_mod_log users.
3477 */
3478 ret = insert_new_root(trans, root, path, level + 1);
3479 if (ret)
3480 return ret;
3481 } else {
3482 ret = push_nodes_for_insert(trans, root, path, level);
3483 c = path->nodes[level];
3484 if (!ret && btrfs_header_nritems(c) <
3485 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3486 return 0;
3487 if (ret < 0)
3488 return ret;
3489 }
3490
3491 c_nritems = btrfs_header_nritems(c);
3492 mid = (c_nritems + 1) / 2;
3493 btrfs_node_key(c, &disk_key, mid);
3494
3495 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496 &disk_key, level, c->start, 0);
3497 if (IS_ERR(split))
3498 return PTR_ERR(split);
3499
3500 root_add_used(root, fs_info->nodesize);
3501
3502 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3503 btrfs_set_header_level(split, btrfs_header_level(c));
3504 btrfs_set_header_bytenr(split, split->start);
3505 btrfs_set_header_generation(split, trans->transid);
3506 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507 btrfs_set_header_owner(split, root->root_key.objectid);
3508 write_extent_buffer_fsid(split, fs_info->fsid);
3509 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3510
3511 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3512 if (ret) {
3513 btrfs_abort_transaction(trans, ret);
3514 return ret;
3515 }
3516 copy_extent_buffer(split, c,
3517 btrfs_node_key_ptr_offset(0),
3518 btrfs_node_key_ptr_offset(mid),
3519 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520 btrfs_set_header_nritems(split, c_nritems - mid);
3521 btrfs_set_header_nritems(c, mid);
3522 ret = 0;
3523
3524 btrfs_mark_buffer_dirty(c);
3525 btrfs_mark_buffer_dirty(split);
3526
3527 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3528 path->slots[level + 1] + 1, level + 1);
3529
3530 if (path->slots[level] >= mid) {
3531 path->slots[level] -= mid;
3532 btrfs_tree_unlock(c);
3533 free_extent_buffer(c);
3534 path->nodes[level] = split;
3535 path->slots[level + 1] += 1;
3536 } else {
3537 btrfs_tree_unlock(split);
3538 free_extent_buffer(split);
3539 }
3540 return ret;
3541 }
3542
3543 /*
3544 * how many bytes are required to store the items in a leaf. start
3545 * and nr indicate which items in the leaf to check. This totals up the
3546 * space used both by the item structs and the item data
3547 */
3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549 {
3550 struct btrfs_item *start_item;
3551 struct btrfs_item *end_item;
3552 struct btrfs_map_token token;
3553 int data_len;
3554 int nritems = btrfs_header_nritems(l);
3555 int end = min(nritems, start + nr) - 1;
3556
3557 if (!nr)
3558 return 0;
3559 btrfs_init_map_token(&token);
3560 start_item = btrfs_item_nr(start);
3561 end_item = btrfs_item_nr(end);
3562 data_len = btrfs_token_item_offset(l, start_item, &token) +
3563 btrfs_token_item_size(l, start_item, &token);
3564 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565 data_len += sizeof(struct btrfs_item) * nr;
3566 WARN_ON(data_len < 0);
3567 return data_len;
3568 }
3569
3570 /*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data. IOW, how much room
3573 * the leaf has left for both items and data
3574 */
3575 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3576 struct extent_buffer *leaf)
3577 {
3578 int nritems = btrfs_header_nritems(leaf);
3579 int ret;
3580
3581 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582 if (ret < 0) {
3583 btrfs_crit(fs_info,
3584 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585 ret,
3586 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587 leaf_space_used(leaf, 0, nritems), nritems);
3588 }
3589 return ret;
3590 }
3591
3592 /*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right. We'll push up to and including min_slot, but no lower
3595 */
3596 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3597 struct btrfs_path *path,
3598 int data_size, int empty,
3599 struct extent_buffer *right,
3600 int free_space, u32 left_nritems,
3601 u32 min_slot)
3602 {
3603 struct extent_buffer *left = path->nodes[0];
3604 struct extent_buffer *upper = path->nodes[1];
3605 struct btrfs_map_token token;
3606 struct btrfs_disk_key disk_key;
3607 int slot;
3608 u32 i;
3609 int push_space = 0;
3610 int push_items = 0;
3611 struct btrfs_item *item;
3612 u32 nr;
3613 u32 right_nritems;
3614 u32 data_end;
3615 u32 this_item_size;
3616
3617 btrfs_init_map_token(&token);
3618
3619 if (empty)
3620 nr = 0;
3621 else
3622 nr = max_t(u32, 1, min_slot);
3623
3624 if (path->slots[0] >= left_nritems)
3625 push_space += data_size;
3626
3627 slot = path->slots[1];
3628 i = left_nritems - 1;
3629 while (i >= nr) {
3630 item = btrfs_item_nr(i);
3631
3632 if (!empty && push_items > 0) {
3633 if (path->slots[0] > i)
3634 break;
3635 if (path->slots[0] == i) {
3636 int space = btrfs_leaf_free_space(fs_info, left);
3637 if (space + push_space * 2 > free_space)
3638 break;
3639 }
3640 }
3641
3642 if (path->slots[0] == i)
3643 push_space += data_size;
3644
3645 this_item_size = btrfs_item_size(left, item);
3646 if (this_item_size + sizeof(*item) + push_space > free_space)
3647 break;
3648
3649 push_items++;
3650 push_space += this_item_size + sizeof(*item);
3651 if (i == 0)
3652 break;
3653 i--;
3654 }
3655
3656 if (push_items == 0)
3657 goto out_unlock;
3658
3659 WARN_ON(!empty && push_items == left_nritems);
3660
3661 /* push left to right */
3662 right_nritems = btrfs_header_nritems(right);
3663
3664 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665 push_space -= leaf_data_end(fs_info, left);
3666
3667 /* make room in the right data area */
3668 data_end = leaf_data_end(fs_info, right);
3669 memmove_extent_buffer(right,
3670 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3671 BTRFS_LEAF_DATA_OFFSET + data_end,
3672 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3673
3674 /* copy from the left data area */
3675 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3676 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3677 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3678 push_space);
3679
3680 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681 btrfs_item_nr_offset(0),
3682 right_nritems * sizeof(struct btrfs_item));
3683
3684 /* copy the items from left to right */
3685 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686 btrfs_item_nr_offset(left_nritems - push_items),
3687 push_items * sizeof(struct btrfs_item));
3688
3689 /* update the item pointers */
3690 right_nritems += push_items;
3691 btrfs_set_header_nritems(right, right_nritems);
3692 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693 for (i = 0; i < right_nritems; i++) {
3694 item = btrfs_item_nr(i);
3695 push_space -= btrfs_token_item_size(right, item, &token);
3696 btrfs_set_token_item_offset(right, item, push_space, &token);
3697 }
3698
3699 left_nritems -= push_items;
3700 btrfs_set_header_nritems(left, left_nritems);
3701
3702 if (left_nritems)
3703 btrfs_mark_buffer_dirty(left);
3704 else
3705 clean_tree_block(fs_info, left);
3706
3707 btrfs_mark_buffer_dirty(right);
3708
3709 btrfs_item_key(right, &disk_key, 0);
3710 btrfs_set_node_key(upper, &disk_key, slot + 1);
3711 btrfs_mark_buffer_dirty(upper);
3712
3713 /* then fixup the leaf pointer in the path */
3714 if (path->slots[0] >= left_nritems) {
3715 path->slots[0] -= left_nritems;
3716 if (btrfs_header_nritems(path->nodes[0]) == 0)
3717 clean_tree_block(fs_info, path->nodes[0]);
3718 btrfs_tree_unlock(path->nodes[0]);
3719 free_extent_buffer(path->nodes[0]);
3720 path->nodes[0] = right;
3721 path->slots[1] += 1;
3722 } else {
3723 btrfs_tree_unlock(right);
3724 free_extent_buffer(right);
3725 }
3726 return 0;
3727
3728 out_unlock:
3729 btrfs_tree_unlock(right);
3730 free_extent_buffer(right);
3731 return 1;
3732 }
3733
3734 /*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3740 *
3741 * this will push starting from min_slot to the end of the leaf. It won't
3742 * push any slot lower than min_slot
3743 */
3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745 *root, struct btrfs_path *path,
3746 int min_data_size, int data_size,
3747 int empty, u32 min_slot)
3748 {
3749 struct btrfs_fs_info *fs_info = root->fs_info;
3750 struct extent_buffer *left = path->nodes[0];
3751 struct extent_buffer *right;
3752 struct extent_buffer *upper;
3753 int slot;
3754 int free_space;
3755 u32 left_nritems;
3756 int ret;
3757
3758 if (!path->nodes[1])
3759 return 1;
3760
3761 slot = path->slots[1];
3762 upper = path->nodes[1];
3763 if (slot >= btrfs_header_nritems(upper) - 1)
3764 return 1;
3765
3766 btrfs_assert_tree_locked(path->nodes[1]);
3767
3768 right = read_node_slot(fs_info, upper, slot + 1);
3769 /*
3770 * slot + 1 is not valid or we fail to read the right node,
3771 * no big deal, just return.
3772 */
3773 if (IS_ERR(right))
3774 return 1;
3775
3776 btrfs_tree_lock(right);
3777 btrfs_set_lock_blocking(right);
3778
3779 free_space = btrfs_leaf_free_space(fs_info, right);
3780 if (free_space < data_size)
3781 goto out_unlock;
3782
3783 /* cow and double check */
3784 ret = btrfs_cow_block(trans, root, right, upper,
3785 slot + 1, &right);
3786 if (ret)
3787 goto out_unlock;
3788
3789 free_space = btrfs_leaf_free_space(fs_info, right);
3790 if (free_space < data_size)
3791 goto out_unlock;
3792
3793 left_nritems = btrfs_header_nritems(left);
3794 if (left_nritems == 0)
3795 goto out_unlock;
3796
3797 if (path->slots[0] == left_nritems && !empty) {
3798 /* Key greater than all keys in the leaf, right neighbor has
3799 * enough room for it and we're not emptying our leaf to delete
3800 * it, therefore use right neighbor to insert the new item and
3801 * no need to touch/dirty our left leaft. */
3802 btrfs_tree_unlock(left);
3803 free_extent_buffer(left);
3804 path->nodes[0] = right;
3805 path->slots[0] = 0;
3806 path->slots[1]++;
3807 return 0;
3808 }
3809
3810 return __push_leaf_right(fs_info, path, min_data_size, empty,
3811 right, free_space, left_nritems, min_slot);
3812 out_unlock:
3813 btrfs_tree_unlock(right);
3814 free_extent_buffer(right);
3815 return 1;
3816 }
3817
3818 /*
3819 * push some data in the path leaf to the left, trying to free up at
3820 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3821 *
3822 * max_slot can put a limit on how far into the leaf we'll push items. The
3823 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3824 * items
3825 */
3826 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3827 struct btrfs_path *path, int data_size,
3828 int empty, struct extent_buffer *left,
3829 int free_space, u32 right_nritems,
3830 u32 max_slot)
3831 {
3832 struct btrfs_disk_key disk_key;
3833 struct extent_buffer *right = path->nodes[0];
3834 int i;
3835 int push_space = 0;
3836 int push_items = 0;
3837 struct btrfs_item *item;
3838 u32 old_left_nritems;
3839 u32 nr;
3840 int ret = 0;
3841 u32 this_item_size;
3842 u32 old_left_item_size;
3843 struct btrfs_map_token token;
3844
3845 btrfs_init_map_token(&token);
3846
3847 if (empty)
3848 nr = min(right_nritems, max_slot);
3849 else
3850 nr = min(right_nritems - 1, max_slot);
3851
3852 for (i = 0; i < nr; i++) {
3853 item = btrfs_item_nr(i);
3854
3855 if (!empty && push_items > 0) {
3856 if (path->slots[0] < i)
3857 break;
3858 if (path->slots[0] == i) {
3859 int space = btrfs_leaf_free_space(fs_info, right);
3860 if (space + push_space * 2 > free_space)
3861 break;
3862 }
3863 }
3864
3865 if (path->slots[0] == i)
3866 push_space += data_size;
3867
3868 this_item_size = btrfs_item_size(right, item);
3869 if (this_item_size + sizeof(*item) + push_space > free_space)
3870 break;
3871
3872 push_items++;
3873 push_space += this_item_size + sizeof(*item);
3874 }
3875
3876 if (push_items == 0) {
3877 ret = 1;
3878 goto out;
3879 }
3880 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881
3882 /* push data from right to left */
3883 copy_extent_buffer(left, right,
3884 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885 btrfs_item_nr_offset(0),
3886 push_items * sizeof(struct btrfs_item));
3887
3888 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3889 btrfs_item_offset_nr(right, push_items - 1);
3890
3891 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3892 leaf_data_end(fs_info, left) - push_space,
3893 BTRFS_LEAF_DATA_OFFSET +
3894 btrfs_item_offset_nr(right, push_items - 1),
3895 push_space);
3896 old_left_nritems = btrfs_header_nritems(left);
3897 BUG_ON(old_left_nritems <= 0);
3898
3899 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901 u32 ioff;
3902
3903 item = btrfs_item_nr(i);
3904
3905 ioff = btrfs_token_item_offset(left, item, &token);
3906 btrfs_set_token_item_offset(left, item,
3907 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3908 &token);
3909 }
3910 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911
3912 /* fixup right node */
3913 if (push_items > right_nritems)
3914 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915 right_nritems);
3916
3917 if (push_items < right_nritems) {
3918 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919 leaf_data_end(fs_info, right);
3920 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3921 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3922 BTRFS_LEAF_DATA_OFFSET +
3923 leaf_data_end(fs_info, right), push_space);
3924
3925 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926 btrfs_item_nr_offset(push_items),
3927 (btrfs_header_nritems(right) - push_items) *
3928 sizeof(struct btrfs_item));
3929 }
3930 right_nritems -= push_items;
3931 btrfs_set_header_nritems(right, right_nritems);
3932 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3933 for (i = 0; i < right_nritems; i++) {
3934 item = btrfs_item_nr(i);
3935
3936 push_space = push_space - btrfs_token_item_size(right,
3937 item, &token);
3938 btrfs_set_token_item_offset(right, item, push_space, &token);
3939 }
3940
3941 btrfs_mark_buffer_dirty(left);
3942 if (right_nritems)
3943 btrfs_mark_buffer_dirty(right);
3944 else
3945 clean_tree_block(fs_info, right);
3946
3947 btrfs_item_key(right, &disk_key, 0);
3948 fixup_low_keys(fs_info, path, &disk_key, 1);
3949
3950 /* then fixup the leaf pointer in the path */
3951 if (path->slots[0] < push_items) {
3952 path->slots[0] += old_left_nritems;
3953 btrfs_tree_unlock(path->nodes[0]);
3954 free_extent_buffer(path->nodes[0]);
3955 path->nodes[0] = left;
3956 path->slots[1] -= 1;
3957 } else {
3958 btrfs_tree_unlock(left);
3959 free_extent_buffer(left);
3960 path->slots[0] -= push_items;
3961 }
3962 BUG_ON(path->slots[0] < 0);
3963 return ret;
3964 out:
3965 btrfs_tree_unlock(left);
3966 free_extent_buffer(left);
3967 return ret;
3968 }
3969
3970 /*
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3973 *
3974 * max_slot can put a limit on how far into the leaf we'll push items. The
3975 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3976 * items
3977 */
3978 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979 *root, struct btrfs_path *path, int min_data_size,
3980 int data_size, int empty, u32 max_slot)
3981 {
3982 struct btrfs_fs_info *fs_info = root->fs_info;
3983 struct extent_buffer *right = path->nodes[0];
3984 struct extent_buffer *left;
3985 int slot;
3986 int free_space;
3987 u32 right_nritems;
3988 int ret = 0;
3989
3990 slot = path->slots[1];
3991 if (slot == 0)
3992 return 1;
3993 if (!path->nodes[1])
3994 return 1;
3995
3996 right_nritems = btrfs_header_nritems(right);
3997 if (right_nritems == 0)
3998 return 1;
3999
4000 btrfs_assert_tree_locked(path->nodes[1]);
4001
4002 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4003 /*
4004 * slot - 1 is not valid or we fail to read the left node,
4005 * no big deal, just return.
4006 */
4007 if (IS_ERR(left))
4008 return 1;
4009
4010 btrfs_tree_lock(left);
4011 btrfs_set_lock_blocking(left);
4012
4013 free_space = btrfs_leaf_free_space(fs_info, left);
4014 if (free_space < data_size) {
4015 ret = 1;
4016 goto out;
4017 }
4018
4019 /* cow and double check */
4020 ret = btrfs_cow_block(trans, root, left,
4021 path->nodes[1], slot - 1, &left);
4022 if (ret) {
4023 /* we hit -ENOSPC, but it isn't fatal here */
4024 if (ret == -ENOSPC)
4025 ret = 1;
4026 goto out;
4027 }
4028
4029 free_space = btrfs_leaf_free_space(fs_info, left);
4030 if (free_space < data_size) {
4031 ret = 1;
4032 goto out;
4033 }
4034
4035 return __push_leaf_left(fs_info, path, min_data_size,
4036 empty, left, free_space, right_nritems,
4037 max_slot);
4038 out:
4039 btrfs_tree_unlock(left);
4040 free_extent_buffer(left);
4041 return ret;
4042 }
4043
4044 /*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4047 */
4048 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049 struct btrfs_fs_info *fs_info,
4050 struct btrfs_path *path,
4051 struct extent_buffer *l,
4052 struct extent_buffer *right,
4053 int slot, int mid, int nritems)
4054 {
4055 int data_copy_size;
4056 int rt_data_off;
4057 int i;
4058 struct btrfs_disk_key disk_key;
4059 struct btrfs_map_token token;
4060
4061 btrfs_init_map_token(&token);
4062
4063 nritems = nritems - mid;
4064 btrfs_set_header_nritems(right, nritems);
4065 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4066
4067 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4068 btrfs_item_nr_offset(mid),
4069 nritems * sizeof(struct btrfs_item));
4070
4071 copy_extent_buffer(right, l,
4072 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4073 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4074 leaf_data_end(fs_info, l), data_copy_size);
4075
4076 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4077
4078 for (i = 0; i < nritems; i++) {
4079 struct btrfs_item *item = btrfs_item_nr(i);
4080 u32 ioff;
4081
4082 ioff = btrfs_token_item_offset(right, item, &token);
4083 btrfs_set_token_item_offset(right, item,
4084 ioff + rt_data_off, &token);
4085 }
4086
4087 btrfs_set_header_nritems(l, mid);
4088 btrfs_item_key(right, &disk_key, 0);
4089 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4090 path->slots[1] + 1, 1);
4091
4092 btrfs_mark_buffer_dirty(right);
4093 btrfs_mark_buffer_dirty(l);
4094 BUG_ON(path->slots[0] != slot);
4095
4096 if (mid <= slot) {
4097 btrfs_tree_unlock(path->nodes[0]);
4098 free_extent_buffer(path->nodes[0]);
4099 path->nodes[0] = right;
4100 path->slots[0] -= mid;
4101 path->slots[1] += 1;
4102 } else {
4103 btrfs_tree_unlock(right);
4104 free_extent_buffer(right);
4105 }
4106
4107 BUG_ON(path->slots[0] < 0);
4108 }
4109
4110 /*
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114 * A B C
4115 *
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves. If all goes well we can avoid the double split
4118 * completely.
4119 */
4120 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121 struct btrfs_root *root,
4122 struct btrfs_path *path,
4123 int data_size)
4124 {
4125 struct btrfs_fs_info *fs_info = root->fs_info;
4126 int ret;
4127 int progress = 0;
4128 int slot;
4129 u32 nritems;
4130 int space_needed = data_size;
4131
4132 slot = path->slots[0];
4133 if (slot < btrfs_header_nritems(path->nodes[0]))
4134 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4135
4136 /*
4137 * try to push all the items after our slot into the
4138 * right leaf
4139 */
4140 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4141 if (ret < 0)
4142 return ret;
4143
4144 if (ret == 0)
4145 progress++;
4146
4147 nritems = btrfs_header_nritems(path->nodes[0]);
4148 /*
4149 * our goal is to get our slot at the start or end of a leaf. If
4150 * we've done so we're done
4151 */
4152 if (path->slots[0] == 0 || path->slots[0] == nritems)
4153 return 0;
4154
4155 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4156 return 0;
4157
4158 /* try to push all the items before our slot into the next leaf */
4159 slot = path->slots[0];
4160 space_needed = data_size;
4161 if (slot > 0)
4162 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4163 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164 if (ret < 0)
4165 return ret;
4166
4167 if (ret == 0)
4168 progress++;
4169
4170 if (progress)
4171 return 0;
4172 return 1;
4173 }
4174
4175 /*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root,
4183 const struct btrfs_key *ins_key,
4184 struct btrfs_path *path, int data_size,
4185 int extend)
4186 {
4187 struct btrfs_disk_key disk_key;
4188 struct extent_buffer *l;
4189 u32 nritems;
4190 int mid;
4191 int slot;
4192 struct extent_buffer *right;
4193 struct btrfs_fs_info *fs_info = root->fs_info;
4194 int ret = 0;
4195 int wret;
4196 int split;
4197 int num_doubles = 0;
4198 int tried_avoid_double = 0;
4199
4200 l = path->nodes[0];
4201 slot = path->slots[0];
4202 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204 return -EOVERFLOW;
4205
4206 /* first try to make some room by pushing left and right */
4207 if (data_size && path->nodes[1]) {
4208 int space_needed = data_size;
4209
4210 if (slot < btrfs_header_nritems(l))
4211 space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213 wret = push_leaf_right(trans, root, path, space_needed,
4214 space_needed, 0, 0);
4215 if (wret < 0)
4216 return wret;
4217 if (wret) {
4218 space_needed = data_size;
4219 if (slot > 0)
4220 space_needed -= btrfs_leaf_free_space(fs_info,
4221 l);
4222 wret = push_leaf_left(trans, root, path, space_needed,
4223 space_needed, 0, (u32)-1);
4224 if (wret < 0)
4225 return wret;
4226 }
4227 l = path->nodes[0];
4228
4229 /* did the pushes work? */
4230 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4231 return 0;
4232 }
4233
4234 if (!path->nodes[1]) {
4235 ret = insert_new_root(trans, root, path, 1);
4236 if (ret)
4237 return ret;
4238 }
4239 again:
4240 split = 1;
4241 l = path->nodes[0];
4242 slot = path->slots[0];
4243 nritems = btrfs_header_nritems(l);
4244 mid = (nritems + 1) / 2;
4245
4246 if (mid <= slot) {
4247 if (nritems == 1 ||
4248 leaf_space_used(l, mid, nritems - mid) + data_size >
4249 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250 if (slot >= nritems) {
4251 split = 0;
4252 } else {
4253 mid = slot;
4254 if (mid != nritems &&
4255 leaf_space_used(l, mid, nritems - mid) +
4256 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4257 if (data_size && !tried_avoid_double)
4258 goto push_for_double;
4259 split = 2;
4260 }
4261 }
4262 }
4263 } else {
4264 if (leaf_space_used(l, 0, mid) + data_size >
4265 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4266 if (!extend && data_size && slot == 0) {
4267 split = 0;
4268 } else if ((extend || !data_size) && slot == 0) {
4269 mid = 1;
4270 } else {
4271 mid = slot;
4272 if (mid != nritems &&
4273 leaf_space_used(l, mid, nritems - mid) +
4274 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275 if (data_size && !tried_avoid_double)
4276 goto push_for_double;
4277 split = 2;
4278 }
4279 }
4280 }
4281 }
4282
4283 if (split == 0)
4284 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285 else
4286 btrfs_item_key(l, &disk_key, mid);
4287
4288 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289 &disk_key, 0, l->start, 0);
4290 if (IS_ERR(right))
4291 return PTR_ERR(right);
4292
4293 root_add_used(root, fs_info->nodesize);
4294
4295 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4296 btrfs_set_header_bytenr(right, right->start);
4297 btrfs_set_header_generation(right, trans->transid);
4298 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299 btrfs_set_header_owner(right, root->root_key.objectid);
4300 btrfs_set_header_level(right, 0);
4301 write_extent_buffer_fsid(right, fs_info->fsid);
4302 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4303
4304 if (split == 0) {
4305 if (mid <= slot) {
4306 btrfs_set_header_nritems(right, 0);
4307 insert_ptr(trans, fs_info, path, &disk_key,
4308 right->start, path->slots[1] + 1, 1);
4309 btrfs_tree_unlock(path->nodes[0]);
4310 free_extent_buffer(path->nodes[0]);
4311 path->nodes[0] = right;
4312 path->slots[0] = 0;
4313 path->slots[1] += 1;
4314 } else {
4315 btrfs_set_header_nritems(right, 0);
4316 insert_ptr(trans, fs_info, path, &disk_key,
4317 right->start, path->slots[1], 1);
4318 btrfs_tree_unlock(path->nodes[0]);
4319 free_extent_buffer(path->nodes[0]);
4320 path->nodes[0] = right;
4321 path->slots[0] = 0;
4322 if (path->slots[1] == 0)
4323 fixup_low_keys(fs_info, path, &disk_key, 1);
4324 }
4325 /*
4326 * We create a new leaf 'right' for the required ins_len and
4327 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328 * the content of ins_len to 'right'.
4329 */
4330 return ret;
4331 }
4332
4333 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4334
4335 if (split == 2) {
4336 BUG_ON(num_doubles != 0);
4337 num_doubles++;
4338 goto again;
4339 }
4340
4341 return 0;
4342
4343 push_for_double:
4344 push_for_double_split(trans, root, path, data_size);
4345 tried_avoid_double = 1;
4346 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4347 return 0;
4348 goto again;
4349 }
4350
4351 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352 struct btrfs_root *root,
4353 struct btrfs_path *path, int ins_len)
4354 {
4355 struct btrfs_fs_info *fs_info = root->fs_info;
4356 struct btrfs_key key;
4357 struct extent_buffer *leaf;
4358 struct btrfs_file_extent_item *fi;
4359 u64 extent_len = 0;
4360 u32 item_size;
4361 int ret;
4362
4363 leaf = path->nodes[0];
4364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4365
4366 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4367 key.type != BTRFS_EXTENT_CSUM_KEY);
4368
4369 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4370 return 0;
4371
4372 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4373 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374 fi = btrfs_item_ptr(leaf, path->slots[0],
4375 struct btrfs_file_extent_item);
4376 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4377 }
4378 btrfs_release_path(path);
4379
4380 path->keep_locks = 1;
4381 path->search_for_split = 1;
4382 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4383 path->search_for_split = 0;
4384 if (ret > 0)
4385 ret = -EAGAIN;
4386 if (ret < 0)
4387 goto err;
4388
4389 ret = -EAGAIN;
4390 leaf = path->nodes[0];
4391 /* if our item isn't there, return now */
4392 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4393 goto err;
4394
4395 /* the leaf has changed, it now has room. return now */
4396 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4397 goto err;
4398
4399 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4400 fi = btrfs_item_ptr(leaf, path->slots[0],
4401 struct btrfs_file_extent_item);
4402 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4403 goto err;
4404 }
4405
4406 btrfs_set_path_blocking(path);
4407 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4408 if (ret)
4409 goto err;
4410
4411 path->keep_locks = 0;
4412 btrfs_unlock_up_safe(path, 1);
4413 return 0;
4414 err:
4415 path->keep_locks = 0;
4416 return ret;
4417 }
4418
4419 static noinline int split_item(struct btrfs_fs_info *fs_info,
4420 struct btrfs_path *path,
4421 const struct btrfs_key *new_key,
4422 unsigned long split_offset)
4423 {
4424 struct extent_buffer *leaf;
4425 struct btrfs_item *item;
4426 struct btrfs_item *new_item;
4427 int slot;
4428 char *buf;
4429 u32 nritems;
4430 u32 item_size;
4431 u32 orig_offset;
4432 struct btrfs_disk_key disk_key;
4433
4434 leaf = path->nodes[0];
4435 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4436
4437 btrfs_set_path_blocking(path);
4438
4439 item = btrfs_item_nr(path->slots[0]);
4440 orig_offset = btrfs_item_offset(leaf, item);
4441 item_size = btrfs_item_size(leaf, item);
4442
4443 buf = kmalloc(item_size, GFP_NOFS);
4444 if (!buf)
4445 return -ENOMEM;
4446
4447 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448 path->slots[0]), item_size);
4449
4450 slot = path->slots[0] + 1;
4451 nritems = btrfs_header_nritems(leaf);
4452 if (slot != nritems) {
4453 /* shift the items */
4454 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4455 btrfs_item_nr_offset(slot),
4456 (nritems - slot) * sizeof(struct btrfs_item));
4457 }
4458
4459 btrfs_cpu_key_to_disk(&disk_key, new_key);
4460 btrfs_set_item_key(leaf, &disk_key, slot);
4461
4462 new_item = btrfs_item_nr(slot);
4463
4464 btrfs_set_item_offset(leaf, new_item, orig_offset);
4465 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466
4467 btrfs_set_item_offset(leaf, item,
4468 orig_offset + item_size - split_offset);
4469 btrfs_set_item_size(leaf, item, split_offset);
4470
4471 btrfs_set_header_nritems(leaf, nritems + 1);
4472
4473 /* write the data for the start of the original item */
4474 write_extent_buffer(leaf, buf,
4475 btrfs_item_ptr_offset(leaf, path->slots[0]),
4476 split_offset);
4477
4478 /* write the data for the new item */
4479 write_extent_buffer(leaf, buf + split_offset,
4480 btrfs_item_ptr_offset(leaf, slot),
4481 item_size - split_offset);
4482 btrfs_mark_buffer_dirty(leaf);
4483
4484 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4485 kfree(buf);
4486 return 0;
4487 }
4488
4489 /*
4490 * This function splits a single item into two items,
4491 * giving 'new_key' to the new item and splitting the
4492 * old one at split_offset (from the start of the item).
4493 *
4494 * The path may be released by this operation. After
4495 * the split, the path is pointing to the old item. The
4496 * new item is going to be in the same node as the old one.
4497 *
4498 * Note, the item being split must be smaller enough to live alone on
4499 * a tree block with room for one extra struct btrfs_item
4500 *
4501 * This allows us to split the item in place, keeping a lock on the
4502 * leaf the entire time.
4503 */
4504 int btrfs_split_item(struct btrfs_trans_handle *trans,
4505 struct btrfs_root *root,
4506 struct btrfs_path *path,
4507 const struct btrfs_key *new_key,
4508 unsigned long split_offset)
4509 {
4510 int ret;
4511 ret = setup_leaf_for_split(trans, root, path,
4512 sizeof(struct btrfs_item));
4513 if (ret)
4514 return ret;
4515
4516 ret = split_item(root->fs_info, path, new_key, split_offset);
4517 return ret;
4518 }
4519
4520 /*
4521 * This function duplicate a item, giving 'new_key' to the new item.
4522 * It guarantees both items live in the same tree leaf and the new item
4523 * is contiguous with the original item.
4524 *
4525 * This allows us to split file extent in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529 struct btrfs_root *root,
4530 struct btrfs_path *path,
4531 const struct btrfs_key *new_key)
4532 {
4533 struct extent_buffer *leaf;
4534 int ret;
4535 u32 item_size;
4536
4537 leaf = path->nodes[0];
4538 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539 ret = setup_leaf_for_split(trans, root, path,
4540 item_size + sizeof(struct btrfs_item));
4541 if (ret)
4542 return ret;
4543
4544 path->slots[0]++;
4545 setup_items_for_insert(root, path, new_key, &item_size,
4546 item_size, item_size +
4547 sizeof(struct btrfs_item), 1);
4548 leaf = path->nodes[0];
4549 memcpy_extent_buffer(leaf,
4550 btrfs_item_ptr_offset(leaf, path->slots[0]),
4551 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552 item_size);
4553 return 0;
4554 }
4555
4556 /*
4557 * make the item pointed to by the path smaller. new_size indicates
4558 * how small to make it, and from_end tells us if we just chop bytes
4559 * off the end of the item or if we shift the item to chop bytes off
4560 * the front.
4561 */
4562 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4563 struct btrfs_path *path, u32 new_size, int from_end)
4564 {
4565 int slot;
4566 struct extent_buffer *leaf;
4567 struct btrfs_item *item;
4568 u32 nritems;
4569 unsigned int data_end;
4570 unsigned int old_data_start;
4571 unsigned int old_size;
4572 unsigned int size_diff;
4573 int i;
4574 struct btrfs_map_token token;
4575
4576 btrfs_init_map_token(&token);
4577
4578 leaf = path->nodes[0];
4579 slot = path->slots[0];
4580
4581 old_size = btrfs_item_size_nr(leaf, slot);
4582 if (old_size == new_size)
4583 return;
4584
4585 nritems = btrfs_header_nritems(leaf);
4586 data_end = leaf_data_end(fs_info, leaf);
4587
4588 old_data_start = btrfs_item_offset_nr(leaf, slot);
4589
4590 size_diff = old_size - new_size;
4591
4592 BUG_ON(slot < 0);
4593 BUG_ON(slot >= nritems);
4594
4595 /*
4596 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597 */
4598 /* first correct the data pointers */
4599 for (i = slot; i < nritems; i++) {
4600 u32 ioff;
4601 item = btrfs_item_nr(i);
4602
4603 ioff = btrfs_token_item_offset(leaf, item, &token);
4604 btrfs_set_token_item_offset(leaf, item,
4605 ioff + size_diff, &token);
4606 }
4607
4608 /* shift the data */
4609 if (from_end) {
4610 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 data_end, old_data_start + new_size - data_end);
4613 } else {
4614 struct btrfs_disk_key disk_key;
4615 u64 offset;
4616
4617 btrfs_item_key(leaf, &disk_key, slot);
4618
4619 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620 unsigned long ptr;
4621 struct btrfs_file_extent_item *fi;
4622
4623 fi = btrfs_item_ptr(leaf, slot,
4624 struct btrfs_file_extent_item);
4625 fi = (struct btrfs_file_extent_item *)(
4626 (unsigned long)fi - size_diff);
4627
4628 if (btrfs_file_extent_type(leaf, fi) ==
4629 BTRFS_FILE_EXTENT_INLINE) {
4630 ptr = btrfs_item_ptr_offset(leaf, slot);
4631 memmove_extent_buffer(leaf, ptr,
4632 (unsigned long)fi,
4633 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634 }
4635 }
4636
4637 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4638 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4639 data_end, old_data_start - data_end);
4640
4641 offset = btrfs_disk_key_offset(&disk_key);
4642 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643 btrfs_set_item_key(leaf, &disk_key, slot);
4644 if (slot == 0)
4645 fixup_low_keys(fs_info, path, &disk_key, 1);
4646 }
4647
4648 item = btrfs_item_nr(slot);
4649 btrfs_set_item_size(leaf, item, new_size);
4650 btrfs_mark_buffer_dirty(leaf);
4651
4652 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4653 btrfs_print_leaf(fs_info, leaf);
4654 BUG();
4655 }
4656 }
4657
4658 /*
4659 * make the item pointed to by the path bigger, data_size is the added size.
4660 */
4661 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4662 u32 data_size)
4663 {
4664 int slot;
4665 struct extent_buffer *leaf;
4666 struct btrfs_item *item;
4667 u32 nritems;
4668 unsigned int data_end;
4669 unsigned int old_data;
4670 unsigned int old_size;
4671 int i;
4672 struct btrfs_map_token token;
4673
4674 btrfs_init_map_token(&token);
4675
4676 leaf = path->nodes[0];
4677
4678 nritems = btrfs_header_nritems(leaf);
4679 data_end = leaf_data_end(fs_info, leaf);
4680
4681 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4682 btrfs_print_leaf(fs_info, leaf);
4683 BUG();
4684 }
4685 slot = path->slots[0];
4686 old_data = btrfs_item_end_nr(leaf, slot);
4687
4688 BUG_ON(slot < 0);
4689 if (slot >= nritems) {
4690 btrfs_print_leaf(fs_info, leaf);
4691 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4692 slot, nritems);
4693 BUG_ON(1);
4694 }
4695
4696 /*
4697 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698 */
4699 /* first correct the data pointers */
4700 for (i = slot; i < nritems; i++) {
4701 u32 ioff;
4702 item = btrfs_item_nr(i);
4703
4704 ioff = btrfs_token_item_offset(leaf, item, &token);
4705 btrfs_set_token_item_offset(leaf, item,
4706 ioff - data_size, &token);
4707 }
4708
4709 /* shift the data */
4710 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712 data_end, old_data - data_end);
4713
4714 data_end = old_data;
4715 old_size = btrfs_item_size_nr(leaf, slot);
4716 item = btrfs_item_nr(slot);
4717 btrfs_set_item_size(leaf, item, old_size + data_size);
4718 btrfs_mark_buffer_dirty(leaf);
4719
4720 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4721 btrfs_print_leaf(fs_info, leaf);
4722 BUG();
4723 }
4724 }
4725
4726 /*
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4730 */
4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732 const struct btrfs_key *cpu_key, u32 *data_size,
4733 u32 total_data, u32 total_size, int nr)
4734 {
4735 struct btrfs_fs_info *fs_info = root->fs_info;
4736 struct btrfs_item *item;
4737 int i;
4738 u32 nritems;
4739 unsigned int data_end;
4740 struct btrfs_disk_key disk_key;
4741 struct extent_buffer *leaf;
4742 int slot;
4743 struct btrfs_map_token token;
4744
4745 if (path->slots[0] == 0) {
4746 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747 fixup_low_keys(fs_info, path, &disk_key, 1);
4748 }
4749 btrfs_unlock_up_safe(path, 1);
4750
4751 btrfs_init_map_token(&token);
4752
4753 leaf = path->nodes[0];
4754 slot = path->slots[0];
4755
4756 nritems = btrfs_header_nritems(leaf);
4757 data_end = leaf_data_end(fs_info, leaf);
4758
4759 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4760 btrfs_print_leaf(fs_info, leaf);
4761 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762 total_size, btrfs_leaf_free_space(fs_info, leaf));
4763 BUG();
4764 }
4765
4766 if (slot != nritems) {
4767 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768
4769 if (old_data < data_end) {
4770 btrfs_print_leaf(fs_info, leaf);
4771 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772 slot, old_data, data_end);
4773 BUG_ON(1);
4774 }
4775 /*
4776 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777 */
4778 /* first correct the data pointers */
4779 for (i = slot; i < nritems; i++) {
4780 u32 ioff;
4781
4782 item = btrfs_item_nr(i);
4783 ioff = btrfs_token_item_offset(leaf, item, &token);
4784 btrfs_set_token_item_offset(leaf, item,
4785 ioff - total_data, &token);
4786 }
4787 /* shift the items */
4788 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789 btrfs_item_nr_offset(slot),
4790 (nritems - slot) * sizeof(struct btrfs_item));
4791
4792 /* shift the data */
4793 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795 data_end, old_data - data_end);
4796 data_end = old_data;
4797 }
4798
4799 /* setup the item for the new data */
4800 for (i = 0; i < nr; i++) {
4801 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802 btrfs_set_item_key(leaf, &disk_key, slot + i);
4803 item = btrfs_item_nr(slot + i);
4804 btrfs_set_token_item_offset(leaf, item,
4805 data_end - data_size[i], &token);
4806 data_end -= data_size[i];
4807 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808 }
4809
4810 btrfs_set_header_nritems(leaf, nritems + nr);
4811 btrfs_mark_buffer_dirty(leaf);
4812
4813 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4814 btrfs_print_leaf(fs_info, leaf);
4815 BUG();
4816 }
4817 }
4818
4819 /*
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
4823 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824 struct btrfs_root *root,
4825 struct btrfs_path *path,
4826 const struct btrfs_key *cpu_key, u32 *data_size,
4827 int nr)
4828 {
4829 int ret = 0;
4830 int slot;
4831 int i;
4832 u32 total_size = 0;
4833 u32 total_data = 0;
4834
4835 for (i = 0; i < nr; i++)
4836 total_data += data_size[i];
4837
4838 total_size = total_data + (nr * sizeof(struct btrfs_item));
4839 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840 if (ret == 0)
4841 return -EEXIST;
4842 if (ret < 0)
4843 return ret;
4844
4845 slot = path->slots[0];
4846 BUG_ON(slot < 0);
4847
4848 setup_items_for_insert(root, path, cpu_key, data_size,
4849 total_data, total_size, nr);
4850 return 0;
4851 }
4852
4853 /*
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4856 */
4857 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858 const struct btrfs_key *cpu_key, void *data,
4859 u32 data_size)
4860 {
4861 int ret = 0;
4862 struct btrfs_path *path;
4863 struct extent_buffer *leaf;
4864 unsigned long ptr;
4865
4866 path = btrfs_alloc_path();
4867 if (!path)
4868 return -ENOMEM;
4869 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870 if (!ret) {
4871 leaf = path->nodes[0];
4872 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873 write_extent_buffer(leaf, data, ptr, data_size);
4874 btrfs_mark_buffer_dirty(leaf);
4875 }
4876 btrfs_free_path(path);
4877 return ret;
4878 }
4879
4880 /*
4881 * delete the pointer from a given node.
4882 *
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
4885 */
4886 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887 int level, int slot)
4888 {
4889 struct btrfs_fs_info *fs_info = root->fs_info;
4890 struct extent_buffer *parent = path->nodes[level];
4891 u32 nritems;
4892 int ret;
4893
4894 nritems = btrfs_header_nritems(parent);
4895 if (slot != nritems - 1) {
4896 if (level)
4897 tree_mod_log_eb_move(fs_info, parent, slot,
4898 slot + 1, nritems - slot - 1);
4899 memmove_extent_buffer(parent,
4900 btrfs_node_key_ptr_offset(slot),
4901 btrfs_node_key_ptr_offset(slot + 1),
4902 sizeof(struct btrfs_key_ptr) *
4903 (nritems - slot - 1));
4904 } else if (level) {
4905 ret = tree_mod_log_insert_key(fs_info, parent, slot,
4906 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4907 BUG_ON(ret < 0);
4908 }
4909
4910 nritems--;
4911 btrfs_set_header_nritems(parent, nritems);
4912 if (nritems == 0 && parent == root->node) {
4913 BUG_ON(btrfs_header_level(root->node) != 1);
4914 /* just turn the root into a leaf and break */
4915 btrfs_set_header_level(root->node, 0);
4916 } else if (slot == 0) {
4917 struct btrfs_disk_key disk_key;
4918
4919 btrfs_node_key(parent, &disk_key, 0);
4920 fixup_low_keys(fs_info, path, &disk_key, level + 1);
4921 }
4922 btrfs_mark_buffer_dirty(parent);
4923 }
4924
4925 /*
4926 * a helper function to delete the leaf pointed to by path->slots[1] and
4927 * path->nodes[1].
4928 *
4929 * This deletes the pointer in path->nodes[1] and frees the leaf
4930 * block extent. zero is returned if it all worked out, < 0 otherwise.
4931 *
4932 * The path must have already been setup for deleting the leaf, including
4933 * all the proper balancing. path->nodes[1] must be locked.
4934 */
4935 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4936 struct btrfs_root *root,
4937 struct btrfs_path *path,
4938 struct extent_buffer *leaf)
4939 {
4940 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4941 del_ptr(root, path, 1, path->slots[1]);
4942
4943 /*
4944 * btrfs_free_extent is expensive, we want to make sure we
4945 * aren't holding any locks when we call it
4946 */
4947 btrfs_unlock_up_safe(path, 0);
4948
4949 root_sub_used(root, leaf->len);
4950
4951 extent_buffer_get(leaf);
4952 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4953 free_extent_buffer_stale(leaf);
4954 }
4955 /*
4956 * delete the item at the leaf level in path. If that empties
4957 * the leaf, remove it from the tree
4958 */
4959 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4960 struct btrfs_path *path, int slot, int nr)
4961 {
4962 struct btrfs_fs_info *fs_info = root->fs_info;
4963 struct extent_buffer *leaf;
4964 struct btrfs_item *item;
4965 u32 last_off;
4966 u32 dsize = 0;
4967 int ret = 0;
4968 int wret;
4969 int i;
4970 u32 nritems;
4971 struct btrfs_map_token token;
4972
4973 btrfs_init_map_token(&token);
4974
4975 leaf = path->nodes[0];
4976 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4977
4978 for (i = 0; i < nr; i++)
4979 dsize += btrfs_item_size_nr(leaf, slot + i);
4980
4981 nritems = btrfs_header_nritems(leaf);
4982
4983 if (slot + nr != nritems) {
4984 int data_end = leaf_data_end(fs_info, leaf);
4985
4986 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4987 data_end + dsize,
4988 BTRFS_LEAF_DATA_OFFSET + data_end,
4989 last_off - data_end);
4990
4991 for (i = slot + nr; i < nritems; i++) {
4992 u32 ioff;
4993
4994 item = btrfs_item_nr(i);
4995 ioff = btrfs_token_item_offset(leaf, item, &token);
4996 btrfs_set_token_item_offset(leaf, item,
4997 ioff + dsize, &token);
4998 }
4999
5000 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5001 btrfs_item_nr_offset(slot + nr),
5002 sizeof(struct btrfs_item) *
5003 (nritems - slot - nr));
5004 }
5005 btrfs_set_header_nritems(leaf, nritems - nr);
5006 nritems -= nr;
5007
5008 /* delete the leaf if we've emptied it */
5009 if (nritems == 0) {
5010 if (leaf == root->node) {
5011 btrfs_set_header_level(leaf, 0);
5012 } else {
5013 btrfs_set_path_blocking(path);
5014 clean_tree_block(fs_info, leaf);
5015 btrfs_del_leaf(trans, root, path, leaf);
5016 }
5017 } else {
5018 int used = leaf_space_used(leaf, 0, nritems);
5019 if (slot == 0) {
5020 struct btrfs_disk_key disk_key;
5021
5022 btrfs_item_key(leaf, &disk_key, 0);
5023 fixup_low_keys(fs_info, path, &disk_key, 1);
5024 }
5025
5026 /* delete the leaf if it is mostly empty */
5027 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5028 /* push_leaf_left fixes the path.
5029 * make sure the path still points to our leaf
5030 * for possible call to del_ptr below
5031 */
5032 slot = path->slots[1];
5033 extent_buffer_get(leaf);
5034
5035 btrfs_set_path_blocking(path);
5036 wret = push_leaf_left(trans, root, path, 1, 1,
5037 1, (u32)-1);
5038 if (wret < 0 && wret != -ENOSPC)
5039 ret = wret;
5040
5041 if (path->nodes[0] == leaf &&
5042 btrfs_header_nritems(leaf)) {
5043 wret = push_leaf_right(trans, root, path, 1,
5044 1, 1, 0);
5045 if (wret < 0 && wret != -ENOSPC)
5046 ret = wret;
5047 }
5048
5049 if (btrfs_header_nritems(leaf) == 0) {
5050 path->slots[1] = slot;
5051 btrfs_del_leaf(trans, root, path, leaf);
5052 free_extent_buffer(leaf);
5053 ret = 0;
5054 } else {
5055 /* if we're still in the path, make sure
5056 * we're dirty. Otherwise, one of the
5057 * push_leaf functions must have already
5058 * dirtied this buffer
5059 */
5060 if (path->nodes[0] == leaf)
5061 btrfs_mark_buffer_dirty(leaf);
5062 free_extent_buffer(leaf);
5063 }
5064 } else {
5065 btrfs_mark_buffer_dirty(leaf);
5066 }
5067 }
5068 return ret;
5069 }
5070
5071 /*
5072 * search the tree again to find a leaf with lesser keys
5073 * returns 0 if it found something or 1 if there are no lesser leaves.
5074 * returns < 0 on io errors.
5075 *
5076 * This may release the path, and so you may lose any locks held at the
5077 * time you call it.
5078 */
5079 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5080 {
5081 struct btrfs_key key;
5082 struct btrfs_disk_key found_key;
5083 int ret;
5084
5085 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5086
5087 if (key.offset > 0) {
5088 key.offset--;
5089 } else if (key.type > 0) {
5090 key.type--;
5091 key.offset = (u64)-1;
5092 } else if (key.objectid > 0) {
5093 key.objectid--;
5094 key.type = (u8)-1;
5095 key.offset = (u64)-1;
5096 } else {
5097 return 1;
5098 }
5099
5100 btrfs_release_path(path);
5101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5102 if (ret < 0)
5103 return ret;
5104 btrfs_item_key(path->nodes[0], &found_key, 0);
5105 ret = comp_keys(&found_key, &key);
5106 /*
5107 * We might have had an item with the previous key in the tree right
5108 * before we released our path. And after we released our path, that
5109 * item might have been pushed to the first slot (0) of the leaf we
5110 * were holding due to a tree balance. Alternatively, an item with the
5111 * previous key can exist as the only element of a leaf (big fat item).
5112 * Therefore account for these 2 cases, so that our callers (like
5113 * btrfs_previous_item) don't miss an existing item with a key matching
5114 * the previous key we computed above.
5115 */
5116 if (ret <= 0)
5117 return 0;
5118 return 1;
5119 }
5120
5121 /*
5122 * A helper function to walk down the tree starting at min_key, and looking
5123 * for nodes or leaves that are have a minimum transaction id.
5124 * This is used by the btree defrag code, and tree logging
5125 *
5126 * This does not cow, but it does stuff the starting key it finds back
5127 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5128 * key and get a writable path.
5129 *
5130 * This does lock as it descends, and path->keep_locks should be set
5131 * to 1 by the caller.
5132 *
5133 * This honors path->lowest_level to prevent descent past a given level
5134 * of the tree.
5135 *
5136 * min_trans indicates the oldest transaction that you are interested
5137 * in walking through. Any nodes or leaves older than min_trans are
5138 * skipped over (without reading them).
5139 *
5140 * returns zero if something useful was found, < 0 on error and 1 if there
5141 * was nothing in the tree that matched the search criteria.
5142 */
5143 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5144 struct btrfs_path *path,
5145 u64 min_trans)
5146 {
5147 struct btrfs_fs_info *fs_info = root->fs_info;
5148 struct extent_buffer *cur;
5149 struct btrfs_key found_key;
5150 int slot;
5151 int sret;
5152 u32 nritems;
5153 int level;
5154 int ret = 1;
5155 int keep_locks = path->keep_locks;
5156
5157 path->keep_locks = 1;
5158 again:
5159 cur = btrfs_read_lock_root_node(root);
5160 level = btrfs_header_level(cur);
5161 WARN_ON(path->nodes[level]);
5162 path->nodes[level] = cur;
5163 path->locks[level] = BTRFS_READ_LOCK;
5164
5165 if (btrfs_header_generation(cur) < min_trans) {
5166 ret = 1;
5167 goto out;
5168 }
5169 while (1) {
5170 nritems = btrfs_header_nritems(cur);
5171 level = btrfs_header_level(cur);
5172 sret = bin_search(cur, min_key, level, &slot);
5173
5174 /* at the lowest level, we're done, setup the path and exit */
5175 if (level == path->lowest_level) {
5176 if (slot >= nritems)
5177 goto find_next_key;
5178 ret = 0;
5179 path->slots[level] = slot;
5180 btrfs_item_key_to_cpu(cur, &found_key, slot);
5181 goto out;
5182 }
5183 if (sret && slot > 0)
5184 slot--;
5185 /*
5186 * check this node pointer against the min_trans parameters.
5187 * If it is too old, old, skip to the next one.
5188 */
5189 while (slot < nritems) {
5190 u64 gen;
5191
5192 gen = btrfs_node_ptr_generation(cur, slot);
5193 if (gen < min_trans) {
5194 slot++;
5195 continue;
5196 }
5197 break;
5198 }
5199 find_next_key:
5200 /*
5201 * we didn't find a candidate key in this node, walk forward
5202 * and find another one
5203 */
5204 if (slot >= nritems) {
5205 path->slots[level] = slot;
5206 btrfs_set_path_blocking(path);
5207 sret = btrfs_find_next_key(root, path, min_key, level,
5208 min_trans);
5209 if (sret == 0) {
5210 btrfs_release_path(path);
5211 goto again;
5212 } else {
5213 goto out;
5214 }
5215 }
5216 /* save our key for returning back */
5217 btrfs_node_key_to_cpu(cur, &found_key, slot);
5218 path->slots[level] = slot;
5219 if (level == path->lowest_level) {
5220 ret = 0;
5221 goto out;
5222 }
5223 btrfs_set_path_blocking(path);
5224 cur = read_node_slot(fs_info, cur, slot);
5225 if (IS_ERR(cur)) {
5226 ret = PTR_ERR(cur);
5227 goto out;
5228 }
5229
5230 btrfs_tree_read_lock(cur);
5231
5232 path->locks[level - 1] = BTRFS_READ_LOCK;
5233 path->nodes[level - 1] = cur;
5234 unlock_up(path, level, 1, 0, NULL);
5235 btrfs_clear_path_blocking(path, NULL, 0);
5236 }
5237 out:
5238 path->keep_locks = keep_locks;
5239 if (ret == 0) {
5240 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241 btrfs_set_path_blocking(path);
5242 memcpy(min_key, &found_key, sizeof(found_key));
5243 }
5244 return ret;
5245 }
5246
5247 static int tree_move_down(struct btrfs_fs_info *fs_info,
5248 struct btrfs_path *path,
5249 int *level)
5250 {
5251 struct extent_buffer *eb;
5252
5253 BUG_ON(*level == 0);
5254 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5255 if (IS_ERR(eb))
5256 return PTR_ERR(eb);
5257
5258 path->nodes[*level - 1] = eb;
5259 path->slots[*level - 1] = 0;
5260 (*level)--;
5261 return 0;
5262 }
5263
5264 static int tree_move_next_or_upnext(struct btrfs_path *path,
5265 int *level, int root_level)
5266 {
5267 int ret = 0;
5268 int nritems;
5269 nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271 path->slots[*level]++;
5272
5273 while (path->slots[*level] >= nritems) {
5274 if (*level == root_level)
5275 return -1;
5276
5277 /* move upnext */
5278 path->slots[*level] = 0;
5279 free_extent_buffer(path->nodes[*level]);
5280 path->nodes[*level] = NULL;
5281 (*level)++;
5282 path->slots[*level]++;
5283
5284 nritems = btrfs_header_nritems(path->nodes[*level]);
5285 ret = 1;
5286 }
5287 return ret;
5288 }
5289
5290 /*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
5294 static int tree_advance(struct btrfs_fs_info *fs_info,
5295 struct btrfs_path *path,
5296 int *level, int root_level,
5297 int allow_down,
5298 struct btrfs_key *key)
5299 {
5300 int ret;
5301
5302 if (*level == 0 || !allow_down) {
5303 ret = tree_move_next_or_upnext(path, level, root_level);
5304 } else {
5305 ret = tree_move_down(fs_info, path, level);
5306 }
5307 if (ret >= 0) {
5308 if (*level == 0)
5309 btrfs_item_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5311 else
5312 btrfs_node_key_to_cpu(path->nodes[*level], key,
5313 path->slots[*level]);
5314 }
5315 return ret;
5316 }
5317
5318 static int tree_compare_item(struct btrfs_path *left_path,
5319 struct btrfs_path *right_path,
5320 char *tmp_buf)
5321 {
5322 int cmp;
5323 int len1, len2;
5324 unsigned long off1, off2;
5325
5326 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5327 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5328 if (len1 != len2)
5329 return 1;
5330
5331 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5332 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5333 right_path->slots[0]);
5334
5335 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5336
5337 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5338 if (cmp)
5339 return 1;
5340 return 0;
5341 }
5342
5343 #define ADVANCE 1
5344 #define ADVANCE_ONLY_NEXT -1
5345
5346 /*
5347 * This function compares two trees and calls the provided callback for
5348 * every changed/new/deleted item it finds.
5349 * If shared tree blocks are encountered, whole subtrees are skipped, making
5350 * the compare pretty fast on snapshotted subvolumes.
5351 *
5352 * This currently works on commit roots only. As commit roots are read only,
5353 * we don't do any locking. The commit roots are protected with transactions.
5354 * Transactions are ended and rejoined when a commit is tried in between.
5355 *
5356 * This function checks for modifications done to the trees while comparing.
5357 * If it detects a change, it aborts immediately.
5358 */
5359 int btrfs_compare_trees(struct btrfs_root *left_root,
5360 struct btrfs_root *right_root,
5361 btrfs_changed_cb_t changed_cb, void *ctx)
5362 {
5363 struct btrfs_fs_info *fs_info = left_root->fs_info;
5364 int ret;
5365 int cmp;
5366 struct btrfs_path *left_path = NULL;
5367 struct btrfs_path *right_path = NULL;
5368 struct btrfs_key left_key;
5369 struct btrfs_key right_key;
5370 char *tmp_buf = NULL;
5371 int left_root_level;
5372 int right_root_level;
5373 int left_level;
5374 int right_level;
5375 int left_end_reached;
5376 int right_end_reached;
5377 int advance_left;
5378 int advance_right;
5379 u64 left_blockptr;
5380 u64 right_blockptr;
5381 u64 left_gen;
5382 u64 right_gen;
5383
5384 left_path = btrfs_alloc_path();
5385 if (!left_path) {
5386 ret = -ENOMEM;
5387 goto out;
5388 }
5389 right_path = btrfs_alloc_path();
5390 if (!right_path) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394
5395 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5396 if (!tmp_buf) {
5397 ret = -ENOMEM;
5398 goto out;
5399 }
5400
5401 left_path->search_commit_root = 1;
5402 left_path->skip_locking = 1;
5403 right_path->search_commit_root = 1;
5404 right_path->skip_locking = 1;
5405
5406 /*
5407 * Strategy: Go to the first items of both trees. Then do
5408 *
5409 * If both trees are at level 0
5410 * Compare keys of current items
5411 * If left < right treat left item as new, advance left tree
5412 * and repeat
5413 * If left > right treat right item as deleted, advance right tree
5414 * and repeat
5415 * If left == right do deep compare of items, treat as changed if
5416 * needed, advance both trees and repeat
5417 * If both trees are at the same level but not at level 0
5418 * Compare keys of current nodes/leafs
5419 * If left < right advance left tree and repeat
5420 * If left > right advance right tree and repeat
5421 * If left == right compare blockptrs of the next nodes/leafs
5422 * If they match advance both trees but stay at the same level
5423 * and repeat
5424 * If they don't match advance both trees while allowing to go
5425 * deeper and repeat
5426 * If tree levels are different
5427 * Advance the tree that needs it and repeat
5428 *
5429 * Advancing a tree means:
5430 * If we are at level 0, try to go to the next slot. If that's not
5431 * possible, go one level up and repeat. Stop when we found a level
5432 * where we could go to the next slot. We may at this point be on a
5433 * node or a leaf.
5434 *
5435 * If we are not at level 0 and not on shared tree blocks, go one
5436 * level deeper.
5437 *
5438 * If we are not at level 0 and on shared tree blocks, go one slot to
5439 * the right if possible or go up and right.
5440 */
5441
5442 down_read(&fs_info->commit_root_sem);
5443 left_level = btrfs_header_level(left_root->commit_root);
5444 left_root_level = left_level;
5445 left_path->nodes[left_level] = left_root->commit_root;
5446 extent_buffer_get(left_path->nodes[left_level]);
5447
5448 right_level = btrfs_header_level(right_root->commit_root);
5449 right_root_level = right_level;
5450 right_path->nodes[right_level] = right_root->commit_root;
5451 extent_buffer_get(right_path->nodes[right_level]);
5452 up_read(&fs_info->commit_root_sem);
5453
5454 if (left_level == 0)
5455 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5456 &left_key, left_path->slots[left_level]);
5457 else
5458 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5459 &left_key, left_path->slots[left_level]);
5460 if (right_level == 0)
5461 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5462 &right_key, right_path->slots[right_level]);
5463 else
5464 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5465 &right_key, right_path->slots[right_level]);
5466
5467 left_end_reached = right_end_reached = 0;
5468 advance_left = advance_right = 0;
5469
5470 while (1) {
5471 if (advance_left && !left_end_reached) {
5472 ret = tree_advance(fs_info, left_path, &left_level,
5473 left_root_level,
5474 advance_left != ADVANCE_ONLY_NEXT,
5475 &left_key);
5476 if (ret == -1)
5477 left_end_reached = ADVANCE;
5478 else if (ret < 0)
5479 goto out;
5480 advance_left = 0;
5481 }
5482 if (advance_right && !right_end_reached) {
5483 ret = tree_advance(fs_info, right_path, &right_level,
5484 right_root_level,
5485 advance_right != ADVANCE_ONLY_NEXT,
5486 &right_key);
5487 if (ret == -1)
5488 right_end_reached = ADVANCE;
5489 else if (ret < 0)
5490 goto out;
5491 advance_right = 0;
5492 }
5493
5494 if (left_end_reached && right_end_reached) {
5495 ret = 0;
5496 goto out;
5497 } else if (left_end_reached) {
5498 if (right_level == 0) {
5499 ret = changed_cb(left_root, right_root,
5500 left_path, right_path,
5501 &right_key,
5502 BTRFS_COMPARE_TREE_DELETED,
5503 ctx);
5504 if (ret < 0)
5505 goto out;
5506 }
5507 advance_right = ADVANCE;
5508 continue;
5509 } else if (right_end_reached) {
5510 if (left_level == 0) {
5511 ret = changed_cb(left_root, right_root,
5512 left_path, right_path,
5513 &left_key,
5514 BTRFS_COMPARE_TREE_NEW,
5515 ctx);
5516 if (ret < 0)
5517 goto out;
5518 }
5519 advance_left = ADVANCE;
5520 continue;
5521 }
5522
5523 if (left_level == 0 && right_level == 0) {
5524 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5525 if (cmp < 0) {
5526 ret = changed_cb(left_root, right_root,
5527 left_path, right_path,
5528 &left_key,
5529 BTRFS_COMPARE_TREE_NEW,
5530 ctx);
5531 if (ret < 0)
5532 goto out;
5533 advance_left = ADVANCE;
5534 } else if (cmp > 0) {
5535 ret = changed_cb(left_root, right_root,
5536 left_path, right_path,
5537 &right_key,
5538 BTRFS_COMPARE_TREE_DELETED,
5539 ctx);
5540 if (ret < 0)
5541 goto out;
5542 advance_right = ADVANCE;
5543 } else {
5544 enum btrfs_compare_tree_result result;
5545
5546 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5547 ret = tree_compare_item(left_path, right_path,
5548 tmp_buf);
5549 if (ret)
5550 result = BTRFS_COMPARE_TREE_CHANGED;
5551 else
5552 result = BTRFS_COMPARE_TREE_SAME;
5553 ret = changed_cb(left_root, right_root,
5554 left_path, right_path,
5555 &left_key, result, ctx);
5556 if (ret < 0)
5557 goto out;
5558 advance_left = ADVANCE;
5559 advance_right = ADVANCE;
5560 }
5561 } else if (left_level == right_level) {
5562 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5563 if (cmp < 0) {
5564 advance_left = ADVANCE;
5565 } else if (cmp > 0) {
5566 advance_right = ADVANCE;
5567 } else {
5568 left_blockptr = btrfs_node_blockptr(
5569 left_path->nodes[left_level],
5570 left_path->slots[left_level]);
5571 right_blockptr = btrfs_node_blockptr(
5572 right_path->nodes[right_level],
5573 right_path->slots[right_level]);
5574 left_gen = btrfs_node_ptr_generation(
5575 left_path->nodes[left_level],
5576 left_path->slots[left_level]);
5577 right_gen = btrfs_node_ptr_generation(
5578 right_path->nodes[right_level],
5579 right_path->slots[right_level]);
5580 if (left_blockptr == right_blockptr &&
5581 left_gen == right_gen) {
5582 /*
5583 * As we're on a shared block, don't
5584 * allow to go deeper.
5585 */
5586 advance_left = ADVANCE_ONLY_NEXT;
5587 advance_right = ADVANCE_ONLY_NEXT;
5588 } else {
5589 advance_left = ADVANCE;
5590 advance_right = ADVANCE;
5591 }
5592 }
5593 } else if (left_level < right_level) {
5594 advance_right = ADVANCE;
5595 } else {
5596 advance_left = ADVANCE;
5597 }
5598 }
5599
5600 out:
5601 btrfs_free_path(left_path);
5602 btrfs_free_path(right_path);
5603 kvfree(tmp_buf);
5604 return ret;
5605 }
5606
5607 /*
5608 * this is similar to btrfs_next_leaf, but does not try to preserve
5609 * and fixup the path. It looks for and returns the next key in the
5610 * tree based on the current path and the min_trans parameters.
5611 *
5612 * 0 is returned if another key is found, < 0 if there are any errors
5613 * and 1 is returned if there are no higher keys in the tree
5614 *
5615 * path->keep_locks should be set to 1 on the search made before
5616 * calling this function.
5617 */
5618 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5619 struct btrfs_key *key, int level, u64 min_trans)
5620 {
5621 int slot;
5622 struct extent_buffer *c;
5623
5624 WARN_ON(!path->keep_locks);
5625 while (level < BTRFS_MAX_LEVEL) {
5626 if (!path->nodes[level])
5627 return 1;
5628
5629 slot = path->slots[level] + 1;
5630 c = path->nodes[level];
5631 next:
5632 if (slot >= btrfs_header_nritems(c)) {
5633 int ret;
5634 int orig_lowest;
5635 struct btrfs_key cur_key;
5636 if (level + 1 >= BTRFS_MAX_LEVEL ||
5637 !path->nodes[level + 1])
5638 return 1;
5639
5640 if (path->locks[level + 1]) {
5641 level++;
5642 continue;
5643 }
5644
5645 slot = btrfs_header_nritems(c) - 1;
5646 if (level == 0)
5647 btrfs_item_key_to_cpu(c, &cur_key, slot);
5648 else
5649 btrfs_node_key_to_cpu(c, &cur_key, slot);
5650
5651 orig_lowest = path->lowest_level;
5652 btrfs_release_path(path);
5653 path->lowest_level = level;
5654 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5655 0, 0);
5656 path->lowest_level = orig_lowest;
5657 if (ret < 0)
5658 return ret;
5659
5660 c = path->nodes[level];
5661 slot = path->slots[level];
5662 if (ret == 0)
5663 slot++;
5664 goto next;
5665 }
5666
5667 if (level == 0)
5668 btrfs_item_key_to_cpu(c, key, slot);
5669 else {
5670 u64 gen = btrfs_node_ptr_generation(c, slot);
5671
5672 if (gen < min_trans) {
5673 slot++;
5674 goto next;
5675 }
5676 btrfs_node_key_to_cpu(c, key, slot);
5677 }
5678 return 0;
5679 }
5680 return 1;
5681 }
5682
5683 /*
5684 * search the tree again to find a leaf with greater keys
5685 * returns 0 if it found something or 1 if there are no greater leaves.
5686 * returns < 0 on io errors.
5687 */
5688 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5689 {
5690 return btrfs_next_old_leaf(root, path, 0);
5691 }
5692
5693 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5694 u64 time_seq)
5695 {
5696 int slot;
5697 int level;
5698 struct extent_buffer *c;
5699 struct extent_buffer *next;
5700 struct btrfs_key key;
5701 u32 nritems;
5702 int ret;
5703 int old_spinning = path->leave_spinning;
5704 int next_rw_lock = 0;
5705
5706 nritems = btrfs_header_nritems(path->nodes[0]);
5707 if (nritems == 0)
5708 return 1;
5709
5710 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5711 again:
5712 level = 1;
5713 next = NULL;
5714 next_rw_lock = 0;
5715 btrfs_release_path(path);
5716
5717 path->keep_locks = 1;
5718 path->leave_spinning = 1;
5719
5720 if (time_seq)
5721 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5722 else
5723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5724 path->keep_locks = 0;
5725
5726 if (ret < 0)
5727 return ret;
5728
5729 nritems = btrfs_header_nritems(path->nodes[0]);
5730 /*
5731 * by releasing the path above we dropped all our locks. A balance
5732 * could have added more items next to the key that used to be
5733 * at the very end of the block. So, check again here and
5734 * advance the path if there are now more items available.
5735 */
5736 if (nritems > 0 && path->slots[0] < nritems - 1) {
5737 if (ret == 0)
5738 path->slots[0]++;
5739 ret = 0;
5740 goto done;
5741 }
5742 /*
5743 * So the above check misses one case:
5744 * - after releasing the path above, someone has removed the item that
5745 * used to be at the very end of the block, and balance between leafs
5746 * gets another one with bigger key.offset to replace it.
5747 *
5748 * This one should be returned as well, or we can get leaf corruption
5749 * later(esp. in __btrfs_drop_extents()).
5750 *
5751 * And a bit more explanation about this check,
5752 * with ret > 0, the key isn't found, the path points to the slot
5753 * where it should be inserted, so the path->slots[0] item must be the
5754 * bigger one.
5755 */
5756 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5757 ret = 0;
5758 goto done;
5759 }
5760
5761 while (level < BTRFS_MAX_LEVEL) {
5762 if (!path->nodes[level]) {
5763 ret = 1;
5764 goto done;
5765 }
5766
5767 slot = path->slots[level] + 1;
5768 c = path->nodes[level];
5769 if (slot >= btrfs_header_nritems(c)) {
5770 level++;
5771 if (level == BTRFS_MAX_LEVEL) {
5772 ret = 1;
5773 goto done;
5774 }
5775 continue;
5776 }
5777
5778 if (next) {
5779 btrfs_tree_unlock_rw(next, next_rw_lock);
5780 free_extent_buffer(next);
5781 }
5782
5783 next = c;
5784 next_rw_lock = path->locks[level];
5785 ret = read_block_for_search(root, path, &next, level,
5786 slot, &key);
5787 if (ret == -EAGAIN)
5788 goto again;
5789
5790 if (ret < 0) {
5791 btrfs_release_path(path);
5792 goto done;
5793 }
5794
5795 if (!path->skip_locking) {
5796 ret = btrfs_try_tree_read_lock(next);
5797 if (!ret && time_seq) {
5798 /*
5799 * If we don't get the lock, we may be racing
5800 * with push_leaf_left, holding that lock while
5801 * itself waiting for the leaf we've currently
5802 * locked. To solve this situation, we give up
5803 * on our lock and cycle.
5804 */
5805 free_extent_buffer(next);
5806 btrfs_release_path(path);
5807 cond_resched();
5808 goto again;
5809 }
5810 if (!ret) {
5811 btrfs_set_path_blocking(path);
5812 btrfs_tree_read_lock(next);
5813 btrfs_clear_path_blocking(path, next,
5814 BTRFS_READ_LOCK);
5815 }
5816 next_rw_lock = BTRFS_READ_LOCK;
5817 }
5818 break;
5819 }
5820 path->slots[level] = slot;
5821 while (1) {
5822 level--;
5823 c = path->nodes[level];
5824 if (path->locks[level])
5825 btrfs_tree_unlock_rw(c, path->locks[level]);
5826
5827 free_extent_buffer(c);
5828 path->nodes[level] = next;
5829 path->slots[level] = 0;
5830 if (!path->skip_locking)
5831 path->locks[level] = next_rw_lock;
5832 if (!level)
5833 break;
5834
5835 ret = read_block_for_search(root, path, &next, level,
5836 0, &key);
5837 if (ret == -EAGAIN)
5838 goto again;
5839
5840 if (ret < 0) {
5841 btrfs_release_path(path);
5842 goto done;
5843 }
5844
5845 if (!path->skip_locking) {
5846 ret = btrfs_try_tree_read_lock(next);
5847 if (!ret) {
5848 btrfs_set_path_blocking(path);
5849 btrfs_tree_read_lock(next);
5850 btrfs_clear_path_blocking(path, next,
5851 BTRFS_READ_LOCK);
5852 }
5853 next_rw_lock = BTRFS_READ_LOCK;
5854 }
5855 }
5856 ret = 0;
5857 done:
5858 unlock_up(path, 0, 1, 0, NULL);
5859 path->leave_spinning = old_spinning;
5860 if (!old_spinning)
5861 btrfs_set_path_blocking(path);
5862
5863 return ret;
5864 }
5865
5866 /*
5867 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5868 * searching until it gets past min_objectid or finds an item of 'type'
5869 *
5870 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5871 */
5872 int btrfs_previous_item(struct btrfs_root *root,
5873 struct btrfs_path *path, u64 min_objectid,
5874 int type)
5875 {
5876 struct btrfs_key found_key;
5877 struct extent_buffer *leaf;
5878 u32 nritems;
5879 int ret;
5880
5881 while (1) {
5882 if (path->slots[0] == 0) {
5883 btrfs_set_path_blocking(path);
5884 ret = btrfs_prev_leaf(root, path);
5885 if (ret != 0)
5886 return ret;
5887 } else {
5888 path->slots[0]--;
5889 }
5890 leaf = path->nodes[0];
5891 nritems = btrfs_header_nritems(leaf);
5892 if (nritems == 0)
5893 return 1;
5894 if (path->slots[0] == nritems)
5895 path->slots[0]--;
5896
5897 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5898 if (found_key.objectid < min_objectid)
5899 break;
5900 if (found_key.type == type)
5901 return 0;
5902 if (found_key.objectid == min_objectid &&
5903 found_key.type < type)
5904 break;
5905 }
5906 return 1;
5907 }
5908
5909 /*
5910 * search in extent tree to find a previous Metadata/Data extent item with
5911 * min objecitd.
5912 *
5913 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5914 */
5915 int btrfs_previous_extent_item(struct btrfs_root *root,
5916 struct btrfs_path *path, u64 min_objectid)
5917 {
5918 struct btrfs_key found_key;
5919 struct extent_buffer *leaf;
5920 u32 nritems;
5921 int ret;
5922
5923 while (1) {
5924 if (path->slots[0] == 0) {
5925 btrfs_set_path_blocking(path);
5926 ret = btrfs_prev_leaf(root, path);
5927 if (ret != 0)
5928 return ret;
5929 } else {
5930 path->slots[0]--;
5931 }
5932 leaf = path->nodes[0];
5933 nritems = btrfs_header_nritems(leaf);
5934 if (nritems == 0)
5935 return 1;
5936 if (path->slots[0] == nritems)
5937 path->slots[0]--;
5938
5939 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5940 if (found_key.objectid < min_objectid)
5941 break;
5942 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5943 found_key.type == BTRFS_METADATA_ITEM_KEY)
5944 return 0;
5945 if (found_key.objectid == min_objectid &&
5946 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5947 break;
5948 }
5949 return 1;
5950 }